
Realistic Reflections and Refractions
on Graphics Hardware With Hybrid Rendering

and Layered Environment Maps

Ziyad S. Hakura*, John M. Snyder**

*Stanford University, **Microsoft Research 

Abstract.
We introduce hybrid rendering, a scheme that dynamically ray traces the local geometry
of reflective and refractive objects, but approximates more distant geometry by hardware-
supported environment maps (EMs). To limit computation, we use a greedy ray path
shading model that prunes the binary ray tree generated by refractive objects to form just
two ray paths. We also restrict ray queries to triangle vertices, but perform adaptive tes-
sellation to shoot additional rays where neighboring ray paths differ sufficiently. By
using layered, parameterized EMs that are inferred over a set of viewpoint samples to
match ray traced imagery, we accurately handle parallax and view-dependent shading in
the environment. We increase robustness of EMs by inferring them simultaneously
across multiple viewpoints and including environmental geometry that is occluded from
the viewpoint sample but is revealed in nearby viewpoints. We demonstrate realistic
shiny and glass objects with a user-controlled viewpoint.

1 Introduction
Z-buffer hardware is well-suited for rendering texture-mapped 3D geometry but inadequate for
rendering reflective and refractive objects. It rasterizes geometry with respect to a constrained
ray set – rays emanating from a point and passing through a uniformly parameterized rectangle
in 3D. Reflective and refractive objects create a more general lens system mapping each
incoming ray into a number of outgoing rays, according to a complex, spatially-varying set of
multiple ray “bounces”. Environment maps (EMs) [2] extend hardware to simulate reflections
from an infinitely distant environment, but ignore all but the first bounce and so omit self-
reflections and refractions. On the other hand, ray tracing [22] generates these effects but is
unaccelerated and incoherently accesses a large scene database. Nevertheless, modern CPUs
are powerful enough to perform limited ray tracing during real-time rendering.

We combine the benefits of both systems by tracing ray paths through reflective/refractive
objects to compute how the local geometry maps incoming rays to outgoing. To encapsulate
more distant geometry, we use the outgoing rays as indices into a previously-inferred EM per
object, allowing efficient access and resampling by graphics hardware. We call this hybrid
rendering.

We begin by segmenting reflective/refractive scene geometry into a set of local lens objects.
Typically each glass or shiny object forms a single local lens object, but multiple objects can be
combined if they are close or one contains or surrounds another. Because rays are traced
through a system of only one or a few objects, the working set is smaller and memory access
more coherent than with traditional ray tracing. To make the approach practical, we also ini-
tially limit the number of ray casts to polygon vertices, adaptively shooting additional rays only
where necessary. We also prune the ray tree (binary for refractive objects where an incoming
ray striking an interface generates child reflection and refraction rays) ignoring all but a few ray
paths that still approximate the full ray traced rendering well (see Figure 2).

http://www.eg.org
http://diglib.eg.org


Each local lens object’s
EM is different from
traditional ones: it is in-
ferred, layered, and
parameterized. Inferred
means our EMs are com-
puted as a least-squares
best match to a pre-
computed, ray traced
image at a viewpoint
when applied as an EM
in a rendering by the
target graphics system.
The alternative of sam-
pling a spherical image of
incident radiance at a
point (typically the lens
object’s center) ignores view-dependent shading in the environment and produces a less accu-
rate match at the viewpoint. Layered means that we use multiple environmental shells to better
approximate the environment. Parameterized means we compute an EM per viewpoint over a
set of viewpoints (Figure 1) to provide view-dependent shading on imaged objects and reduce
the number of layers needed for accurate parallax. Our examples use a 1D viewpoint subspace
that obtains accurate results over that subspace and plausible results for any viewpoint.

Our contributions include the hybrid rendering shading model and its combination of dynamic
ray tracing with hardware-supported EMs. We improve on the parameterized EMs (PEMs)
described in [8] by generalizing to more than two layers and providing tools for determining
their placement. In addition, we handle self-reflections by ray tracing the local geometry rather
than representing it as an EM, and so achieve good results with as much as ten times sparser
sampling of EMs compared with [8]. The method of [8] also has the problem that its inferred
EMs represent only the part of the environment imaged at one viewpoint, resulting in disocclu-
sions from nearby viewpoints. We ensure completeness in our layered EMs by matching to a
layered image that includes occluded surfaces, as well as simultaneously over multiple nearby
viewpoints or direct images of the environment. Results show our method supports rendering
of realistic reflective and refractive objects on current graphics hardware.

2 Previous Work

2.1 Reflections

Several efforts have been made to exploit fast graphics hardware to produce realistic reflec-
tions. Diefenbach [5] simulates planar reflections by mirroring the viewpoint about the
reflection plane. Ofek and Rappoport [20] extend the idea to curved objects, requiring careful
decomposition of objects with mixed convexity or saddle regions.

Image-based rendering (IBR) methods [6][14] can tabulate view-dependent shading effects like
reflections. Surface light fields [19][23] are a variant that parameterize the radiance field over
surfaces rather than views. These methods visit an irregular scattering of samples over the
entire 4D light field to reconstruct a particular view, and lack hardware acceleration. They also
require very high sampling densities to reconstruct specular objects, a problem we address by
ray tracing and tabulating EMs over simpler 1D viewpoint subspaces.

EM1 EM2 EM3 EM4 EM5 EM6 EM7 EM8

... ... ... ... ...... ... ...

local lens object

inferred EMs per viewpoint

Figure 1: A PEM is a sequence of EMs recorded over a set of viewpoints
for each local lens object. Each EMi consists of layered shells at various
distances from the local lens object’s center.



Cabral et al. [3] store a collection of view-dependent EMs where each EM pre-integrates a
BRDF with a lighting environment. The lighting environments are generated using standard
techniques and thus ignore local reflections and refractions.

Lischinski and Rappoport [16] ray trace through a collection of view-dependent LDIs for
glossy objects with fuzzy reflections, and three view-independent LDIs representing the diffuse
environment. Bastos et al. [1] reproject LDIs into a reflected view for rendering primarily pla-
nar glossy surfaces in architectural walkthroughs. Our approach succeeds with simpler and
hardware-supported EMs rather than LDIs, resorting to ray tracing only for the local “lens”
geometry where it is most necessary.

Hakura et al. [8] introduce parameterized and layered environment maps to simulate local re-
flections including self-reflections. We make use of these ideas for the more distant geometry,
but use local ray tracing to more accurately simulate self-reflections and extend to refractive
objects. We also improve their EM inference to handle disocclusions and produce more accu-
rate parallax.

2.2 Refractions

Heidrich et al. [10] attempt to handle refractive as well as reflective objects using a light field
to map incoming view rays into outgoing reflected or refracted rays. These outgoing rays then
index either a static environment map, which ignores local effects further from the object, or
another light field, which is more accurate but also more costly. Though our hybrid rendering
similarly partitions local and distant geometry, we obtain sharper, more accurate reflections and
refractions using local ray tracing rather than light field remapping. We also exploit the tex-
ture-mapping capability of graphics hardware using layered EMs for the more distant
environment rather than light fields.

Chuang, et. al. [4], and Zongker et. al. [24] capture the remapping of incident rays for real and
synthetic reflective/refractive objects, but only for a fixed view. Kay and Greenberg [12] simu-
late refractive objects with a simple, local model restricted to surfaces of uniform thickness.

Adaptive sampling has been used in ray tracing since it was first described [22]. To decouple
local and distant geometry, our adaptation is based on ray path, not color or radiance, differ-
ences. Kajiya’s idea of ray paths rather than trees [13] forms the basis of our local model.
Finally, the caching and ray intersection reordering of Pharr et. al. [21] is another, completely
software-based approach for memory-coherent access to the scene database.

3 Shading Model And Overview
Ray tracing simulates refractive objects by generating child reflective and refractive rays when-
ever a ray strikes a surface interface. The relative contribution of these children is governed by
the Fresnel coefficients [9], denoted ˆ

RF and T̂F for reflected and transmitted (refracted) rays,
respectively. These coefficients depend on the ray’s angle of incidence with respect to the
surface normal and the indices of refraction of the two media at the interface. Purely reflective
objects are simpler, generating a single child reflected ray modulated by ˆ

RF but can be consid-
ered a special case with T̂F =0.

Rather than generating a full binary tree for refractive objects which can easily extend to thou-
sands of ray queries, we use a two-term model with greedy ray path propagation. When a ray
from the viewpoint first strikes the refractive object, we consider two paths: one beginning with
an initial reflection and the other with an initial refraction. These paths are then propagated
until they exit the local object by selecting the child ray having the greatest Fresnel coefficient.
The result is two terms whose sum approximates the full binary tree. Reflective objects require



only a single term but use the same ray propagation strategy in case the local system contains
other refractive objects. Figure 2 compares the quality of this approach with a full ray tree
simulation.

Our model also includes a simple transparency attenuation factor, G, which modulates the ray
color by a constant for each color channel raised to a power depending on the thickness of glass
traversed between interfaces [12]. The resulting model is

T FT GT +R FR GR

where respectively for the refracted and reflected ray paths: T and R are radiances along exit
ray, FT and FR multiply the Fresnel coefficients along the path, and GT and GR multiply the
transparency attenuation along the path (see Figure 3).

As a preprocess, for each viewpoint sample, we use a modified ray tracer to compute the two
terms of this model as separate images. We then infer an EM that produces the best least-
squares match to both terms simultaneously. The result is a viewpoint-dependent sequence of
inferred EMs. Each viewpoint’s EM is layered by segmenting the environmental geometry into
a series of spherical shells.

At run-time, we dynamically trace rays through each vertex of the local geometry according to
our ray path model to see where they exit the local system and intersect the EM shells. We
select the EM corresponding to the viewpoint closest to the current view or blend between the

(a) full ray tree (b) two-term greedy ray path

Figure 2: Shading Models. The full ray tree (a) requires 5 times more ray queries than our greedy ray
path model (b).

refraction term reflection term result

    +     =

T FT GT R FR GR
T FT GT +
R FR GR

Figure 3: Two-Term Modulated Shading.



two closest. A separate pass is used for each term and then summed in the framebuffer. The
Fresnel and transparency attenuation factors are accumulated on-the-fly as the path is traced,
and produce per-vertex terms that are interpolated over each triangle to modulate the value
retrieved from the EM. A better result can be achieved using 1D textures that tabulate highly
nonlinear functions such as exponentiation [11].

While our current system neglects it, a diffuse component can be handled as an additional
view-independent diffuse texture per object that is summed into the result. Such textures can
be inferred to match ray traced imagery using the technique of [7].

4 Layered EMs
A local lens object is associated with a layered EM per viewpoint in which each layer consists
of a simple, textured surface. We use a nested series of spherical shells sharing a common
origin for the geometry because spheres are easy to index and visibility sort. Other kinds of
simple geometry, such as finite cubes, cylinders, and ellipsoids, may be substituted in cases
where they more accurately match the actual geometry of the environment. A layer’s texture is
a 4-channel image with transparency, so that we can see through inner shells to outer ones
where the inner geometry is absent. At run-time, we perform hybrid rendering to compute
outgoing rays and where they intersect the layered EMs. We use the “over” blending mode to
composite the layers Li in order of increasing distance before modulating by the Fresnel and
transparency attenuation terms, F and G, via

(L1 over L2 over º over Ln) F G

for each term in the two-term shading model.

propagated

incoming ray

(b) incoming ray propagation

propagated

outgoing ray

incoming ray

ray path
outgoingrefracted ray

outgoing

reflected
ray

local lens object

(a) incoming/outgoing rays

(c) outgoing ray propagation

Figure 4: Incoming/Outgoing Rays and Ray Propagation.

4.1 Compiling the Outgoing Rays

To build layered EMs, the ray tracer compiles a list of intersections which record the eventual
outgoing rays exiting the local lens object and where they hit the more distant environment.
These intersections are generated from incoming rays originating from a supersampled image at
a particular viewpoint including both terms of the shading model (reflection and refraction),
each of which generates different outgoing rays (Figure 4a). Between incoming and outgoing
rays, the ray paths are propagated using the model of Section 3. The intersection record also



stores the image position of the incoming ray and color of the environment at the outgoing
ray’s intersection.

To avoid disocclusions in the environment as the view changes, we modified the ray tracer to
continue rays through objects to reach occluded geometry. For each outgoing ray, we record
all front-facing intersections with environmental geometry along the ray, not just the first (Fig-
ure 4c). Once the layer partitions are computed (Section 4.2), we then discard all but the first
intersection of each outgoing ray with that layer. This allows reconstruction of parts of the
environment in a distant layer that are occluded by a closer one. We also continue incoming
rays in a similar fashion (Figure 4b) so that occluded parts of the lens object still generate inter-
section records. For example, we continue incoming rays through a cup to reach a glass teapot
it occludes.

4.2 Building Layered EM Geometry

To speed run-time performance, we seek a minimum number of layers. But to approximate the
environmental geometry well, we must use enough shells and put them in the right place.

We use the LBG algorithm [15] developed for compression to build vector quantization code-
books. The desired number of layers is given as input and the cluster origin is computed as the
centroid of the local object. The LBG algorithm is run over the list of intersections, clustering
based on distance to this origin. This algorithm begins with an initial, random set of cluster
distances and assigns each intersection to its closest cluster. It then recomputes the average
distance in each cluster, and iterates the assignment of intersection to closest cluster. Iteration
terminates when no intersections are reassigned.

When partitioning geometry into layers, parts of coherent objects should not be assigned to
different layers. This can cause incorrect tears in the object’s reflected or refracted image.
Our solution assigns whole objects only to the single cluster having the most intersection re-
cords with that object. The clustering algorithm should also be coherent across the
parameterized viewpoints. This is accomplished by clustering with respect to all viewpoints
simultaneously. Figure 7 shows clustering results on an example scene in which our algorithm
automatically segments a glass teapot’s environment into three layers.

Layer shells are placed at the average distance of intersections in the cluster, where “continued
ray” intersections are represented only by their frontmost cluster member.

Layer Quads Often a spherical shell is only sparsely occupied. In that case, to conserve tex-
ture memory we use a simple quadrilateral impostor for this geometry rather than a spherical
one. To define the impostor quadrilateral, we can find the least-squares fit of a plane to the
layer’s intersection points. A simpler, but less optimal, scheme is to find the centroid of the
layer’s intersection points and define the normal of the plane as the direction from the lens
object center to the centroid. The plane’s extent is determined from a rectangular bounding
box around points computed by intersecting the outgoing rays associated with the layer’s inter-
section records with the impostor plane. One complication is that during run-time, outgoing
rays may travel away from the quad’s plane, failing to intersect it. This results in an undefined
texture access location. We enforce intersection for such rays by subtracting the component of
the ray direction normal to the impostor plane, keeping the tangential component but scaling it
to be very far from the impostor center.

Texture maps for spherical shells or quads are computed using the same method, described
below.



4.3 Inferring Layered EM Texture Maps

As in [7][8], we base our EM inference on the observation that a texel contributes to zero or
more display pixels. Neglecting hardware quantization effects, a texel that is twice as bright
contributes twice as much. Hardware rendering can thus be modeled as a linear system, called
the rendering matrix, mapping texels to display pixels. To find the rendering matrix, we per-
form test renderings that isolate each texel’s display contribution. Given the rendering matrix,
A, we then find the least-squares best EM, x, which when applied matches the ray tracer’s seg-
mented incident radiance layer, b. This results in the linear system Ax=b, which we solve using
conjugate gradient. Details about the rendering matrix inference and linear system solution are
found in [7].

There are two advantages of this inference method over a simple projection of the environment
onto a series of shells. By matching a view-dependent ray traced image, it reproduces view-
dependent shading on reflected or refracted objects, like a reflective cup seen through a glass
teapot. It also adjusts the EM to account for the geometric error of approximating environ-
mental objects as simpler geometry, such as a spherical shell. The result is better fidelity at the
ray traced viewpoint samples.

We infer each layer of the layered EM independently, but simultaneously over both terms of
the shading model (Figure 7). After performing the layer cluster algorithm on samples from a
supersampled image, each layer’s samples are recombined into a single image and filtered to
display resolution to form two images bR and bT, corresponding to the two terms of the shading
model. Only a single image is needed for reflective objects. These images have four channels
– the alpha channel encodes the fraction of supersampled rays through a given pixel whose
outgoing ray hit environmental geometry in that layer, while the rgb channels store the color of
the environment intersected by those outgoing rays. We infer the two rendering matrices, AR

and AT, corresponding respectively to hybrid rendering (Section 5) with an initial reflection or
refraction. We then find the least-squares solution to

R R

T T

A x b

A x b

=
=

(1)

to produce a single EM for the layer, x, matching both terms. Figure 7 shows an example of
these b terms and resulting inferred EM, x, for each of three layers.

It is possible for the ray tracer to generate widely diverging rays when sampling a single output
pixel, causing noise in the environment map solution. We therefore modified the ray tracer to
generate a confidence image. The per-pixel confidence value is computed as a function of the
maximum angle between the directions of all ray pairs contributing to the particular pixel.
More precisely, we use the formula

2 2 21 min( , )m c cθ θ θ−
where mθ is the maximum angle between ray pairs and 5cθ = ° is an angular threshold. We
multiply the confidence image with both sides of equation (1) prior to solving for x.

To conserve texture memory, it is beneficial to share more distant EM layers between local lens
objects. To do this, we can add more equations to the linear system (1) corresponding to multi-
ple lens objects and simultaneously solving for a single EM x.

As observed in [8], choosing the proper EM resolution is important to preserve frequency con-
tent in the imaged environment. A very conservative approach generates test renderings to
determine the most detailed EM MIPMAP level actually accessed by the graphics system.
Texture memory bandwidth and capacity limitations may dictate the use of lower resolutions.



Simultaneous Inference Over Multiple Viewpoints A difficulty with this inference tech-
nique is that the lens objects can fail to image all of its environment. For example, a flat mirror
does not image geometry behind it and a specular fragment images only a small part of its envi-
ronment from a particular viewpoint. These missing portions can appear in a view near but not
exactly at the pre-rendered viewpoint. We solve this problem by inferring EMs that simultane-
ously match ray traced images from multiple views. The views can be selected as a uniform
sampling of a desired viewspace centered at the viewpoint sample.

To compute simultaneous viewpoint inference, outgoing rays are compiled for each of these
multiple viewpoints. A single EM layer, x, is then inferred as a least-squares simultaneous
match at all viewpoints, using the system of equations (1) for each viewpoint. Although this
blurs view-dependent shading in the environment, good results are achieved if the set of view-
points matched are sufficiently close.

An alternative method to fill in the missing portions in the environment map is to infer it using
extra rays in addition to the ones that exit the lens object. These additional rays can be taken
from the object center as in traditional environment maps. They can also be taken from the
viewpoint, but looking directly at the environment (i.e., without the lens object), to approximate
view-dependent shading in the environment. Direct images from the lens object center tend to
work better for reflective objects while direct images from the viewpoint are better suited for
refractive (transparent) objects.

We use the confidence-weighted, least-squares solution method in (1), but solve simultaneously
across images of the lens object from the viewpoint as before (lens object images), combined
with direct images of the environment without the lens object (direct images). In these direct
images, per-pixel confidence is computed as a function of the likelihood that the pixel repre-
sents a missing portion of the environment. We compute this via distance of the direct image
ray’s intersection with its closest point in the intersection records of the lens object images.
The advantage of this scheme is that it fills in the missing portions of the environment with a
fixed, small number of extra images, regardless of the size of the viewspace around a viewpoint
sample.

5 Hybrid Rendering
Adaptive Tessellation Performing ray tracing only at lens
object vertices can miss important ray path changes occurring
between samples, producing very different outgoing rays
even at different vertices of the same triangle. Our solution is
to perform adaptive tessellation on the lens object based on
two criteria: the ray path “topology” and a threshold distance
between outgoing rays. Using topology, ray paths are con-
sidered different if their path lengths are different, or the
maximum coefficient at an interface changes between reflec-
tion and refraction. Using outgoing ray distance, they are
different if the angle between their directions is more than 3∞.
Figure 5 illustrates adaptive tessellation using an example
image shaded darker with increasing subdivision level. Places where rays go through more
interfaces or where the surface is highly curved require more sampling.

When the ray paths at a triangle’s vertices are too different, the triangle is subdivided at the
midpoints of each of its edges in a 1-to-4 subdivision, and the metric is recursively applied.
The process is continued until the three ray paths are no longer different or the triangle’s
screen-projected edge lengths are less than a threshold, t. We also allow 1-to-3 and 1-to-2

Figure 5: Adaptive Tessellation.



subdivision in cases where some of the triangle edges are already small enough (see Figure 6).
We adapt the tessellation simultaneously for both terms of the shading model, subdividing a
triangle if either ray path is considered different. We ignore differences in subdivision be-
tween neighboring triangles, fixing the resulting “t-junction” tessellation as a postprocess. A
hash table on edges (vertex pairs) returns the edge midpoint if it has already been computed
from a more highly subdivided neighboring triangle. Recursive querying yields all vertices
along the edge.

Given all the boundary vertices, it is simple to compute a triangular tessellation that avoids t-
junctions. The hash table is also used to quickly determine whether a triangle vertex ray has
already been computed, thus avoiding redundant ray queries.

To avoid unnecessary ray tracing and tessellation in occluded regions, we compute whether
each vertex is directly visible from the viewpoint using a ray query. If all three vertices of a
triangle are occluded, we do not subdivide the triangle further, but still compute correct texture
coordinates for its vertices via ray tracing in case some part of its interior is visible. Another
optimization is to avoid ray tracing at vertices whose triangles are all backfacing. Using a pass
through the faces, we mark each triangle’s vertices as “to be ray traced” if the triangle is front-
facing; unmarked vertices are not ray traced.

Multipass Rendering with Layered EM Indexing Assuming we have a refractive object
with n layers in its EM, we perform n passes for its refractive term, and n passes for the its
reflective term. We multiply each term by the F G function interpolated by the graphics hard-
ware across each triangle. The texture index for each term/layer pass is generated by
intersecting the outgoing ray with the layer’s geometric impostor, such as a sphere. Taking this
point of intersection and subtracting the EM origin point yields a vector that forms the hard-
ware EM index, recorded with the vertex. As in [8], we use a hardware-supported cube map
spherical parameterization which doesn’t require normalization of this vector. Note that the
texture indices change per layer since the distances to the EM spheres are different and the
outgoing rays do not emanate from the EM origin.

When rendering from a viewpoint away from a pre-rendered sample, a smoother result is ob-
tained by interpolating between the two closest viewpoints. Thus, we perform 4n passes, 2n for
each viewpoint, blended by the relative distance to each viewpoint. Ray tracing, adaptive tes-
sellation, and texture coordinate computation are performed just once per frame. Ray tracing is
performed with respect to the actual viewpoint, not from the adjacent viewpoint samples.

Each layer is computed in a separate pass because of texture pipeline limitations in the current
graphics system (Microsoft Direct3D 7.0 running on an Nvidia GeForce graphics accelerator).

1 to 2

1 to 4

1 to 3

1 to 4, recursively

(a) original mesh (b) adaptive tessellation (c) t-junctions removed

Figure 6: The original mesh, (a), is adaptively subdivided when ray paths at the vertices are sufficiently
different, (b). The resulting t-junctions are removed by additional tessellation of adjacent triangles, (c),
illustrated with dotted lines, to form a triangular tessellation.



To begin the series of compositing passes for the second of the two summed shading terms, the
framebuffer’s alpha channel must be cleared. This is accomplished by rendering a polygon that
multiplies the framebuffer’s rgb values by 1 and its alpha by 0. We then render its layers from
front to back, which sums its contribution to the result of the first term’s passes. With the ad-
vent of programmable shading in inexpensive PC graphics hardware and the ability to do four
simultaneous texture accesses in each pass, it will be possible to reduce those 4n passes to n
and avoid the alpha clear step [17][18].

6 Results and Discussion
We tested a scene containing a glass teapot, a reflective cup, a ring of columns, and distant
walls. EMs were parameterized by viewpoints circling around the teapot in 8∞ increments.
The scene contains two lens objects, a teapot and cup; we used our clustering algorithm to se-
lect 3 EM layers for the teapot and 2 for the cup. A quadrilateral impostor was used for the
sparsely-occupied cup environmental layer of the teapot (Figure 7, top), a cylindrical shell for
the columns environmental layer of the teapot (Figure 7, middle), and spherical shells for all
other layers. We also tried a solution that was constrained to a single EM layer for each lens
object, still using the clustering algorithm to determine placement of the single shell.

Figure 8 compares the quality of our results for two novel views: one in the plane of the circle
of viewpoints (a), and one above this plane (b). Using multiple EM layers, we achieve quality
comparable to the ray tracer. Reconstruction using a single layer is noticeably blurry because
of conflicts where different points in the environment map to identical ones in the spherical
shell approximation. Moreover, the video results for the single layer solution show significant
“popping” when switching between viewpoint samples. The multi-layer solution better ap-
proximates the environment, providing smooth transitions between viewpoints.

Together, we call the method of ray continuation to reach occluded geometry from Section 4.1,
and the simultaneous solution across multiple viewpoints from Section 4.3, EM disocclusion
prevention. Figure 9 and our video results show the effectiveness of these methods in eliminat-
ing environmental disocclusions which would be obvious otherwise.

To measure performance, we tried
two different adaptive subdivision
thresholds of t=3 and t=5 (meas-
ured in subpixels) in a 3¥3
subsampled 640¥480 resolution
rendering. Performance was
measured in seconds on a
1080MHz AMD Athlon with
Nvidia GeForce graphics card;
reduction factors are with respect
to ray tracing without hybrid
rendering. For comparison, the
ray tracer required 480 seconds to
render each frame, using
6,153,735 rays and 168,313,768
triangle intersection tests. The
version with t=3 is shown in Figure 8; the two versions are compared in Figure 10. The faster
t=5 achieves good quality but suffers from some artifacts when animated. The difference is
discernible in the still image in Figure 10 as slightly increased noise along edges such as the
bottom of the teapot and where the spout joins the body.

tttt = 3 tttt = 5

Ray tracing at vertices 13.48 7.82

Texture coord. generation 0.71 0.38

Tessellation 2.11 0.83

Other (inc. rendering) 2.57 1.45

Total frame time 18.87 10.48

Time reduction factor 25.4 45.8

Ray count 1,023,876 570,481

Ray reduction factor 6 10.8

Triangle intersection tests 11,878,133 6,543,993

Intersection red. factor 14.2 25.7



Hybrid rendering was 25-45 times faster than a uniformly-sampled ray tracing, though both
used identical ray casting code and the greedy ray path shading model. (Using a full tree shad-
ing model would incur an additional factor of 5.) This is not entirely accounted for by the
reduction of roughly a factor of 6-11 in ray queries or 14-25 in triangle intersection tests ob-
tained by hybrid rendering. The reason for our increased performance is the increased locality
we achieve by ray tracing only through the lens object’s geometry, and the hardware accelera-
tion of texture map access. Although adaptive sampling reduces triangle intersection tests and
ray queries by roughly the same factor, triangle intersection tests (which include ray misses as
well as actual intersections) are reduced by an additional factor because the environment is
approximated with simple spherical shells.

Though our performance falls short of real-time, significant opportunity remains both to opti-
mize the software and parameters (like the initial lens object’s tessellation), and to tradeoff
greater approximation error for higher speed. We note that more complicated environmental
geometry will increase the benefit of our use of approximating shells. To speed up ray tracing,
it may be advantageous to exploit spatial and temporal coherence, possibly combined with the
use of higher-order surfaces rather than memory-inefficient polygonal tessellations. In any
case, we believe that future improvement to CPU speeds and especially support for ray tracing
in graphics hardware will make this approach ideal for real-time rendering of realistic shiny and
glass objects.

7 Conclusion
Hybrid rendering combines ray tracing, which simulates complicated ray bouncing off local
geometry, with environment maps which capture the more distant geometry. This exploits the
hardware’s ability to access and resample texture maps to reduce the number of ray casts and
consider them in a memory-coherent order. By inferring layered EMs parameterized by view-
point, we preserve view-dependent shading and parallax effects in the environment without
performing unaccelerated ray casts through its complicated geometry. With these techniques,
we obtain a realistic simulation of highly specular reflective and refractive objects that would
be impractical with light field based methods.

A major benefit of this work is to make the cost of ray tracing low and predictable without
sacrificing quality. Lower cost, but probably not higher predictability, results from our adap-
tive ray tracing algorithm. Two of our other techniques enhance both. We avoid large
variations in the ray tree of refractive objects from one pixel to the next by substituting two ray
paths. We also substitute a fixed set of simple shells for arbitrarily complex environmental
geometry.

One area of future work is to study the effect of hybrid rendering on compression of parameter-
ized image spaces. We expect that PEMs should better capture the coherence in image spaces
compared with parameterized texture maps that are statically mapped on objects [7]. Another
possible application of this work is in speeding up the rendering of realistic animations. Hybrid
rendering could be used to interpolate between ray traced key frames at which view-dependent
layered environment maps are inferred.

References
[1] BASTOS, R., HOFF, K., WYNN, W., AND LASTRA, A. Increased Photorealism for Interactive

Architectural Walkthroughs. Interactive 3D Graphics 1999, pp.183-190.

[2] BLINN, J. F., NEWELL, M. E. Texture and Reflection in Computer Generated Images.
Comm. ACM, 19(10), Oct. 1976, pp.542-547.



[3] CABRAL, B., OLANO, M., AND NEMEC, P. Reflection Space Image Based Rendering. SIG-
GRAPH 99, pp.165-170.

[4] CHUANG, Y., ZONGKER, D., HINDORFF, J., CURLESS, B., SALESIN, D., AND SZELISKI, R.,
Environment Matting Extensions: Towards Higher Accuracy and Real-Time Capture, SIG-
GRAPH 2000, pp.121-130.

[5] DIEFENBACH, P. J. Pipeline Rendering: Interaction and Realism through Hardware-based
Multi-Pass Rendering. PhD thesis, University of Pennsylvania, June 1996.

[6] GORTLER, S., GRZESZCZUK, R., SZELISKI, R., AND COHEN, M. The Lumigraph. SIG-
GRAPH 96, pp.43-54.

[7] HAKURA, Z., LENGYEL, J., AND SNYDER, J. Parameterized Animation Compression. Euro-
graphics Rendering Workshop 2000, pp.101-112.

[8] HAKURA, Z., SNYDER, J, AND LENGYEL, J. Parameterized Environment Maps. Interactive
3D Symposium 2001, March 2001, pp. 203-208.

[9] HECHT, E., Optics, Second Edition, Addison-Wesley, 1987.

[10] HEIDRICH, W., LENSCH, H., COHEN, M. F., AND SEIDEL, H. Light Field Techniques for
Reflections and Refractions. Eurographics Rendering Workshop 1999, pp.195-375.

[11] HEIDRICH, W., SEIDEL, H. REALISTIC, Hardware-Accelerated Shading and Lighting. SIG-
GRAPH 99, pp.171-178.

[12] KAY, D., AND GREENBERG, D., Transparency for Computer Synthesized Images, Siggraph
1979.

[13] KAJIYA, J., The Rendering Equation, SIGGRAPH ’86, Aug. 1986, pp.143-150.

[14] LEVOY, M., HANRAHAN, P. Light Field Rendering. SIGGRAPH 96, pp.31-41.

[15] LINDE, Y., BUZO, A., AND GRAY, R. M., An algorithm for Vector Quantizer Design, IEEE
Transactions on Communication COM-28, 1980, pp. 84-95.

[16] LISCHINSKI, D., RAPPOPORT, A., Image-Based Rendering for Non-Diffuse Synthetic
Scenes. Eurographics Rendering Workshop 1998, pp.301-314.

[17] MICROSOFT DIRECTX8.0, http://www.microsoft.com/directx/.

[18] MICROSOFT XBOX, http://www.xbox.com/xbox/flash/specs.asp.

[19] MILLER, G., RUBIN, S., AND PONCELEON, D. Lazy Decompression of Surface Light Fields
for Precomputed Global Illumination. Eurographics Rendering Workshop 1998, pp.281-
292.

[20] OFEK, E., RAPPOPORT, A. Interactive Reflections on Curved Objects. SIGGRAPH 98,
pp.333-341.

[21] PHARR, M., KOLB, C., GERSHBEIN, R., AND HANRAHAN, P., Rendering Complex Scenes
with Memory-Coherence Ray Tracing, SIGGRAPH 97, pp.101-108.

[22] WHITTED, T. An Improved Illumination Model for Shaded Display. Communications of
the ACM, 23(6), June 1980, pp.343-349.

[23] WOOD, D. N., AZUMA, D. I., ALDINGER, K. ET AL. Surface Light Fields for 3D Photogra-
phy. SIGGRAPH 2000, pp.287-296.

[24] ZONGKER, D., WERNER, D., CURLESS, B., AND SALESIN, D., Environment Matting and
Composition, SIGGRAPH 99, pp.205-214.



L1

(cup)

L2

(cols)

L3

(walls)

Layer Reflection term bR Refraction term bT Inferred EM x from both terms

Figure 7: Layered EMs inferred at a viewpoint sample for a glass teapot (three layers). A quadrilateral
was used for the L1 layer, a cylindrical shell for L2, and a spherical shell for L3. Shells are parameterized
by a six-faced cube map. Entire MIPMAPs are inferred; only the finest level is shown.

(a) between viewpoint samples (in plane)

(b) above viewpoint samples

Ray Traced Hybrid (multi-layer) Hybrid (single layer)

Figure 8: Hybrid rendering results. The right two columns were generated by a PC graphics card.



Hybrid Slower, t = 3 (19s/frame) Hybrid Faster, t = 5 (10s/frame)

Figure 10: Quality Comparison.

Ray Traced (480s/frame)

(a) with prevention

(b) without prevention

Figure 9: EM Disocclusion

(a) full ray tree (b) two-term greedy ray path

Figure 2: Shading Models. The full ray tree (a) requires
5 times more ray queries than our greedy ray path model
(b).


