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Abstract
We present a simple method for relighting real objects viewed from a fixed camera position. Instead of setting up
a calibrated measurement device, such as a light stage, we manually sweep a spotlight over the walls of a white
room, illuminating the object indirectly. In contrast to previous methods, we use arbitrary and unknown angular
distributions of incoming light. Neither the incident light nor the reflectance function need to be represented
explicitly in our approach.
The new method relies on images of a probe object, for instance a black snooker ball, placed near the target object.
Pictures of the probe in a novel illumination are decomposed into a linear combination of measured images of the
probe. Then, a linear combination of images of the target object with the same coefficients produces a synthetic
image with the new illumination. We use a simple Bayesian approach to find the most plausible output image,
given the picture of the probe and the statistics observed in the dataset of samples.
Our results for a variety of novel illuminations, including synthetic lighting by relatively narrow light sources
as well as natural illuminations, demonstrate that the new technique is a useful, low cost alternative to existing
techniques for a broad range of objects and materials.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and RealismI.4.1 [Image Processing and Computer Vision]: Digitization and Image Capture

1. Introduction

Example-based relighting of real objects or scenes for novel
illuminations that were captured in natural environments has
proven to be a powerful approach in computer graphics,
producing a broad range of impressive results [ZWCS99,
DHT∗00,HWT∗04,TSE∗04,MDA02,MLP04,NN04]. Com-
plex effects such as subsurface scattering, interreflection,
shadowing and refraction are captured automatically by
these techniques.
Most of these methods explicitly estimate the reflectance
function at each visible point of the object or scene. This
may be achieved by calibrated point light sources, such as a
light stage [DHT∗00, KBMK01, HWT∗04], where the setup
of the lights provides full control of the direction of inci-
dent illumination, or by methods that recover the light di-
rection of a point light that is located in various positions in
the room [MDA02]. A light stage can also be used to dis-
play light patterns, such as point-sampled spherical harmon-
ics [GTW∗04], for rapid capturing of moving objects.
An alternative setup is to display controlled light patterns
behind the scene [PD03, MLP04], as it is known from envi-
ronment matting [ZWCS99], or multiple binary point lights
that are demultiplexed into single-light responses [SNB03].

† e-mail:{mfuchs|blanz|hpseidel}@mpi-sb.mpg.de

For uncontrolled, natural lighting during measurements, Ma-
tusik et al. [MLP04] proposed a method that iteratively fits
a reflectance function to the measured data, optimizing each
point of the scene independently by quadratic programming
and a decomposition of the reflectance into rectangular ker-
nels, given the angular distribution of incident distant light
in each sample image. This incident light is known explic-
itly either from the illumination setup (a monitor), or from
images of a metallic sphere. This method has been used for
relighting a city view, based on images recorded over three
days.
For relighting, most authors capture novel, natural illumi-
nations with mirror spheres used as light probes. The large
variation of radiances observed on the spheres is often cap-
tured by high dynamic range (HDR) imaging. From the im-
age of the sphere, the angular distribution of the incident
distant light can be recovered. Rendering the new scene ex-
ploits the principle of superposition of light in an elegant
way [DHT∗00]: if the process of capturing images is approx-
imately linear, an image of an object illuminated by an envi-
ronment can be decomposed into a weighted sum of images
from pre-recorded illuminations. Specifically, if the sample
images are recorded with directional light, the weights for
the final image are obtained from the overall novel radiance
in the neighborhood of each sampled direction.
Linear superposition of light has also been used in light-
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Figure 1: Four relighting examples (top row) as linear combination of 272 images, the coefficients being defined by novel
images of a probe object (bottom, left image of each pair) which are reconstructed with the sampled probe images (right).
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Figure 2: Relit scene in novel illumination as linear combination of n = 272 previously recorded images (top row). The coeffi-
cients λ j are found by reproducing an image of a probe object (bottom row), using a maximum-a-posteriori estimate.

ing design algorithms that rerender virtual scenes [NJS∗94,
DKN∗95] or relight natural objects [ADW04a, ADW04b]
by combining a set of basis images. In image-based light-
ing design, the user paints portions of the target image in
the desired color, and quadratic programming or simulated
annealing algorithms compute the lighting setup that repro-
duces the desired appearance, which can be used to de-
termine the settings for lighting the real object artistically
[ADW04a, ADW04b].
Our novel approach exploits the linear nature of light even
more by treating the reflectance function and the angular dis-
tribution of incident (distant) light only implicitly, and by
transferring the linear coefficients between images of a probe
object, which defines a novel illumination to be used for re-
lighting, and images of the target object that will be relighted
(Figure 2). The system uses a database of images both of the
probe and target, taken in a variety of sample illuminations.
Whatever the incident light maps in the sample images were,
the principle of superposition implies that a linear combina-
tion of these sample light maps produces an image that is a
linear combination of sample images with the same coeffi-
cients. As a consequence, images of different objects placed
in the same environment can be decomposed into linear com-
binations with the same coefficients. Our algorithm decom-
poses a given image of the probe in a novel illumination
into a linear combination of images from arbitrary, unknown
sample illuminations. Then, we transfer the coefficients to

the target object, and obtain a linear combination predicting
the appearance of the target in the novel illumination.
In a Bayesian approach, our algorithm takes into account
the statistical properties of the sample data in order to find
the most plausible image of the target object (maximum-
a-posteriori estimate), given the image of the probe object
in a novel illumination. This statistical criterion avoids ar-
tifacts that would occur in a direct reconstruction, for ex-
ample due to noise. Specifically, we form a tradeoff be-
tween reproducing the probe image as faithfully as possi-
ble, and maximizing the prior probability of the illumina-
tion that might have given rise to this image, based on the
distribution learned from examples. This distribution can be
estimated even without explicitly knowing the incident light
maps L(ω) by restricting ourselves to the linear span of sam-
ple light maps, and performing a principal component analy-
sis on the probe images rather than the unknown light maps.

2. Implicit Relighting

For a fixed viewpoint and a non-local incident light dis-
tribution L(ω), with ω denoting an incident light direction
ω = (θ,φ), the radiance observed in a point x of an image is

I(x) =
Z

Ω
L(ω) ·R(x,ω)dω (1)

where R(x,ω) is the reflectance field [DHT∗00]. R subsumes
effects such as shadowing, foreshortening of incident light
due to the unknown surface normal, interreflections among
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surface elements, and subsurface scattering. The red, green
and blue color channels are treated separately throughout
this paper, and the indices for color channels are suppressed.
In the classic light stage approach, R is sampled by direc-
tional light Li(θ,φ) = δ(θ−θi) · δ(φ−φi) from discrete di-
rections θi, φi, expressed in terms of the Dirac delta function
δ(). According to Equation (1), the images are then direct
measurements of R: Ii(x) = R(x,θi,φi).
In contrast, our approach uses arbitrary, unknown incident
light distribution Li(ω), i = 1, ...,n for sampling. The goal
of our measurement is to sample a basis of the most relevant
subspace of the vector space of functions L for subsequent
relighting of natural objects. Due to the principle of super-
position, linear combinations

L(ω) =
n

∑
i=1

λi ·Li(ω) (2)

are physically valid incident light distributions for all λi ≥ 0.
Negative coefficients may still result in positive L(ω) if some
Li are overlapping distributions, as we discuss in Section 4.
These linear combinations produce new images

I(x) =
Z

Ω

(

n

∑
i=1

λi ·Li(ω)

)

·R(x,ω)dω

=
n

∑
i=1

λi ·
Z

Ω
Li(ω) ·R(x,ω)dω =

n

∑
i=1

λi · Ii(x).

(3)

For relighting, the light stage technique uses weights λi that
are computed by integrating the incident radiance Lnovel
over neighborhoods of the sampled directions [DHT∗00,
MDA02].
We propose a novel technique that uses Equation (3) first for
estimating λi from an image of the probe object in the novel
illumination, and then applies (3) again to relight the target
object for the new image I (Figure 2). More specifically, let
the image S of the probe object be

S(x) =
n

∑
i=1

λi ·Si(x) =
n

∑
i=1

λi ·
Z

Ω
Li,probe(ω) ·Rprobe(x,ω)dω

=
Z

Ω
Lprobe(ω) ·Rprobe(x,ω)dω

(4)

with sample images Si of the probe. Lprobe and Rprobe de-
note the incident light distribution and reflectance field of the
probe object, while the variables I, L and R refer to the im-
ages, light distribution and reflectance field of the target ob-
ject. We now assume that the incident light map L and Lprobe
for the target and probe are equal throughout the process, or
at least that both are formed by the same linear combinations
of samples:

L =
n

∑
i=1

λi ·Li , Lprobe =
n

∑
i=1

λi ·Li,probe . (5)

Given an image S of the probe in a novel illumination, we
can then find the expansion (Equation 4) that is optimal in

the least squares sense, minimizing the total error over all
pixels (x,y)

E(λi,S) = ‖
n

∑
i=1

λi ·Si−S‖2 =∑
x,y

(

n

∑
i=1

λi ·Si(x,y)−S(x,y)

)2

(6)
and obtain the set of coefficients λi required for relight-
ing the target (Equation 3). The minimum of E(λi,S) can
be found by solving a simple linear system using standard
methods such as the pseudo-inverse matrix. In the follow-
ing section, we describe a more appropriate technique that
employs regularization.

3. Bayesian Relighting

Solving directly for the parameters λi by a pseudo-inverse
would produce overfitting artifacts, as shown in Figure 3
(where η = 0): first, the images of the probe object are noisy,
so the system would attempt to reproduce this noise. Second,
the samples do not span the full space of possible illumina-
tions, so a least-squares reconstruction of the novel illumina-
tion would involve extreme coefficients λi far from the con-
vex hull of examples. This implies that noise in the sample
images of the probe would be scaled with large factors λi of
opposite sign, causing amplified noise in the result.
Therefore, we take a maximum-a-posteriori approach (MAP,
see [DHS01]) to relighting: given an image Snovel of the
probe image in a novel illumination, we find the image I of
the target object that maximizes the conditional probability
p(I|Snovel) (posterior probability), based on an estimate of
the prior probability p of lighting conditions from the sample
set. We do not need to know the incident light map L(ω) ex-
plicitly, but only in terms of a linear combination of sample
illuminations. Based on the prior probability, a regulariza-
tion parameter controls how conservative our estimate will
be.
To estimate the prior, we perform a principal component
analysis (PCA) on the set of probe samples Si, i = 1...n:
let S = 1

n ∑i Si, and A be the matrix formed by the columns
(Si − S). PCA is based on a diagonalization of the covari-
ance matrix: C = 1

n AAT = U diag(σ2
i ) UT, where σi are the

standard deviations of the data along the orthogonal princi-
pal component vectors ui given by the columns of U. This
diagonalization is achieved by a Singular Value Decomposi-
tion [PTVF92]

A = UWVT (7)

with a diagonal matrix W = diag(wi), σi = 1√
n wi, and an

orthogonal matrix V. A probe image S can be written as a
linear combination of the principal components

S = ∑
i

ciui +S = Uc+S, (8)

where ci are the linear coefficients. The estimated normal
distribution of samples is, with a normalization factor νp,

p(c) = νpe
− 1

2 ∑i
c2
i

σ2
i (9)
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η = 0 η = 0.0001 η = 0.001 η = 0.01 η = 0.1 η = 0.3 η = 1 η = 100

Figure 3: Each row shows a predicted image with close-up on the test subject’s right eye. The parameter η is used for regu-
larization in the renderings. The highlight in the eye and the shadow distribution demonstrate the tradeoff between a detailed
lighting (low values of η) and low noise (high values η) in the rendering. For these renderings, n = 625 input images were used.

within the linear span of examples. Since the coefficients of a
linear combination of probe images Si also describe the com-
bination of light maps Li(ω), p also captures the estimated
probability density of light distributions within the span of
Li. With additive Gaussian pixel noise in the probe images
S, the likelihood of an incident light map L(ω) producing S
is

p(S|c) = νl ·∏
x,y

e
− 1

2σ2
N

(∑ ciui,x,y+Sx,y−Sx,y)
2

= νl ·e
− 1

2σ2
N
‖Uc+S−S‖2

,

(10)
with a standard deviation σN and a normalization factor νl .
The norm ‖.‖2 denotes the sum of squared pixel differences.

According to Bayes’ theorem, the posterior probability is

p(c|S) ∼ p(S|c) · p(c), (11)

which is maximized if a cost function given by the negative,
rescaled logarithm is minimized:

E(c,S) =
∥

∥Uc+S−S
∥

∥

2
+η∑

i

c2
i

σ2
i
, (12)

where η = σ2
N is a regularization parameter that can be

used to control how conservative the estimate is supposed
to be, which depends on the anticipated measurement noise
and the properties of the sampled illuminations, such as their
angular distribution and angular overlap. The more complete
and smooth the basis of samples, the smaller an η we may
choose without producing artifacts. Figure 3 illustrates the
effect of different values of η in our system.

E is minimal if ∂E
∂ci

= 0 for all i:

∂E
∂ci

= 2〈ui,∑
k

ckuk +S−S〉+2η ci

σ2
i

= 0, (13)

which is achieved for

c = diag

(

σ2
i

σ2
i +η

)

UT (S−S). (14)

The conservative best fit can be rewritten in terms of the orig-
inal basis, using VT V = id:

SMAP = Uc+S = AVW−1c+S = Ac̃+S (15)

where c̃ = V diag

(

1√
n
· σi

σ2
i +η

)

UT (S−S). (16)

Using the definition of S, we obtain

SMAP = ∑
i

λiSi , λi = c̃i +
1
n
(1−∑

k
c̃k). (17)

These coefficients λi also provide the maximum-a-posteriori
prediction for the target object image at a novel illumination:

IMAP = ∑
i

λiIi . (18)

4. Sampling and Relighting of Objects

For collecting images of the probe and target objects at
different illuminations, we use an inexpensive setup with
widely available equipment. Probe and target objects should
be relatively close together to make sure that they are illu-
minated in the same way in the sense of Equation (5). Probe
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Figure 4: Arbitrary probe object (left, 128× 128 pixels), sparse sampling: an arbitrary part of the scene can be used as a
probe object in the case of a fixed camera setup. The top row shows the reconstruction for sparse sampling (n = 250), the
bottom row ground truth. While the sparseness causes blurred highlights and shadows, the reconstruction does not produce
multiple blended shadow boundaries or comparable artifacts as point-based lighting sometimes does.

and target can be captured either in the same picture, as we
did, or in separate pictures taken with two cameras. We used
an Olympus C5050Z digital camera for still images at a res-
olution of 2576× 1925 pixels, an Imperx MDC 1004 video
camera at 1004× 1004 pixels for the data set shown in Fig-
ure 3, and an HDRC VGAx high dynamic range 640× 480
video camera, courtesy of IMS-CHIPS†, for the face data
set shown in the video. For all cameras, images were cap-
tured in raw format, and a linearization and Bayer recon-
struction were performed. The renderings in this paper are
subject to an sRGB non-linear transform, approximating a
gamma value of 2.2.
The illumination in our measurement was indirect light from
the white walls and ceiling of a seminar room in our lab
(Figure 5). Walking around the room, we illuminate differ-
ent parts of the room with a hand-held HMI light source
(Joker-Bug 800 by K5600). The method should work with
any bright light source, and as the illumination may change
during exposure, long exposures do not deteriorate the mea-
surements for static objects. We avoid to hit the objects or the
camera directly by using a reflector and pointing the light
away from the measurement setup. In the seminar room,
ceiling and walls were far enough to approximately satisfy
the assumption of distant light.
While our approach does not require calibrated illumination
with a known distribution L(ω), and neither ambient light
nor smaller objects or darker regions in the room affect the
measurements, there are two issues to take care of: first, the
incident light should cover as much of the sphere around
the objects as possible across different measurements. Re-
gions that were left out cannot be incident light directions

† http://www.ims-chips.de/

Figure 5: Measurement setup for the still camera: an Olym-
pus C5050Z digital camera records objects on a table which
are indirectly lit by a hand-held spotlight pointed at the white
walls, ceiling and floor. The probe object, a black snooker
ball, is mounted on the small tripod next to the table.

in relighting. Second, the illumination patches, which es-
sentially define the basis Li(ω) of light distributions, should
be overlapping and smooth: if the scene is illuminated by
point lights or by small patches of indirect light from the
walls, novel probe images with specular reflections between
those that were measured cannot be reconstructed, and the
new light directions will be missed altogether. Therefore, we
started off by illuminating large portions of the room from a
larger distance in overlapping patches, and then lit overlap-
ping sequences of smaller and smaller patches.

The probe object can be any object that is sensitive to illu-
mination changes, as Figure 4 demonstrates. For most mea-
surements, we chose to use a sphere, since the point-by-point
mapping between sampled images and images of the object
at novel illumination can be established easily due to sym-
metry, without fixing the object to the camera. For this map-
ping, which is needed to find the linear combination of sam-
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daylight, LDR capture artificial light, HDR capture

Figure 6: Reconstruction of two light situations (top row)
and ground truth images (bottom row) of a scene in simi-
lar arrangement. The left situation is captured in low dy-
namic range in daylight, the right situation is taken as multi-
exposure image in artificial illumination. While the pre-
dicted images approximate the lighting condition only with a
sparse set (n = 272) of input images, they match the overall
brightness and distribution of highlights and shadows.

ples that reproduces the novel probe image best, we select
the sphere by a bounding box in the images, and apply a
scale and translation operation, assuming orthographic pro-
jection of the sphere. We achieve good results scaling the
sphere to 64× 64 pixels, and masking the non-sphere parts
of the images.
In capturing incident light distributions, the dynamic range
of the camera is an important issue. Most authors record im-
ages of a metallic sphere with high-dynamic range imaging
to avoid saturated – and therefore underestimated – high-
lights on the sphere. In order to reduce the radiance at high-
lights, we prefer to use a black snooker ball, which re-
flects only a small portion of the incident light to the cam-
era [TSE∗04]: according to the Fresnel formulas, the specu-
lar reflectance of the non-metallic snooker ball is 1.0 at tan-
gent directions, and falls off rapidly to a value of 0.04 in the
center (at an index of refraction of n = 1.5). As a result, our
probe object produces relatively dim specular reflections that
are likely to be within the dynamic range of a digital cam-
era in images that, at the same time, capture the target scene
appropriately.

Our entire relighting process takes the following steps:

Training Step: Record a set of n images at different illumi-
nation with fixed cameras and static objects, define a bound-
ing box around the probe sphere in the first image, crop and
scale the probe in all images, perform a PCA on the probe
images and store the result.
Prediction Step: Given a photograph of the probe in a novel
illumination, we crop and scale the probe again from the im-
age, compute c, c̃ and λi (Equations 14,15,17) and form the
weighted sum of sampled images Ii (Equation 17).

The variation in overall brightness in our sample sets
turned out to be sufficient to cover the variations in novel
illuminations without rescaling.
Unlike most previous methods, our linear combinations may
involve negative coefficients λi: in the classical light stage
approach [DHT∗00] and most subsequent methods, linear

Figure 7: Results of relighting a test subject from n = 75
still images. Some artifacts arise because of movement (see
edges), but lighting remains realistic.

coefficients are positive, since they are weights proportional
to the incident radiance in the neighborhoods of discrete
light directions. Matusik et al. [MLP04] enforce constraints
on the model coefficients.
In our setting, negative coefficients arise from the overlap-
ping base functions. Still, they do not imply physically in-
valid results: consider an image with two lights A and B, and
one with A only. The difference image reproduces the situa-
tion with B only, and all resulting pixel values represent valid
positive radiances. However, negative color values may still
occur in our least-squares framework within the range of ap-
proximation errors. In a second iteration, we alleviate this
problem by fitting against an image consisting of the inverse
of negative result pixels on the probe (with a smaller value
for η), and adding the resulting coefficients to the previous
results.

5. Results

Figure 1, 2 and 8 show images of objects that were relighted
with our system, demonstrating the high spatial detail that
can be achieved with still camera measurements.
The training step for these images contained 272 sample
images, taken in about 30 minutes. The computation time
for the PCA on the probe pictures took about 20 seconds
per color channel on a PC with 3 GHz Intel Xeon Proces-
sor. Determining the coefficients λi for some target image
Starget takes less than 2 seconds, and reconstructing an im-
age takes between 1 (for 64× 64 images) and 16 seconds
(for 708× 560 pixels). These numbers are for the data set
from Figure 2, but are comparable to the others. The tim-
ings are performed after transferring the pictures from the
camera’s Compact Flash Card, and reconstructing the Bayer
pattern in each of the input images.
Figure 8 shows the wide range of material appearances
which are captured by our approach: cloth (napkin), pol-
ished metal (cutlery), glossy objects (orange, plate), trans-
parent objects (wine inside glass) and even near-field caus-
tics (jelly). All of these are plausibly relighted. For a ground
truth comparison, we reproduced lighting of two scenes, as
shown in Figure 6.

For live objects, such as human faces, the acquisition time
is an issue. Figure 7 demonstrates that from n = 75 sam-
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a

b

a

b

Figure 8: Various materials relighted, n = 272. The rows a show reproduced natural lighting (as in Figure 1, second column),
the rows b show synthetic lighting of a directional dominant light source in an otherwise totally dark room. The objects are
from four different data acquisitions: (i) dish, napkin and wine, (ii) jelly, (iii) spoon, sheep and juice, (iv) oranges.

ple illuminations, which were captured in about 8 minutes,
interesting effects of human skin structure can already be
captured. However, especially for the perceptually important
visual properties of human eyes, a setup where the eyes are
open is more appropriate; therefore, we also performed ex-
periments with two faster cameras. In one experiment, the
test subject (Figure 3) was recorded for 25 seconds with a
video camera, yielding 625 input images which allow us to
recreate even specular highlights in the eyes. In another ex-
periment (see supplemental video of a smiling person hold-
ing a toy animal), we used an HDR video camera yielding
1000 frames in a comparable time.
Even though the cameras gave us abundant image data in a
short period of time, we had to record for about 25 seconds to
sweep the light source’s cone over the wall manually, cover-
ing a sufficient set of light conditions. Residual movements
of the test subject who was recorded with the still camera
(Figure 7), which become visible as relief-like artifacts in
the supplementary video, are less prominent in the video ac-
quisition setup (Figure 3) due to shorter recording intervals.
In the background of the synthetic images, behind the tar-
get objects, our technique tends to produce ghost images that
show the experimenter and the spotlight, as the experimenter
becomes part of the distant incoming light environment. We
masked the background in the video, and cropped the images
to the object region in the Figures.

Although it is designed for relighting with natural illumina-
tions, our approach can also be used for synthetic relighting,
based on renderings of a snooker ball. For Figures 8 (row b),
3, and the rotating light source in the video, we rendered a
sphere with Phong BRDF and an additional Fresnel term for
a refractive index nrefract = 1.5. The Phong exponent gives
us an easy control of the distribution of incoming light; by
choosing a low exponent, an extended light source is simu-
lated. Synthetic images of the ball created with a ray-tracer
or global illumination techniques could be used as well.
For illumination design, as shown in Figure 1 (right), the
user draws patterns of incoming light with standard imag-
ing software into an image of the probe object, which is
then reconstructed by our Bayesian method for transferring
the lighting on the target. This is unlike previous methods
[ADW04a, ADW04b], where the lighting was designed in
the target image directly. For practical applications, both ap-
proaches are useful, but they address different design pur-
poses.

6. Conclusion

The contributions of our method are a new theoretical ap-
proach for relighting, and a low-cost system that requires no
light stage or other sophisticated setup or equipment. From
a maximum-a-posteriori approach, we have derived a sim-
ple mathematical formula which makes the relighting algo-
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(i) (ii) (iii) (iv)

Figure 9: Comparison to impulse-response sampling: in
order to reconstruct a target (i), sampling n = 271 non-
uniformly distributed points (ii) inside the target image’s ac-
tive area creates holes and non-smooth artifacts (iii), even
though we sampled light directions favorably. In contrast,
our method with extended incoming light sources (iv) gives
a continuous reconstruction.

rithm easy to implement. We hope that our technique helps
to make relighting more available to a broad range of users.
In contrast to previous work, our method does not apply
point-light illuminations for sampling [DHT∗00, HWT∗04,
MDA02], but low spatial frequency illuminations. Both con-
cepts work well for diffuse objects in arbitrary lighting, but
involve different tradeoffs for specular objects and cast shad-
ows, given a limited set of sample illuminations. Our method
tends to blur highlights and shadow edges, as can be seen
in Figure 4, but reconstructs extended light sources well.
Impulse-response methods reproduce extended sources by
individual points, as illustrated in Figure 9. Also, in ani-
mations with moving directional light sources, sharp spec-
ular highlights fade in and out, while our method produces
smoothly moving, but slightly broader highlights (as seen in
the eyes in the supplemental video).
As a conceptual advantage, our implicit approach learns the
mapping between probe and output images directly, rather
than investing in the estimate of intermediate information,
such as incident light [Deb98] or reflectance [MLP04]. We
have proposed a new, more general notion of a light probe
object, which makes the method interesting for new applica-
tions in fixed camera setups. We presented a result employ-
ing toy figures for that purpose.
Our method fits seamlessly into existing acquisition
pipelines that measure incident light distributions explicitly,
as the mapping of the light distribution to the snooker ball is
straight-forward. However, this is not our primary goal, since
we propose a different measurement process for determin-
ing illumination that is equally simple as the conventional
method of capturing a mirror sphere. It is easy to improve
the speed of the illumination sampling by technical means,
as the measurement setup is uncalibrated.
From a given set of sampled illumination conditions, our sta-
tistical approach enables us to predict a relighted image in
an optimal sense without explicit knowledge of the object or
lighting properties, making it a consequent implementation
of learning-based computer graphics.
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