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Abstract
In several domains a refinement criterion is often needed to decide whether to go on or to stop sampling a signal.
When the sampled values are homogeneous enough, we assume that they represent the signal fairly well and we
do not need further refinement, otherwise more samples are required, possibly with adaptive subdivision of the
domain. For this purpose, a criterion which is very sensitive to variability is necessary. In this paper we present
a family of discrimination measures, the f-divergences, meeting this requirement. These functions have been well
studied and successfully applied to image processing and several areas of engineering. Two applications to global
illumination are shown: oracles for hierarchical radiosity and criteria for adaptive refinement in ray-tracing.
We obtain significantly better results than with classic criteria, showing that f-divergences are worth further
investigation in computer graphics.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]:
Color, shading, shadowing, and texture

1. Introduction

When sampling a signal we need a criterion to decide
whether to take additional samples, albeit within the original
domain or within a hierarchical subdivision. The refinement
criteria are mainly based on the encountered homogeneity
of the samples. Inhomogeneity should lead to further sam-
pling, possibly with an adaptive subdivision of the domain.
Oracles are then built based on these criteria. Examples in
computer graphics of this refinement process are hierarchical
radiosity2, 18 and adaptive supersampling in ray-tracing26, 31.

In this paper, we introduce new refinement criteria based
on f-divergences. These are a family of convex functions that
fulfill very remarkable properties. They were introduced by
Csiszár10 and Ali and Silvey1 as measures of discrimination
or distance between probability distributions. As such, they
are perfectly fitted as homogeneity measures, when we con-
sider how distant the distribution of the samples is with re-
spect to its average. They have been successfully used in im-
age processing and several engineering areas 21, 27, 30.
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The purpose of this paper is to demonstrate the useful-
ness of f-divergences in computer graphics by applying them
in defining new refinement criteria for hierarchical radios-
ity and adaptive supersampling of a pixel in ray-tracing. We
will see how, compared with classic refinement criteria, the
f-divergences-based ones give significant better results.

This paper is organised as follows. In Section 2, cri-
teria for refinement in hierarchical radiosity and adaptive
ray-tracing, and the concept of f-divergence are presented.
Section 3 describes the application of the refinement crite-
ria based on f-divergences to hierarchical radiosity and, in
Section 4, to adaptive ray-tracing. Finally, in Section 5 we
present our conclusions and future work.

2. Previous Work

In this section, refinement criteria used in hierarchical ra-
diosity and adaptive ray-tracing are reviewed. Also, Jensen’s
inequality, needed to establish our theoretical framework,
and f-divergences are shortly introduced.

2.1. Refinement Criteria for Hierarchical Radiosity

The radiosity method uses a finite element approach, dis-
cretising the diffuse environment into Np patches and taking
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into account that the radiosities, emissivities and reflectances
are constant over the patches. Under these assumptions, the
discrete radiosity equation16 is given by

Bi = Ei +ρi

Np

∑
j=1

Fi jB j , (1)

where Bi, Ei, and ρi, are respectively the radiosity, emissiv-
ity, and reflectance of patch i, B j is the radiosity of patch j,
and Fi j is the patch-to-patch form factor, only dependent on
the geometry of the scene. Form factor Fi j is defined by

Fi j =
1
Ai

∫

Si

∫

S j

F(x,y)dAxdAy , (2)

where Ai is the area of patch i, Si and S j are, respectively, the
surfaces of patches i and j, F(x,y) is the point-to-point form
factor34 between points x ∈ Si and y ∈ S j , and dAx and dAy
are, respectively, the differential areas at points x and y.

A hierarchical refinement algorithm18 is used to solve the
equation system (1). Since the application of a good refine-
ment criterion is fundamental for its efficiency, many oracles
have been proposed in the literature (consult2, 7, 15). For the
purposes of this paper, two of them, based respectively on
kernel smoothness and mutual information, are reviewed.

In Gortler et al.17, the variability of the radiosity kernel,
i.e., the point-to-point form factor F(x,y), is taken into ac-
count. The refinement criterion based on kernel smoothness,
when applied to constant approximations, is given by

ρi max(Favg
i j −Fmin

i j ,Fmax
i j −Favg

i j )A jB j < ε , (3)

where A j and B j are respectively the source element area
and the source element radiosity, Favg

i j = Fi j/A j is the aver-

age radiosity kernel value, Fmin
i j = minx∈Si,y∈S j F(x,y) and

Fmax
i j = maxx∈Si,y∈S j F(x,y) are the minimum and maxi-

mum point-to-point form factors computed with pairs of ran-
dom points on both elements i and j, and ε is a given thresh-
old.

In Feixas et al.13, 14, an oracle based on the visibility dis-
cretisation error between two elements was introduced. This
discretisation error is obtained from the difference between
continuous and discrete mutual information and it can be in-
terpreted as the loss of information transfer due to discretisa-
tion or as the maximum potential gain of information transfer
between two elements. Hence, this difference can be consid-
ered as the benefit to be gained by refining, and consequently
is used as a decision criterion. It also represents the vari-
ability of the radiosity kernel. The oracle based on mutual
information is given by

ρiδi jB j < ε , (4)

where

δi j ≈
AiA j

AT

(
avg1≤k≤Ns

(F(xk,yk) logF(xk,yk))

− avg1≤k≤Ns
(F(xk,yk)) log(avg1≤k≤Ns

(F(xk,yk)))
)

(5)

is the discretisation error between elements i and j, AT is
the total area of the scene, ε is a predefined threshold, and
avg1≤i≤n(xi) = 1

n ∑n
i=1 xi. The computation of the point-to-

point form factors F(xk,yk) is done with Ns random lines
(xk,yk) joining both elements i and j13.

2.2. Refinement Criteria for Adaptive Ray-Tracing

Ray-tracing38 is a point-sampling-based technique for image
synthesis. Rays are traced from the eye through a pixel to
sample the radiance at the hitpoint in the scene, where radi-
ance is usually computed by a random walk method35. Since
a finite set of samples is used, some of the information in the
scene is lost. Thus, aliasing errors are unavoidable11.

These errors can be reduced using extra sampling in re-
gions where the sample values vary most. In order to obtain
reliable data, the edge of an object, the contour of a shadow,
or a high illumination gradient area, need a more intensive
treatment than a region with almost uniform illumination.
This method of sampling is called adaptive sampling11, 28: a
pixel is first sampled at a relatively low density and, from the
initial sample values, a refinement criterion is used to decide
whether more sampling is required or not. Finally, all the
samples are used to obtain the final pixel colour values26.

Diverse refinement criteria for adaptive sampling, based
on colour intensities and/or scene geometry, can be found to
control the sampling rate: Dippé and Wold11 present an er-
ror estimator based on the RMS signal to noise ratio and also
consider its variance as a function of the number of samples;
Mitchell26 proposes a contrast measure6 based on the char-
acteristics of the human eye; Lee et al.25, Purgathofer31, and
Tamstorf and Jensen36 develop different methods based on
the variance of the samples with their respective confidence
intervals. Bolin and Meyer5 have developed a perceptually-
based approach using statistical and vision models.

For the purposes of this paper, we review two commonly
used refinement criteria based on the contrast and the vari-
ance of the samples. Mitchell26 uses a contrast measure6 for
each RGB channel defined by

C =
Imax − Imin
Imax + Imin

, (6)

where Imin and Imax are, respectively, the minimum and max-
imum light intensities of the channel. Supersampling is done
if any contrast is higher than a given threshold. Mitchell
proposes RGB threshold values (0.4, 0.3 and 0.6, respec-
tively) based on the relative sensitivity of the visual system.
In Glassner15, pp. 476, this criterion appears weighted by the
average colour of the pixel.
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The basic idea of variance-based methods25, 31, 36 is to con-
tinue sampling until the confidence level or probability that
the true value of luminance L is within a given tolerance d
of the estimated value L̂ is 1−α:

Pr[L ∈ (L̂−d, L̂+d)] = 1−α , (7)

and this will happen31 when

t1−α,n−1
s√
n
≤ d , (8)

where t is the Student distribution and s is the standard devi-
ation of the n samples.

2.3. Jensen’s Inequality

A function f (x) is convex over an interval [a,b] (the graph of
the function lies below any chord) if for every x1,x2 ∈ [a,b]
and 0 ≤ λ ≤ 1,

f (λx1 +(1−λ)x2) ≤ λ f (x1)+(1−λ) f (x2) . (9)

A function is strictly convex if equality holds only if λ = 0 or
λ = 1. A function f (x) is concave (the graph of the function
lies above any chord) if − f (x) is convex. For instance, x2

and x logx (for x ≥ 0) are strictly convex functions, and logx
(for x ≥ 0) is a strictly concave function9.

A generalization of the above convexity property, called
Jensen’s inequality, is widely used in mathematics, informa-
tion theory, and different engineering areas as a divergence
measure. For example, it has been successfully applied to
image registration19 and DNA segmentation4.

Jensen’s inequality22: If f is a convex function on the in-
terval [a,b], then

n

∑
i=1

λi f (xi)− f

(
n

∑
i=1

λixi

)
≥ 0 , (10)

where 0≤ λ≤ 1, ∑n
i=1 λi = 1, and xi ∈ [a,b]. If f is a concave

function, the inequality is reversed.

A very special case of this inequality is when λi = 1
n be-

cause then

1
n

n

∑
i=1

f (xi)− f

(
1
n

n

∑
i=1

xi

)
≥ 0 , (11)

i.e., the value of the function at the mean of the xi is less or
equal than the mean of the values of the function at each xi.

In particular, if f is convex on the range of a random vari-
able X , then

E[ f (X)]− f (E[X ]) ≥ 0 , (12)

where E denotes expectation. Observe that if f (x) = x2, then
we obtain the variance: E(X2)− (E[X ])2.

In the Rao’s axiomatization of diversity measures32, the
concavity condition (the reverse of expression (10)) meets
the intuitive requirement that diversity is possibly increased

by mixing, i.e., the average diversity between any p, q prob-
ability distributions is not greater than that between their av-
erage.

Another important inequality can be obtained from
Jensen’s inequality.

Log-sum inequality: For non-negative numbers,
a1,a2, . . . ,an and b1,b2, . . . ,bn,

n

∑
i=1

ai log
ai

bi
−
(

n

∑
i=1

ai

)
log ∑n

i=1 ai

∑n
i=1 bi ≥ 0

(13)

with equality if and only if ai
bi

is constant. We use the con-
vention that 0 log0 = 0, a log a

0 =∞ if a > 0 and 0log 0
0 = 0.

These follow easily from continuity. Note that the conditions
in this inequality are much weaker than for Jensen’s inequal-
ity.

2.4. f-divergences

Many different measures quantifying the degree of discrimi-
nation between two probability distributions have been stud-
ied in the past. They are frequently called distance measures,
although some of them are not strictly metrics. Let us re-
member that a metric on a set X is an assignment of a dis-
tance d : X ×X → R satisfying the following properties23:

• Positivity: ∀x,y∈X , d(x,y)≥ 0 and d(x,y) = 0 if and only
if x = y.

• Symmetry: ∀x,y ∈ X , d(x,y) = d(y,x).
• Triangle inequality: ∀x,y,z ∈ X , d(x,z)≤ d(x,y)+d(y,z).

Next, we review a measure of discrimination between
two probability distributions called f-divergence. This mea-
sure was independently introduced by Csiszár10 and Ali and
Silvey1. It has been applied to different areas, such as med-
ical image registration30 and classification and retrieval21,
among others.

Let Ω = {x1,x2, . . . ,xn} be a set with at least two elements
and P the set of all probability distributions p = {pi|pi =
Pr(xi),xi ∈Ω}. Given a convex function f : [0,∞)→R con-
tinuous at 0 (i.e. f (0) = limx→0 f (x)) and a pair (p,q)∈P2,
then

I f (p,q) =
n

∑
i=1

qi f
(

pi

qi

)
(14)

is called the f-divergence of the probability distributions p
and q.

The following are important properties of the f-
divergences:

• I f (p,q) is convex on (p,q), i.e., if (p1,q1) and (p2,q2)
are two pairs of probability density functions, then

I f (λp1 +(1−λ)p2,λq1 +(1−λ)q2) ≤
λI f (p1,q1)+(1−λ)I f (p2,q2) .

(15)
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• I f (p,q) ≥ f (1), where the equality holds if p = q. If f is
strictly convex, the equality holds if and only if p = q.

• If f (1) = 0 then I f (p,q) ≥ 0. In this case, I f (p,q) fulfills
the positivity property of a metric.

Next, we present some of the most important f-
divergences12, called distances in the literature. These can
be obtained from different convex functions f . Observe that,
for all of them, f (1) = 0, and thus they fulfill the positivity
property. In the following, we take x > 0.

• Kullback-Leibler distance24

If f (x) = x logx, the Kullback-Leibler distance is given by

D(p,q) =
n

∑
i=1

pi log
pi

qi
. (16)

• Chi-square distance29

If f (x) = (x−1)2, the Chi-square distance is given by

χ2(p,q) =
n

∑
i=1

(pi −qi)
2

qi
. (17)

• Hellinger distance20

If f (x) = 1
2 (1−√

x)2, the Hellinger distance is given by

h2(p,q) =
1
2

n

∑
i=1

(
√

pi −
√

qi)
2 . (18)

Note that none of the above distance fulfills all the prop-
erties of a metric. However, h(p,q), the square root of the
Hellinger distance, is a true metric.

3. Application of f-divergences to Radiosity

In this section new oracles based on f-divergences for hier-
archical radiosity refinement are introduced.

3.1. f-divergences for Hierarchical Radiosity

The discretisation error (5), seen in Section 2.1, can be writ-
ten in the following way:

δi j ≈
AiA j

AT
F̂
[
avg1≤k≤Ns

(pk log pk)

− avg1≤k≤Ns
(pk) log(avg1≤k≤Ns

(pk)
]

=
AiA j

AT
F̂
[
avg1≤k≤Ns

(pk log pk)−
1

Ns
log

1
Ns

]
,

(19)

where F̂ = ∑Ns
k=1 F(xk,yk), pk =

F(xk,yk)

F̂
for all 1 ≤ k ≤ Ns,

and avg1≤k≤Ns
(pk) = 1

Ns
.

It is easy to see that the expression between brackets in
(19), except for a constant factor 1

Ns
, is the Kullback-Leibler

distance between the distributions pk =
F(xk,yk)

F̂
and qk = 1

Ns
.

Thus,

δi j ≈
AiA j

AT

1
Ns

F̂ D(p,q) . (20)

This fact suggests that we try other f-divergences in the
kernel of the refinement oracle (4). These measures will give
us the variability of the distribution { F(x1,y1)

F̂
, . . . ,

F(xNs ,yNs )

F̂
}

with respect to the uniform distribution { 1
Ns

, . . . , 1
Ns
}.

Thus, the Kullback-Leibler (16), Chi-square (17), and
Hellinger (18) distances have been tested. The Kullback-
Leibler-based oracle was already studied in13, 14 from an
information-theoretic perspective.

The oracles used in the test are the following:

• Kullback-Leibler (KL)

ρiAiA jF̂ D(p,q)B j < ε (21)

• Chi-square (CS)

ρiAiA jF̂ χ2(p,q)B j < ε (22)

• Hellinger (HE)

ρiAiA jF̂ h2(p,q)B j < ε , (23)

based all on their respective distances. Observe that the con-
stants 1

AT
and 1

Ns
have been removed.

It is important to note that the expression between brack-
ets in (19) is equal to the first term of Jensen’s inequality
(11) with f (x) = x logx and x =

F(x,y)
F̂

. Moreover, we can
also see that this expression is equal to the first term of the
log-sum inequality (13), taking bi = 1 and ai =

F(xi,yi)

F̂
.

3.2. Empirical Results and Discussion

The kernel-smoothness-based (KS) and f-divergence-based
oracles have been implemented on top of the hierarchical
Monte Carlo radiosity3 method of RenderPark8 software
(www.renderpark.be). It should be noted that our or-
acles can be used with any hierarchical radiosity method.

In Fig. 1 we show a general view of the test scene ob-
tained with the KL oracle (21). The left column (i) shows
the subdivision obtained, while the right one (ii) corresponds
to the Gouraud shaded solution. Each oracle has been eval-
uated with 10 random lines between the corresponding pair
of elements and a total of 2685000 rays have been cast for
the radiosity computation. The ε parameter has been tuned
so that the grids obtained have approximately 19000 patches
in all the methods.

In Fig. 2 we present the results of comparing the KS oracle
(3) of Section 2.1 (Fig. 2.(a)) with the f-divergence-based
ones (21,22, 23) defined in Section 3.1 (Fig. 2.(b,c,d)) for a
closer view of the test scene.

In Fig. 2.(b,c,d) we can see how the f-divergence-based
oracles outperform the KS one (Fig. 2.(a)), especially in the
much more-defined shadow of the chair and the cubes on
the right wall. Observe also the superior quality of the grid
created on top of the table, and in the corner between the
walls.

c© The Eurographics Association 2003.
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(i) (ii)

Figure 1: General view of the test scene obtained with the KL-based oracle (21). (i) shows the grid obtained in the refinement
process and (ii) shows the Gouraud shaded solution. The oracle has been evaluated with 10 random lines between two elements.
A total of 2685000 rays are cast for the radiosity computation, obtaining approximately 19000 patches.

On the other hand, comparing our three f-divergence ora-
cles we conclude that, although they exhibit a similar quality,
the KL one is slightly better. For instance, observe that the
shadows on the table are more defined. A possible explana-
tion for this better behaviour could be that the KL oracle,
unlike the other ones, meets Jensen’s inequality (11). This
confers a distinctive theoretical advantage on the Kullback-
Leibler oracle.

From the above, one could be tempted to use Jensen’s
inequality alone as a kernel for a refinement oracle. We
have experimented with the function f (x) = x2 which when
substituted in Jensen’s inequality corresponds to the vari-
ance. Thus, substituting F(xk,yk) logF(xk,yk) by F(xk,yk)

2

in equation (5), the variance-based oracle is given by

ρiAiA jF̂
2 V (p,q)B j < ε , (24)

where V (p,q) = avg1≤k≤Ns
(p2

k) − ( 1
Ns

)2. The results ob-
tained are presented in Fig. 3, showing the inadequacy of
this function and, incidentally, of this approach.

4. Application to Ray-Tracing

In this section new refinement criteria based on f-divergences
for adaptive supersampling in ray-tracing are obtained.

4.1. f-divergences for Adaptive Ray-Tracing

The f-divergences defined in Section 2.4 will be used to eval-
uate the inhomogeneity of a set of samples in a region.

The scheme used is the following:

1. A first batch of Ns rays is cast through a pixel and the
corresponding luminances Li∈{1,...,Ns} are obtained.

2. The f-divergences I f (p,q) are taken between the nor-
malised distribution of the obtained luminances,

pi =
Li

∑Ns
i=1 Li

, (25)

and the uniform distribution qi = 1
Ns

.
3. The refinement criterion, given by

1
Ns

LI f (p,q) < ε , (26)

is evaluated, where I f represents the Kullback-Leibler
(KL), Chi-square (CS), or Hellinger (HE) distances, L is
the average luminance

L =
1

Ns

Ns

∑
i=1

Li , (27)

and ε is a predefined threshold for the refinement test.
4. Successive batches of Ns rays are cast until the result of

the test is positive.

Note that to assign an importance to the distance value
I f (p,q) in (26) we weight it by the average luminance (27),
as in Glassner’s version of classic contrast15. Division by the
number of samples Ns in (26) ensures that the refinement
process stops.

The new criteria give good visual results, but the error ob-
tained in our tests (see Table 1), although better than in the
classic contrast, is higher than with the variance criterion (8).
Our next logical step was to try the square root of Hellinger
divergence37, as it is a true metric. The results obtained were
very encouraging. By analogy, we then extended the exper-
imentation to the square root of the other divergences. This
is not new. For instance, the square root of Kullback-Leibler
distance has been used by Yang and Barron39. The results
also improved the previous ones and were also better than in
the variance case.

Thus, the criteria finally used were:

• Square root of Kullback-Leibler distance (SRKL)

1
Ns

L
√

D(p,q) < ε (28)

c© The Eurographics Association 2003.
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(a.i) KS grid (a.ii) KS

(b.i) KL grid (b.ii) KL

(c.i) CS grid (c.ii) CS

(d.i) HE grid (d.ii) HE

Figure 2: A closer view from another camera of test scene for comparison of (a) kernel-smoothness-based (KS) vs. f-divergence-
based oracles: (b) Kullback-Leibler (KL), (c) Chi-square (CS), and (d) Hellinger (HE). Column (i) shows the grid obtained in
the refinement process and column (ii) shows the Gouraud shaded solution. In all the methods, the oracles have been evaluated
with 10 random lines between two elements. In each case, a total of 2685000 rays are cast for the radiosity computation,
obtaining approximately 19000 patches. c© The Eurographics Association 2003.
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(i) (ii)

Figure 3: A closer view from another camera of test scene using the variance-based oracle (24). (i) shows the grid obtained
in the refinement process and (ii) shows the Gouraud shaded solution. The oracle has been evaluated with 10 random lines
between two elements. A total of 2685000 rays are cast for the radiosity computation, obtaining approximately 19000 patches.
Compare with the results in Fig. 2, obtained with f-divergences.

• Square root of Chi-square distance (SRCS)

1
Ns

L
√

χ2(p,q) < ε (29)

• Square root of Hellinger distance (SRHE)

1
Ns

L
√

h2(p,q) < ε . (30)

4.2. Empirical Results and Discussion

In Figures 5 and 6 we present comparative results with dif-
ferent techniques for the test scene of Fig. 4. The following
methods are compared:

• CC: Classic contrast (6) of the luminance weighted with
the respective importance L.

• VAR: Variance (8).
• SRKL: Square root of Kullback-Leibler distance (28).
• SRCS: Square root of Chi-square distance (29).
• SRHE: Square root of Hellinger distance (30).

In all the methods, 8 initial rays are cast in a stratified way
(2×4 strata) at each pixel to compute the contrast measures
for the refinement decision, and 8 additional rays are suc-
cessively added until the condition of the criterion is met. In
the variance method, we have used α = 0.1 and d = 0.025.
All the images have been obtained with the RenderPark8.
An implementation of classic path-tracing with next event
estimator was used to compute all images. The parameters
were tuned so that all four test images were obtained with
a similar average number of rays per pixel (60) and a simi-
lar computational cost. A constant box filter was used in the
reconstruction phase for all the methods.

The resulting images are shown in column (i) of Fig. 5 and
Fig. 6, with the sampling density maps in column (ii) (warm
colours correspond to higher sampling rates and cold colours
to lower ones). The overall aspect of the images shows that

Figure 4: Reference image for the ray-tracing comparison
in Fig. 5 and Fig. 6, obtained with 1000 rays per pixel.

our supersampling scheme performs the best. Observe, for
instance, the reduced noise in the shadows cast by the ob-
jects. Observe also the detail of the shadow of the sphere
reflected on the pyramid.

Comparison of the sampling density maps in Fig. 5.(ii)
and Fig. 6.(ii) shows a better discrimination of complex re-
gions of the scene in the three divergence cases against the
classic contrast and variance cases. This explains the bet-
ter results obtained by our approach. On the other hand,
the variance-based approach (Fig. 5.(b)) also performs better
than the classic contrast-based method (Fig. 5.(a)). Its sam-
pling map also explains why it performs better. However, it
is unable to render the reflected shadows under the mirrored
pyramid and sphere with precision.

In Table 1, we show the root mean square error (RMSE)
of the images obtained with classic (Fig. 5.(i)), f-divergence,

c© The Eurographics Association 2003.
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(a.i) CC (a.ii) CC sampling map

(b.i) VAR (b.ii) VAR sampling map

Figure 5: Images obtained with an adaptive sampling scheme based on (a) classic contrast (CC) and (b) variance-based (VAR)
methods. Column (i) shows the resulting images and (ii) the sampling density map. The average number of rays per pixel is 60
in all the methods, with a similar computation cost. Compare with the images in Fig. 6.

and square root of f-divergence (Fig. 6.(i)) methods respec-
tive to the reference image in Fig. 4. Visual comparison is
in concordance with numerical error. The divergence-based
criteria used in our experiments (SRKL, SRCS, and SRHE)
outperform both classic contrast and variance ones. Finally,
the better behaviour of the SRHE criterion could be ex-
plained by the fact that it is a true distance.

5. Conclusions and Future Work

In this paper we have introduced a new family of refine-
ment criteria based on f-divergences. These functions have
been successfully used as discrimination measures in image
processing and several engineering areas. We have applied
these criteria to hierarchical radiosity and to adaptive super-
sampling in ray-tracing. In both areas, our results show the
better behaviour of the f-divergence-based criteria compared
with classic ones. In the hierarchical radiosity algorithm, the
Kullback-Leibler criterion gives the best results, while in the

method RMS

Classic Contrast (CC) 6.157
Variance (VAR) 5.194

f-divergences
Kullback-Leibler (KL) 5.508
χ2 (CS) 5.414
Hellinger (HE) 5.807

Square root of
f-divergences

Kullback-Leibler (SRKL) 4.824
χ2 (SRCS) 4.772
Hellinger (SRHE) 4.595

Table 1: Root Mean Square Error (RMSE) for the different
images in Fig. 5 and Fig. 6, with respect to the reference
image in Fig. 4.
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(a.i) SRKL (a.ii) SRKL sampling map

(b.i) SRCS (b.ii) SRCS sampling map

(c.i) SRHE (c.ii) SRHE sampling map

Figure 6: Images obtained with an adaptive sampling scheme based on (a) Kullback-Leibler-based approach (SRKL), (b)
χ2-based approach (SRCS), and (c) Hellinger-based approach (SRHE). Column (i) shows the resulting images and (ii) the
sampling density map. The average number of rays per pixel is 60 in all the methods, with a similar computation cost. Compare
with the images in Fig. 5.
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ray-tracing algorithm the Hellinger-based refinement crite-
rion is the most effective.

Our future work will be addressed towards finding new
application areas for the f-divergences and investigating
other families of divergences based on the Rényi entropy33.
Also we will analyse the generalisation of the f-divergences
presented in this paper, which can shed light on the good
behaviour of the exponent value 1

2 used in the ray-tracing
case21. We will also address the problem of finding auto-
matic criteria for the threshold used in the refinement test.
Finally, in adaptive ray-tracing we will investigate why the
criteria based on true distances behave better than the ones
based on pseudodistances.
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(a.i) SRKL (a.ii) SRKL sampling map

(b.i) SRCS (b.ii) SRCS sampling map

(c.i) SRHE (c.ii) SRHE sampling map

Figure 6: Images obtained with an adaptive sampling scheme based on (a) Kullback-Leibler-based approach (SRKL), (b) χ2-
based approach (SRCS), and (c) Hellinger-based approach (SRHE). Column (i) shows the resulting images and (ii) the sampling
density map. The average number of rays per pixel is 60 in all the methods, with a similar computation cost. Compare with the
images in Fig. 5.
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