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Abstract
This paper presents a novel method for computing visibility in 2.5D environments based on a novel theoretical
result: the visibility from a region can be conservatively estimated by computing the visibility from a point using
appropriately “shrunk” occluders and occludees. We show how approximate, yet conservative, shrunk objects can
be efficiently computed in an urban environment. The technique provides a tighter potentially visible set (PVS)
compared to the original method in which only occluders are shrunk. Finally, theoretical implications of the
shrinking theorem are discussed, opening new research directions.

1. Introduction

When generating images from a given viewpoint, hidden
surface removal has to be performed. The widely used z-
buffer technique achieves this by projecting and rasterizing
all primitives onto the image plane, retaining for each pixel
only the closest one. Although the final result is correct,
many primitives are processed only to be later discarded. If it
were possible to identify these primitives, it would be possi-
ble to perform the rendering faster by safely ignoring them.
A classical approach employs from-region visibility deter-
mination. Given a 3D model of an environment and a region
of space, determine what is visible from at least a viewpoint
in that region. The potentially visible set (PVS) associated
with a region can be used for any viewpoint within that re-
gion. However, finding what is hidden from a region is a very
difficult problem. In this paper we present a novel theoretical
result about from-region visibility. We show that it can be es-
timated from one point in the region using shrunk versions of
both occluders and occludees. The presented theorem is an
extension of an existing result 26 and transforms the from-
region visibility problem from a continuous domain into a
discrete one that is much easier to solve.

Section 2 reviews previous work and outlines some is-
sues. Section 3 presents the theorem and its implications.
We detail in Section 4 how to compute approximate shrunk
versions of both occluders and occludees. Section 5 tackles

† ARTIS is team of the GRAVIR/IMAG laboratory, a joint effort of
CNRS, INRIA, INPG and UJF.

implementation issues and the results are presented in Sec-
tion 6. Extensions and limitations of our method are finally
discussed in Section 7.

2. Previous work

In this review, we focus on previous work related to from-
region visibility. We refer the reader to Cohen-or et al. 6

and Pantazopoulos and Tzafestas 20 for a more in-depth sur-
vey. Teller et al. 23 propose pre-processing visibility through
sequences of portals, an approach suitable for architectural
scenes. Schaufler et al. 21 can handle scenes where occluders
are watertight objects. The important class of 2.5D models
has received special attention, since urban environments –
which many applications consider – can be approximated by
such models 13. Wonka et al. offer efficient solutions 25, 26

for these environments. Downs et al. 9 further approximate
buildings with Convex Vertical Prisms for efficient horizon
culling. Bittner et al. 4 present an exact solution to the 2D
version of the problem along with an effective extension to
the 2.5D case. More recently, Leyvand et al. 17 have extended
this class of environment and coined the term 3D-ε scenes
for those whose vertical complexity is much lower than its
horizontal one.

Pre-processing vs dynamic visibility. Initially, from-region
visibility was proposed as a pre-processing framework
which can be seen as a form of caching. The navigable
space is covered with a finite set of regions, called view-
cells. the PVS for those viewcells are determined during a
pre-processed computation. At run-time, the viewcell con-
taining the current viewpoint is retrieved, and its PVS is ren-
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dered in place of the whole scene. In that context, the time re-
quired to compute visibility is not the main issue. The prob-
lem is the computation and the storage of the pre-computed
PVS. More recently, Wonka et al. 27 have shown that when
the computation of the PVS is fast enough, it can be used
for instant visibility: the PVS is dynamically computed for
a region surrounding the current viewpoint. The computa-
tion cost is amortized over the set of frames where the user
remains in this region. In such an approach, the PVS corre-
sponding to rather large regions should be computed quickly.

Conservativity. The methods discussed here guarantee that
any object actually visible is classified as potentially visible.
In other words, the PVS contains the visible set (VS). This
property is referred to as conservativity. The PVS might con-
tain objects that are actually not visible, which will be han-
dled by the final hidden surface removal. However, the PVS
must be computed as tightly as possible in order to optimize
this removal. Comparing the over-conservativity of different
methods is a difficult task since implementations are not al-
ways available. However, it is valuable to estimate the over-
conservativity by analyzing the type of occlusion that the
method is able to detect, as well as the worst-case and best-
case scenarios.

Occluder fusion. Although early work has focused on the
occlusion caused by single, large, convex occluders 8, 15, 7,
current research focuses on the combined action of several
potentially small occluders. Convex occluders have indeed
been shown to be useful only if they are larger than the re-
gion for which visibility is determined 18. Occluder fusion
must be done in order to detect significant occlusion. Note
that occluder fusion is implicitly performed by most from-
points methods, such as the z-buffer, where projected occlud-
ers are aggregated to form an occlusion map against which
objects can be tested for visibility. The extended projection
of Durand et al. 10 defines a projection of occluders and oc-
cludees that conservatively maintains the visibility proper-
ties from a region. Wonka et al. 26 showed that this can also
be achieved by shrinking the occluders. Schaufler et al. 21

work in object space, constructing large shadow volumes by
extending discretized occluders through occluded regions.
Brunet et al. 5 extract convex silhouettes from generic non-
convex occluders in the case of from-point visibility. Koltun
et al. 16 construct virtual occluders that are equivalent to a set
of occluders from the point of view of a region. Other meth-
ods consider the ray space directly. The set of rays blocked
by occluders have to be fused. If the resulting set of rays con-
tains all the rays joining the region and an object, the latter
can be declared hidden. The work by Nirenstein 19 proposes
such an exact approach. Other works rely on a parameteriza-
tion and a conservative discretization of the ray space (either
in 2D 4 or in 3D-ε environments 17).

The method presented here achieves a conservative from-
region visibility pre-computation, computed in image space.

3. Shrinking based visibility

Wonka et al. 26 introduced the idea of shrunk occluders. They
observe that if a ray SR is blocked by a “shrunk” occluder
Od , then any ray S′R with |SS′| < d is blocked by the origi-
nal object O (notations are those of Fig. 1). The d-shrinking
is defined by Od = {M | Bd(M) ⊂O} where Bd(M) is a
sphere of radius d and center M. To determine wether an
object is occluded by some occluders from a given view-
cell, the approach fits the viewcell into a sphere S(S,d) and
simply tests if the object is occluded by d-shrunk occluders
from point S. The from-region query is therefore reduced to
a from-point query, for which many existing methods can
be used. This approach is very appealing since it can handle
many types of occluder fusion, and since from-point meth-
ods are easier to implement. Our work is built on this foun-
dation and overcomes its main limitation.

The use of a sphere to shrink occluders implies that the
viewcell should not be too long in a given direction in or-
der to avoid over-shrinking occluders by a large sphere. An
interesting extreme case is a line segment viewcell. Another
issue is that spheres shrink occluders in “every direction”.
Consider the case of a thin wall: when the viewcell’s half
radius is larger than the wall thickness, the wall is shrunk to
the empty set and causes no occlusion, though it obviously
hides everything behind it.

To address this issue of over-shrinking, we generalize the
shrinking by a sphere to the erosion by a convex shape. Do-
ing so, we establish a theorem that reduces the from-region
visibility query to a finite number of ray/scene intersections
(Sec. 7.1). Wonka et al. reduced the region-region visibility
queries to point-region queries. We go one step further by
reducing them to point-point queries.

3.1. Erosion theorem

We first introduce some notation. Consider a volumetric ob-
ject O, and a set of vectors X. The dilation of O by X, also
known as the Minkowski sum of both sets 22, is defined by
the equation:

O⊕X = {M +x, M ∈ O and x ∈ X}

X is commonly called the structuring element. Similarly, the
erosion of O by X is defined by:

O	X = {V such that ∀x ∈ X, V +x ∈ O}

= {V such that {V}⊕X ⊂O}

The erosion of O is the complement set of the dilation of
O’s complementary. This can be written:

O	X = (OC ⊕ (−X))C (1)

Given this notation, we prove (see Appendix A) the follow-
ing theorem, illustrated by Fig. 1:

Theorem 1 (Occluder erosion) If a segment [SR] intersects
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O	X, where X is a convex set of vectors, then any segment
[S′R′] intersects O with S′ ∈ {S}⊕X,R′ ∈ {R}⊕X.

S

S'

R'

R
Q

Q'

O
bject

X-erosion

X

Figure 1: If a ray [SR] is blocked by the X-erosion of an object,
then any ray [S′R′] joining two points located in the convex X-
shaped regions around S and R is blocked by the object.

3.2. Application to from-region visibility

Consider a convex viewcell, decomposed as {S}⊕X (cen-
tered on S, with an X shape). Theorem 1 states that if object
R is hidden by

⋃
i(Oi 	X) from S then R⊕X is hidden by

⋃
iOi from {S}⊕X. In other words, whether an occludee is

hidden by a set of occluders from the viewcell can conser-
vatively be determined by testing if the “shrunk” occludee is
hidden by the “shrunk” occluders.

This may seem odd at first since we are used to over-
estimating occludees (see for example extended projec-
tions 10), whereas in our case the tested occludee R is ac-
tually “smaller” than the occludee R⊕X for which we de-
termine visibility. The occluder/occludee distinction is how-
ever still present since their “shrunk” versions differ (as will
be detailed in Section 4).

The main difference between this theorem and the one
used by Wonka et al 26 are that objects are eroded by the
actual viewcell shape (which no longer needs to be included
in a bounding sphere) and that all the objects of the scene
(occludees and occluders) can be shrunk.

3.3. Tighter PVS using segment erosion

Theorem 1 allows us to significantly reduce the amount of
over-shrinking. Let us consider a convex viewcell and the
viewcell-object shaft as shown on Fig. 2. The shaft always
rests on a maximal supporting segment [PQ], and if any ray
between [PQ] and the object is blocked, then any ray be-
tween the viewcell and the object is alos blocked. Therefore,
testing the visibility of the object from the viewcell is the
same as testing its visibility from the segment. In the latter
case, however, Theorem 1 would require eroding occluders
only by a segment instead of an hexagon, preventing the two
thin occluders of Fig. 2 from disappearing.
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Figure 2: Testing the visibility of the object from the viewcell is
equivalent to testing visibility from segment [PQ]. But eroding oc-
cluders by the segment will not make them vanish as it would with
the hexagon. The object will hence correctly be classified as invisi-
ble from the viewcell.

3.4. Zonotope decomposition

The viewcells used for erosion in Theorem 1 must be con-
vex (otherwise they can be replaced by their convex hulls).
However the actual shape of the viewcell may lead to several
potential optimizations. If the viewcell is a 2D flat region,
then Theorem 1 states that no erosion of the objects has to
be performed along the “vertical” direction in order to com-
pute from-region visibility. This result is not obvious when
thinking about all the parallax effects that can happen along
this direction as the user moves.

= =

Figure 3: Minkowski decomposition of a parallelepiped as the
(commutative) sum of 3 segments.

Another interesting and common case is when the view-
cell is a zonotope, or the Minkowski sum of line segments
(such as parallelepipedic boxes, as illustrated by Fig. 3). The
erosion by the viewcell can then be replaced by successive
erosions by line segments, making the process much easier.
Indeed, and as proven in Appendix B, we have:

O	 (X⊕Y) = (O	X)	Y

If the viewcell is the extrusion of a 2D contour, the same
decomposition can be applied to separate the horizontal ero-
sion by the contour and the vertical one by a segment (as is
done in Section 4.3).

4. Shrinking objects

Computing exact erosion for general objects is a very diffi-
cult task 11, 3. We detail in this section how to compute ap-
proximate erosions for both the occluder and the occludee,
so that the visibility conservativity property is satisfied.
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4.1. Urban environments

Urban environments are a major field of application for
PVS pre-computation algorithms. The viewcells will pave
the streets of the city, and the potentially visible set of build-
ings that has to be displayed will be updated depending on
the observer’s current viewcell. Buildings can in general be
quite tightly approximated by 2.5D blocks 13. In our case,
we suppose that these parts can be described by a polygonal
“contour” and a height. Note that a contour does not need to
be at ground level (aka footprint), as we can deal with arches
or buildings made of superposed blocks, for example.

4.2. Bounding volumes

Instead of working with the objects’ true geometry, it is pos-
sible to work with simplified versions. This idea of using
levels of detail for visibility computation is common, since
small geometric features rarely influence visibility. If for
each object O of the scene we have an inner O and an outer
O bound such that O ⊂ O ⊂ O, then the following result
holds: an occludee is hidden by occluders if (from the center
of the viewcell) the “shrunk” version of its outer bound is
hidden by the erosions of the occluders’ inner bounds.

3D view Top view Outer Inner

Figure 4: Inner and outer 2.5D approximations of a building.

Fig. 4 shows a complex building which is not itself 2.5D
and contains facade details (windows, balcony), together
with its inner and outer approximations by 2.5D polyhedra.
For the purpose of clarity, we now consider that buildings are
actually composed of such 2.5D polyhedra, but the reader
will remember that we actually refer to its inner polyhedra
when it is used as an occluder (Section 4.3) and to its outer
polyhedra when the building is used as an occludee (Sec-
tion 4.4).

4.3. Shrinking occluders

As stated in Section 3.4, when the viewcell is an extrusion
(or is flat), we can separate the erosion using the contour
as a 2D structuring element from the vertical erosion of the
building. We consider this case in this section, focusing on
the contour erosion since vertical erosion is simply a modi-
fication of the building height.

To compute the O	 X erosion of O, we rely on equa-
tion (1). We translate the two end points of each edge of
the contour by the opposite (−X) of the structuring element
and compute the resulting convex hull. These “edge convex

hulls” are unioned and the desired erosion is the polygon dif-
ference with the original contour (computed using the kbool
library†). Fig. 5 illustrates this method for two examples.
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Figure 5: Computing the erosion of a contour by a square or a
segment not containing the origin. You can see from the bottom line
that eroding by the top or the bottom segment of the viewcell yields
different erosions.

It is worth noting that the computed erosion is exactbe-
cause we use a polygonal structuring element. Erosions by a
sphere would also include rounded parts that need to be ap-
proximated by line segments 26. We can speak here of exact
mathematical “erosion” as opposed to the term “shrinking”
that is used in the rest of this article and will be explained in
the next section.

4.4. Shrinking occludees

The shrinking of occludees is slightly more complex. In or-
der to be able to apply Theorem 1, we need to ensure that ev-
ery point of the original occludee O is in the X-neighboring
of the shrunk occludee R. In other words, we need to have
O ⊂ R⊕X. Using R = O	X generally does not satisfy
this property as shown in Fig. 6.

O - XO

X

(O - X) + X     X

Figure 6: Using O	X as a shrunk version (R) of the object is
not adequate as each point inside O is not guaranteed to be within
a X-neighboring of R. Indeed, R has to satisfy O ⊂R⊕X.

Analytical exact shrinking. Computing a shrunk version R
of an arbitrary 2D contour O, such that O ⊂ R⊕ X, can
be done analytically when X is a segment. The algorithm is

† www.xs4all.nl/~kholwerd/bool.html
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similar to the ones used to compute convex hulls. The ver-
tices of O need to be sorted along a direction perpendicular
to X and then swept while the width of the object is updated.
A single line is created when this width is lower than |X|,
and it is split in two lines otherwise (see Fig. 7).

X

Figure 7: Illustration of the analytical shrinking algorithm on a
contour using a sweeping line parallel to the eroding segment.

This exact segment-shrunk occludee (extruded along the
vertical direction) can be pre-computed. However, since it
may be composed of numerous polygons, we propose an im-
age based alternative.

Image based erosion using the stencil test. The shaft be-
tween the viewcell and the occludee is constructed. If this
shaft is not degenerate, it is supported by a segment located
on the occludee. This segment is X-eroded and then trans-
formed into a quad by raising it to a sufficient height. This
quad is rendered in the stencil buffer to create a mask (see
Fig. 8). The occludee itself is then rendered using this mask
to clip it “on the sides”, thus creating a valid shrunk repre-
sentation in image space.

Proof. The key to see that this computation is conservative
is noticing that it is equivalent to testing the visibility of the
occludee and the visibility of its projection onto a vertical
quad raised from the supporting segment. Indeed, both have
the same shaft and the erosion of the segment, hence of the
quad, creates an X-clipped projection of the occludee.

Two precautions must be taken. First, the eroded support-
ing segment must not be null to satisfy O ⊂ R⊕X. If it is
null, a point centered on the supporting segment is consid-
ered instead. In other words, a vertical line instead of a verti-
cal quad is rendered in the stencil buffer. Actually, this line is
always rendered to overcome resolution issues when render-
ing the quad. The second precaution must be taken when the
shaft degenerates. This occurs when, for example, we test
the visibility of a street containing the viewcell. In this case,
we simply use the occludee as a valid shrunk representation
of itself.

This image-based algorithm works for flat viewcells. For
extruded non-flat viewcells, and as stated in Section 3.4, all
that needs to be done is to reduce the height of the rendered
occludee by one half of the viewcell height.

For general 3D objects, this Minkowski segment de-
composition, combined with a voxelized representation of
the object, allows us to easily compute an approximated

Occlu
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viewcell

sh
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ft

eroded support segment

1

2

occlusion map

Figure 8: Eroding in image space using a stencil mask. The sup-
porting segment of the viewcell/occludee shaft is eroded and ren-
dered as a quad in the stencil buffer (step 1). The occludee is then
rendered and clipped by the stencil mask (step 2).

shrunk version. The voxels are successively and indepen-
dently eroded along the three axis directions.

5. Implementation

The algorithm has two passes. During the first pass, each
building is considered as an occluder. Its eroded (by the
viewcell or by the shaft supporting segment) version is ren-
dered in the frame buffer to create the occlusion map. From
the center of the viewcell, all the possible viewing directions
are sampled using 6 camera orientations directed toward the
faces of a cube, each with a field of view of 90◦.

The second pass determines the PVS by rendering all the
buildings shrunk as occludees using the stencil buffer mask.
The occludees are tested against the map, optionally using
hardware occlusion queries. In that case, the number of visi-
ble pixels of each object can be retrieved. This image-based
visibility estimation can be used for pruning large PVS or
rendering buildings from a priority queue in a true real-time
application 1.

5.1. Optimizations

All the buildings must be considered twice: first as potential
occluders and then as possible occludees. However, we use
hierarchical frustum culling 12, 2 to limit the number of ren-
dered buildings. An important advantage of our image-based
visibility algorithm is that any classical rendering optimiza-
tion algorithm can be plugged in.

If all the viewcells have exactly the same shape (or a few
different shapes), which is a fairly common case, then the
eroded versions of the occluders can be pre-computed once
and reused. Indeed, the number of different segments that
can be used to erode the occluders is determined from the
number of possible viewcell shaft-supporting segments. In
the case of square viewcells, only 6 segments (the four sides
and the two diagonals) need to be considered to represent
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all the shaft supporting segments. This leads to only 6 com-
pact eroded representations of each building when they are
considered as occluders. The one used depends on the ob-
server’s position. The number of representations depends on
the shape of the viewcell (3 for a triangle, for instance) but
is usually small as the shapes of the viewcells are typically
simple.

Note that for square viewcells, the “left” and “right” seg-
ments of the square cannot be considered as identical erod-
ing elements (same for the “top” and “bottom” segments).
For consistency reasons, all the buildings are rendered from
the center of the viewcell, and these two segments are hence
different structuring elements (see Fig. 5).

We do not perform any occluder selection, and each ob-
ject is rendered to create the occlusion map and then tested
against this map. Since this is done 6 times per viewcell,
hierarchical occlusion queries could clearly accelerate this
process a lot for very large environments, since distant parts
could very quickly be culled as a whole. However, hierar-
chical queries require serialization whereas hardware accel-
erated occlusion queries are more efficient when performed
in parallel. This trade-off is still an open issue. Moreover, the
occlusion map construction could be interleaved with the oc-
clusion queries so that hidden objects do not need to be ren-
dered. A front-to-back rendering technique could be used,
for example, a Kd-tree as in Leyvand et al. 17.

6. Results

It is uncertain which numbers are relevant to present visi-
bility results. The amount of geometry culled away can for
example be made arbitrarily high by adding hidden prim-
itives. A more relevant figure is the over-conservativity of
the method – that is the ratio between the PVS size and the
actual VS size. Measuring these sizes in terms of number
of polygons is biased by the objects’ discretization, so we
chose to count the number of visible objects.

Different algorithms were tested on a city model of Vi-
enna made of 458 buildings, 1182 streets and 726 cross-
ings. Computed PVS are subsets of these entities. Over-
conservativity is estimated and averaged from a representa-
tive set of square viewcells. We compared different methods,
for increasing sizes of viewcells:

1. Occluders are eroded by a sphere (approximated by an
octagon), as in 26. Occludees are rendered as is.

2. Occluders are eroded by the viewcell (a square).
3. Occluders are eroded by segments as described in 3.3.
4. Same as (3), but occludees are also reduced (see 4.3).

As expected, Fig. 9 shows that the over-conservativity
grows with the viewcell-size. However, we can see that this
growth is slower using our approach: when both occluders
and occludee are shrunk, a tighter PVS is obtained as pre-
dicted. The bottom curve on Fig. 9 shows the ratio of the

PVS sizes for methods 1 and 4, exhibiting the gain of our
method. The PVS reduction is maximum when segments
(method 3) are used instead of viewcells (method 2) to
shrink objects.
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Figure 9: Comparison of over-conservativity for the different
erosion-based methods, according to the viewcell size. The curves
show the averaged ratio between PVS and VS sizes. The VS was
computed from a dense sampling of the viewcell. The lower curve is
the ratio between method 1 and method 4.

The average viewcell PVS computation time is 0.5s on a
2 GHz Pentium 4 processor with a 128 Mb NVidia GeForce
4 Ti4600 graphics card, making overnight pre-computation
(100,000 viewcells) possible for typical urban environments
(rendering was not optimized). Pre-computation of eroded
buildings takes negligible time compared to rendering.

The 3D models used for pre-computation were simple, but
remember that we compute the visibility using bounding vol-
umes of the objects and that the complexity of the displayed
geometry can be made arbitrarily high.

7. Discussion

We now discuss some of the strengths and limitations of the
proposed method.

Sampling. Our approach relies on sampling, since visibility
is estimated by using a rasterization of the occluders in the
frame buffer. However this sampling is not an issue since it
is performed in image space, where its results will be used.
The impact of the discretization is not always clear for meth-
ods that sample a different parameter space. By choosing a
frame buffer resolution at least equal to r times the resolu-
tion at which the scene will be navigated, where r is a ratio
dependent on the viewcell’s size and accounting for the fact
that we sample from the center, we can ensure the conser-
vativity of the approach for the center of the viewcell. The
r ratio can be determined by a simple geometric calculation
on the considered viewcell shape.

On-the-fly queries. The computational cost is not much of
an issue when visibility is pre-computed. However, for very
large environments, viewcells tend to become unusable since
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they require a large amount of storage. As seen in previous
work, from-region visibility computations can, however, be
used in the context of instant visibility 27, in which case the
timing and the ability to handle large viewcells becomes cru-
cial. We believe that our approach is suitable for these cases
since there is ample room for optimization and large view-
cells still provide a good PVS.

Scaling to large environments. The database size has a
great influence on PVS pre-computation times. However,
once the horizon is completely occluded, further buildings,
no matter their number, are all occluded. Our algorithm
is linear in complexity as each object is considered ex-
actly twice. Using hierarchical approaches, either in image
space 14, 28 or in object space (Kd-tree such as in 17), could
lower this complexity to scale to very large environments.

Bad scenario. Though we showed that larger viewcells can
be used with our approach, the Theorem 1 still suffers from
the fact that the viewcell cannot be too big compared to the
average size of the occluders. In that case, the occluders have
empty erosions and no occlusion is detected.

Viewcells When determining the optimal sizes and positions
of viewcells as well as the trade-off between their number
and the over-conservativity we can afford are important is-
sues. Adjacent and small viewcells that (almost) share the
same PVS can recursively be merged. This can be done
afterward using PVS compression techniques as described
by Panne et al. 24. Another possible hierarchical algorithm
could start with large viewcells, which are subdivided when
the union of the PVS of children differs too much from the
parent’s. This post treatment will benefit from the conserva-
tivity and the tighter PVS of our method.

7.1. X-sampling objects

We finally introduce the notion of X-sampling of an object O
as a set of points whose X-dilation contains O (see Fig. 10).
As noted before (see Fig. 6) O	X is generally not an X-
sampling, but O itself is trivially one. We then have the fol-
lowing theorem:

Theorem 2 (X-sampling) If O is bounded and X is a con-
vex open set, then there exists an X-sampling of O composed
of a finite set of points I = {I1, . . . , In}

A naive tiling of space proves the result, however finding an
optimal set of points I is a complex task in the general case.

The two theorems yield a very surprising result. To test if
O is hidden by a set of occluders (Ok) from any viewpoint
in the viewcell, it is sufficient to test if the rays [SI j] (see
Fig. 10) are blocked by (Ok 	X). As surprising as it may
sound, the from-region visibility query can be conservatively
answered by computing the intersection of a finite number of
sampling rays with eroded occluders! This result may prove
very interesting for complex 3D visibility queries and opens
new research directions.

S

I1 I2

I3

Objet

Occluders

Viewcell

Figure 10: Testing the visibility of the object from the viewcell can
be done by testing intersection of rays SI j with eroded occluders.

8. Conclusion & future work

We introduced a novel theoretical result on visibility, stating
that occluders and occludees can be both shrunk to compute
from-region visibility. Some erosion and shrinking proper-
ties were proven and used to conservatively compute the
shrunk representations of the objects. We demonstrated that
tighter PVS are generated with this approach.

We believe that the theoretical results presented offer pos-
sibilities for further applications. As shown in Section 7.1,
conservative visibility can be computed for a region by per-
forming a finite number of ray-scene intersections. We plan
to take advantage of this in a ray-tracer for accelerating the
shadow computations of an extended light source. Another
application of this ray testing would be for small moving ob-
jects (such as cars). If their bounding box is smaller than the
current viewcell, visibility can be conservatively determined
by testing a single ray joining their centers.

Another field of investigation is determining how to com-
pute erosions and X-samplings in 3D. For convex objects,
this can be done in image space using hardware-accelerated
convolutions. “Apparently convex” occluders could also be
used as in Hoops 3D 5. Another interesting property is that in
some cases, O	X is a valid shrunk occludee. We are inves-
tigating this property for segment erosion. If this property is
true for each object in the scene, then a theoretical one-pass
algorithm is possible where each eroded object is rendered
in the frame buffer from the center of the viewcell. Those
that are visible in the final image form the PVS.
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Appendix A: Proof of the shrinking Theorem 1

Notation is that of Fig. 1. Let S′ ∈ {S}⊕X and R′ ∈ {R}⊕X. By
definition, there exists xS ∈ X and xR ∈ X such as:

S′ = S + xS R′ = R + xR

By hypothesis, there is a point Q on segment [SR] which is in O	X.
For this point, there is t ∈ [0,1] such as:

Q = (1− t)S + tR

We construct Q′ = (1− t)S′ + tR′. It is a point in [S′R′], and we
have:

Q′ = (1− t)(S + xS)+ t(R + xR)

= (1− t)S + tR +(1− t)xS + txR

= Q + x′

with x = (1− t)xS + txR. Since X is convex, we clearly have x ∈ X.
Since Q ∈ O	X, we also have Q + x ∈ O. Thus segment [S′R′]
intersects O in Q′, which makes the proof.

Appendix B: Proof of associativity

Given a point M in space, we have the following equivalences,
which proves O	 (X⊕Y) = (O	X)	Y:

M ∈ (O	X)	Y ⇐⇒ ∀y ∈ Y M + y ∈ O	X

⇐⇒ ∀y ∈ Y ∀x ∈ X M + y + x ∈ O

⇐⇒ ∀z ∈ X⊕Y M + z ∈ O

⇐⇒ M ∈ O	 (X⊕Y)
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