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Abstract
This paper develops importance resampling into a variance reduction technique for Monte Carlo integration.
Importance resampling is a sample generation technique that can be usedto generate more equally weighted sam-
ples for importance sampling. This can lead to significant variance reduction over standard importance sampling
for common rendering problems. We show how to select the importance resampling parameters for near optimal
variance reduction. We demonstrate the robustness of this technique on common global illumination problems and
achieve a 10%-70% variance reduction over standard importance sampling for direct lighting. We conclude that
further variance reduction could be achieved with cheaper sampling methods.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-dimensional Graph-
ics and Realism

1. Introduction

The goal of global illumination is the creation of physically
realistic-looking images from descriptions of virtual scenes.
Kajiya [Kaj86] first expressed this difficult problem as a re-
cursive integral which he called the “Rendering Equation.”
More recently, Veach [Vea97] reformulated this equation as
a non-recursive integral over light paths.

Since these integrals typically cannot be solved analyti-
cally, Monte Carlo integration [MU49] is commonly used to
approximate them. Monte Carlo integration is a probabilis-
tic process and is subject to variance which appears as noise
in the rendered image. To combat this problem, a number of
variance reduction techniques have been developed. One of
the most common of these in global illumination is impor-
tance sampling.

Importance sampling refers to the general technique of
carefully choosing a sampling distribution for Monte Carlo
integration. It can be shown that the more closely propor-
tional the probability density function (pdf) is to the function
being integrated, the lower the variance of the Monte Carlo
estimate.

To use importance sampling, it must be possible to gen-
erate samples with the distribution defined by the pdf. Two
common techniques used for generating these samples are
cumulative density function (CDF) inversion and rejection
sampling. A third technique, Metropolis sampling, has been

explored recently. In this paper we use a fourth technique,
importance resampling.

Importance resampling, unlike the other techniques, gen-
erates samples that are only approximately distributed ac-
cording to the desired pdf. Thus, additional care is required
to preserve unbiasedness. Using importance resampling to
generate the samples for importance sampling produces a
variance reduction technique that we call Resampled Impor-
tance Sampling (RIS). Standard importance sampling is a
special case of RIS. RIS is more robust than standard impor-
tance sampling and can reduce variance significantly.

First, we discuss previous work in Section2. In Section
3, we describe importance resampling. We then develop the
general RIS estimate and discuss its mathematical properties
in Section4. We analyze the variance of the estimate and
choose robust resampling parameters to achieve near opti-
mal variance reduction. In Section5, we present a few case
studies using RIS in global illumination. We show that im-
portance resampling can reduce the variance and increase the
robustness of Monte Carlo global illumination algorithms.
We conclude and discuss possible future improvements to
RIS in Section6.

2. Background

Importance sampling is a very effective variance reduction
technique for many of the problems found in global illumi-
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nation. It requires generating samples from probability den-
sity functions. These samples can be generated by CDF in-
version, rejection sampling, Metropolis sampling, or impor-
tance resampling.

CDF inversion is the most common sampling technique.
When possible, it permits exact sampling of the pdf which
provides maximum variance reduction. However, it requires
being able to integrate the pdf and invert the CDF. Find-
ing a pdf that is nearly proportional to the integral function
and is easily CDF invertible is a very difficult problem. For
some special cases in global illumination, pdfs have been
found that are invertible. For example, distributions have
been developed for sampling the direct lighting from spher-
ical light sources [SWZ96] and arbitrary polygons [Arv95]
and for sampling Phong [LW94] or Ward [War92] Bidirec-
tional Reflectance Distribution Functions (BRDFs). Some
recent work has focused on finding good pdfs for sampling
environment maps [ARBJ03,KK03].

Rejection sampling can produce samples without the need
to find or invert the CDF. However, rejection sampling is of-
ten avoided because it does not permit stratified sampling
and it does not have a fixed time bound for generating a
sample. Also, rejection sampling requires finding a bound-
ing function which can be difficult to do.

Metropolis sampling [MU49] generates a Markov chain
with a stationary distribution that is equal to the desired sam-
pling distribution. The advantage of Metropolis sampling
is its generality. It can be used to generate samples from
even the most complex distributions. However, Metropolis
sampling has a large start-up cost if unbiased samples are
desired. Additionally, finding efficient transition functions,
which is necessary to reduce variance, is domain specific
and can be difficult. Metropolis sampling was first used in
global illumination by Veach and Guibas [VG97].

Importance resampling has been used informally in the
global illumination literature. Lafortune et al. [LW95] used
importance resampling to decrease the number of visibil-
ity tests necessary in bidirectional path tracing. Shirley et
al. [SWZ96] suggested using resampling to improve direct
lighting computations. Burke [Bur04] used importance re-
sampling to sample the distribution of the product of a Phong
BRDF model and an illuminating environment map.

Other attempts have been made to generalize importance
sampling for global illumination problems. Multiple Impor-
tance Sampling (MIS), developed by Veach [Vea97], per-
mits the use of multiple sampling distributions through care-
ful weighting. Weighted Importance Sampling [BSW00],
like RIS, uses two pdfs to reduce the variance in a Monte
Carlo estimate. However, Weighted Importance Sampling
is consistent, not unbiased, and doesn’t permit optimizing
the computation effort to further reduce variance. Com-
bined Correlated and Importance Sampling [SSSK04] uses a
pseudo-optimal combination of two variance reduction tech-

niques. It requires computing a closed form approximation
of the integral function which limits its generality.

3. Importance Resampling

Importance resampling is a common method in computa-
tional statistics for generating samples from difficult dis-
tributions. It is commonly used in sequential importance
sampling and particle filtering [DdFG00]. It can also be
used to generate samples from Bayesian posterior distribu-
tions [GCSR04].

Importance resampling was first described by Ru-
bin [Rub87]. Here we briefly describe importance resam-
pling and try to provide an intuitive explanation of why it
works.

Assume we want to generate samples from a sampling
distribution with pdfg, but cannot do so directly (e.g. us-
ing the CDF inversion technique) becauseg does not have
an analytic closed form or is too complex to integrate and in-
vert. We can, instead, generate a set of samples from a source
distribution,p, weight these samples appropriately, thenre-
samplethese samples by drawing a single sample from them
with probability proportional to its weight.

Importance resampling:

1. GenerateM samples (M ≥ 1) from the source distribution
p, X = 〈X1, ...,XM〉.

2. Compute a weight for each sample,w j .
3. Draw a single sampleY from X with probability propor-

tional to〈w1, ...,wM〉.

If we choosew j =
g(Xj )
p(Xj )

, then the resulting sampleY will

be approximately distributed according tog. The effect of
the resampling step is to take samples from the source den-
sity, p, and “filter” them, so that the resulting sample,Y, has
a distribution that approximatesg.

We can viewM, the number of samples, as a distribution
interpolation variable. WhenM = 1,Y is distributed accord-
ing to p. As M → ∞, the distribution ofY approachesg.
Typically, M must be very large to make the bias introduced
by the finiteM approximation negligible.

As an example, Figure1 shows the distribution ofY for
various values ofM when p is uniform andg ∝ cos(θ) +
sin4 (6θ).

4. Resampled Importance Sampling

Combining importance resampling with importance sam-
pling produces a variance reduction technique we call Re-
sampled Importance Sampling (RIS).

Assume we want to find the integralI of a function f (x):

I =
Z

Ω
f (x)dµ(x)

c© The Eurographics Association 2005.



Justin F. Talbot & David Cline & Parris Egbert / Importance Resampling for Global Illumination

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

q

M= 8

M=1

M=2
M=8

Figure 1: Distributions resulting from importance resam-
pling for different values of M. At M= 1, the distribution
is p. At M= ∞, the distribution is g. For other values of M,
the distribution interpolates between p and g, though the ex-
act manner of interpolation is unknown. The low values on
the left side for M= 2 and M= 8 are artifacts of the density
estimation method.

We also have two probability density functions. The source
pdf, p, can be sampled readily, but may be a poor approxi-
mation to f . The sampling pdf,g, is a good approximation
to f , but it may be unnormalized and difficult to sample.
Standard importance sampling limits us to using onlyp. We
would like to generalize importance sampling so that we can
also useg to improve our estimate. RIS allows us to useg
in an unbiased manner by using importance resampling to
draw samples approximately fromg.

Given the samplesX andY from the importance resam-
pling process, we develop the RIS estimator as a form of
weighted importance sampling:

Îris =
1
N

N

∑
i=1

w(Xi ,Yi)
f (Yi)

g(Yi)

The weighting functionw must be chosen to correct for both
the fact thatg is unnormalized and for the fact that the den-
sity of Y only approximatesg. The appropriate choice ofw
is surprisingly simple. It is the average of the weights com-
puted in the resampling step:

w(Xi ,Yi) =
1
M

M

∑
j=1

wi j

Combining these two equations gives the RIS estimate:

Îris =
1
N

N

∑
i=1

(

f (Yi)

g(Yi)
·

1
M

M

∑
j=1

g
(

Xi j
)

p
(

Xi j
)

)

(1)

WhenM = 1, RIS reduces to standard importance sampling.

For the RIS estimate to be unbiased, two conditions must
hold. First,g and p must be greater than zero everywhere
that f is non-zero [Tal05]. Second,M andN must be greater
than zero.

4.1. Variance Analysis

Since the RIS estimator is unbiased, the only error in the
estimate is due to the variance:

V
(

Îris
)

=
1
N

[

1
M

(e3−e2)+(e2−e1)

]

(2)

where,

e1 = E

(

f
p

)2

e2 = E

(

f 2

gp

)

E

(

g
p

)

and

e3 = E

(

f 2

p2

)

The derivation of this equation is given by Talbot [Tal05].

Note that the domain of the variance will be the range
of f . Since, in global illumination, the range off is typi-
cally n-component spectral values, the variance will be an
n-component vector.

Equation (2) is best understood by comparison with the
variance of standard importance sampling:

V
(

Îis
)

=
1
N

(e3−e1)

The variance of standard importance sampling is the vec-
tor e3−e1. Taking more samples inversely scales this vector
(i.e. decreases the variance).

RIS splits this vector into the sum of two vectors,e2−e1
ande3−e2 (see Figure2). The relative length of the vectors
depends on the target distributiong. If g∝ p, then the length
of e3−e2 is zero. Ifg∝ f , then the length ofe2−e1 is zero.

In RIS, increasingN decreases the length of both vectors.
IncreasingM, however, decreases the length of juste3−e2.
The choice of which to increase clearly depends upon the
relative lengths of the two vectors and the relative compu-
tational expense of increasingM versusN. The following
section explores this issue.

Figure3 shows the effect of varyingM andN when used
in direct lighting.

4.2. Choosing Parameters for RIS

When using RIS we can freely choosep, g, M, andN within
the unbiasedness constraints given in Section4. Clearly
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Figure 2: The effect of increasing M or N on the vari-
ance vector of importance sampling and RIS. Increasing N
shrinks the entire variance vector of both importance sam-
pling and RIS. Increasing M in RIS shrinks just the length
e3 − e2. However, this may decrease the overall variance
more cheaply than increasing N.

some choices will lead to lower variance than others. In this
section we briefly discuss choosingg and p. We then for-
mally show how to find optimal values ofM andN, for fixed
choices ofg andp.

Equation (2) suggests three guidelines for choosingg and
p. First, g should be more proportional tof than p is to f .
If this is not true, standard importance sampling will have
equal or lower variance than RIS. Second,g and p should
be as proportional tof as possible. This directly reduces the
variance. Third,g andp should be computationally cheap to
sample and evaluate (in comparison tof ). RIS depends upon
evaluatingg and p multiple times for each sample. Ifg and
p are expensive, standard importance sampling will be more
efficient.

We now derive a heuristic for choosing near optimal val-
ues forM and N. The values are chosen to minimize the
overall variance of the RIS estimate under a fixed computa-
tion time constraint and given fixed choices ofp andg.

If the total execution time available for computingÎris is
T, then we have the following constraint:

T = MNTX +N (r (M)+TY)

whereTX is the time necessary to draw a sample fromp
and compute its weight. The functionr is the time necessary
to perform the resampling step.TY is the time necessary to
compute Equation (1), given that the resampling has already
been done.

There are a number of extremely efficient techniques for
drawing samples from discrete distributions, so, in practice,
r (M) will be negligible. Ignoringr (M) gives the constraint:

T = MNTX +NTY

As we noted earlier, the variance resulting from Equation

(2) will be an n-component vector. To minimize the variance
we must choose a real-valued length function over the spec-
tral vectors. We use thel2-norm. Perceptually-based mea-
sures could also be used.

Using this constraint, we minimize Equation (2) by sub-
stitution to find a near optimal value ofM:

M =

√

|e3−e2|

|e2−e1|

TY

TX
(3)

where the vertical bars represent the chosen length function.

To ensure thatM ≥ 1 andN ≥ 1, which is necessary for
the resampling process, we first clamp the resultingM ≥ 1.
We then solve forN

N =
T

MTX +TY

and clamp the resultingN ≥ 1. We solve again forM using
the clampedN:

M =
T
N −TY

TX

Finally, when sampling, we probabilistically take the floor or
the ceiling ofM andN such that the expected value remains
the same.

As should be expected, the optimal values ofM andN are
functions of the variance and the execution time of the two
portions of the estimate. Figure3 shows the optimal values
of M andN computed using Equation (3) in a direct lighting
application.

4.3. Robust Approximations of M and N

In practice, the true optimal values ofM andN cannot be
computed since Equation (3) relies one1, e2, e3, TX , andTY
which are unknown. If we were to estimate the unknown
parameters, we could compute approximate values forM
andN. Unfortunately, computing all the unknown parame-
ters can be difficult or very time consuming. In this section
we introduce a robust approximation of Equation (3) that
only requires estimates forTX andTY. These values are very
simple to compute in global illumination applications.

If we only estimateTX andTY, a provably robust heuristic
for choosingM andN is to assign equal time to both stages
of the resampling process:

MNTX = NTY

This is equivalent to using:

M =
TY

TX
(4)

in place of Equation (3) in the previous section. We useMr

andNr to denote the robust values that result from Equation
(4).

Within the overall time constraint, no otherMN can be
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Figure 3: Dragon sampled with a single primary ray and
using RIS with different values of M and N to compute direct
lighting (in equal time). On the left, N= 20, M = 1 and on
the right N= 1, M = 60. The right image has less variance
except where visibility is a major component of the variance.
The lower image shows the optimal ratio of M and N. Green
(lighter) pixels correspond to larger M, red (darker) pixels
to larger N.

more than twiceMrNr . Also, no otherN can be more than
twice Nr . With Equation (2), this implies that RIS usingMr

and Nr will have no more than twice the variance of RIS
using the true optimal values ofM andN.

Although the resulting bound on the variance is poor, we
have found that this approximation works very well in prac-
tice. It is very cheap to compute and it avoids the sometimes
severe noise and artifacts associated with Monte Carlo esti-
mates ofe1, e2, ande3.

Finally, we note that if we cannot estimateTX andTY, a
robust default choice isTX = TY. Plugging this into Equation
(4) results inM = 1, which is standard importance sampling.

5. Applications

In this section we demonstrate some of the properties of RIS
when applied to different problems in global illumination.

5.1. Sampling the Direct Lighting

Using RIS for direct lighting calculations has already
been addressed, informally, by Shirley et al. [SWZ96] and
Burke [Bur04]. Here we generalize their approaches and
show how to approximate the optimal values ofM and N
for direct lighting.

The direct lighting equation is

f = FsGVLe

whereFs is a BRDF term,G is a geometry term,V is a binary
visibility term, andLe is the emitted light.

We need to choose a densityg that approximatesf and is
cheap to compute. Shirley et al. and Burke chose

g = FsGLe

dropping the visibility term which is usually the most expen-
sive part of lighting computation.

In the RIS framework we can see that it would be equally
valid to approximatef in any other way. For example, as
the computational expense of evaluatingFs or Le increases,
due to more physically realistic surface models or to the
calculation of these terms in complex shader programs, it
may be more efficient to useg = GV. Also, if any of the
dropped terms can be approximated efficiently, the approxi-
mation should be used to improveg. In our implementation,
computing the visibility is still the most expensive operation
so we follow Shirley et al. and Burke and setg = FsGLe.

Since Shirley et al. and Burke have already shown that
resampling can be effective in direct lighting, the rest of this
section shows how to approximate the optimal values ofM
and N. We show that using these approximate values can
reduce the variance past that which is possible with standard
importance sampling alone.

Estimatinge1, e2, ande3, in order to use Equation (3) is
too computationally expensive. Instead we will use the ap-
proximation given by Equation (4) to compute robust values
of M andN. As described in Section4.3, we must first ap-
proximateTX and TY. To do this, we cast a few thousand
primary rays. We then track the time necessary to compute
the direct lighting at the first hit point.TX is the average time
necessary to sample the light source and computeg. TY is
the average time to check the visibility. The time necessary
to estimate these values is negligible.

Across scenes of similar complexity, the values ofTX and
TY will probably be quite stable. Thus, these values could
be precomputed for a particular renderer implementation. If
precomputed, robust RIS would require absolutely no extra
computation time over standard importance sampling.

The images in Figure4 show a dragon lit by two polyg-
onal light sources and an environment map. The left image
uses standard importance sampling. The right uses the ro-
bust values ofM andN computed from estimatedTX andTY
values. In this scene we achieve a 70% reduction in overall
variance compared to just using standard importance sam-
pling.

This variance reduction is scene dependent. If the environ-
ment map is removed from the scene, RIS only gives a 10%
variance reduction. This difference is largely due to the fact
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Figure 4: Robust RIS for direct lighting. Both images are rendered using 20 primary rays and approximately equal computation
times. The left image uses standard importance sampling, M= 1, N = 20, for the direct lighting. The right image uses the
computed robust values from Equation (4), M = 15.75, N = 10.64. There is a 70% reduction in variance.

that the environment map introduces a lot of variance into
theLe term. This term is included ing and thus RIS can re-
duce its variance. Without the environment map, much of the
variance is due to visibility. Since visibility is not included
in g, RIS cannot reduce its variance.

5.2. Robust Sampling of BRDFs

In the previous section we showed that RIS can produce bet-
ter results than standard importance sampling. In this section
we demonstrate that RIS can be more robust than importance
sampling. Specifically, we show that RIS can be applied to
a wide class of integration problemswithoutchange. Impor-
tance sampling, on the other hand, requires a special case
for each specific problem. We use the example of Bidirec-
tional Reflectance Distribution Function (BRDF) sampling
to demonstrate.

BRDFs represent the relationship between incident and
exitant light at a surface. Traditionally, BRDFs have been
sampled with special case distributions developed for each
specific BRDF model. Implementing all of these in a global
illumination renderer can be very time consuming. This ap-
proach can also become unwieldy when the parameters of
the BRDF are allowed to vary spatially (as in Bidirectional
Texture Distribution Functions). Furthermore, if the BRDF
is specified using a shading language, automatically creating
a distribution would be difficult.

We would like to find a more robust solution. Ideally, it

will improve the sampling of any BRDF model whether or
not a good distribution is available for importance sampling.
Resampled Importance Sampling can do this.

When sampling BRDFs, we want to sample

f = Fs(x,x′

,x′′ )cos(θ)Li (x
′

,x′′ )

whereFs is the value of the BRDF at pointx′ , θ is the angle
between the normal atx′ and the vector

−−→
x′ x′′ andLi is the

light incident on pointx′ from x′′ . In the rest of the discus-
sion we will drop the parameters to these functions.

To use RIS we need to choose a functiong that is both
closely proportional tof and is inexpensive to compute.
Here we will take a general approach and choose:

g = Fscos(θ)

This choice is very general since we have only assumed that
the BRDF can be evaluated, which is required for Monte
Carlo integration anyway. Since this choice ofg works for
any BRDF, we can implement RIS once for all BRDF sam-
pling.

In the following examples, we recognize that standard im-
portance sampling could perform much better than the re-
sults we show. However, that would require a specialized
sampling distribution for each case. Our goal is to show
that RIS is more robust since a single implementation can
dramatically improve the sampling of very different BRDF
models.
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Figure5 shows two pairs of spheres each sampled withp
equal to a uniform distribution over the hemisphere. The first
two spheres have a diffuse BRDF. Our chosenp matches
the BRDF exactly, but does not take into account the co-
sine of the angle with the normal. RIS reduces the variance
significantly. The second two spheres have a Cook-Torrance
BRDF. In this case,p is a very poor sampling density. Never-
theless, RIS still manages to dramatically improve the sam-
pling quality. We emphasize that no changes are made to the
RIS implementation for either BRDF.

In these examples we used a uniform distribution forp for
simplicity. In practice, a better default density would be a
cosine-weighted hemisphere with lobes in the reflective and
retroreflective directions. In cases where a specialized dis-
tribution is available for a BRDF model, that can be used
instead of the default density.

Figure 5: Uniformly-lit spheres sampled with a uniform
hemispherical distribution. The first two are perfectly dif-
fuse and the second two use a Cook-Torrance BRDF. The
first sphere in each pair is rendered without resampling
(N = 1,M = 1). The second sphere in each pair is rendered
with RIS (N= 1,M = 20). RIS greatly reduces the variance
independent of the BRDF model used.

6. Conclusions and Future Work

We have presented a simple explanation of importance re-
sampling. We have shown how to use importance resampling
as the sample generation technique for importance sampling.
The resulting variance reduction technique, Resampled Im-
portance Sampling, is a generalization of standard impor-
tance sampling.

We have shown how to compute the optimal resampling
parameters,M andN, and how to choose robust approxima-
tions ofM andN that require significantly less computation
time. We have shown that RIS increases the robustness of
importance sampling when used in some global illumination
problems and we have achieved a 10%-70% variance reduc-
tion for the direct lighting in a complex scene.

More work needs to be done to find good choices forg
and p. Unexpectedly, drawing samples fromp accounts for
the majority ofTX . A lot of work has gone into speeding
up tracing rays [Wal04], but not much work has gone into
finding faster sample generation techniques. Since RIS uses
M samples at a time, techniques that generate samples in
parallel (perhaps using SSE) could be very useful.

In Equation (3), we used the Euclidean lengths ofe3−e2

ande2−e1. This could be improved upon by using a percep-
tual distance measure.

Burke [Bur04] has done some initial work on combining
RIS and MIS. This work needs to be extended to a more
general approach.
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