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Abstract. We present a new technique for exactly computing glossy reflections
and transmissions of polygonal Lambertian luminaires with linearly-varying ra-
diant exitance. To derive the underlying closed-form expressions, we introduce
a rational generalization of irradiance tensors and an associated recurrence re-
lation. The generalized tensors allow us to integrate a useful class of rational
polynomials over regions of the sphere; this class of rational polynomials can
simultaneously account for the linear variation of radiant exitance across a pla-
nar luminaire and simple forms of non-Lambertian scattering. Applications in-
clude the computation of irradiance at a point, view-dependent reflections from
glossy surfaces, and transmissions through glossy surfaces, where the scattering
is limited to Phong distributions and the incident illumination is due to linearly-
varying luminaires. In polyhedral environments, the resulting expressions can
be exactly evaluated in quadratic time (in the Phong exponent) using dynamic
programming or efficiently approximated in linear time using standard numerical
quadrature. To illustrate the use of generalized irradiance tensors, we present a
greatly simplified derivation of a previously published closed-form expression for
the irradiance due to linearly-varying luminaires, and simulate Phong-like scat-
tering effects from such emitters. The validity of our algorithm is demonstrated
by comparison with Monte Carlo.

Keywords: Irradiance Tensors, Illumination, Glossy Reflection, Glossy Trans-
mission.

1 Introduction

Deterministic rendering algorithms are often quite limited in the optical effects they
simulate; for the most part they are limited to diffuse and pure specular effects. A com-
mon assumption is that of a uniform luminaire with constant radiance in all directions
and positions, for which a wide assortment of closed-form expressions exist for com-
puting the radiative exchange [10, 3, 15, 17] and some Phong-like scattering effects [2].
Unfortunately, these formulas rarely apply to non-uniform luminaires, especially inho-
mogeneous (or spatially-varying) luminaires, that is, area light sources whose radiant
exitance varies as a function of position. This limitation stems from the difficulty of
computing the integrals associated with spatially-varying luminaires. Unlike uniform
luminaires, they generally cannot be expressed as a polynomial integrated over regions
of the sphere.

Spatially-varying luminaires constitute an important class of light sources with im-
mediate applications to higher-order finite element methods for global illumination,
both for direct lighting [9] and final gathers from coarse global solutions [13]. Few
methods exist for handling this type of luminaire aside from Monte Carlo integration.
DiLaura [8] and the authors [6] have addressed the problem of computing the irradiance
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at a point from spatially-varying luminaires with polynomially-varying radiant exitance.
Both employed Stokes’ theorem to convert the required surface integral to a boundary
integral, and the latter approach leads to a closed-form solution for the irradiance due
to a polygonal linearly-varying luminaire. As a continuation of our previous work [6],
the contributions of this paper are as follows:

� A simpler derivation of the closed-form solution for the irradiance at a point due
to a linearly-varying luminaire, using generalized irradiance tensors.

� The derivation of expressions for higher-order moments based on a class of ra-
tional polynomials over the sphere.

� An algorithm to evaluate these higher-order moments for simulating non-Lambertian
scattering effects involving linearly-varying luminaires and non-diffuse surfaces,
such as view-dependent glossy reflection and transmission.

Our approach generalizes irradiance tensors [2] to account for linearly-varying ra-
diant exitance over the emitter. These new tensors are comprised of simple rational
polynomials integrated over regions of the sphere. In particular, we address a limited
subclass of rational polynomials corresponding to Phong distributions [12], which are
shown to be well suited to simulate non-Lambertian phenomena involving linearly-
varying luminaires. Using a recurrence formula derived for these generalized irradi-
ance tensors, we demonstrate the exact integration of this subclass of rational polyno-
mials in the case of polygonal emitters, and present a semi-analytical algorithm for their
efficient computation. A similar approach using a tensor representation was previously
used in analytically computing glossy reflection and transmission from uniform lumi-
naires and the illumination from directional luminaires [2]. Our tensor generalization
extends this previous method to handle linearly-varying luminaires as well, as shown in
Figures 2a and 2b.

The remainder of the paper is organized as follows. Section 2 formulates the com-
putation of some lighting effects involving linearly-varying luminaires and motivates
our generalization of irradiance tensors in Section 3, which satisfies a recursive for-
mula proved in Section 3.1. Based on this recurrence, we derive expressions for a
simple class of rational polynomials in Section 3.2, which have immediate applications
to several non-Lambertian simulations. We then discuss the exact evaluation of these
expressions for polygonal emitters in Section 3.3. Finally, a semi-analytical algorithm
is presented for their efficient computation in Section 3.4 and then used for image syn-
thesis in Section 4.

2 Linearly-Varying Luminaires

In this section we examine the integrals arising in three non-Lambertian simulations
involving linearly-varying luminaires; this will motivate our generalization of irradiance
tensors.

Let f(q; u) denote the radiance function defined at all points q 2 IR3 and all direc-
tions u 2 S2, the set of all unit vectors in IR3. For fixed q, this function simplifies to
a radiance distribution f(u) at q. By default we assume that the point q we are inter-
ested in is at the origin. The goal of this paper is to characterize the radiance distribution
function f(u) due to a linearly-varying luminaire and to simulate various direct lighting
and scattering effects from this type of emitter.

We begin with a brief recap of the formulation described in our previous work [6].
Suppose �(x) is the radiant exitance of a luminaire at the point x. The linearly-varying
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Fig. 1. (a) The radiance distribution function f(u) at o due to a planar figure P with linearly
varying radiant exitance is expressed as a simple rational polynomial over its spherical projection
�(P ) = A. The radiant exitance variation is uniquely determined by any three non-collinear
points p
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on the luminaire plane. (b) Given a glossy surface with a simple BRDF

defined in terms of a Phong exponent around the mirror reflection v, the reflected radiance along
the view direction u0 at o due to a linearly-varying luminaire P can be formulated as a simple
rational polynomial integrated over regions of the sphere, that is, �(P ).

luminaires considered here are a class of planar emitters (not containing the origin) for
which the function �, mapping points on the plane to IR, is linear. Given any three non-
collinear points p1, p2 and p3 on the luminaire with their associated radiant exitance
values w1, w2 and w3, the function � can be expressed as

�(x) = [w1 w2 w3] [p1 p2 p3]
�1 x; (1)

where [p1 p2 p3]
�1 x is the barycentric coordinate vector of x with respect to p 1, p2

and p3. Let h be the distance from the origin to the plane containing the luminaire and
w denote the unit vector orthogonal to the plane, as shown in Figure 1a. We notice that
the position vector x is related to its unit direction u from the origin by x = h u=hw; ui,
where h�; �i denotes the standard inner product. Consequently, the radiance distribu-
tion function f(u) at the origin due to this Lambertian luminaire can be obtained by
expressing x in equation (1) in terms of u, yielding

f(u) =
�(x)
�

=
1

�

ha; ui
hw; ui

; (2)

which is defined over the spherical projection of the luminaire at the origin, where the
constant vector a = h [w1 w2 w3] [p1 p2 p3]

�1 encodes the linear variation.
Most emission and scattering effects involving linearly-varying luminaires can be

formulated as weighted integrals of f(u) given in (2) over spherical regions, which lead
naturally to our tensor notion to be developed in Section 3.1. Let �(P ) be the projection
of a linearly-varying luminaire P onto the unit sphere about the origin, let b denote the
receiver normal, and let � measure the area on the sphere. We examine three different
problems that each results in an integral with a rational integrand:

� The irradiance at the origin due to P is defined by

� =

Z
�(P )

f(u) hb; ui d�(u) =
1

�

Z
�(P )

ha; ui hb; ui
hw; ui

d�(u): (3)



� Given a glossy surface with a simple BRDF defined in terms of a Phong exponent
by �(u0 ! u) � c [�uT(I� 2bbT)u0]n for two directions u and u0 shown in
Figure 1b, the reflected radiance at a point on this surface along a view direction
u0 due to P is given by

f(u0) =
Z
�(P )

�(u! u0)f(u) hb; ui d�(u) =
c

�

Z
�(P )

hv; uin ha; ui hb; ui
hw; ui

d�(u); (4)

where �(u! u0) = �(u0 ! u) due to reciprocity, and v = �(I� 2bbT)u0 and n
is the Phong exponent.

� By interpreting � above as a bidirectional transmission distribution function (BTDF)
for a glossy surface, the transmitted radiance through this surface along a view
direction u0 due to P is represented by the same integral in (4), with v replaced
by �u0.

Note that the integrands in equations (3) and (4) are simple rational polynomials over
the sphere. Simulating these non-Lambertian effects entails the computation of this
type of integral.

3 Generalizing Irradiance Tensors

In this section we shall present new mathematical and computational tools for integrat-
ing some simple rational polynomials over regions of the sphere, which are required for
the non-Lambertian simulations mentioned in the previous section.

3.1 Irradiance Tensors of Linearly-Varying Luminaires

As a natural generalization of the radiation pressure tensor, Arvo [2] introduced a ten-
sor analogy of irradiance given by

Tn(A) �

Z
A

u
 � � � 
 u d�(u); (5)

where A � S2 and the integrand is a n-fold tensor product. This tensor representation,
known as the irradiance tensor, provides a useful vehicle for integrating polynomial
functions over regions of the sphere. To concisely represent the rational polynomial in-
tegrals described in Section 2, we generalize the irradiance tensor shown in equation (5)
to accommodate a denominator hw; ui, resulting in a similar tensor form closely related
to linearly-varying luminaires, defined as

Tn;1(A;w) �

Z
A

u
 � � � 
 u
hw; ui

d�(u); (6)

where we restrict w to be a unit vector such that hw; ui > 0 for any u 2 A, and the
orders of the numerator and the denominator are indicated respectively in the super-
script n; 1. The elements of these tensors consist of all rational polynomials of the form
xiyjzk= hw; ui integrated over A, where (x; y; z) 2 S 2 and i+ j + k = n.

Defined as surface integrals, the generalized irradiance tensors in equation (6) are
computed by reducing them to boundary integrals, which yield closed-form solutions
in polyhedral environments. Let n denote the outward-pointing normal of the boundary



curve @A. Using generalized Stokes’ theorem [16], we have shown (see the Appendix)
that Tn;1 satisfies the recurrence relation

Tn;1

Ij
(A;w) = wjTn�1

I
(A) +

1

n

�
Æjm � wjwm

� "n�1X
k=1

ÆmI
k

Tn�2;1

Ink
(A;w)

�

Z
@A

un�1
I

nm
hw; ui

ds

#
(7)

for n > 0, where Æij is the Kronecker delta. The irradiance tensor Tn�1 can be further
expanded by [2]

(n+ 1)Tn
Ij
(A) =

n�1X
k=1

ÆjI
k

Tn�2

Ink
(A) �

Z
@A

un�1
I

nj ds; (8)

with T�1(A) = 0 and T0(A) = �(A), which is the solid angle subtended by the
spherical region A. In equations (7) and (8), I is a (n � 1)-index (i 1; i2; : : : ; in�1),
where ik 2 f1; 2; 3g for 1 � k � n � 1. We define Ik as the kth subindex of I , Ink
to be the (n� 2)-index obtained by deleting the kth subindex, and Ij to be the n-index
obtained by appending j after I . Finally, the recurrence relation (7) is completed by the
base case

T0;1(A;w) =

Z
@A

ln hw; ui

1� hw; ui2
hw; ni ds; (9)

where the integrand is defined as 0 when hw; ui = 1. The proof of equation (9) is
supplied in the Appendix.

3.2 Rational Polynomials Integrated Over the Sphere

From equation (7) we may obtain expressions for a class of rational polynomials inte-
grated over the sphere. Although it is these individual scalar elements that are required
for image synthesis, the tensor formulation provides a powerful tool to represent a fam-
ily of rational polynomials by means of tensor composition. Given an arbitrary region
A � S2 and a sequence of axis vectors v1; v2; : : :, we define a family of rational poly-
nomials by

�p1;p2;:::;q(A; v1; v2; : : : ;w) �

Z
A

hv1; ui
p1
hv2; ui

p2
� � �

hw; uiq
d�(u) (10)

for non-negative integers p1; p2; : : : ; q. When q = 0, this definition subsumes ax-
ial moments ��n(A; v) and double-axis moments ���n;1(A; v1; v2) [2] as special cases,
which correspond respectively to � n;0(A; v) and �n;1;0(A; v1; v2). Similarly, by spe-
cializing equation (10) to a small number of axes for q = 1, we may define three
simple higher-order moments of Tn;1, namely, �n;1(A; v;w), �n;1;1(A; v1; v2;w), and
�n;1;1;1(A; v1; v2; v3;w). For simplicity, we shall only consider the case where one
factor in the numerator is raised to the power n, and all the others are of order 1. These
moments can be expressed as a tensor composition of Tn;1 with copies of v1, v2 or
v3. For example, �n;1(A; v;w) = Tn;1

I (A;w)(v 
 � � � 
 v)I . Here and throughout the



paper, the summation convention is employed, where repeated subscripts imply sum-
mation from 1 to 3, including multi-indices such as I [1, p.89]. We may derive the
following recurrence relations from equation (7):

�n;1(A; v;w) = hw; vi ��n�1(A; v) +
vT(I� wwT)

n
�"

(n� 1)�n�2;1(A; v;w) v�
Z
@A

n
hv; uin�1

hw; ui
ds

#
(11)

�n;1;1(A; v1; v2;w) = hw; v2i ��n(A; v1) +
v2T(I� wwT)

n+ 1
��

n �n�1;1(A; v1;w) v1 �
Z
@A

n
hv1; ui

n

hw; ui
ds

�
(12)

�n;1;1;1(A; v1; v2; v3;w) = hw; v3i ���
n;1(A; v1; v2) +

v3T(I� wwT)

n+ 2
��

n�n�1;1;1(A; v1; v2;w) v1 + �n;1(A; v1;w) v2�Z
@A

n
hv1; ui

n
hv2; ui

hw; ui
ds

�
(13)

In equation (11), we have � 0;1(A; v;w) = T0;1(A;w) and ��1;1(A; v;w) = 0; and
the double-axis moment ���n;1 in (13) can be expressed in terms of axial moments by�
n hv1; v2i ��n�1(A; v1)�

R
@A
hv1; ui

n
hv2; ni ds

�
=(n+ 2) [2].

3.3 Exact Evaluation

Equations (11), (12) and (13) reduce the surface integrals � n;1, �n;1;1 and �n;1;1;1 to
boundary integrals of rational polynomials, and sums of axial moments and � 0;1(=
T0;1). These moments can be integrated exactly whenever the resulting boundary inte-
grals, axial moments and the base case � 0;1 can be. In this section we shall describe how
these components can be evaluated in closed form when the region A � S 2 is restricted
to the spherical projection of a polygon P , which is a spherical polygon composed of
segments of great arcs.
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When A is a spherical polygon, the resulting bound-
ary integrals can be evaluated along each edge �, which
is greatly simplified due to the constant outward normal
n. We parameterize each edge � by u(�) = s cos � +
t sin �, where s and t are orthonormal vectors in the
plane containing the edge and the origin, with s point-
ing toward the first vertex of the edge, as illustrated on
the left. We shall define variables c and � with respect
to a vector v as:

c =

q
hv; si2 + hv; ti2; (cos�; sin�) =

�
hv; si
c

;
hv; ti
c

�
: (14)

Exact evaluation of � 0;1(A;w) (= T0;1(A;w)) given in equation (9) requires us to
integrate a scalar-valued function �(w; u) defined by

�(w; u) �
ln hw; ui

1� hw; ui2
(15)



along each edge �, which has been previously elaborated by the authors [6]. The solu-
tion is closed form except for one special function known as the Clausen integral [11].
As for the axial moment �� n about a unit vector v, Arvo [2] has shown that it reduces to
a one-dimensional integral by

n��n�1(A; v) = ��p�1 �

Z
@A

h
hv; uin�2 + hv; uin�4 + � � �+ hv; uip

i
hv; ni ds; (16)

where p = 0 when n is even, and p = 1 when n is odd, and �� �1(A) = 0 and
��0(A) = �(A), which can be computed either from Girard’s formula [4, 2] or a bound-
ary integral formula for �(A) [6, 5]. From the above edge parameterization, the com-
plete integral in equation (16) can be evaluated exactly in O(nk) time for a k-sided
polygon, by computing the function F (n; x; y) �

R y
x
cosn � d� incrementally accord-

ing to the following recurrence identity [2]:

F (n; x; y) =
1

n

�
cosn�1 y sin y � cosn�1 x sinx+ (n� 1)F (n� 2; x; y)

�
: (17)

Finally, the boundary integrals appearing in formulas (11), (12) and (13) require us to
compute two types of line integrals given by

Bn =

Z
�

hv1; ui
n

hw; ui
ds; and Bn;1 =

Z
�

hv1; ui
n
hv2; ui

hw; ui
ds;

which can be respectively evaluated using our edge parameterization as

Bn =
cn1
c

Z ���

��

(�1 cos � + �1 sin �)
n

cos �
d�; (18)

Bn;1 =
cn1 c2

c

Z ���

��

(�1 cos � + �1 sin �)
n(�2 cos � + �2 sin �)

cos �
d�: (19)

Here � is the arc length of �, and (c; �), (c1; �1), (c2; �2) are variables defined for
w; v1; v2 respectively using (14), and �1; �1; �2; �2 are given by

�i = cos(�i � �); �i = sin(�i � �) (i = 1; 2):

Expanding the numerator using the binomial theorem, we can express B n and Bn;1 in
equations (18) and (19) in terms of integrals of the form

G(r; s; x; y) �

Z y

x

sinr � coss � d� (20)

for integers r � 0 and s � �1, yielding

Bn =
cn1
c

nX
k=0

�
n

k

�
�n�k
1 �k1 G(k; n� k � 1; x; y); (21)

Bn;1 =
cn1 c2

c

nX
k=0

�
n

k

�
�n�k
1 �k1 [�2G(k; n� k; x; y) + �2G(k + 1; n� k � 1; x; y)] : (22)



The integral in (20) can be evaluated exactly in O(r + s) steps using the following
recurrence relations:

G(r; s; x; y) =
1

r + s

�
sinr+1 y coss�1 y � sinr+1 x coss�1 x+ (s� 1)G(r; s� 2; x; y)

�
;

G(r; s; x; y) =
1

r + s

�
sinr�1 x coss+1 x� sinr�1 y coss+1 y + (r � 1)G(r � 2; s; x; y)

�
;

where the base cases are

G(0;�1; x; y) = ln

�
tan (�=4 + y=2)

tan (�=4 + x=2)

�
; G(1; 0; x; y) = cosx� cos y;

G(1;�1; x; y) = ln

�
cosx

cos y

�
; G(0; 0; x; y) = y � x:

Therefore, it takes O(n2) time to exactly evaluate Bn or Bn;1 over one edge using
equation (21) or equation (22).

3.4 Algorithms for Efficient Evaluation

Assuming that the evaluation of � 0;1 using the Clausen integral takes constant time [6],
it then follows from the recurrence (11) that � n;1 for a k-sided polygon may be com-
puted exactly in O(n3k) time, since we have shown that �� n�1 and

R
@A

n hv; uin�1=hw; ui ds
can be evaluated in O(nk) and O(n2k) respectively, by means of equations (16) and
(21). However, we may reduce this complexity to O(n2k) by reorganizing the terms
obtained from the recurrence relation (11) and using dynamic programming [7, pp.301–
328] to reuse many shared sub-expressions.

Let d = vT(I� wwT)v and k = bn=2c, the recurrence formula (11) leads to

�n;1(A; v;w) = T1 +
1

n

h
hw; viT2 � vT(I� wwT)T3

i
: (23)

Defining q = 0 for even n and q = �1 for odd n, T1, T2 and T3 above are given by

T1 = dk�q

�
q + 1

n

��
n� 1

n� 2

��
n� 3

n� 4

�
� � �

�
q + 3

q + 2

�
�q;1; (24)

T2 = n��n�1(A; v) + d

�
n� 1

n� 2

�
(n� 2)��n�3(A; v) +

� � �+ dk�q�1

�
n� 1

n� 2

�
� � �

�
q + 3

q + 2

�
(q + 2)�� q+1(A; v); (25)

T3 =

Z
@A

n
hw; ui

�
hv; uin�1 + d

�
n� 1

n� 2

�
hv; uin�3+

� � �+ dk�q�1

�
n� 1

n� 2

��
n� 3

n� 4

�
� � �

�
q + 3

q + 2

�
hv; uiq+1

�
ds: (26)

When v is normalized, we may use equation (16) to express T 2 as

T2 =

�
1 + d

�
n� 1

n� 2

�
+ � � �+ dk�q�1

�
n� 1

n� 2

�
� � �

�
q + 3

q + 2

��
��p�1 �



kX
i=1

[hv; niS(n� 2; c; d;��;�� �)] ; (27)

where n, � and c, � given in (14) all depend on the edge � i (1 � i � k), and p is
defined as in (16). Here S(n� 2; c; d; x; y) is a sum of the integrals F =

R y
x
cosn � d�

of different exponents, given by

cn�2F (n� 2; x; y) +

�
1 + d

�
n� 1

n� 2

��
cn�4F (n� 4; x; y) + � � �

+

�
1 + d

�
n� 1

n� 2

�
+ � � �+ dk�1

�
n� 1

n� 2

�
� � �

�
p+ 3

p+ 2

��
cpF (p; x; y); (28)

which can be computed incrementally in linear time using the identity (17). To compute
the weighted sum of integrals Bn with n ranging from q+1 to n�1 required for T3 us-
ing (21), we may precompute and cache n2 values ofG(r; s; x; y) for 0 � r � n�1 and
�1 � s � n�2. This common technique known as dynamic programming reduces the
cubic complexity for the exact evaluation of T3 down to quadratic. Consequently, � n;1

may be evaluated analytically using equation (23) in O(n 2k) time for a k-sided poly-
gon. From recursive formulas (12) and (13), we may also compute � n;1;1 and �n;1;1;1

exactly in quadratic time, where a great deal of redundant computations involving the
functions F and G may be avoided by allowing the routines for � n;1 to return some
additional higher-order terms in the series of T2 and T3. Furthermore, observing the
common coefficients 1; n�1

n�2
; (n�1)(n�3)

(n�2)(n�4)
; : : : occurring in equations (24), (25) and

(26), another optimization is to cache this series of values before evaluating T 1; T2; T3.
All these optimizations significantly reduce the constant related to the quadratic com-
plexity. The complete pseudo-code and details for computing � n;1 and �n;1;1, �n;1;1;1

for a polygon are available as a technical report [5].
Another option for speeding up the computation is to approximate T 3 using numer-

ical quadrature; this is particularly effective as T3 has the highest computational cost,
yet is typically very small in magnitude compared to T1 and T2. In terms of accuracy,
this approach is preferable to approximating the original integral using two-dimensional
quadrature, as one-dimensional quadrature rules are more robust and more amenable to
higher-order methods. By computing the powers of hv; ui in equation (26) incremen-
tally through repeated multiplication for each sampled u, the complete integral (26) can
be evaluated within O(ln) time for each edge, where l is the number of samples used
in the quadrature rule. For fixed l, this semi-analytical algorithm allows us to compute
�n;1 of a k-sided polygon in linear time. We have used this approach in combination
with the extended trapezoidal rule to generate the images shown in Section 4.

4 Non-Lambertian Effects from Linearly-Varying Luminaires

Generalized irradiance tensors Tn;1 and those moments expressed as a class of rational
polynomials integrated over the sphere are well suited to the computation of emission
and scattering features due to linearly-varying luminaires, especially for polygonal en-
vironments with Phong-like reflection (or transmission) distributions. Therefore, the
expressions and procedures given in previous sections may be applied to the simulation
of illumination, glossy reflection and glossy transmission involving linearly-varying lu-
minaires, which will be described next.



4.1 Irradiance due to a Linearly-Varying Luminaire

Generalized irradiance tensors provide a more elegant means of deriving the closed-
form solution for the irradiance due to a linearly-varying luminaire reported previously
by the authors [6]. Our previous approach, which was based on Taylor expansion and a
formula derived for triple-axis moments, is quite tedious.

According to definitions (10) and (6), we express the irradiance integral (3) as

� =
1

�
�1;1;1(A; a; b;w) =

1

�
T2;1

ij
(A;w) aibj : (29)

Using equations (7), (8) and (9), T2;1 reduces to a boundary integral as follows:
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where � is given by equation (15). Combining equations (29) and (30), we arrive at the
general boundary integral for the irradiance at the origin [6]
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Z
@A
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where the 3-tensor M, which depends on w and u, is defined as

Mijk(w; u) = Æikwj +
�
Æjm � wjwm

��Ækmui
hw; ui

� Æimwk �

�
:

As we have demonstrated earlier [6], the integral (31) leads to a closed-form solution
involving a single special function known as the Clausen integral for polygonal emitters.

4.2 Phong-like Glossy Reflection and Transmission

As mentioned in Section 2, the reflected radiance along the view direction u 0 on a
glossy surface with Phong-like BRDF due to a linearly-varying luminaire can be for-
mulated as a surface integral shown in equation (4), which is equivalent to f(u 0) =
c �n;1;1;1(A; v; b; a;w)=�, with n as the Phong exponent. Thus the procedures de-
scribed in Section 3.4 can be implemented inside a ray tracer to simulate such glossy
reflection effects. For a scene consisting of a linearly-varying luminaire P and a glossy
surface Q, each pixel color is determined by the pseudo-code GlossyReflection, where
f and n are the reflectivity and Phong exponent of Q, and Q c; Pc; Bc denote the colors
for Q, P , and the background, respectively. The technique is demonstrated in the top
row of Figure 3 using a variety of exponents to simulate surfaces with varying finishes.
In order to efficiently handle two color variations superimposed on the luminaire shown
in Figure 3, we separate the vector a encoding the linear variation from equation (13)
and rewrite �n;1;1;1 as an inner product of a and a vector-valued function t(A; v; b;w)
given by

t(A; v; b;w) = w���n;1(A; v; b) +
I� wwT

n+ 2

h
n�n�1;1;1(A; v; b;w) v+
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Z
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n
hv; uin hb; ui
hw; ui

ds

�
; (32)



GlossyReflection( Eye, Q, f , n, P , Qc, Pc, Bc )

for each pixel � do
Ray R ray cast from Eye to �
q the first intersection point of the ray R
if q is on the luminaire P

PixelColor  Pc

else if q is on the glossy surface Q
b surface normal at q
u0  direction of R
v (I� 2bbT)u0

w unit vector from q orthogonal to P
a vector encoding the linear variation of P
A spherical projection of P at q
s �n;1;1;1(A; v; b; a;w) (See Section 3.4)
PixelColor  f � [s � Pc + (1� s) �Bc] + (1� f) �Qc

else
PixelColor  Bc

endif
endfor

which amortizes the computation cost for more than one color variations. In Figure 2,
our analytical glossy reflection is compared with a Monte Carlo solution based on 64
samples per pixel, where the samples are stratified and distributed according to the
Phong lobe (this is a form of importance sampling). The analytical solution closely
matches the Monte Carlo estimate but with the advantage of eliminating statistical
noise; in this example it is even slightly faster than Monte Carlo method.

Nearly the same strategy can be used to compute glossy transmission of linearly-
varying luminaires by choosing v in equation (32) as the reversed view direction �u 0,
which is now located on the other side of the transparent material. The bottom row of
Figure 3 shows three images depicting a frosted glass fish tank, with different finishes
specified by different Phong exponents.

The performance of our analytical approach is determined by such factors as the
image resolution, the Phong exponent, and the luminaire complexity. All timings shown
in Figure 2 and Figure 3 were done using a SGI Onyx2 with a 300 MHZ MIPS R12000
processor, and an image resolution of 200� 200.

5 Conclusions

We have presented a number of new closed-form expressions for computing the illu-
mination from luminaires with linearly-varying radiant exitance as well as glossy re-
flections and transmissions of such luminaires. These expressions are derived using a
simple rational generalization of irradiance tensors, and can be evaluated analytically
in O(n2k) time for a k-sided polygonal luminaire using dynamic programming, where
n is related to the glossiness of the surface. The exact solution depends on a single
well-behaved special function known as the Clausen integral. We have also presented
a semi-analytical algorithm for evaluating these expressions efficiently for the purpose
of simulating glossy reflection and glossy transmission of linearly-varying luminaires.
A similar approach is possible for general polynomials [5], although the recurrence
formulas have not yet yielded a computationally tractable evaluation strategy.
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Appendix: Proofs of Equation (7) and Equation (9)

The proof of equation (7) parallels that of equation (8) shown by Arvo [1, pp. 84–87].
It is done by applying Stokes’ Theorem to change the boundary integral on the right to
a surface integral, which can be accomplished in four steps:

Step 1: Let r = jj r jj. Notice that n ds = r � dr=r2 and u = r=r, we may rewrite
the boundary integral on the right hand side in terms of the position vector r and its
derivatives:Z
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I
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hw; ui
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Z
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where "ijk is the permutation symbol [1, pp.69–70] and B is a (n+ 1)-order tensor B
given by
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"mplr
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I
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:

Step 2: To convert the boundary integral in equation (33) into a surface integral using
Stokes’ theorem, we must compute the partial derivative of B Iml with respect to rs,
denoted by BIml;s. It follows from the chain rule that
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Thus, we haveZ
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The transformation above follows from anti-commutativity of the wedge product [14][1,
p. 68] and the tensor identity "qsl"qht = ÆshÆtl � ÆstÆlh.



Step 3: Applying the above identity to the two terms in equation (34), we get
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Consequently, equation (34) simplifies to
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Step 4: Multiplying equation (35) by (Æjm � wjwm)=n and representing the surface
integral in terms of solid angle d�(u) � �"qstrq drs ^ drt=2r

3 [16, p. 131], we attain
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which verifies equation (7).
The steps to prove equation (9) are almost identical to those used in the proof of

equation (7) described above, so we only show the difference here. Corresponding to
equations (33) and (34), we haveZ
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where the vector B is given by
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and its derivative with respect to rm is computed from the chain rule by
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After simplification, we attain
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Equation (9) then follows easily by representing the right hand side of equation (36) in
terms of solid angle d�(u), as shown in the previous derivation.
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(a) (b) (c) (2.1m) (d) (2.5m)

Fig. 2. A simple test scene of analytical glossy reflection involving a glossy surface with a Phong
exponent of 200 and an E-shaped luminaire whose radiant exitance is uniform (a) and linearly-
varying with respect to position (b). The closeup images of the reflection on the floor were com-
puted analytically (c) and by Monte Carlo method with approximately the same amount of time,
using stratified and importance sampling and 64 samples per pixel (d).

8.3m 9.6m 21m

11.5m 12.1m 15.4m

Fig. 3. (Top) Glossy reflection of a stained glass window with linearly-varying colors, where the
Phong exponents are 15, 50 and 300 from left to right. (Bottom) Glossy transmission through a
frosted glass fish tank, where the tropical fish and the seaweed are superimposed with linearly-
varying colors. From left to right, the Phong exponents are 5, 15, and 65, respectively. Refraction
is not considered here. The numbers beneath each image indicate the computation time in min-
utes.


