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Abstract
We present a new parallel algorithm and a system, GigaWalk, for interactive walkthrough of complex, gigabyte-
sized environments. Our approach combines occlusion culling and levels-of-detail and uses two graphics pipelines
with one or more processors. GigaWalk uses a unified scene graph representation for multiple acceleration tech-
niques, and performs spatial clustering of geometry, conservative occlusion culling, and load-balancing between
graphics pipelines and processors. GigaWalk has been used to render CAD environments composed of tens of
millions of polygons at interactive rates on systems consisting of two graphics pipelines. Overall, our system’s
combination of levels-of-detail and occlusion culling techniques results in significant improvements in frame-rate
over view-frustum culling or either single technique alone.

Keywords: Interactive display systems, parallel rendering,
occlusion culling, levels-of-detail, Engineering Visualiza-
tion.

1. Introduction

Users of computer-aided design and virtual reality applica-
tions often create and use geometric models of large, com-
plex 3D environments. Gigabyte-sized datasets represent-
ing power plants, ships, airplanes, submarines and urban
scenes are not uncommon. Simulation-based design and de-
sign review of such datasets benefits significantly from the
ability to generate user-steered interactive displays orwalk-
throughsof these environments. Yet, rendering these envi-
ronments at interactive rates and with high fidelity has been
a major challenge.

Many acceleration techniques for interactive display of
complex datasets have been developed. These include vis-
ibility culling, object simplification and the use of image-
based or sampled representations. They have been success-
fully combined to render certain specific types of datasets
at interactive rates, including architectural models15, ter-
rain datasets25, scanned models33 and urban environments
42. However, there has been less success in displaying more
general complex datasets due to several challenges facing
existing techniques:

Occlusion Culling: While possible for certain environ-
ments, performing exact visibility computations on large,
general datasets is difficult to achieve in real time on current
graphics systems11. Furthermore, occlusion culling alone
will not sufficiently reduce the load on the graphics pipeline
when many primitives are actually visible.

Object Simplification: Object simplification techniques

Figure 1: Coal-Fired Power plant: This 1.7 gigabyte environment
consists of over 13 million triangles and 1200 objects. GigaWalk
can display it 12-37 frames per second on an SGI Onyx workstation
using two IR2 graphics pipelines and three 300MHz R12000 CPUs.

alone have difficulty with high-depth-complexity scenes, as
they do not address the problems of overdraw and fill load
on the graphics pipeline.

Image-based Representations:There are some promis-
ing image-based algorithms, but generating complete sam-
plings of large complex environments automatically and ef-
ficiently remains a difficult problem. The use of image-based
methods can also lead to popping and aliasing artifacts.
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1.1. Main Results

We present a parallel architecture that enables interactive
rendering of complex environments comprised of many tens
of millions of polygons. Initially, we precompute geomet-
ric levels-of-detail (LODs) and represent the dataset using
a scene graph. Then at runtime we compute apotentially
visible set(PVS) of geometry for each frame using a com-
bination of view frustum culling and a two-pass hierarchical
Z-buffer occlusion culling algorithm19 in conjunction with
the pre-computed LODs. The system runs on two graphics
rasterization pipelines and one or more CPU processors. Key
features of our approach include:

1. A parallel rendering algorithm that is general and au-
tomatic, makes few assumptions about the model, and
places no restrictions on user motion through the scene.

2. A unified scene graph hierarchy that is used for both ge-
ometric simplification and occlusion culling.

3. A parallel, image-precision occlusion culling algorithm
based on the hierarchical Z-buffer19, 20. It useshierar-
chical occludersand can perform conservative as well as
approximate occlusion culling.

4. A parallel rendering algorithm that balances the compu-
tational load between two rendering pipelines and one or
more processors.

5. An interactive system, GigaWalk, to render large, com-
plex environments with good fidelity on two-pipeline
graphics systems. The graphics pipelines themselves re-
quire only standard rasterization capabilities.

We demonstrate the performance of our system on two com-
plex CAD environments: a coal-fired power plant (Fig.1)
composed of 13 million triangles, and a Double Eagle
Tanker (Plate 1) composed of over 82 million triangles. Gi-
gaWalk is able to render models such as these at 11− 50
frames a second with little loss in image quality on an SGI
Onyx workstation using two IR2 pipelines. The end-to-end
latency of this implementation is typically 50−150 millisec-
onds. We have also developed a preliminary implementation
of GigaWalk on a pair of networked PCs.

1.2. Organization

The rest of the paper is organized as follows. We give a brief
survey of previous work in Section 2. Section 3 gives an
overview of our approach. In Section 4 we describe the scene
representation and preprocessing steps. Section 5 presents
the parallel algorithm for interactive display. We describe
the system implementation and highlight its performance on
complex models in Section 6.

2. Prior Work

In this section, we present a brief overview of previous re-
search on interactive rendering of large datasets, including
geometric simplification and occlusion culling algorithms,
and other systems that have combined multiple rendering ac-
celeration techniques.

2.1. Geometric Simplification

Simplification algorithms compute a reduced-polygon ap-
proximation of a model while attempting to retain the shape
of the original. A recent survey of simplification algorithms
is presented in30.

Algorithms for simplifying large environments can be
classified as either static (view-independent) or dynamic
(view-dependent). Static approaches pre-compute a discrete
series of levels-of-detail (LODs) in a view-independent man-
ner 9, 17, 32, 35. Erikson et al.10 presented an approach to
large model rendering based on the hierarchical use of static
LODs, or HLODs. We also use LODs and HLODs in our
system.

At run-time, rendering algorithms for static LODs choose
an appropriate LOD to represent each object based on the
viewpoint. Selecting the LODs requires little run-time com-
putation, and rendering static LODs on contemporary graph-
ics hardware is also efficient.

View-dependent, dynamic algorithms pre-compute a data
structure that encodes a continuous range of detail. Ex-
amples include progressive meshes23, 24, 44 and hierarchies
of decimation operations29, 12. Selection of the appropriate
LOD is based on view-parameters such as illumination and
viewing position. Overall, view-dependent LODs can pro-
vide better fidelity than static LODs and work well for large
connected datasets such as terrain and spatially large objects.
However, the run-time overhead is higher compared to static
LODs, since all level-of-detail selection is done at the indi-
vidual feature level (vertex, edge, polygon), rather than the
object level.

2.2. Occlusion Culling

Occlusion culling methods attempt to quickly determine a
PVS for a viewpoint by excluding geometry that is occluded.
A recent survey of different algorithms is presented in6.

Several effective algorithms have been developed for spe-
cific environments. Examples include cells and portals for
architectural models2, 39 and algorithms for urban datasets
or scenes with large, convex occluders7, 22, 36, 41, 42. In this
section, we restrict the discussion to occlusion culling algo-
rithms for general environments.

Algorithms for occlusion culling can be broadly classi-
fied based on whether they are conservative or approximate,
whether they use object space or image space hierarchies,
and whether they compute visibility from a point (from-
point) or a region (from-region). Conservative algorithms
compute a PVS that includes all the visible primitives, plus a
small number of potentially occluded primitives7, 19, 22, 28, 45.
The approximate algorithms identify most of the visible ob-
jects but may incorrectly cull some objects5, 27, 45.

Object space algorithms can perform culling efficiently
and accurately given a small set of large occluders, but it
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is difficult to perform the “occluder fusion" necessary to ef-
fectively cull in scenes composed of many small occluders.
For these types of scenes, the image space algorithms typi-
fied by the hierarchical Z-buffer (HZB)19, 20 or hierarchical
occlusion maps (HOM)45 are more effective.

From-region algorithms pre-compute a PVS for each re-
gion of space to reduce the run-time overhead8, 36, 41. This
works well for scenes with large occluders, but the amount of
geometry culled by a given occluder diminishes as the region
sizes are increased. Thus there is a trade-off between the
quality of the PVS estimation for each region and the mem-
ory overhead. These algorithms may be overly conservative
and have difficulty obtaining significant culling in scenes
including only small occluders. In contrast, from-point al-
gorithms generally provide more accurate culling, but they
have a higher run-time cost.

2.3. Parallel Approaches

A number of parallel approaches based on multiple graph-
ics pipelines have been proposed. These can provide scal-
able rendering on shared-memory systems or clusters of
PCs. These approaches can by classified mainly as either
object-parallel, screen-space-parallel, or frame-parallel21, 37.
Specific examples include distributing primitives to different
pipelines by the screen region into which they fall (screen-
space-parallel), or rendering only every Nth frame on each
pipeline (frame-parallel).

Another parallel approach to large model rendering that
shows promise is interactive ray tracing4, 40. The algorithm
described in40 is able to render the Power Plant model at 4-5
frames a second with 640×480 pixel resolution on a cluster
of seven dual processor PCs.

Garlick et al.16 presented a system for performing view-
frustum culling on multiple CPUs in parallel with the render-
ing process. Their observation that culling can be performed
in parallel to improve overall system performance is the fun-
damental concept behind our approach as well.

Wonka et al.42 presented a “visibility server” that per-
formed occlusion culling to compute a PVS at run-time in
parallel on a separate machine. Their system works well
for urban environments; however, it relies on theoccluder
shrinkingalgorithm41 to compute the region-based visibil-
ity. This approach is effective only if the occluders are large
and volumetric in nature.

2.4. Hybrid Approaches

The literature reports several systems that combine multi-
ple techniques to accelerate the rendering of large models.
For example, The BRUSH system34 used LODs with hierar-
chical representation for large mechanical and architectural
models. The UC Berkeley Architecture Walkthrough system
15 combined hierarchical algorithms with object-space visi-
bility computations39 and LODs for architectural models.

More recently, Anjudar et al.3 presented a framework
that integrates occlusion culling and LODs. The crux of the
approach is to estimate the degree of visibility of each ob-
ject in the PVS and use that value both to select appropri-
ate LODs and to cull. The method relies on decomposing
scene objects into overlapping convex pieces (axis-aligned
boxes) that then serve as individual “synthetic occluders”.
Thus the effective maximum occluder size depends on the
largest axis-aligned box that will fit inside each object.

Another recent integrated approach uses a prioritized-
layered projection visibility approximation algorithm with
view-dependent rendering11. The resulting rendering algo-
rithm seems a promising approach when approximate (non-
conservative) visibility is acceptable.

The UNC Massive Model Rendering (MMR) system1

combined LODs with image-based impostors and occlusion
culling to deliver interactive walkthroughs of complex mod-
els. A more detailed comparison with this system will be
made later in Section6.5.

Various proprietary systems exist as well, such as the one
Boeing created in the 1990’s to visualize models of large
passenger jets. However, to the best of our knowledge, no
detailed descriptions of this system are available, so it is dif-
ficult to make comparisons.

3. Overview

In this section, we give a brief overview of the main compo-
nents of our approach. These components are simplification,
occlusion culling, and a parallel architecture.

3.1. Model Simplification

Given a large environment, we generate a scene graph by
clustering small objects, and partitioning large objects to cre-
ate a spatially coherent, axis-aligned bounding box (AABB)
hierarchy. The hierarchy construction will be discussed in
more detail in Section 4.

3.2. Parallel Occlusion Culling

At run-time, our algorithm performs occlusion culling, in ad-
dition to view frustum culling, based on the pre-computed
AABB scene graph hierarchy. We use a two-pass version of
the hierarchical Z-buffer algorithm19 with a two-graphics-
pipeline parallel architecture. In this architecture, occlud-
ers are rendered on one pipeline while the final interac-
tive rendering of visible primitives takes place on the sec-
ond pipeline. A separate software thread performs the actual
culling using the Z-buffer that results from the occluder ren-
dering. The architecture will be presented in detail in Sec-
tion 5.

We chose to use the hierarchical Z-buffer (HZB) because
of its good culling performance, minimal restrictions on the
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type of occluders, and for its ability to perform occluder fu-
sion. Moreover, it can be made to work well without extra
preprocessing or storage overhead by exploiting temporal
coherence. The preprocessing and storage cost of GigaWalk
is thus the same as that of an LOD-only system.

Occluder Selection: A key component of any occlusion
culling algorithm is occluder selection, which can be ac-
complished in a number of ways. A typical approach uses
solid angles and spatial distributions of objects to estimate
a small set of good occluders45, 27. However, occluders se-
lected according to such heuristics are not necessarily op-
timal in terms of the number of other objects they actually
occlude. The likelihood of obtaining good occlusion can be
increased by making the occluder set larger, but computa-
tional costs usually demand the set be as small as possible.

Our parallel approach, on the other hand, allows us to take
advantage of the temporal coherence based occluder selec-
tion algorithm presented by Greene et al.19, which treatsall
the visible geometry from the previous frame as occluders
for the current frame. This method makes use of frame-to-
frame coherence and provides a good approximation to the
foreground occluders for the current frame.

Figure 2: System Architecture: Each shaded region represents a
separate process. The OR and RVG processes are associated with
separate graphics pipelines, whereas the STC uses one or more pro-
cessors.

3.3. GigaWalk Architecture

Fig. 2 presents the overall architecture of our run-time sys-
tem. It shows the three processes that run in parallel:

1. Occluder Rendering (OR): Using all the visible geom-
etry from a previous frame as the occluder set, this pro-
cess renders that set into a depth buffer. It runs on the first
graphics pipeline.

2. Scene Traversal, Culling and LOD Selection (STC):
This process computes the HZB using the depth buffer
computed by OR. It traverses the scene graph, computes
the visible geometry and selects appropriate LODs based
on the user-specified error tolerance. The visible geome-
try is used by RVG for the current frame and OR for the
next frame. It runs on one or more processors.

3. Rendering Visible Scene Geometry (RVG):This pro-
cess renders the visible scene geometry computed by
STC. It uses the second graphics pipeline.

More details of the run-time system are given in Sections 5
and 6.

4. Scene Representation

In this section, we give an overview of our pre-processing
algorithm used to compute a scene graph representation of
the geometric environment.

CAD datasets often consist of a large number of objects
which are organized according to a functional, rather than
spatial, hierarchy. By “object” we mean simply the low-
est level of organization in a model or model data structure
above the primitive level. The size of objects can vary dra-
matically in CAD datasets. For example, in the Power Plant
model a large pipe structure, which spans the entire model
and consists of more than 6 million polygons, is one ob-
ject. Similarly, a relatively small bolt with 20 polygons is
another object. Our rendering algorithm computes LODs,
selects them, and performs occlusion culling at the object
level; therefore, the criteria used for organizing primitives
into objects has a serious impact on the performance of the
system. Our first step, then, is to redefine objects in a dataset
based on criteria that will improve performance.

4.1. Unified Scene Hierarchy

Our rendering algorithm performs occlusion culling in two
rendering passes: Pass 1 renders occluders to create a hier-
archical Z-buffer to use for culling, Pass 2 renders the ob-
jects that are deemed visible by the HZB culling test. Given
this two-pass approach, we could consider using a separate
representation for occluders in Pass 1 than for displayed ob-
jects in Pass 222, 45. Using different representations has the
advantage of allowing different criteria for partitioning and
clustering of each hierarchy. Moreover, it gives us the flex-
ibility to use an alternate error metric for creating simpli-
fied occluders, one optimized to preserve occlusion proper-
ties rather than visual fidelity.

Despite these potential advantages, we use a single, uni-
fied hierarchy for occlusion culling and LOD-based render-
ing. A single hierarchy offers several benefits. First, using
the same representation decreases the storage overhead and
the overall preprocessing cost. Second, it leads to a conser-
vative occlusion culling algorithm. Our rendering algorithm
treats the visible geometry from the previous frame as the
occluder set for the current frame. In order to guarantee con-
servative occlusion culling, it is sufficient to ensure that ex-
actly the same set of nodes and LODs in the unified scene
graph are used by each process.

4.1.1. Criteria for Hierarchy

A good hierarchical representation of the scene graph is cru-
cial for the performance of occlusion culling and the over-
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all rendering algorithm. We use the same hierarchy for view
frustum culling, occluder selection, occlusion tests on po-
tential occludees, hierarchical simplification, and LOD se-
lection. Though there has been considerable work on spa-
tial partitioning and bounding volume hierarchies, includ-
ing top-down and bottom-up strategies and spatial cluster-
ing, none of them seem to have addressed all the charac-
teristics desired by our rendering algorithm. These include
good spatial localization, object size, balance of the hierar-
chy, and minimal overlap between the bounding boxes of
sibling nodes in the tree.

Bottom-up hierarchies lead to better localization and
higher fidelity LODs. However, it is harder to use bottom-up
techniques to compute hierarchies that are both balanced and
have minimal spatial overlap between nodes. On the other
hand, top-down schemes are better at ensuring balanced hi-
erarchies and bounding boxes with little or no overlap be-
tween sibling nodes. Given their respective benefits, we use
a hybrid approach that combines both top-down partitioning
and hierarchy construction with bottom-up clustering.

4.2. Hierarchy Generation

In order to generate uniformly-sized objects, our pre-
processing algorithm first redefines the objects using a com-
bination of partitioning and clustering algorithms. The par-
titioning algorithm takes large objects and splits them into
multiple objects. The clustering step groups objects with low
polygon counts based on their spatial proximity. The combi-
nation of these steps seems to result in a redistribution of
geometry with good localization and emulates some of the
benefits of pure bottom-up hierarchy generation. The overall
algorithm proceeds as follows:

1. Partition large objects into sub-objects in the initial
database (top-down)

2. Organize disjoint objects and sub-objects into clusters
(bottom-up)

3. Partition again to eliminate any uneven spatial clusters
(top-down)

4. Compute an AABB bounding volume hierarchy on the
final redefined set of objects (top-down).

The partitioning (stages 2 and 4) uses standard top-down
techniques that group polygons based on an object’s center
or center-of-mass, along with several heuristics for selecting
the split axis. The clustering algorithm (stage 3) was adapted
from a computer vision technique for image segmentation
14. The algorithm uses minimum spanning trees (MST) to
represent clusters and is similar toKruskal’s algorithm 26.
Plate 2 shows the results of clustering and partitioning on
the Power Plant and Double Eagle models. More details on
the partitioning and clustering algorithm as well as hierarchy
computation are given in38.

4.3. HLOD Generation

Given the AABB-based scene graph representation, the al-
gorithm computes a series of LODs for each node. The
HLODs are computed in a bottom-up manner. The HLODs
of the leaf nodes are the same as static LODs, while the
HLODs of intermediate nodes are computed by combining
the LODs of the nodes with the HLODs of node’s children10.
We use the GAPS9 simplification algorithm, which can
merge disjoint objects.

The majority of the pre-computation time is spent in LOD
and HLOD generation. The HLODs of an internal node de-
pend only on the LODs of the children, so by keeping only
the LODs of the current node and its children in main mem-
ory, HLOD generation is accomplished within a small mem-
ory footprint. Specifically, the memory usage is given by

main_memory_ f oot print ≤ sizeo f(AABBHierarchy)

+ max
Ni∈SG

(sizeo f(Ni) +

∑
Cj∈Child(Ni)

sizeo f(Cj )),

where SG corresponds to the scene graph.

4.4. HLODs as Hierarchical Occluders

Our occlusion culling algorithm uses LODs and HLODs of
nodes as occluders to compute the HZB. They are selected
based on the maximum screen-space pixel deviation error on
object silhouettes.

The HLODs used by the rendering algorithm can also
be regarded as “hierarchical occluders”. A hierarchical oc-
cluder associated with a nodeNi is an approximation of a
group of occluders contained in the subtree rooted atNi . The
approximation provides a lower polygon count representa-
tion of a collection of object-space occluders. It can also be
regarded as object-space occluder fusion.

5. Interactive Display

In this section, we present our parallel rendering architec-
ture for interactive display of complex environments. Here
we describe in detail the operations performed by each of the
two graphics pipelines and each of the three processes: oc-
cluder rendering (OR), scene traversal and culling (STC) and
rendering visible geometry (RVG), which run synchronously
in parallel (as shown in Fig.3).

5.1. Run-time Architecture

The relationship between different processes and the tasks
performed by them is shown in Fig.2.
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Figure 3: Timing relationship between different processes. The arrows indicate data passed between processes during the computation of frame
2. Along with the other data indicated, viewpoints also travel through the pipeline according to the frame numbers. This diagram demonstrates
the use of occluders from framei−2 rather thani−1 (see Section5.2).

5.1.1. Occluder Rendering

The first stage for a given frame is to render the occluders.
The occluders are simply the visible geometry from a pre-
vious frame. By using this temporal coherence strategy, the
load on the two graphics pipelines is essentially balanced,
since they render the exact same set of primitives, just shifted
in time. The culling and LOD selection performed for dis-
playing framei results in an occluder set for framei + 1
that has manageable size. A brief pseudo-code description
is given in Algorithm5.1.

Occluder_Render(δ,framei)
• get current instantaneous camera position
(camerai)
• while (more nodes on node queue from STC (i-1))
∗ pop next node off the queue
∗ select LOD/HLOD for the node according to

error tolerance,δ, using camerai
∗ render that LOD/HLOD into Z-bufferi

• read back Z-bufferi from graphics hardware
• push Z-bufferi onto queue for STCi
• push camerai onto queue for STCi

ALGORITHM 5.1: Occluder_Render.

Since the list of visible geometry for rendering comes
from the culling stage (STC), and STC gets its input from
this process (OR), a start-up procedure is required to initial-
ize the pipeline and resolve this cyclic dependency. During
startup, the OR stage is bypassed on the first frame, and STC
generates its initial list of visible geometry without occlusion
culling.

5.1.2. Scene Traversal, Culling and LOD Selection

The STC process first computes the HZB from the depth
buffer output from OR. It then traverses the scene graph, per-
forming view-frustum culling, occlusion culling and LOD
error-based selection in a recursive manner. The LOD se-
lection proceeds exactly as in10, 43: recursion terminates at

nodes that are either culled, or which meet the user-specified
pixel-error tolerance. A pseudo-code description is given in
Algorithm 5.2. The occlusion culling is performed by com-

Scene_Traversal_Cull(ε, framei)
• get Z-bufferi from OR i via Z-buffer queue
• build HZB i
• get camerai from OR i queue
• push copy of camerai onto queue for RVGi
• set NodeList[i] = Root(SceneGraph)
• while (NotEmpty(NodeList[i]))
∗ node = First(NodeList[i])
∗ set NodeList[i] = Delete(NodeList[i],node)
∗ if (View_Frustum_culled(node)) then next;
∗ if (Occlusion_Culled(node)) then next;
∗ if HLOD_Error_Acceptable(ε,node) then
− push node onto queue for ORi + 1;
− push node onto display queue for RVGi;

∗ else
set NodeList[i] = Add(NodeList[i],

Children(node));

ALGORITHM 5.2: Scene_Traversal_Cull.

paring the bounding box of the node with the HZB. It can be
performed in software or can make use of hardware-based
queries as more culling extensions become available.

5.1.3. Rendering Visible Scene Geometry

All the culling is performed by STC, so the final render loop
has only to rasterize the nodes from STC as they are placed
in the queue. See Algorithm 5.3.

5.2. Occluder Selection

Ideally, the algorithm uses the visible geometry from the pre-
vious frame (i−1) as the occluders for the current frame to
get the best approximation to the current foreground geome-
try. However, using the previous frame’s geometry can lead
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Render_Visible_Scene_Geometry(framei)
• get camerai from STCi queue
• while (more nodes on queue from STCi)

• pop node off queue
• render node

ALGORITHM 5.3: Render_Visible_Scene_Geometry.

to bubbles in the pipeline, because of the dependency be-
tween the OR and STC stages: STC must wait for OR to fin-
ish rendering the occluders before it can begin traversing the
scene graph and culling. Fortunately, using the visible ge-
ometry from two frames previous can eliminate that depen-
dency, and still provides a good approximation to the visible
geometry for most interactive applications.

5.3. Trading Fidelity for Performance

The user can trade off fidelity for better performance in a
number of ways. The primary control for achieving higher
frame rates is the allowable LOD pixel error (see Plate 3).

Our system has been designed primarily to offer conserva-
tive occlusion culling, and we report all of our results based
on this mode of operation. Our system can guarantee con-
servative culling results for two reasons: 1) the underlying
HZB algorithm used is itself conservative, and 2) for a given
framei we choose the exact same set of LODs for both OR
and STC stages. By choosing the same LODs, we ensure that
the Z-buffer used for culling is consistent with the geometry
it is used to cull. Without this selection algorithm, conserva-
tivity is not guaranteed.

We have also modified our run-time pipeline in a number
of ways to optionally increase frame rate or decrease latency,
by allowing the user to relax the restriction that occlusion
culling be performed conservatively:

• Asynchronous rendering pipeline:Rather than waiting
for the next list of visible geometry from the culling stage
(STC) to render framei + 1, the render stage (RVG) can in-
stead proceed to render another frame, still using the geom-
etry from framei, but using the most recent camera posi-
tion, corresponding to the user’s most up-to-date position.
This modification eliminates the extra frame of latency in-
troduced by our method. The main drawback is that it may
introduce occlusion errors that, while typically brief, are po-
tentially unbounded when the user moves drastically.

• Nth Farthest Z Buffer Values: The occlusion culling can
be modified to use not the farthest Z values in building the
depth pyramid, but the Nth farthest20, thereby allowing for
approximate “aggressive” culling.

• Lower HZB resolution for occluder rendering: The
pixel resolution of the OR stage can be set smaller than that
of the RVG stage. If readback from the depth buffer or HZB
computation is relatively slow, this can improve the perfor-
mance. However, using a lower resolution source for HZB

allows for the possibility of depth buffer aliasing artifacts
that can manifest themselves as small occlusion errors. In
practice, however, we have not been able to visually detect
any such errors when using OR depth buffers with as little
as half the RVG resolution.

6. Implementation and Performance

We have implemented our parallel rendering algorithm
on two hardware systems. The first is a shared-memory
multiprocessor machine with dual graphics rasterization
pipelines: an SGI Onyx workstation with 300MHz R12000
MIPS processors, Infinite Reality (IR2e) graphics boards,
and 16GB of main memory. Our algorithm uses three CPUs
and two graphics pipelines of this machine. We have also
made a preliminary port of the system to a pair of networked,
dual processor PCs: both are Dell Precision Workstations
with GeForce 4 graphics cards, 2GHz processors, and 2GB
of main memory.

All of the inter-process communication is implemented
using a templated producer-consumer queue data structure.
For the SGI implementation, this uses shared memory to
pass data between processes. On the PC, the queue class
was re-implemented to pass data over TCP/IP sockets. Each
stage (OR,STC,RVG) is connected with the others using one
or more instances of this queue data structure. Synchroniza-
tion between the processes is accomplished by pushing sen-
tinel nodes onto the shared queues to delimit the data at the
end of a frame. The scene graph resides in shared memory
in the SGI version, and is simply replicated on both PCs for
the PC version. The overall run-time system is about 6,000
lines of C++ code.

We have tested the performance of GigaWalk on two
complex environments, a coal-fired Power Plant (shown in
Fig. 1) and a Double Eagle Tanker (shown in Plate 1). The
details about these environments are shown in Table1. In
addition to the model complexity, the table also lists the ob-
ject counts after the clustering and partitioning steps. Unless
otherwise noted, performance results from this point on will
refer to the SGI implementation.

6.1. Improvement in Frame Rate

GigaWalk is able to render our two example complex en-
vironments at interactive rates from most viewpoints. The
frame rate varies from 11 to 50 FPS. It is more than 20
frames a second from most viewpoints in the scene. We
have recorded and analyzed some example paths through
these models, as shown on the video available at the WWW
site:http://gamma.cs.unc.edu/GigaWalk. In Fig. 5, we show
the improvement in frame rate for each environment. The
graphs compare the frame rate for each individual render-
ing acceleration technique alone and for the combination.
Table2 shows the average speed-ups obtained by each tech-
nique over the same path. The comparison between the tech-
niques for a given viewpoint is shown in Fig.4.
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(a) Polygon Count = 202666 (b) Polygon Count = 3578485 (c) Polygon Count = 61771

Figure 4: Comparison between different acceleration techniques from the same viewpoint. (a) Rendered with only HLODs. (b) Rendered with
only HZB occlusion culling. (c) Rendered with GigaWalk using HLODs and HZB occlusion culling.

Figure 5: Comparison of acceleration techniques on a path in the Power Plant model at 10 pixels of error (left) and Double Eagle at 30 pixels
of error (right), on the SGI Workstation using two IR pipelines. The Y-axis shows the instantaneous frame rate. The combination of HLODs +
occlusion culling results in 2-5 times improvement over using only one of them. Display resolution was 640×480.

The networked PC implementation achieved an average
frame rate of 10 frames per second on the Powerplant model
at 1024×1024 resolution with at most 10 pixels of screen-
space error, and about 11.5 frames per second on the Double
Eagle tanker model rendered at 1024×1024 resolution with
at most 20 pixels of screen-space error. It compares favor-
ably with the shared memory implementation, but has much
higher variance. This increase in variance is due to latency
incurred from TCP/IP network buffering.

6.2. Culling Performance

Figure6 shows the number of objects and polygons rendered
for each frame on a path through the Power Plant and a path
through the Double Eagle. It is clear from the left graphs that
most of the reduction in object count comes from occlusion
culling. The differences between the exact visibility counts
and GigaWalk’s are explained by GigaWalk’s HZB occlu-
sion algorithm, which culls based on objects’ axis-aligned
screen-space bounding rectangles rather than actual object
polygons. On average for these paths, GigaWalk draws about
twice many objects as a perfect object-level visibility algo-
rithm, and about ten times as many polygons as a perfect
polygon-level visibility algorithm.

Object Count
Env Poly Init Part 1 Clust Part2

×106 ×104 ×104 ×103 ×105

PP 12.2 0.12 6.95 3.33 0.38

DE 82.4 12.7 2.21 2.31 1.2

Table 1: A breakdown of the complexity of each environ-
ment. Poly is the polygon count.Init is the number of
objects in the original dataset. The algorithm first parti-
tions (Part1) objects into sub-objects, then generates clus-
ters (Clust), and finally partitions large uneven spatial clus-
tersPart2. The table shows the object count after each step.

6.3. System Latency

Our algorithm introduces a frame of latency to rendering
times. Latency can be a serious issue for many interactive ap-
plications like augmented reality. Our approach is best suited
for latency-tolerant applications, namely walkthroughs of
large synthetic environments on desktop or projection dis-
plays. The end-to-end latency in the shared-memory imple-
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Figure 6: Comparison of object counts (left column) and polygon counts (right column) for different acceleration techniques. Top row is a path
on the Powerplant model at 10 pixels of error. Bottom row is a path on the Double Eagle model at 30 pixels of error. The Y-axis shows number
of objects or polygons drawn. “Exact” indicates what would be drawn by a perfect visibility algorithm using HLODs. Display resolution was
640x480.

Model Average FPS
OCH HLOD+VFC OCC+VFC VFC

PP 30.67 9.55 9.48 1.15

DE 29.43 9.76 3.27 0.02

Table 2: Average frame rates obtained by different accelera-
tion techniques over the sample path.FPS= Frames Per Sec-
ond,HLOD = Hierarchical levels of detail,OCH = Occlu-
sion culling with HLOD,OCC = Occlusion Culling,VFC =
View Frustum Culling

mentation varies with the frame rate. It is typically in the
range 50− 150 ms. The high end of this range is achieved
when the frame rate dips close to 10 frames a second. This
latency is within the range that most users can easily adapt to
(less than 300 ms) without changing their interaction mode
with the model13.

In many interactive applications, the dominant component
of latency is the frame rendering time13. Through the use
of our two-pass occlusion culling technique, our rendering
algorithm improves the frame rate by a factor of 3-4. As a
result, the overall system latency is decreased, in contrast to
an algorithm that does not use occlusion culling.

6.4. Preprocessing

This section reports the amount of time and memory used by
our preprocessing.

6.4.1. Time and Space Requirements

The preprocessing was done on a single-processor 2GHz
Pentium 4 PC with 2GB RAM. The preprocessing times for
the Double Eagle model were: 177 min for hierarchy gener-
ation (partitioning/clustering), and 32.5 hours for out of core
HLOD generation. The size of the final HLOD scene graph
representation is 7.6GB which is less than 2 times the orig-
inal data size. The AABB hierarchy skeleton occupies 7MB
of space, though this could easily be further reduced.

The main memory requirement for partitioning and clus-
tering is bounded by the size of the largest object/cluster.
For the Double Eagle it was less than 200MB for partition-
ing, 1GB for clustering and 300MB for out of core HLOD
generation.

6.5. Comparison with Earlier Approaches

A number of algorithms and systems have been proposed for
interactive display of complex environments. These include
specialized approaches for architectural, terrain and urban
environments, as highlighted in Section 2. Given low depth
complexity scenes, or scenes composed of large or convex
occluders (e.g, architectural or urban models), our general
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approach is not likely to perform any better than special-
purpose algorithms designed specifically to exploit such fea-
tures.

Of the previous systems which do handle general envi-
ronments, however, few have been able to reduce both depth
complexity (e.g. by using occlusion culling) and screen-
space complexity (e.g. by using LODs). It is worth mak-
ing the comparison with one previous system which was de-
signed to do both, the MMR1.

The MMR system combined LODs and occlusion culling
for near-field geometry with image-based textured meshes to
approximate the far-field, in a cell-based framework. While
the combination of techniques proved capable of achiev-
ing interactive frame rates, the system had some drawbacks.
First, the creation of cells required user intervention. For in-
stance, some hand-selected model-dependent features were
used in the Powerplant to define viewpoint cells. In con-
trast, the preprocessing and scene graph computation in Gi-
gaWalk is fully automatic. Second, the image-based far-field
representations used in the MMR system resulted in dra-
matic popping and distortion when switching between dif-
ferent cells. Third, the memory overhead and preprocessing
cost of creating six meshes and textures per cell was quite
quite high. Finally, since the MMR used just a single ren-
dering pipeline, it could only afford to use a few objects as
occluders, rather than all the visible objects from the previ-
ous frame. The occluders had to be pre-selected offline using
a heuristic which could not always find good candidates.

In MMR’s favor, however, the cell based spatial decompo-
sition allowed for a simple out-of-core prefetching and ren-
dering algorithm. In contrast, GigaWalk currently assumes
that the entire scene graph and the LODs and HLODs are
loaded into main memory.

7. Conclusions and Lessons Learned

We have presented an approach to rendering interactive
walkthroughs of complex 3D environments. The algorithm
features a novel integration of conservative occlusion culling
and levels-of-detail using a parallel algorithm. We have
demonstrated a new parallel rendering architecture that
integrates these acceleration techniques on two graphics
pipelines, and highlighted its performance on two complex
CAD environments. To the best of our knowledge, GigaWalk
is the first system that can render such complex environ-
ments at interactive rates with this level of fidelity.

There are many complex issues with respect to the design
and performance of systems for interactive display of com-
plex environments. These include load balancing, extent of
parallelism and scalability of the resulting approach, the ef-
fectiveness of occlusion culling and issues related to loading
and managing large datasets.

7.1. Load Balancing

There is a trade-off between the depth of scene graph, which
is controlled by the choice of minimum cluster size, and
the culling efficiency. Smaller bounding boxes lead to bet-
ter culling since more boxes can be rejected, so less geome-
try is sent to RVG. On the other hand, more boxes increases
the cost of scene graph traversal and culling in STC. In our
system, scene traversal and object culling (STC) operate in
parallel with rendering (OR and RVG). If our performance
bottleneck is the rendering processes (RVG and OR), we can
shift the load back to the culling (STC) process by creating
a finer partitioning. Conversely, we can use a coarser parti-
tioning to move the load back to RVG and OR. Thus, the sys-
tem can achieve load balancing between different processes
running on the CPUs or graphics pipelines by changing the
granularity of partitioning.

7.2. Parallelism

Parallel graphics hardware is increasingly being used to
improve the rendering performance of walkthrough sys-
tems. Generally, though, the speed-up obtained from using
N pipelines is no more than a factor ofN. Using a sec-
ond pipeline for occlusion culling (i.e.N = 2), however, en-
ables GigaWalk to achieve more than two times speed-up for
scenes with high depth complexity. For low depth complex-
ity scenes there is little or no speed-up, but there is no loss
in frame rate as the occlusion culling is performed using a
separate pipeline. However, our parallel algorithm does in-
troduce a frame of latency.

Note also that other parallel approaches21, 37 are funda-
mentally orthogonal to our approach, and could potentially
be used in conjunction with our architecture as black-box
replacements for the OR and RVG rendering pipelines.

7.3. Load Times

One of the considerations in developing a walkthrough sys-
tem to render gigabyte datasets is the time taken to load gi-
gabytes of data from secondary storage, which can be many
hours. To speed up the system we have implemented an on-
demand loading system. Initially the system takes a few sec-
onds to load the skeletal representation of the scene graph
with just bounding boxes. Once loaded, the user commences
the walkthrough while a fourth, asynchronous background
process automatically loads the geometry for the nodes in
the scene graph that are visible. We have found that adding
such a feature is very useful in terms of system development
and testing its performance on new complex environments.

8. Limitations and Future Work

Our current implementation of GigaWalk has many limi-
tations. The current system works only for static environ-
ments, and it would be desirable to extend it to dynamic en-
vironments as well, perhaps with a strategy similar to that
proposed in Erikson et al.10.
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The memory overhead of GigaWalk can be high. In
the current implementation, viewing an entire model re-
quires loading the scene graph and HLODs. Vardahan and
Manocha43 have recently developed an out-of-core algo-
rithm that renders massive datasets using view-frustum
culling and LOD/HLOD based selection which we may be
able to benefit from.

The preprocessing time for our largest dataset, the Dou-
ble Eagle, was also higher than desired. Since most nodes in
the scene graph are non-overlapping, the LODs can be gen-
erated independently. Thus the algorithm could compute the
LODs and HLODs in parallel, using multiple threads. This
could improve the preprocessing performance considerably,
reducing the 32.5 hours spent on the Double Eagle to a few
hours.

The algorithm described in this paper guarantees image
quality in terms of a bound on screen-space LOD error. First,
we recognize that this is far from an ideal image-quality met-
ric, and better metrics which are suitable for interactive dis-
play are desired. Second, our system gives no guarantees on
the frame rate. The current system would be improved by
the addition of a target-frame-rate rendering mode. Further-
more, the current system’s use of static LODs and HLODs
leads to some popping when switching between different
levels. We would like to explore view-dependent or hybrid
view-dependent/static LOD-based simplification approaches
that can improve the fidelity of our geometric approxima-
tions without increasing the polygon count.

Finally, while the current PC implementation shows
promise, we need to lower the networking latency in the
system. Our implementation indicates that the bandwidth is
sufficient with commodity TCP/IP over Ethernet, but to re-
duce latency it may be necessary to move to a lightweight
protocol like UDP or even use specialized low-latency net-
work hardware like Myrinet. We are also interested in using
new hardware occlusion culling extensions on PC graphics
cards to accelerate GigaWalk. Govindaraju et al.18 recently
devised one approach which uses three PCs and three GPUs.
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Plate 1: Double Eagle Tanker: This 4 gigabyte environment consists of more than 82 million triangles and 127 thousand objects. Our algorithm
can render it 11-50 frames per second on an SGI system with two IR2 graphics pipelines and three 300MHz R12000 CPUs.

(a) Partitioning & Clustering on Power
Plant

(b) Original Objects in Double Eagle (c) Partitioning & Clustering on Double Ea-
gle

Plate 2: The image on the left shows the application of the partitioning and clustering algorithm to the Power Plant model. The middle image
shows the original objects in the Double Eagle tanker model with different colors. The right image shows the application of the clustering
algorithm on the same model. Each cluster is shown with a different color.

(a) Pixel Error = 0 (b) Pixel Error = 20 (c) Difference Image
Plate 3: The Engine Room in the Double Eagle Tanker displayed without and with HLODs. The inset shows a magnification of one region.
Original resolution 1280×960.
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