
Generalized Displacement Maps

Xi Wang† Xin Tong∗ Stephen Lin∗ Shimin Hu Baining Guo∗ Heung-Yeung Shum∗

Tsinghua University ∗ Microsoft Research Asia

Abstract
In this paper, we introduce a real-time algorithm to render the rich visual effects of general non-height-field geo-
metric details, known as mesostructure. Our method is based on a five-dimensional generalized displacement map
(GDM) that represents the distance of solid mesostructure along any ray cast from any point within a volumetric
sample. With this GDM information, we propose a technique that computes mesostructure visibility jointly in ob-
ject space and texture space which enables both control of texture distortion and efficient computation of texture
coordinates and shadowing. GDM can be rendered with either local or global illumination as a per-pixel process
in graphics hardware to achieve real-time rendering of general mesostructure.

1. Introduction

Fine scale surface geometry, known as mesostructure, is an
integral component in the appearance of many real-world
materials and objects. The rendering of mesostructure pro-
vides not only fine resolution form to a surface, but also rich
visual details such as fine-scale shading, shadows, occlu-
sions and silhouettes. To enhance the realism of synthesized
images, much attention has been focused on efficient and
comprehensive methods for rendering mesostructure and its
detailed appearance features.

The two most common approaches to mesostructure ren-
dering are by mapping images and by mapping geome-
try onto a surface. Bidirectional texture functions (BTFs)
[DNvGK99] record images of a mesostructure sample under
different lighting and viewing directions, but since this rep-
resentation contains no 3D geometric information, silhou-
ettes and the effects of surface curvature cannot be rendered.
These problems can be handled by mapping mesostructure
geometry onto a surface to form a detailed object model,
as done with displacement maps [Coo84] and volumet-
ric textures [KK89, Ney98]. Although the visual effects of
mesostructure can be rendered from such a model, the large
amount of detailed geometry mapped into the object space
can lead to considerable processing.

The burdens of handling directly mapped geometry in ob-

† This work was done while Xi Wang was a visiting student at Mi-
crosoft Research Asia.

Figure 1: Mesostructure rendering with GDM. Left column:
under local illumination. Right column: under global illumi-
nation.

ject space can be avoided by precomputing the visibility
of mesostructure points and storing it in texture space, as
proposed in view-dependent displacement mapping (VDM)
[WWT∗03]. With this information, VDM achieves real-time
rendering of mesostructure visual effects including silhou-
ettes. This method, however, suffers from two significant
drawbacks. One is that it can be applied only to height-field

c© The Eurographics Association 2004.

Eurographics Symposium on Rendering (2004)
A. Keller, H. W. Jensen (Editors)

http://www.eg.org
http://diglib.eg.org

X. Wang, X. Tong, S. Lin, S. Hu, B. Guo & H.-Y. Shum / Generalized Displacement Maps

geometry on closed surfaces. The other is that VDM can
be practically precomputed for only a limited class of sur-
face shapes, e.g., with respect to a single surface curvature
parameter as in [WWT∗03]. As a result, the precomputed
VDM lacks the specificity to accurately represent surfaces
with curvature variations and texture warping, which can
consequently lead to significant texture distortions.

In this paper, we present a general mesostructure render-
ing technique based on a proposed generalized displace-
ment map (GDM), which represents the distance of solid
mesostructure along any ray cast from any point within
a volumetric texture. Unlike previous displacement map
methods which model surfaces using one offset value per
texel, generalized displacement maps can handle arbitrary
non-height-field mesostructures. Furthermore, the GDM ap-
proach overcomes both the texture distortion problems of
VDM and the computational expense of directly mapped ge-
ometry by computing visibility jointly in texture space and
object space. The precomputed GDM values facilitate tex-
ture coordinate computation of viewing rays whose piece-
wise linear trajectory in texture space is determined in object
space according to the shape of the base mesh. By account-
ing for curvature variations and texture warping in object
space, ray intersections in texture space are more accurately
established, resulting in less texture distortion.

The GDM can similarly be used to quickly determine
whether the intersection point is shadowed from local illumi-
nation, and can moreover be efficiently employed for scenes
with global illumination. With a simple per-pixel implemen-
tation in graphics hardware, GDM can render complex volu-
metric textures including silhouettes in real time to produce
detailed mesostructure appearance as shown in Fig. 1. The
contributions of this work are summarized as follows:

• the generalized displacement map for rendering of general
non-height-field mesostructure on both open and closed
surfaces

• visibility computation in texture and object spaces to re-
duce texture distortion and increase efficiency

• a hardware implementation of GDM for real-time render-
ing with either local and global illumination

2. Related Work

Previous methods for mesostructure rendering can be cate-
gorized by the dimensionality of their geometric represen-
tations. Highly realistic mesostructure appearance can be
modelled from collections of 2D images such as BTFs. Poly-
nomial texture maps [MGW01] represent mesostructure ap-
pearance of each surface point under different lighting di-
rections by fitting a biquadric polynomial. For non-diffuse
surfaces, this approach models only a fixed viewpoint. Re-
cently, [SLSS03] integrated the BTF with precomputed radi-
ance transfer of macro-scale geometry, and then rendered the
bi-scale lighting effects in real time. Although these image-
based representations capture true appearances of a general

mesostructure sample, the 2D geometric structure inherent
in images precludes rendering of mesostructure silhouettes.

Most prior techniques assume that mesostructures have
the form of height fields on a mesh, a 2-1/2 D repre-
sentation. For rendering mesostructures that have height
field geometry, bump mapping [Bli78] and its exten-
sions [Max88, SC00, BM93, HDKS00] offer an efficient ap-
proach, but do not account for silhouettes. Silhouettes can be
rendered by displacement maps [Coo84, CCC87], which ex-
plicitly model the geometric details of height fields. While
techniques based on height fields benefit from relative ease
in processing, they lack the generality to describe a range of
surface geometries that includes weave patterns and slanted
protrusions.

Volumetric textures provide a general 3D representation
of mesostructure as volumetric data sampled on 3D regu-
lar grids [KK89, Ney98]. Traditionally, volumetric textures
are rendered by tracing rays through a shell volume mapped
on a surface, which is expensive for real time applications.
Recently, a set of slice-based approaches have been devel-
oped for volumetric texture rendering. Meyer et al. [MN98]
rendered the volume prism extruded from each triangle as a
stack of axis-aligned textured slices. Lensch et al. [LDS02]
used a set of slices parallel to the projection plane to ren-
der the shell volume. In [LPFH01], volumetric fur mapped
on a surface is rendered as concentric layers from the skin
outwards, and extruded fins from triangle edges near the sil-
houette are also rendered to reduce artifacts. Daubert et al.
[DS02] applied a precomputed visibility map to render shad-
owing effects of thin knitwear. In these slice-based methods,
the number of slices used for each triangle increases with
volumetric resolution. This encumbers the rendering process
with additional overhead that is magnified when sophisti-
cated per-pixel shading is incorporated. To our knowledge,
no previous work has been able to render volumetric textures
with global illumination in real time.

Related methods for rapid software rendering include the
work of Arvo and Kirk [AK87], which uses view-dependent
distance data in volumes to accelerate ray tracing. Dischler
[Dis98] used ray tracing in texture space to map mesostruc-
tures onto base geometry. He also proposed a special data
structure to accelerate the software rendering. Daubert et
al. [DKS∗03] precomputed visibility information and then
reused it for shadow computation and indirect illumination.
In GDM, visibility information is used for rendering both
silhouettes and shadows in real time.

3. GDM Modeling and Rendering

Our mesostructure rendering method takes mesostructure
geometry as input and computes its GDM. After the GDM
texture is mapped to a surface, rendering is performed by a
per-pixel algorithm that can be accelerated in hardware. The
details of GDM modeling and rendering are described in this
section.

c© The Eurographics Association 2004.

228

X. Wang, X. Tong, S. Lin, S. Hu, B. Guo & H.-Y. Shum / Generalized Displacement Maps

P dmax

P d

(b)(a)

P

P

Figure 2: GDM model. (a) The GDM for a ray cast from
point P in direction V is defined as the distance of the nearest
solid volume. (b) Three cases in GDM computation. From
top to bottom: P outside solid volume with an intersection in
direction V , P outside solid volume with no intersection in
direction V , P lying within solid volume.

3.1. Modeling

The GDM values for a given mesostructure are computed
at points on a 3D regular grid according to existing sam-
pling algorithms used for volumetric texture construction
[KK89, Ney98]. With these sampling algorithms, artifacts
may nevertheless arise due to high-frequency mesostructure
details, but could be reduced with higher sampling rates
or mesostructure pre-filtering. As illustrated in Fig. 2(a),
from each point p = (x,y,z) a ray is cast toward sampled
viewing directions �V = (θ,φ) expressed in spherical angles,
where the polar angle θ ranges from 0 to π. The 5D GDM
dGDM(x,y,z,θ,φ) records the distance along each viewing
direction to the nearest mesostructure surface, according to

dGDM(x,y,z,θ,φ)=

d if ray intersects mesostructure
dmax if no intersection exists
0 if p inside solid volume

The three different cases for this measurement are dis-
played in Fig. 2(b). For points in free space or lying on the
mesostructure surface, if the ray from p in direction �V in-
tersects mesostructure, the displacement is the distance d
between P and the closest intersection. If no intersection
exists, then we record a special value dmax that indicates
this case. For a point located inside the solid volume of the
mesostructure sample, its displacement value is zero. To en-
sure that rays exit through the top or bottom plane of the
texture and not through the texture boundaries, we surround
the mesostructure volume by identical tiles in the x,y plane
before computing the GDM.†

The GDM can then be mapped onto an arbitrary surface
like a volumetric texture V (x,y,z) with a 2D function of
(θ,φ) stored in each voxel. Mapping a volume texture onto a
triangle mesh extrudes each triangle vertex towards its nor-
mal direction to generate a prism volume for each mesh tri-

† An arbitrary volume texture can be made tileable by using con-
strained texture synthesis [WL01].

Object Space Texture Space

C

BA
C′

B′
A′

C

BA
C′

B′
A′

Figure 3: An extruded prism in object space, and its corre-
sponding volume in texture space.

Object Space Texture Space

V tV

C

BA C′

B′A′
inT

outT
t
d

C

B
A

C′

B′
A′

inP
outP

Figure 4: Ray path in object space and its corresponding
path in texture space.

angle, as exemplified in Fig. 3. Hence, the mesostructure of
each prism in the object space is given by a corresponding
volume in the texture space. The bilinear prism fins are each
approximated by two mesh triangles. Each fin is shared by
two prisms, and its normal directions are defined outwards
with respect to the prism being processed.

3.2. Rendering

In contrast to methods for volumetric texture rendering,
the GDM rendering algorithm does not trace rays through
mesostructures synthesized onto a surface, nor does it in-
volve formation of numerous volume texture slices. Instead,
it rapidly processes ray segments in each extruded prism as
illustrated in Fig. 4. In object space, a ray may pass through
multiple prisms with varying orientations according to the
shape of the base mesh. Since mesostructure geometry is not
explicitly represented in object space, each ray segment in a
prism is mapped to a corresponding ray segment in texture
space to determine intersections with geometry. For each
prism, its ray in texture-space is approximated as a straight-
line segment between the ray entrance and exit points of the
prism, as described in [KK89]. From the resulting piecewise-
linear ray path in the texture space, the ray intersection can
be rapidly determined from the GDM, which contains the
displacements along each of these line segments.

This joint use of object and texture spaces for determin-
ing ray intersections benefits from greater efficiency by the
use of GDM in the texture space and from reduced texture
distortion, since computing the ray path in object space ac-
counts for variations in surface curvature and texture warp-

c© The Eurographics Association 2004.

229

X. Wang, X. Tong, S. Lin, S. Hu, B. Guo & H.-Y. Shum / Generalized Displacement Maps

(a) (b)

(c)

C′

B

B′

C

1α

2α

1α

C′

B

B′

C

2α

1α

C

BA C′

B′
A′

inP
outP

α

β

Figure 5: Determination of ray exit point from a prism. (a)
Concave fin. (b) Convex fin. (c) Intersections with prism face
planes.

ing. In principle, the texture distortion could be made arbi-
trarily small by more finely tessellating a surface to obtain a
more precise piecewise-linear ray path in texture space.

In rendering, each prism is processed individually and can
be handled in any order. For each prism, its forward-facing
sides, which may include prism fins and triangles of the base
surface, are rasterized. For each rasterized face, its pixels are
then processed by our rendering algorithm, which is summa-
rized in the following pseudocode.

PixelShading(Pin, Tin)
compute exit point (Pout , Tout) of ray segment in prism

compute texture space length dt = |Tout −Tin| of ray segment

compute view direction Vt in texture space
query the GDM value dGDM(Tin,Vt) of p

If (dGDM < dt)

compute texture coordinate T of intersection point
shading computation

Else
no intersection

In the pixel shader, from the object and texture space co-
ordinates Pin and Tin of the ray entrance point into the prism,
the prism exit point Pout is first computed to obtain the tex-
ture space ray segment TinTout . From this ray segment, we
determine whether a mesostructure intersection point exists
in the prism using the GDM. If an intersection exists, its tex-
ture coordinate T is calculated with the GDM, and its shad-
ing under either local or global illumination is computed.
The details of these steps are explained in the remainder of
this section.

Intersection computation: To render each pixel, we must
compute the mesostructure intersection point of its cast ray,
as well as the texture value of that scene point. For the
traced ray of a pixel, its direction V , prism entrance point
Pin and corresponding texture coordinate Tin are known. To
locate the other endpoint Tout of the ray segment in texture

(a) (b)

d M
AX

dGDM

Figure 6: Shadow determination for local illumination us-
ing GDM. (a) shadowed point; (b) directly illuminated point.
Since textures mapped onto neighboring triangles come from
a continuous region in texture space, GDM values account
for shadows cast from neighboring prisms.

space, we must compute the object space point Pout where
the traced ray would exit the prism if it were unimpeded by
mesostructure geometry, as illustrated in Fig. 4.

From Pin and V , the position of Pout can be calculated
based on ray intersections with the planes defined by other
faces of the prism as shown in Fig. 5(c). Our method
computes ray-plane intersections rather than hardware-
accelerated ray-triangle intersections [CHH02, PBMH02]
because ray-triangle intersection computations are complex
in comparison and are performed per pixel. Ray-plane inter-
sections involve only per-vertex calculations.

We first compute for each fin the intersection points on
the two planes defined by its two triangles. As shown in
Fig. 5(a), if two triangles α1,α2 form a concave side of the
prism, then the intersection for the face is determined as the
one with the larger distance from Pin. If the triangles form
a convex side as in Fig. 5(b), then the intersection with the
fin is taken as the point with the smaller distance. From the
ray intersections on each face plane, Pout is determined as
the point with the smallest distance from Pin. The texture
coordinate of Pout is then assigned to Tout .

From the texture-space ray segment defined by Tin and
Tout , we approximate the ray direction Vt in texture space
as (Tout − Tin)/dt , where the ray segment length is dt =
||Tout − Tin||. If dGDM(Tin,Vt) > dt , then the ray passes
through the prism without intersection. Otherwise, the ray
intersects mesostructure at a point P in the prism with tex-
ture coordinate

T = Tin +dGDM(Tin,Vt) ·�Vt ,

which is used for rendering the pixel.

Local Illumination: If the object is illuminated by a local
light source, the GDM can be used to determine whether P
is shadowed by other parts of the mesostructure. This can be
done by rendering the shadow map with the GDM and sav-
ing the distance of the ray intersection instead of the color.
Note that this shadow map generation differs from the tra-
ditional implementation in that it is computed taking the
mesostructure into consideration.

c© The Eurographics Association 2004.

230

X. Wang, X. Tong, S. Lin, S. Hu, B. Guo & H.-Y. Shum / Generalized Displacement Maps

Instead of computing a shadow map, our implementation
employs a more rapid solution by approximating the light
trajectory Lt in the texture space as the object space light di-
rection L. As illustrated in Fig. 6 if dGDM(T,L) is not equal
to dmax, this indicates that P is occluded in the lighting di-
rection. If P is in shadow, its appearance is computed with
ambient illumination only. Otherwise, P is shaded accord-
ing to a given reflectance model with parameters stored in
an additional 3D texture map. We note that this technique
accounts only for the fine-scale shadows of local mesostruc-
ture, and does not handle shadows from the base geometry
or distant mesostructure. Also, it assumes the base geome-
try to be locally flat, since local shadow alias may occur in
areas of high surface curvature. Even with this assumption,
acceptable results can nevertheless be achieved, as in hori-
zon maps [Max88] and VDM [WWT∗03].

Global Illumination: To compute the shading of P under
global illumination, we adapt the bi-scale radiance trans-
fer framework proposed in [SLSS03], which precomputes
the transfer of global illumination at each vertex to illu-
minance at the meso-scale, and then computes the meso-
scale response to this illuminance for each pixel. The only
difference of our rendering algorithm is that it defines the
meso-scale response on mesostructure surface points, rather
than on the reference plane [SLSS03]. This response, called
the radiance transfer volume (RTV), accounts for the shad-
owing and interreflection of the meso-scale lighting within
the mesostructure volume, and is expressed as a set of 5D
functions that correspond to spherical harmonic coefficients
f i
V RF (x,y,z,θ,φ), i = 0...k, where (θ,φ) represents the view-

ing direction in spherical angles. The number of spherical
harmonic coefficients k is chosen by the user, and is set to
16 in our implementation. With this spherical harmonic rep-
resentation, the shading of a voxel is calculated simply by
taking the inner product of the RTV vector and the meso-
scale illuminance vector determined by precomputed radi-
ance transfer (PRT) [SLSS03]. The details of the hardware
implementation are given in Sec. 4.1.

Compared to the radiance transfer texture (RTT) of
[SLSS03] which is defined on the reference plane, the RTV
provides several benefits for bi-scale radiance transfer. First,
both mesostructure silhouettes and its shading effects can
be rendered with the RTV/GDM, while mesostructure sil-
houettes are ignored in bi-scale radiance transfer. Second,
by representing reflectance with respect to mesostructure
position p, RTV obtains better compression because of
greater data coherence in comparison to RTT, for which re-
flectance at a reference surface point corresponds to different
mesostructure points depending on the viewing angle. As a
result, little compression can be achieved in the view dimen-
sions by RTT. Finally, for curved surfaces, large viewing an-
gles from the surface normal direction can result in signifi-
cant differences in both position and local coordinate frames
of P and p. This difference consequently introduces error in
computing the incident illumination at p. More accurate in-

cident illumination can be obtained by our method because
the prism fins partition the texture into smaller volumes.

4. Hardware Implementation

4.1. Data Compression

Although the 5D GDM/RTV data could be reorganized into
a 3D texture and directly loaded to hardware for rendering,
it is still large with regard to the limited graphics memory.
Moreover, the lower coherence among the reorganized data
decreases the performance of the texture access.

For better performance and conservation of hardware
memory, our method decomposes a GDM into several low
dimensional maps. We achieve this through singular value
decomposition (SVD), a method that has been used for
compressing high dimensional data [KM99]. The high-
dimensional GDM data is reorganized into a 2D matrix A
where the rows are indexed by x,y,φ and the columns are
indexed by θ,z. Although these maps could be differently
organized for decomposition, experiments have shown that
this solution provides the best compromise between accu-
racy and storage for all data used in this paper. Applying
SVD to A produces a set of 2D eigen-maps Ei(θ,z) and cor-
responding 3D weight maps Wi(x,y,φ). The GDM data can
be well reconstructed from a small number of these eigen-
maps as

dGDM = ∑
i

Wi(x,y,φ)Ei(θ,z).

In practice, the special value dmax in the GDM data result
in high frequency variations in GDM data, which requires
more eigen-maps for good reconstruction. To address this
problem, we replace dmax with the distance between P and
the ray intersection point at the top or bottom boundary of
the volume, as shown in the middle row of Fig.2(b). In ren-
dering, we need to query the properties of the intersection
point to determine whether the intersection actually exists
inside the prism.

For compression, the RTV data is reorganized into matri-
ces where the rows are indexed by x,y,z and columns are
indexed by θ,φ. The RTV data is also compressed by SVD,
and four eigenfunctions are used for representation.

4.2. Rendering Passes

GDM rendering is performed in multiple passes on graph-
ics hardware. In the first pass, GDM computation is per-
formed to obtain the volumetric texture coordinates of the
mesostructure point for each pixel. The exit point Pout for
each pixel is computed in the pixel shader based on interpo-
lated distance values stored in the prism vertices. For each
prism vertex, we project it in direction V onto the plane of
each back-facing prism triangle and compute its distance.
These distances and their texture coordinates are then sent

c© The Eurographics Association 2004.

231

X. Wang, X. Tong, S. Lin, S. Hu, B. Guo & H.-Y. Shum / Generalized Displacement Maps

into the graphics pipeline as vertex attributes. After rasteri-
zation, the distances of the pixel p to each plane are interpo-
lated from the vertex attributes and then input into the pixel
shader to calculate dt and �Vt .

Then the shading computation is done in the subsequent
passes. For local illumination, the shadow test and shading
computation can be finished by the pixel shader in one pass.
For global illumination, we first compute the per-vertex ma-
trix/vector multiplication on the CPU to obtain the incoming
meso-scale radiance. Then the RTV vector for each pixel is
reconstructed and dotted with the interpolated incoming ra-
diance vector to obtain the final shading result in the pixel
shader. Depending on hardware capability, the dot product
of two vectors is finished in one or more rendering passes.

5. Results

We tested our algorithm on a 2.8GHZ Pentium IV PC with
an ATI Radeon 9800XT 256MB graphics card. Hardware-
accelerated GDM rendering is implemented using the ARB
vertex and fragment program with OpenGL.

Differences between GDM and VDM rendering are ex-
emplified for an open surface in Fig. 8(a-b). Noticeable for
VDM is the lack of mesostructure geometry at the surface
edges, which are correctly rendered by GDM. Fig. 8(c-d)
displays differences in texture distortion between GDM and
VDM, which are visually apparent at the curvature varia-
tions on the neck. For the undulating surface, GDM renders
at 123.2 FPS, and VDM performs at 179.5 FPS. For the vase,
the rendering rates are 69.6 FPS for GDM, and 110.4 FPS
for VDM. The difference in speed can mainly be attributed
to the larger number of geometry computations in GDM, in-
cluding the processing of prism fins in addition to the top
face.

Fig. 9(a) shows under local illumination a rendered vase
with a mesostructure interior that consists of empty space.
Fig. 9(b) displays a torus decorated with chain links, a typ-
ical non-height field mesostructure, and Fig. 9(c) exhibits
a bird with weave mesostructure. Visible are the complex
shadowing effects under different lighting conditions and the
well-defined silhouette under different viewing directions.
Fig. 9(d) illustrates the rendering results of a dinosaur whose
head and feet are rendered with conventional bump textures.
The overlapped squamae on the dinosaur body cannot be ac-
curately processed by conventional displacement mapping.

Fig. 7 displays the rendering performance of the examples
shown in Fig. 9 and Fig. 1 for a 512x512 window. All GDM
data listed here are sampled for 16× 32 viewing directions
at equal intervals in φ and θ, though uniform sampling over a
sphere could potentially generate improved GDM data sets.
Since SVD-compressed GDM and RTV data are directly
used for rendering, the memory consumption for the data
sets is manageable.

For comparison, we implemented a slice-based rendering

algorithm on the same platform, in which the mesostructure
is rendered under local illumination and without shadowing.
It renders the bird model with a 64 × 64 × 16 weave vol-
ume at 32fps. The rendering performance decreases to 15fps
with an increased volume resolution (64× 64× 32) of the
same data. In contrast, our method renders these two data
sets with all visual effects at 60fps and 57fps respectively.
Unlike conventional slice-based methods, the performance
of GDM rendering depends primarily on output resolution
and is not affected by the depth resolution of the volumetric
textures.

Fig. 10 displays tree bark rendered with global illumina-
tion, in which the lighting effects of the macro geometry and
the fine-scale geometric details are naturally integrated to
generate a realistic appearance. The RTV and environment
lighting are each represented by 16 spherical harmonic basis
functions.

6. Conclusion

In this paper, we presented a technique for real-time ren-
dering of non-height-field mesostructure and its detailed vi-
sual effects. With generalized displacement maps, we can
render non-height-field mesostructure at a high frame rate
with compelling visual effects. A noteworthy advantage of
the GDM is that it is widely applicable, e.g., it handles open
and closed surfaces equally well and is not sensitive to tex-
ture distortion and curvature variations. With the proposed
approach of computing visibility jointly in texture and ob-
ject spaces, both high efficiency and low texture distortion
can be attained.

There exist a few directions for future work. One is to
utilize texture synthesis rather than a tileable texture with
GDM, to avoid pattern repetitions. A second direction is to
develop a scheme for removing unneeded triangles from the
mesh model to elevate computation speed. Third, an exten-
sion of our method to handle solid transparent mesostructure
would provide greater generality.

Acknowledgements

We would like to thank the anonymous reviewers for their
constructive critiques. Many thanks to Min Liu and Ying
Song from Zhejiang University for their help in preparation
of the input data and in implementation of the slice-based
method, to Mingdong Xie for object mesh and geometry tex-
ture modeling. The authors from Tsinghua University were
supported by Natural Science Foundation of China (Project
Number: 60225016, 60321002) and the National Basic Re-
search Project of China (Project Number 2002CB312100).

References

[AK87] ARVO J., KIRK D.: Fast ray tracing by ray classifica-
tion. Computer Graphics (SIGGRAPH ’87 Proceed-
ings) 21, 4 (July 1987), 55–64.

c© The Eurographics Association 2004.

232

X. Wang, X. Tong, S. Lin, S. Hu, B. Guo & H.-Y. Shum / Generalized Displacement Maps

 Data Size
Model

Triangle

Number
Texture

Volumetric

Resolution GDM RTV
FPS

Teapot 4276 Weave 64× 64×32 2MB 8MB 56.0/16.3*

Vase 8640 Grid 32× 32×16 0.5MB N/A 71.3

Torus 4880 Chain 64× 64×32 2MB N/A 40.8

Bird 11603 Weave 64× 64×32 2MB N/A 46.4

Dinosaur 2142 Squama 64× 64×32 2MB N/A 80.9

Tree 19618 Bark 128×128×16 4MB 16MB 9.1*

Figure 7: GDM rendering speed and memory consumption for different models. FPS values marked by a ∗ indicate performance
for global illumination.

[Bli78] BLINN J. F.: Simulation of wrinkled surfaces. Com-
puter Graphics (SIGGRAPH ’78 Proceedings) 12, 3
(1978), 286–292.

[BM93] BECKER B. G., MAX N. L.: Smooth transitions be-
tween bump rendering algorithms. Computer Graph-
ics (SIGGRAPH ’93 Proceedings) (1993), 183–190.

[CCC87] COOK R. L., CARPENTER L., CATMULL E.: The
REYES image rendering architecture. Computer
Graphics (SIGGRAPH ’87 Proceedings) (1987), 95–
102.

[CHH02] CARR N. A., HALL J. D., HART J. C.: The Ray
Engine. Proc. Graphics Hardware 2002 (2002).

[Coo84] COOK R. L.: Shade trees. Computer Graphics (SIG-
GRAPH ’84 Proceedings) 18, 3 (1984), 223–231.

[Dis98] DISCHLER J.-M.: Efficient rendering macro geomet-
ric surface structures with bi-directional texture func-
tions. In Rendering Techniques (1998), pp. 169–180.

[DKS∗03] DAUBERT K., KAUTZ J., SEIDEL H.-P., HEIDRICH

W., DISCHLER J.-M.: Efficient light transport us-
ing precomputed visibility. IEEE Computer Graphics
and Applications 23, 3 (May/June 2003), 28–37.

[DNvGK99] DANA K. J., NAYAR S. K., VAN GINNEKEN B.,
KOENDERINK J. J.: Reflectance and texture of real-
world surfaces. ACM TOG 18, 1 (Jan. 1999), 1–34.

[DS02] DAUBERT K., SEIDEL H.-P.: Hardware-based vol-
umetric knit-wear. Computer Graphics Forum 21, 3
(Sept. 2002).

[HDKS00] HEIDRICH W., DAUBERT K., KAUTZ J., SEI-
DEL H.-P.: Illuminating micro geometry based on
precomputed visibility. Computer Graphics (SIG-
GRAPH ’00 Proceedings) (2000), 455–464.

[KK89] KAJIYA J. T., KAY T. L.: Rendering Fur with Three
Dimensional Textures. Computer Graphics 23, 3
(1989), 271–280.

[KM99] KAUTZ J., MCCOOL M. D.: Interactive render-
ing with arbitrary BRDFs using separable approxi-
mations. In Rendering Techniques (1999), pp. 247–
260.

[LDS02] LENSCH H. P. A., DAUBERT K., SEIDEL H.-P.: In-
teractive semi-transparent volumetric textures. Proc.
Vision, Modeling and Visualization (2002), 505–512.

[LPFH01] LENGYEL J., PRAUN E., FINKELSTEIN A., HOPPE

H.: Real-Time Fur over Arbitrary Surfaces. Sympo-
sium on Interactive 3D Graphics (2001), 227–232.

[Max88] MAX N.: Horizon mapping: shadows for bump-
mapped surfaces. The Visual Computer 4, 2 (July
1988), 109–117.

[MGW01] MALZBENDER T., GELB D., WOLTERS H.: Polyno-
mial texture maps. Computer Graphics (SIGGRAPH
’01 Proceedings) (August 2001).

[MN98] MEYER A., NEYRET F.: Interactive volumetric tex-
tures. Eurographics Workshop on Rendering (1998),
157–168.

[Ney98] NEYRET F.: Modeling, animating, and rendering
complex scenes using volumetric textures. IEEE
TVCG 4, 1 (Jan. 1998), 55–69.

[PBMH02] PURCELL T. J., BUCK I., MARK W. R., HANRA-
HAN P.: Ray tracing on programmable graphics hard-
ware. ACM TOG (SIGGRAPH 2002) 21, 3 (July
2002), 703–712.

[SC00] SLOAN P.-P., COHEN M. F.: Interactive horizon
mapping. Eurographics Workshop on Rendering
(June 2000), 281–286.

[SLSS03] SLOAN P.-P., LIU X., SHUM H.-Y., SNYDER J.: Bi-
scale radiance transfer. Proceedings of SIGGRAPH
2003 (August 2003), 370–381.

[WL01] WEI L.-Y., LEVOY M.: Texture synthesis over arbi-
trary manifold surfaces. Proceedings of SIGGRAPH
2001 (August 2001), 355–360.

[WWT∗03] WANG L., WANG X., TONG X., HU S., GUO B.,
SHUM H.-Y.: View-dependent displacement map-
ping. Proceedings of SIGGRAPH 2003 22 (July
2003), 334–339.

c© The Eurographics Association 2004.

233

