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Abstract

This paper describes the work that has been done during the first year of the 3-SHIRT project, which aims at

developing innovative solutions in all the phases of content-based 3D shape retrieval, namely: shape analysis and

segmentation, design of shape descriptors, shape indexing and matching, and evaluation.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry

and Object Modeling; I.3.5 [Computer Graphics]: Curve, Surface, Solid, and Object Representations

Introduction

In the past the proliferation of a specific digital multimedia

data type was followed by emergence of systems facilitat-

ing their content based retrieval. With the recent advances in

3D acquisition techniques, graphics hardware and modelling

methods, there is an increasing amount of 3D objects spread

over various archives: general objects commonly used e.g. in

games or VR environments, solid models of industrial parts,

etc. On the other hand, modelling of high fidelity 3D ob-

jects is a very cost and time intensive process, a task which

one can potentially get around by reusing already available

models. Another important issue is the efficient exploration

of scientific data represented as 3D entities. Such archives

are becoming increasingly popular in the areas of Biology,

Chemistry, Anthropology and Archaeology to name a few.

Therefore, there has been a recent surge of interest in meth-

ods for retrieval of 3D models from large databases.

Unlike text documents, 3D models are not easily re-

trieved. Attempting to find a 3D model using textual annota-

tion and a conventional text-based search engine would not

work in many cases. The annotations added by human be-

ings depend on language, culture, age, sex, and other factors.

They may be too limited or ambiguous. In contrast, content

based 3D shape retrieval methods, that use shape properties

of the 3D models to search for similar models, carry much

potential for boost retrieval results with respect to text-based

methods [MKF04].

Most of work on content-based retrieval has focused on

2D data [Rem01]. Content based retrieval and classification

systems [TV04, Rem01] have demonstrated their effective-

ness in manipulating non-textual information (i.e., multime-

dia data types) such as audio, images, and videos [FMK∗03].

Extending these system to 3D surface models is non-

trivial. In particular, the 3D retrieval strategy implies the

studies of several further issues with respect to the 2D coun-

terpart, such as the analysis of 3D shape instead of 2D im-

ages, the extension of the concept of descriptor from the 2D

to the 3D domain, and the effective indexing and matching

of 3D shapes. Moreover, the evaluation of the retrieval per-

formances has been carefully explored for text but it is still

in its infancy for what concern the 3D shapes.

Some interesting examples of preliminary 3D model re-

trieval systems exist, at the National Taiwan University

[3D a] and at the National Institute of Multimedia Educa-

tion (Japan) [Ogd]. Furthermore, some prototypes of 3D

search engine have been proposed at Princeton University

[FMK∗03], at Utrecht University [3D c] and at the Univer-

sity of Konstanz [3D b].

The 3-SHIRT (Three-Dimensional Shape Indexing and

Retrieval Techniques) project targets content-based 3D

shape retrieval, aiming at developing innovative solutions in

all the phases of the process, namely: i) shape analysis and

segmentation; ii) design of shape descriptors; iii) shape in-
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dexing and matching; iv) evaluation. This paper describes

the research that has been carried out during the first year of

the project. The following sections will deal with each one

of the above points.

1. Shape analysis

Shape analysis is performed off-line, as a pre-processing

step aimed at improving retrieval performances. It includes

skeletonization and segmentation.

1.1. Skeletonization

The approach followed to find the 3D skeleton of a given

mesh is fairly straightforward: embed the mesh in a regular

discrete structure, then find which elements of the structure

are crossed by the mesh and use a voxel-based approach to

compute the skeleton.

The chosen data structure was, quite naturally, an octree,

which we implemented in the OpenMesh [Ope] framework.

It is thus possible to convert any mesh in a voxel-based rep-

resentation with the desired level of detail, based on mesh

features (e.g., the shortest edge) or on the maximum number

of voxels needed.

Figure 1: The voxelization and skeletonization plug-in de-

veloped for the OpenMesh visualizer: OpenFlipper

We are designing two different strategies for skeleton ex-

traction:

• Following the approach originally described in [GS99]

and then in [CSM07] the volume inside the mesh will be

eroded (volume thinning) iteratively eliminating the vox-

els closest to the mesh until keeping only a one-voxel wide

structure representing an approximation of the mesh’s

skeleton (see Fig. 1);

• Using a novel approach still under evaluation, we will

shoot rays from the vertices of the mesh inside comput-

ing the first intersection of each ray with the mesh; the

mid-point of the segment connecting the vertex with the

intersection will be counted for the voxel it is inside to

build a density map of mid-points representing a suitable

topological descriptor of the mesh, holding characteristics

similar to its skeleton.

1.2. Segmentation

Segmentation is the task of partitioning a 3D mesh into con-

nected regions or parts, thereby giving a high-level organi-

zation to the raw data. We propose three strategies.

1.2.1. Segmentation based on saliency

This task has been addressed by introducing a new 3D

saliency measure, able to extract perceptually meaningful re-

gions of interest from 3D meshes [CCFM08]. The proposed

approach is theoretically sound and it is inspired by the re-

search on saliency measure on 2D images. In summary, the

source mesh is decomposed in multiscale representations,

and a saliency measure is defined by opportunely combining

the results gathered at each scale level. The idea is to find

robust variations in the mesh which are resolution invariant.

The main steps of the proposed procedure are:

• Scale maps computation: a scale map is computed by first

applying the Difference of Gaussian filter at a certain scale

σ to all the mesh vertices, and then projecting each of the

3D displacement vectors (caused by the 3D filter) to the

respective vertex normal. By defining properly different

σi several scale maps are computed.

• Scale normalization: each scale maps is normalized by

adopting the so called Itti’s approach [IKN98]. Basically,

the normalization is carried out combining global and lo-

cal maxima of the same map. In particular, this procedure

allows an enhancement of peaks.

• Adaptive inhibition process: from each vertex, we con-

sider all the values of the scale map observed on the neigh-

borhood. If such value is higher than the 85% of the values

in its neighborhood, the value is retained, otherwise it is

set to zero. This procedure allow ad adaptive delimitation

of interesting regions.

At the end, a saliency map is defined by simply adding

the contribution of each inhibited scale map. It is worth not-

ing that the proposed saliency based segmentation allows the

detection of a small subset of regions which are particularly

significant on the mesh. We therefore switch between re-

gion to single point detection by simply introducing a non-

maximum procedure on each salient region: a point is de-

tected if it is a local maximum where the neighbourhood of

a point is adaptively defined by expanding the local region

while new non-zero points are found (see Fig. 2)

1.2.2. Segmentation based on triangular patches

This application starts from the approaches proposed origi-

nally in [SAPH04] and [KS04]. These two methods are quite
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Figure 2: The saliency map shows small regions (left), from

which interest points are isolated (right). The most signifi-

cant parts of the subject are detected such as the eyes, the

nostrils of the nose, the fingers of the paws.

similar and both present an approach to segmentation that

is aimed to partition two or more different meshes with the

same scheme in order to morph them into each other. Since

the segmentation is intended to be the first step towards

the comparison and the recognition of similarities among

meshes extracted from a database, we thought that this could

be a good idea to start with. The application starts letting the

user choosing feature points on the mesh, selected among

the vertices. It then generates a coarse mesh with the fea-

ture points as vertices building the edges as the minimal path

connecting them. The faces of this super-mesh are triangles

by construction. The algorithm (a compromise between the

starting two) is already implemented in OpenMesh [Ope]

and, presently, the focus is on increasing the performance

accelerating the Dijkstra based procedure used for searching

the shortest path among the feature points.

1.2.3. Segmentation based on fuzzy clustering

Another different approach to the mesh segmentation un-

der investigation is based on [KT03] and [KLT05]. Using

this method, once more under development inside Open-

Mesh [Ope], the user is able to segment, in a totally unsu-

pervised mode, a mesh iteratively partitioning it, or a patch,

in two parts, each of them representing the neighborhood

of one of two representative faces, chosen by the algorithm

driven by several parameters set by the user. The develop-

ment is in its early stage and the results of this approach are

expected later on.

2. Descriptors

One of major challenges in the context of data retrieval is

to elaborate a suitable canonical characterization of the en-

tities to be indexed. In the literature, this characterization is

referred to as a descriptor. Since the descriptor serves as a

key for the search process, it decisively influences the per-

formance of the search engine in terms of computational ef-

ficiency and relevance of the results. We propose three types

of descriptors: geometric, geometric plus texture and aspect-

based.

2.1. Geometric descriptors

This issue has been addressed by focusing on a new ro-

bust geometric point descriptor. We have propose a statistical

learning on the 3D domain [CCFM08]. Each detected point

is modelled by a Hidden Markov Model (HMM), which

is trained in an unsupervised way by using contextual 3D

neighborhood information, thus providing a robust and in-

variant point signature. The goal is to build a compact de-

scription able to summarize information related to interest

points and to their neighborhood area. More in details, once

a point has been detected, the main steps of our approach

are:

• Neighborhood data collection: we build a clockwise spiral

pathway connecting vertices which lie at 1-ring distance,

then at 2-ring distance and so on, until a fixed geodesic

radius is reached. Along this pathway, we extract several

local point information such as the maximal and mini-

mal curvature, the normal displacement between the local

point and the detected point, shape index, and so on.

• HMM learning: at n−dimensional each entry of the spiral

a n-dimensional Gaussian is fitted to quantized the data

in few values occurring repeatedly along the spiral. For

this reason, modelling the spiral as a stochastic process, in

which the different entities are thought as discrete states,

is a reasonable choice. The HMM model parameters are

extracted by obtained a statistical signature.

Figure 3: The Viterbi path of two HMMs built on two

different-length spirals. For visual clarity, a state-identifying

number is positioned on the area which exhibits mainly the

presence of that state. Note that similar states lie in corre-

sponding areas.

In this way, the HMM gives a statistical encoding of the

point and its neighborhood, taking into account for the un-

certainty in the data. Actually, each HMM state captures a

particular geometrical aspect particularly evident near the

point. In practice, the expressivity of such a characterization

is robust to 1) rotation 2) irregular sampling (for example,

due to holes in the mesh) and 3) resolution variation of the

mesh over which the interest point lies (see Fig. 3).

Finally, by adopting this approach, the matching among

the points are carried out by evaluating a pairwise similar-

ity measure among HMMs in a maximum likelihood princi-

ple. In particular, if we consider the similarity measures as
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weights that characterize links between points, the above fi-

nal matching can be formally cast as a maximum weighted

matching problem (MWMP). Roughly speaking, in this case

MWMP translates in selecting for each point of one model

only one weighted link to another point on the other model,

such that the summation of all the weights is maximal.

2.2. Geometry and texture descriptors

We have addressed the development of 3D model descriptors

that are able to exploit both the geometric information and

the texture data.

Spin-images are a well-known descriptor for 3D mod-
els [JH99]. This descriptor is itself based on the concept
of spin-map. Let us consider an oriented point at a surface
mesh vertex defined as the pair formed by the 3D vertex co-
ordinates p and the surface normal n at the vertex. We can
assign to each point x on the 3D surface its coordinates pair
(α,β) with respect to the reference system (p,n) associated
to an oriented point: radial coordinate α is the perpendicular
distance to the line through the surface normal at the vertex
point, elevation coordinate β is the signed perpendicular dis-
tance to the tangent plane defined by vertex normal and po-
sition. The record of the (α,β) coordinates of all the points
of the 3D mesh is the “spin-map”. Formally the spin-map is
defined as:

SI(x) → (α,β) = (
√

‖x−p‖2 − (n · (x−p))2
,n · (x−p)) (1)

A spin-image is a spatially discretized version of a spin-

map, where the gray values are associated to the count of

points of the spin-map falling in each discrete cell or bin.
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Figure 4: Left: Precision-recall plot for the retrieval on the

Princeton Shape Benchmark database referring to the Spin-

Image technique (shape information only). Right: Example

of spin-map taken from a vertex on the dog’s leg

Spin-images have given satisfactory results in the retrieval

of 3D models on the basis of their shape information (Fig. 4).

The next step is the extension of this approach to the retrieval

of textured 3D models.

The first descriptor that we devised is inspired by a
previous work on the registration of multiple 3D views
[BAGC05]. We extended the concept of “spin-map” in the
following way: Let I(x) denote the luminance value associ-
ated to the (R,G,B) chromatic values of the surface texture
at x and let us quantize I(x) into L uniform gray level in-
tervals li, i = 1,2, ...L. The textured spin image is essentially
the set of spin-images recording the (α,β) values associated

to each li gray level interval. A textured spin-map (TSI) with
respect to an oriented point is the set of triplets determined
by all the points x of the surface and their intensity I(x) in
the following way:

T SI(x) → (α,β, li) = (
√

‖x−p‖2 − (n · (x−p))2
,n · (x−p), li)

(2)

A possible solution is to obtain the textured spin image from

the textured spin map by accumulating in each bin just the

number of (α,β) coordinates falling in it as in the case of

standard spin-images. A better solution is instead to accu-

mulate all the discrete gray level values li of the (α,β) coor-

dinates falling in the bin. In this case a textured spin image is

essentially the set of spin-images recording the (α,β) values

associated to each li gray level interval, with an important

difference with respect to the computation of spin-image: the

bin value for each i = 1,2, ...L is not the count of points of

the spin-map falling in the bin as for the spin-images, but

the sum of all the luminance values li falling in the bin. In

that way, even a single-level TSI (L = 1) takes into account

texture information. In principle, the larger is the number

of intensity intervals L, the greater will be the texture infor-

mation recorded by the textured spin-image. In practice we

found that a sort of saturation takes place beyond L = 4.

Another descriptor we experimented is a variation of

Equation (2) which we called (R,G,B)-spin-image, given by

the set of 3 spin-images, the first one recording the (α,β) co-

ordinates associated with the R values, the second the (α,β)
coordinates associated with the G values, and the third one

the (α,β) coordinates associated with the B values.

In the TSI case we obtain a set of spin-images for each

considered sample (spin-vector), one for each quantization

interval. During retrieval we perform PCA on the spin-

vectors and compare the more relevant eigen-vectors. At the

moment the improvement obtained by including also texture

data is still quite limited, the second year of the project will

be spent on the study of other possible solutions for the in-

clusion of color information in the “spin-image” descriptor.

This is linked also to a conceptual issue regarding how to

consider the texture information in respect to the shape one,

including if two models with the same shape and different

texture should be considered similar.

2.3. Aspect-based descriptors

The approach that we have explored [DNOV07c,DNOV07a,

DNOV07b] aims at recognizing 3D objects of arbitrary com-

plexity in real-world scenes, fully exploiting all the informa-

tion available from video sequences. The approach that we

follow is to adopt a view-based strategy and to describe the

image content by means of local features: in order to reduce

the information redundancy typical of image sequences and

increase the robustness of the method to view-point varia-

tions, we mainly rely on features that are distinctive in space

and stable w.r.t. view-point variations.
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Figure 6: Sample frames from the system output.

The method we have devised can be sketched as follows.

We represent implicitly the 3D information from a video se-

quence by means of time-invariant features, i.e, local fea-

tures that are distinctive in space and smooth and stable

in time. To do so, we extract 2D scale-invariant local fea-

tures (Harris corners in scale-space) from the images and

track them along the video sequence by means of a Kalman

filter, forming features trajectories. Dynamic filters, robust

to temporary occlusions, allow us to deal with non con-

vex objects, since, while rotating around a 3D object, self-

occlusions may cause temporary interruptions in a trajectory.

For a given trajectory we obtain a compact time-invariant

feature by averaging descriptions for each keypoint belong-

ing to the same trajectory. The overall procedure described

so far is summarized in Figure 5 (left).

In the training (modeling) phase we acquire a video se-

quence of an object of interest at a time, observing it in rela-

tively controlled environments from different view-points —

meaningful for recognition purposes. Figure 5 (right) shows

a visual impression of the local regions of the video sequence

that participate to modeling the object of interest. Observe

that areas belonging to different time views are included.

Also, the same part may appear more than once, if differ-

ent views of it are important for recognition – in the figure

Goofy’s left arm appears twice.

In the test (recognition) phase a buffer of adjacent frames

stored from a video stream is used to model the recently

seen content of the observed scene of interest, similarly

to training. Then the test model at time t is compared

to the training models by means of a matching technique

[DNOV07c] that exploits spatial and temporal coherence

of time-invariant features: after computing a first set of ro-

bust matches with a simple NN strategy, the procedure is

reinforced by analysing spatio-temporal neighborhoods and

deleting isolated matches while adding weaker matches that

are spatio-temporally close to robust ones. Finally, recogni-

tion is based on the matching procedure and it relies on an

analysis of the recent content of the video which is compared

with all the available models.

3. Indexing and Matching

The main objective of our work so far was to evaluate the use

of statistical methods to improve effectiveness and efficiency

of a classical retrieval system. In the next section we will

briefly describe the preliminary studies and results.

3.1. T3.2 Statistical methods

We propose a technique that is a combination of a classical

retrieval methods with a classification approach typical of

the learning from examples framework.

We focus on the query by example (QBE) approach, very

common on multimedia retrieval systems. In such a con-

text, usually retrieval is based on the application of appropri-

ate similarity measures between the example shape descrip-

tor and all or some descriptors originated from the dataset.

Therefore, most research in this direction focused on finding

robust and discriminative shape descriptors. From the pat-

tern recognition point of view, similarity matching is usually

coupled with a nearest neighbour approach, that orders the

available dataset according to the degree of similarity with

respect to the shape used as a query. In this setting, the core

problem is finding meaningful representations. It is easy to

understand that this approach can suffer from the increase of

the number of available shapes and in the case that the cho-

sen descriptor is not discriminant enough the retrieval can

easily fail. Here the use of an effective indexing method may

be advantageous. We seek an alternative way to maintaining

the retrieval efficiency and effectiveness as the database size

grows. We investigate the appropriateness of using statistical

learning tools for classification to improve retrieval perfor-

mance. So far we have considered the well known SVM clas-

sifiers [CST00], but different regularized approaches could

be applied as well.

Let us assume that we have a dataset of labeled shapes

divided in N classes. Then, given a test shape, we rank the

output of the classifiers with a one vs all approach such that

we obtain a sorted list of classes from the most to the least

similar to the test shape. The idea that we pursue is to re-

duce the size of the dataset available, and therefore to save

retrieval time, by using only shapes belonging to the k most

similar classes to the test shape. We start off from a popu-

lar work proposed by Osada et al., based on statistical shape

descriptors. We show how, with an appropriate use of the

statistical learning tools we will, not only improve compu-

tational cost, but also improve the quality of retrieval. Fol-

lowing the work that we use as a reference in our experi-

ments [OTCD02] we represent shapes by means of the so-

called D2 descriptor, which is a measure of the distance be-

tween two random points on the surface. In [OTCD02] shape

distributions of two different 3D models are compared with

the L1 distance to obtain a dissimilarity measure. Thus, for a

given test shape, its description is compared with all the de-

scriptions available on the database, and the output returned

by the retrieval system is a list of the n most similar shapes.
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Figure 5: Overview of our approach. Left: the construction of a time-invariant feature. Right: a visual representation of the

local regions of the image sequence that participate to object modeling.

Our variation of the original pipeline is to perform shape

classification prior shape retrieval in order to reduce the size

of the dataset of shapes to be analyzed. We evaluate the ap-

propriateness of our choice in terms of nearest-neighbour

performance, and retrieval indicators (we are currently using

the so-called first tier and second tier). It is important to no-

tice that our approach is flexible and can be implemented as

a preprocess for many different kind of signatures or shape

descriptions every time that an initial classification exists.

The reminder of the section is devoted to present the

dataset of shapes, the classification process and the retrieval

procedure.

3.1.1. The dataset

We are currently using the Princeton Shape Benchmark

[SMKF04], or PSB, which is a publicly-available database

of 3D models, containing 1814 polygonal models collected

from the World Wide Web and classified by humans ac-

cording to function and form. For our experiments we have

used the PSB and the classes organization provided with the

repository of shapes that splits the dataset in two parts: one

for the training and another one for the test. The total number

of shapes is 907 in both cases. According with the classifi-

cation provided with the PSB, the dataset is split in 42 cat-

egories for training and 38 for test. It is important to notice

that some of the training classes are not present in the test

group of classes: moreover there are some of the categories

which contains very few examples (less than 10) and there

are some classes which contain very different objects.

Indeed one of the main problem of the classification pro-

vided with the PSB is that some of the classes are clustered

on a functional basis: this means they are grouped accord-

ing with their use and not with their form of the 3D shape.

Thus we considered subset of PSB classes, that fulfill re-

quirements of intra-class shape homogeneity and a threshold

for cardinality.

Table 1 shows the set of classes that we have chosen for

our experiments with relative cardinality for the training and

test sets that are used for classification procedure. Each train-

ing set contains the same number of positive and negative ex-

amples: the negative are randomly selected from all the other

classes of shapes. Each test set contains the positive exam-

ples given by the PSB dataset and as negative examples we

have chosen to use all the other 3D shapes belonging to the

dataset.

Class name Training set Test Set

Positive Negative Positive Negative

Aircraft winged vehicle 107 107 135 772

Plant 78 78 60 847

Animal biped human 71 71 78 829

Vehicle car 62 62 51 856

Furniture table 43 43 35 872

Furniture seat 40 40 37 870

Body part head 40 40 38 869

Liquid container 35 35 24 883

Sea vessel 19 19 26 881

Aircraft helicopter 17 17 18 889

Display device 16 16 24 883

Lamp 14 14 8 899

Animal quadruped 14 14 17 890

Furniture shelves 13 13 13 894

Animal underwater creature 12 12 23 884

Hat 10 10 6 901

City 10 10 10 897

Door 10 10 18 889

Table 1: The set of classes that we have chosen for our ex-

periments: each class is split in a training set and a test set

which are exploited to train a SVM classifier.

3.1.2. Classification with SVM

The preliminary experiments that we performed rely on the

well known SVM classifiers. Once the dataset has been se-

lected and labeled we train and tune a classifier for each of

c© The Eurographics Association 2008.
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Training class cardinality FT ST NN

Aircraft winged vehicle 107 0.52 0.73 0.63

Plant 78 0.26 0.48 0.45

Animal biped human 71 0.49 0.76 0.74

Vehicle car 62 0.36 0.65 0.47

Furniture table 43 0.29 0.55 0.31

Furniture seat 40 0.25 0.47 0.43

Body part head 40 0.37 0.71 0.5

Liquid container 35 0.17 0.42 0.25

Sea vessel 19 0.28 0.45 0.46

Aircraft helicopter 17 0.15 0.32 0.56

Display device 16 0.11 0.26 0.17

Lamp 14 0.5 0.76 0.75

Animal quadruped 14 0.16 0.2 0.35

Furniture shelves 13 0.11 0.18 0.15

Animal underwater creature 12 0.11 0.18 0.04

Hat 10 0 0.02 0

City 10 0.1 0.15 0.3

Door 10 0.06 0.12 0

Table 2: The results obtained for retrieval performed among

the shapes of the classes selected with the classification tool

described in Section 3.1.2.

the classes: each training set is made of an equal number of

positive and negative examples of the shapes, where the neg-

ative examples are extracted from all the other shapes of the

dataset. As for the kernel choice, we are currently using the

RBF Gaussian kernel, but other choices, including the de-

sign of appropriate kernels for a given shape descriptor, are

possible.

We tune the classifiers parameters (the regularization pa-

rameter c and the variance of the Gaussian kernel σ) with a

leave-one-out approach.

3.1.3. Experimental results

We conclude reporting some preliminary results that show

how the retrieval quality increases when restricting retrieval

to a subset of shapes, selected with shape classification. We

compare the results with the ones obtained performing no

classification — i.e., to the ones obtained with the original

method by Osada. To evaluate the performances of the re-

trieval we use the well known evaluation methods proposed

by previous works:

First Tier : the percentage of models in the query’s class

that appear within the top k matches where k is the size of

the query’s class.

Second Tier : the percentage of models in the query’s class

that appear within the top 2k matches where k is the size

of the query’s class.

Nearest Neighbour : the percentage of closest matches that

belong to the same class as the query.

The results obtained for retrieval considering the selected

number of class (four) are shown in Table 2.

It is possible to notice that the performances of the re-

trieval drop down for those classes which have few shapes in

the training set. It is possible to see that results are very dif-

ferent for different classes: those classes which have a more

shapes for training classifier are retrieved better that other.

1st Tier 2nd Tier N.N.

Our approach (first

4 classes)

33% 55% 47%

Osada (all classes) 24% 39% 44%

Table 3: Comparison between applying or not a shape clas-

sification phase prior retrieval.

Considering Table 2 it is apparent that our approach im-

prove performances of retrieval. It is worth noticing that the

training class cardinality and the intra-class similarity are

fundamental for the performances of the retrieval: it is ap-

parent that when the number of shapes drop down, also the

first tier and the second tier decrease. With respect to the

intra-class similarity, we have computed the L1 distance be-

tween all the shapes of each class and we have that, even if

there is a high number of training shapes, the retrieval fails

if the intra-class distance is high.

4. Evaluation

We have built a test collection for the project and we have

studied some important and foundational issues about eval-

uation: metrics and benchmarks.

4.1. Database of Textured 3D Models

We added texture information to the models of the Princeton

Shape Benchmark. This repository contains 1800 3D mod-

els and is one of the most used for the comparison of 3D

retrieval systems. By adding texture information to it we ob-

tained an effective way to compare the performance of de-

scriptors using also color information with current state-of-

the-art systems. We also collected the 3D models available

to our research group from previous and current research

activity in an additional database. This database is particu-

larly interesting because it contains also some high quality

3D models with complex geometry while most 3D models

available in the free collections are rather simple.

4.2. Evaluation: Metrics and Benchmarks

We analyzed the data provided by TREC test collection, the

most used benchmark in the information retrieval commu-

nity. We studied:

• if it is possible to obtain correct and reliable results us-

ing less data (fewer topics, i.e., fewer test queries). The

result is that, potentially, we could get the same evalua-

tion results with just 10% of the topics, although it is not

yet clear if these topics can be found a priori (before the

evaluation takes place) and how to find them [GMR08].

• which topics are more informative. The results are still

preliminary, but we have a strong indication that the cur-

rent evaluation procedures concentrate too much on those

topics for which most systems feature good performances,

whereas the systems that have good performances on the
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most “difficult” topics are not rewarded enough [MR07].

Moreover, we have suggested to take inspiration from

students assessment, rewarding the systems that perform

well on difficult topics and punishing the systems that per-

form badly on easy topics [Miz08].

We have also continued some research on information re-

trieval effectiveness metrics. We are studying and categoriz-

ing the more than 80 metrics that have been proposed in the

information retrieval field [DKM08].

These results will be taken into account during the evalu-

ation phase of the 3-SHIRT project.
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