
Towards a general concept for distributed visualisation of
simulations in Virtual Reality environments

J.Metze1, B. Neidhold1, and M. Wacker2

1Lehrstuhl für Computergraphik und Visualisierung, TU Dresden, Germany
2Computergraphik, HTW Dresden, Germany

Abstract
We present a concept for Virtual Reality-Systems that allows easy design and implementation of applications in
virtual environments as well as fast integration of new hardware and software components into an existing system
of this type. Starting from an abstract module based approach for distributed systems we provide a guidance for
specifying and designing components for VR-Applications with focus on the communication, administration and
visualisation. Finally we have implemented a proof-of-concept for a cab simulator to demonstrate the effectiveness
of our approach.

Categories and Subject Descriptors (according to ACM CCS): I.3.2 [Graphics Systems] Distributed/network graph-
ics, C.2.4 [Distributed Systems] Distributed applications, I.3.7 [Three-Dimensional Graphics and Realism] Virtual
reality

1. Introduction

In the last years computer graphics have entered our physi-
cal world by augmenting or even replacing reality applying
photorealistic visualization and rendering on high resolution
display technologies. Moreover, interaction technologies are
added to render certain tasks of our life more efficient, re-
peatable, and understandable. The goal in the field of Vir-
tual Reality (VR) is to immerse the user into a computer-
generated synthetic world of his own making by visual,
auditory, and tactile spatial presence. Since VR-Systems
haven proven their usefulness providing sufficient robust-
ness, functionality, and flexibility to find acceptance and
to support its seamless integration in our real world, there
has been a great interest and boast of new technologies as
well as applications in many fields like medicine, automo-
tive construction, or rapid prototyping to name just a few.
The big advantage of VR-Systems is the ability to iterate
certain tasks using computer models without huge costs or
risks for humans. Additionally, it is used as a new tool for
communication between wide spread users. Hence, one of
the hottest topics in VR research is the idea of distributed
VR. Additionally this solves another problem: Since models
and the underlying systems for simulation, interaction, and
visualisation become more and more complex, the simulated

world runs not only on one, but on several computer systems,
where the computers are connected over network.

However the use of VR is successful when it brings some-
thing new to the whole experience while maintaining the vi-
ability and usefulness of a product. Often VR-Systems were
designed for specific tasks (or field of tasks) applying a spe-
cial set of hardware and software. New hard- and software
was difficult to integrate. To this end a structured design ap-
proach is critically important for the development of virtual
and augmented environments in real-world applications. We
are driven by this philosophy presenting a modular frame-
work to be used on any kind of existing and future VR-
System. Hence the same toolbox can be used on different
systems or applications in order to compare or combine them
to one large system. New components are easily integrated
to have the latest technology available. Nowadays fast tech-
nology development is especially notable in the field of visu-
alisation. Therefore we introduce a flexible shading system
that transfers some parts of the visual rendering code into the
object description (3D data). This allows us to integrate new
visual effects on the fly without recompiling the code.
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2. Related Work

Since the birth of the notion Virtual Reality there has been
an enormous activity in this field. Commercial industry as
well as research institutes have established a huge pool of
hard- and software to be applied in VR-Systems. Often the
problem with commercial development in this field is the
fact that the software is not open source making it difficult
to incorporate new hard- and software modules. In the mean-
time all big companies have discovered the additional ben-
efits using VR and have created their own custom software
to visualize and manipulate large scale systems. One of the
best-known and most successful standard for distributed VR
has been DIS (Distributed Interactive Simulation protocol)
with its predecessor SIMNET, which was well optimized for
military simulations [PBL∗94].

The Distributed Interactive Virtual Environment (DIVE,
[CO93a] [CO93b] [CO96] [FGS99]) started in 1991, is
an Internet-based multi-user VR-System where participants
navigate in 3D space and see, meet and interact with other
users and applications. It is based on a peer-to-peer approach
with no centralized server, organized as a memory shared
over a network where a set of processes interact by making
concurrent accesses to the memory. Consistency and concur-
rency control of common data (objects) is achieved by active
replication and reliable multicast protocols. A user sees a
world through a rendering application called visualizer. An-
other general design for VR originated in 1996 is the Studier-
stube Augmented Reality Project [SFH∗00]. Many applica-
tions show the wide range of usability where the developer
can fall back upon a great pool of software tools like the
Studierstube Render Array and the OpenTracker - An Open
Software Framework for VR Input [RS01].

CAVERN [LJD97] (the CAVE Research Network) is built
on top of the CAVE architecture and offers a distributed col-
laborative environment. Its toolkit is centred around the IRB,
a network and database part, therefore decoupling it from the
visualisation used. They aim to use the connected resources
of many facilities to improve the design, training and educa-
tion in virtual reality environments.

The VR Juggler [Bie00] approach – an open source virtual
reality application development framework is very similar to
the concept presented here. It provides to the developers a
toolbox of application programming interfaces that abstract
all interfaces including the display surfaces, object track-
ing, selection and navigation, graphic rendering engines, and
graphical user interfaces. Also the FreeVR-project [Bil] is
an open-source virtual reality interface/integration library. It
has been designed to work with a wide variety of input and
output hardware, with many device interfaces already imple-
mented. One of the design goals was to be easily run in exist-
ing VR facilities, as well as newly established VR-Systems.

DIVERSE - An Open Source Virtual Reality Toolkit
[KASK02] is a cross-platform, open source API for devel-
oping virtual reality applications that can run almost any-

where. The goal of DIVERSE is to enable developers to
quickly build applications that will run on the desktop as
well as various immersive systems with the ability to inter-
act with many other APIs and toolkits like OpenGL, Open
Scene Graph, SGI Open GL Performer, and Coin. The Open-
MASK [Fre] (Open Modular Animation and Simulation Kit)
software platform for the development of modular applica-
tions in the field of virtual reality. It can be used to describe
the behavior or motion control of a virtual object as well as
input devices control like haptic interfaces. For the visualiza-
tion, Performer (Sgi) or the OpenSG framework (Fraunhofer
Institute) may be used.

Avango [Tra99], a Fraunhofer Institute project uses
OpenGL and VRML to visualize a distributed virtual reality
environment. Its unique selling points are its scripting ability
and the shared scene graph.

Covise [WSWL02] [WRR], coming from a SGI and su-
percomputer background is a highly modularized toolkit for
a collaborative working environment with its main focus on
computation fluid dynamics and finite elements methods.

Verdi (Virtual Environment for Real-time Distributed ap-
plications over the Internet) consist of several components
providing a multi-users virtual reality server technology us-
ing multicast to optimize the sharing of information among
distributed users (VRSAT). VRML and Java-based technol-
ogy (Cortona) allow end users to navigate and to interact in
shared 3D virtual worlds. The Avalon [Ava] project extends
the X3D/VRML System by the functionality for interaction
devices and complex projection devices such as a CAVE or
a Heye-Wall. It is component based and is easily controlled
by standard protocols like http or soap.

Our approach was written from the ground up. This was
done both for minor legal reasons (a GPL license may not
be applicable for a closed source industry project), and for
finding the narrow path between flexibility and extensibil-
ity on the one hand and runtime performance while main-
taining a high visual quality using modern graphic hardware
on the other hand. Most existing designs suffer from con-
centrating on the collaborating/network aspects and there-
fore neglect the simulation and visualisation parts. So the
design decisions of the presented concept were driven by
the requirements of the visualisation and simulation mod-
ules. The goals were first to combine a state of the art visu-
alisation with the flexibility to incorporate new technology
and second to decouple visualisation from the simulation
module. Due to the many possible applications out of this
visualisation-simulation-concept the extension to a general-
ized VR-System was the next consequent step. However we
always paid attention to keep the system small, preventing
code and feature bloating. We chose a module based archi-
tecture especially to fulfil the needs for a quick integration
process (postulated by a prototyping environment) as well
as one prerequisite for distributed systems or modules. Each
module has therefore to abstract from the underlying plat-
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form and from other modules to ease the exchangeability.
Our system is designed as a module library and not as a
class library, so each part can be developed separately or in-
tegrated from external origins (even as closed source, when
interfaces are adhered to). To maximize the benefits from
a flexible concept and add new content as simple as possi-
ble, an integration pipeline is supported by an intuitive tool
chain, explicitly serving the needs of non-programmers.

We started from a conceptual analysis of a VR-System
which is described in chapter 3. Here we define the major
goals and requirements for a distributed VR-Framework. In
the next section we detail the different modules of our con-
cept from the content creation up to the rendering of the sim-
ulated world. Especially our concept for the communication
module is described here. Finally we apply our framework
to a cab simulator as a proof-of-concept (section 5). We con-
clude this paper by an outlook to future work and a summary
of our concept.

3. The system

Typically VR-Systems – composed of heterogeneous hard-
ware and software parts – are used to setup (new) applica-
tion scenarios and are characterized by a system-user-loop
(figure 1) which consists of the user input (such as actions,
speech, gestures, or haptics), the internal system including
the steps: input interface between human and machine, the
model database, a simulation process to calculate the new
state of the scene, and finally an output step as interface be-
tween machine and human. To close the loop, a visual, au-
ral, or haptic output is provided to the user. Desirably for
new applications or new scenarios it should not be neces-
sary to make changes to the underlying back end. However
each new application needs to integrate existing or emerg-
ing hard- and software technology from wide spread do-
mains (from new hardware devices and interfaces, hardware
drivers over the physical simulation with new algorithms up
to databases and research domains such as data mining, us-
ability and ergonomics surveys) into the system-user-loop.
In most VR-Systems, the integration of new components is
a tedious work. Special modules are implemented for each
application without the possibility to integrate them into one
large unified system. In our system we provide an interface
to incorporate different modules into the VR-System by an
intuitive integration process. After the analysis of the new
applications’ requirements, its stock of hardware and exist-
ing content, ill fitted interfaces are adapted and missing data
is extracted or created. To speed up the integration process
a user-friendly tool pipeline has to be created. In our con-
cept we present a well defined tool chain for content cre-
ation (section 4.1) using a general 3D data format, and a
style sheet transformation process (section 4.5) to adapt in-
terfaces.

To fit the VR-System to new application requirements
each step in the system-user-loop is modelled through one

Figure 1: The general system-user-loop.

or multiple modules specified by a well defined interface-set
up, e.g. different input controllers such as tracking devices,
steering wheels, mice etc.. If none of the existing modules
matches the needed functionality, either a converter or a new
module is created. Usually the modules are instantiated only
once, one typical exception to the rule for VR-Systems being
the visualisation system (a subsystem of the output step), as
some output technologies (CAVE, multi-segmented power
wall, Heye-Wall) require more than one point of view. More-
over, since no single PC could process the needed complex
system the modules have to be distributed on different PC’s.
To specify the data and control flow through the system the
communication links are laid out (e.g. defining components
and channels between the modules, see section 4.5). By dis-
tributing the modules to different run-times or computers we
gain several advantages over a single program version: If one
subsystem fails it will not affect the others either through
separate address spaces or explicit network interfaces. Us-
ing network technology the modules are not restricted to run
on a single machine or operating system which simplifies the
integration of external or proprietary software (e.g. common
render tools like OpenGL Performer or Open Scene Graph).
As to the natural use of threads and processes the usage of
upcoming hyper threading and dual core technology will fur-
ther boost the system’s performance. Using this modulari-
sation and distribution technologies we gain a flexible and
extensible VR-System.

4. Details

In this section we describe the different steps for building
a VR-System and integrating new technology and content
in more detail. The first chapter deals with the work flow of
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content creation and design in order to provide a database for
the VR-System. Then, the next chapters focus on the neces-
sary steps in the system design itself as already seen in figure
1. The different modules and the communication relation-
ships are described. Here we lay out the general concept of
our approach whereas we go more into detail concerning our
application environment and implementational details in the
next section.

4.1. Content creation

Every VR-Simulation needs threedimensional content as a
basis to interact in and to display. Usually these 3D-scenes
have an immense complexity (e.g. large scale outdoor or city
scenes) and to this end we provide the concept of splitting
the modelling process into several steps or abstraction lay-
ers. With this hierarchical editing, each layer can be edited
independently (see figure 2) in the modelling pipeline. To
simplify the data transport between the single layers and to
avoid conversion problems we designed a flexible and ex-
tensible XML-Data format that is used throughout the mod-
elling pipeline (see also section 5). For some applications
(e.g. visualisation of medical data) the hierarchy may be not
applicable, in this case our general XML-Data format allows
the artist to model the whole scene as a single object directly
in the polygon modeller.

Now we detail the work flow of the content creation, mod-
elled by different layers in the hierarchical system: In the
basic layer single atomic objects (e.g. tree, house, or car) in
the VR-Environment are modelled by the object editor and
stored in an object database for later (re)use. To incorporate
highly specialised tools for polygonal modelling, with which
artists are well trained to work, export plugins to standard
modelling software have to be provided. In the next abstrac-
tion layer an artist designs special local tiles that represents
rectangular areas of the VR-System combining an underly-
ing terrain topology with objects from the object database
(e.g. 50m x 50m tile with crossroads, trees, and houses. Spe-
cial care is taken of designing streets and fitting them to the
landscape. The diverse tiles are also stored in a tile database
for later (re)use. The last layer of the hierarchical geome-
try design pipeline is the scenario editor where several tiles
from the tile database can be placed together intuitively and
stored as a whole scene. A screen shot of such an editor is
shown in figure 3. Note that automatic border matching and a
gap filling algorithm has to be provided. Using this pipeline
large landscapes can be modelled at different level of details
ranging from microscopic up to global scale.

Until now we described the modelling process of com-
plex but static 3D scenes. All dynamic or simulation driven
objects in the system are defined directly in the workspace
editor. A simple car for example is dynamically added to the
scene by assigning a car object out of the object database
to a physical car simulation module. While simulating, the
position of the car and its wheels (modelled as sub-objects)

Figure 2: Data flow for content creation.

is controlled by the simulation module and displayed by the
visualisation. All dynamic object connections and configura-
tion parameters of involved modules are stored together and
can be loaded directly by the VR-System.

4.2. Modules

The term modules in the context of VR-Systems can be re-
lated to one of three parts following the input-processing-
output paradigm. Input modules log or measure data from
external software or hardware devices. As there is a great
variety of possible input devices a generalized input com-
ponent eases the prototyping of new input devices. By dis-
tinguishing analogue from digital sources we can easily map
buttons and axes to commands or normalized range data. The
acquired data is sent to the processing part (simulation) that
uses all of the incoming data to compute a new system state
that is transferred to the output modules. Hereby the type
of simulation can vary from machine simulation over crowd
simulation to weather simulation. The output modules inter-
pret this data to present the new system state to the user. By
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Figure 3: Screen shot of the Scenario Editor.

Figure 4: Modules in the VR-Environment.

designing them as thin as possible (e.g. move all time con-
suming computations to other modules), we can channel the
available processing power to the rendering system, result-
ing in higher frame rates and increased visual quality. Each
module is defined over its domain application and can have
more than one instance, e.g. to allow cloning of output chan-
nels (such as CAVE walls). A central data module acts as a
server preserving a consistent state across the system. The
state of all modules is controlled through a defined interface
by a special control centre (see section 4.4) that additionally
has customized scripting abilities. Finally, as the modules
are distributed over a wide range of machines, they have to
be as platform independent and as free of interdependencies
as possible.

4.3. Visualisation

Raised requirements with regard to visual quality often make
it necessary for existing applications to tweak or expand the
visualisation system, whereas new applications incorporate
new technology to become state-of-the-art (per pixel lighting
effects, HDR, soft skinning). Because applications (existing

as well as new ones) should resort to a module stock, they
should use the same visualisation system. The required ex-
tensibility could be achieved by using different versions of
the visualisation source code so that new technology does
not break existing one. But bug fixing and maintaining mul-
tiple versions is inefficient in terms of time and possible ver-
sion conflicts. Moreover changes to the visualisation code
require a compilation and are therefore time consuming and
error prone. To solve this problem, modifications to the vi-
sualisation system should be applied to the data instead to
the code obtaining a flexible and extensible system. Pro-
grammable graphic hardware and in particular high level
shader languages (GLSL, HLSL) present a way to imple-
ment unique graphical effects and transfer the material and
lighting system from the core system to the data creation
process supported by tools such as RenderMonkey [ATI].
A visualisation object is now defined by a 3D model that
encapsulates the material parameters and by an instruction
code that defines the shader to draw the model. Changes to
either the model or the shader code can be propagated di-
rectly to the running application, so not even an application
restart is required. Hence, newer technologies like parallax
mapping or a more complex system like precomputed ra-
diance transfer (PRT [SKS02]) can be used by the applica-
tion without making changes to the underlying visualisation
system. Using a shader system of this type, we face two re-
maining problems: multi pass rendering and application con-
trol. A vertex or fragment shader defines only a single com-
putation pass. To combine them we need a way to specify
the shader to use for the corresponding pass. Additionally a
shader has only very limited local control. A vertex shader
can control several vertex attributes such as position, normal
or colour, a pixel shader is limited to a pixel’s colour and
depth value. There is no way to change the object’s or ap-
plication’s behaviour. Examples are loading a texture that is
specific to a certain kind of graphical effect (e.g. a gradient
texture for a projective shadow mapping), setting application
wide settings (e.g. alpha blending) or texture stage param-
eters (e.g. texture addressing modes). All this requires the
application to gain knowledge about the shader being used
and to choose a different code path. But this hinders the ex-
tensibility and flexibility. A first yet platform dependent step
(and therefore not flexible enough for a generalized solution)
is offered by Microsoft’s DirectX. Though it is superseded
by another concept in the presented system its core ideas
are still valid. DirectX extends the shader language with a
descriptive effect language (now known as DirectX standard
annotation syntax, DXSAS). It enables the effect to use multi
pass rendering and has limited application control in a way
that it gives access to the graphics API. CGFX proposes a
solution that supports DirectX as well as OpenGL but does
not allow any sort of control flow or scripting and is there-
fore not a viable solution to some problems.

So we propose an extended approach that keeps the name
effect (see figure 5) but makes use of a scripting language
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Figure 5: Shading system control flow.

to implement the desired features. The application calls the
script with a defined interface to support multi pass render-
ing (Initialize(), BeginPass(), EndPass() etc.). The script it-
self uses a generated interface that wraps the visualisation
system to change application or object specific settings. As
the script is only invoked on a per object base, the speed hit
is negligible. The step from a descriptive effect language to
a procedural one allows advanced features like effect anima-
tion, shader level of detail, or user defined quality settings.
Most of these are supported by DXAS or CGFX, but the
choice of technique or animation control remains in the ap-
plication code. A scripting system allows the user to change
this behaviour on a much finer scale without making any
changes to the application code itself, therefore fortifying
flexibility.

4.3.1. Projection

The final sub module of each visualisation chain consists
in displaying the produced images on some output device.
This could range from a head mounted display up to a
tiled multi projection display or a CAVE. This chapter deals
with the problems especially arising with projection meth-
ods: To maximize the immersion in VR-Systems a field of
view larger than 180 degrees, desirably 360 degrees is to
be covered. To this end several displaying units are used
which (back-)project the generated scene by possibly over-
lapping images on planar or curved surfaces. Hence, just
projecting the produced images directly without further cor-
rection would produce spatial discontinuities resulting from
different projection angles to the wall and different construc-
tions of the projectors which noticeably hinder the immer-
sion in the VR-System. The analysis of the projection meth-

ods yields separate problems resulting in different distortion
types. The first consist in the installation of the projectors.
Usually they are mounted on the floor or to the ceiling, there-
fore the projection wall is not orthogonal to the optical axis.
The second problem comes from the projection onto non-
planar walls. Especially in simulators the images are dis-
played onto cylinder-, dome-, or sphere-shaped walls. To
sum up all the mentioned projection types result in a non-
uniform pixel density of the image perceived as distortion
by the user which influences considerably the impression of
the image.

Figure 6: Distortion due to installation of projectors and
projection onto curved surfaces.

Typically the first problem is solved by a special projec-
tion lens or calibration tools of the projector. This of course
could be omitted in the case of back projection where the
projector can be mounted onto the optical axis of the wall
but is very rarely used for large VR-Systems like a CAVE or
a simulator. Also the second problem may be tackled by spe-
cial lenses. However for each projection plane configuration
we would need such special cost-intensive hardware.

To preserve the flexibility of our approach and to adapt
quickly to different situations and applications we propose a
software based calibration algorithm in order to render the
displayed images in a VR-System as close to reality as pos-
sible. The goal is to maximally reduce the distortion result-
ing from the projection set-up applying an inverse transfor-
mation. Since by a software approach concerning the pixel
density of the projected images we are limited by our projec-
tors, we can only reduce the quality of the projection which
means a reduction in detail. Hence we trade of quality of
the displayed image against a consistent image projection
to the user to reduce the spatial discontinuities and maxi-
mize the immersion. To this end, two changes in the ren-
dering pipeline are possible. First, before the projection step
to the image plane, we could transform the (three dimen-
sional) geometry of scene by an additional transformation
which acts on vertex scale of the modelled world. In this
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Figure 7: Parametric pixel transformation function for soft-
ware distortion.

case large triangles could cause major problems making fur-
ther global or view dependant subdivision steps necessary.
Of course this leads to additional computational costs. The
second, in our eyes, better approach, is pixel based where the
image is transformed after the projection step in the render-
ing pipeline by rendering the image on a curved mesh. This
step is calculated easily by modern graphics hardware and
can be adapted to upcoming graphics cards. We propose to
use a formula (figure 7) that describes the transformation of
each pixel (x,y) in the rendered image. To modify the image
distortion we use six parameters for scale, offset, trapezoid
and 3 types of cushion. With these parameters all distortion
situations on cylinder-, dome-, or sphere-shaped walls can be
handled well. For further details of our implementation we
refer the reader to section 5. We prefer this static parameter
driven calibration approach to other previously published au-
tomatic calibration systems [CCF∗00] [BEK05] because we
do not need a visualisation onto irregular or dynamic pro-
jection planes. Another disadvantage of such systems is that
they need additional hardware such as cameras and much
computing power for image recognition.

4.4. Control Centre

As described in section 4.2 the control centre is a special
module that is responsible for global control of all involved
modules in the VR-System. The main tasks are state control,
error handling and configuration control of each individual
module as well as global workspace management (see figure
8). Such an module is necessary because all involved mod-
ules are distributed over the local network and need to work
together in a defined way. To simplify programming and us-
age of the system we define a global state machine that must
be implemented for all modules (see figure 9). In the con-
trol centre all modules are listed and any state change can be
triggered for every module through the user interface.

Figure 8: Tasks of the control centre.

Initializing the system, all modules are started into the
stopped state automatically on boot time. This is necessary
because all communication between the control centre and
the other modules is done through a network channel that
requires a running application. In this stopped state every
module switches to a standby position consuming a mini-
mum of CPU power and waiting for other commands from
the control centre. All modules involved in the user inter-
action (e.g. visualisation, sound, input-controller) should in-
dicate this state to the user. The visualisation for example
could show a special screen. While the simulation is run-
ning all modules are in the started state, doing their assigned
job. Especially when you want to stop the simulation for a
short time e.g. for changing some parameters or analyse the
actual output it is useful to add an additional paused state
that mixes the behaviour of the other two states: For every
module we define individually whether the module should
continue its work or behave like in the stopped state (e.g. vi-
sualisation should go on working but a force feedback device
should stop acting).

A global error handling for the modules is also done by
the control centre. Through a dedicated network channel
each module is able to send an error level together with a
human readable message that is displayed in the control cen-
tre’s user interface. With special error level definitions (de-
bug, info, warning, error and critical) we are able to provide
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Figure 9: General module state machine.

both error handling and logging to the whole system. In sel-
dom cases modules can exit because of unexpected critical
errors that cannot be handled by the control centre. As the
network system is no longer running, in this case the mod-
ules must be restarted by the user manually (e.g. with a re-
mote control system [ATT]).

Another feature is the runtime configuration of the mod-
ules in the control centre by accessing the script interface of
every module over a network channel. In detail this func-
tion is realized by sending script code when using spe-
cial user interface element. For example a button called
"resolution 800x600" sends the command "vis.sizex=800;
vis.sizey=600;" to the visualisation to change their actual
resolution. Beside state handling another important task of
the control centre is to define the workspace in the actual
session (see also section 4.1). The workspace includes initial
configuration information for all involved modules. When
the workspace is changed all modules are notified and reset
to the stopped state in the new workspace environment.

4.5. Communication

As the modules need to transfer data between each other
in order to fulfil the application’s requirements some sort
of communication infrastructure has to be established. To
model the multiple communication links between the differ-
ent modules some terminology has to be defined (see figure
10).

A module (e.g. input, database or visualisation) consists
of one or more components. Each component either offers
a service to other modules or uses another modules service.
The communication between two components is defined as
a channel, the end points are called server and client. As
some modules can have more than one instance (e.g. the vi-
sualisation with multiple views) the channel either uses a
one-to-one (client-server) or a one-to-many (broadcast) con-
nection. In either case the component defines an interface
to send method calls (like RPC [Sun88]) over a channel. A
low-level network interface packs this structured data into

Figure 10: Abstract communication scheme.

byte arrays and sends them via sockets to the corresponding
partner [Met]. The access to the Internet protocol is encap-
sulated in an exchangeable layer to allow the use of different
network technologies [Myr] [ATM]. To define the mapping
between a message’s signature and its byte representation
an IDL [ISO99] like language is used. This specification in
XML (see figure 12) is transformed with an XSLT script (see
figure 11) into a dynamic library code base. For each channel
in the communication system one XML file is specified. The
use of XSLT allows a simple integration of different imple-
mentation languages (C#, Java etc.) and operating systems
by exchanging the code base and or network library. There-
fore the usage is transparent to the developer of each module.

The components’ architecture allows a quick adaptation to
changed or newly defined communication interfaces, since
only a code generation and a library rebuild is necessary.
Most modules have a clearly defined domain interface but
no knowledge about other modules that may use this inter-
face. Using the component notion we bind a subset of the
two module’s domain interfaces together. During prototyp-
ing it would be preferable to have access to the complete
functionality without the need to define a XML specification
for the whole module. A built-in script component solves
this in an elegant way, as each module publishes its inter-
face to the scripting language (supported by an automatic
wrapper generator [Bea] [Cel]). The script component gives
access to the scripting interpreter on the target machine. So
script code is transferred to the communication partner, exe-
cuted locally and the return value is sent back. As this brings
possible security problems (minor ones as the VR-System
is a closed system) and a speed hit (source code is encoded
less efficient) these type of communication should be limited
to prototyping or out-of-band messages. An example for the
usage of the script interface is given in section 4.4.
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Figure 11: Dynamic component generator.

5. Implementation

All concepts described above have been applied to an imple-
mentation for the interactive automotive simulator hardware
at the TU Dresden (see figure 13). This hardware consists
of a six degree-of-freedom motion platform with a closed

<messagetable>
<!-- computes X*Y over network -->
<message name="ComputeProduct">
<timeout>1500</timeout>
<id>11</id> <!-- unique function id-->
<returns>

<type>double</type>
</returns>
<parameter>

<param>
<name>X</name>
<type>double</type>

</param>
<param>

<name>Y</name>
<type>double</type>

</param>
</parameter>

</message>
<message><!-- ... --></message>

</messagetable>

Figure 12: Example of a simple channel description XML
file.

dome at the top. Inside the dome three projectors generate
a 180 degree visualisation in front of a fully functioning
replaceable cab that contains all input devices for the user
(see figure 14). In the background there is the operator cen-
tre containing all computers and fast Ethernet network hard-
ware used by the simulator. Through the module metaphor
(see section 4.2) each module normally runs on a different
computer to gain flexibility. The computers all over our sys-
tem are up-to-date standard PCs (Intel or AMD) working
with Windows or Linux, depending on the module.

Figure 13: Outside the interactive automotive simulator.

Figure 14: Inside the interactive automotive simulator.

As the graphical data exchange format of all tools in
the modelling pipeline (described in section 4.1) we de-
signed an own XML based scene graph format called
XML3D [NBK∗]. Compared to other related formats
(VRML or X3D [Web]) the benefits of XML3D are very
simple-to-use triangle geometry and shading functions, a
powerful hierarchical structuring and grouping system and
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the possibility to easily store additional data in a way that the
file remains readable by the visualisation (e.g. add collision
information for the physical simulation). As 3D object con-
verter into XML3D we implemented plugins for Discreet’s
3ds max and Alias’ Maya to benefit from these state of the
art polygonal modelling tools. The other content aggregation
tools in the modelling pipeline (Tile-Editor and Szenario-
Editor) are implemented in C# because of the powerful and
easy-to-use UI classes in Microsoft’s .NET Framework.

Besides the graphical input data, that is loaded by the
database module during the initialisation process, all other
input to the actual VR-Simulation is generated through the
cab module. This module encapsulates the CAN bus proto-
col [CAN] used by almost every cab in the automotive indus-
try to trigger the input and control devices (e.g. steering or
accelerating). As an optional replacement for the cab module
we developed a configurable DirectInput module that con-
nects standard PC peripherals such as keyboard, mouse and
joystick to the simulation.

Figure 15: Developed modules and their communication
links.

The heart of our VR-System (see figure 15), the simula-
tion module, provides a real time calculation for the dynamic
objects of the simulated machine with the help of a common
equation solver (e.g. 4 wheels and 1 body for a simple car).
The equations that describe the object-object and object-
terrain interaction are obtained from a semi-automatic sim-
plification of high fidelity physical models [KP04]. The sim-
ulation module generates output data for the three modules

visualisation, sound, and motion. Our visualisation (figure
16) generally described in section 4.3 is implemented in
C++ on top of an abstraction layer that translates all func-
tion calls into either the OpenGL or DirectX API. By this
we can profit from the highly optimized DirectX drivers on
the Windows Platform as well as from the possibility to run
our visualisation on Linux also. This broadens the potential
application base, which shows that platform independence in
the design of each module is an important issue. Moreover
our application runs as a desktop application with multiple
monitors, projectors, or even a stereoscopic system (pow-
erwall, CAVE). System state synchronisation issues typical
in multi-node environments are solved by broadcasting the
simulation data. Hence, using fast graphic hardware we can
guarantee synchronized render output. A second advantage
is that we can switch the underlying render core to evaluate
new technologies that have not been released in both APIs at
the same time. By using the described shader system we have
decoupled the shader code from the application, a feature re-
quired by an automatic shader generation/LOD algorithm,
making use of per pixel technologies like normal, specular,
or shadow mapping. The pixel based software distortion al-
gorithm we introduced in section 4.3.1 cannot be efficiently
implemented on modern graphic hardware in a straight for-
ward (say per pixel) way. So we apply the algorithm to a reg-
ular mesh of 50x50 squares in a vertex shader and apply the
previously rendered visualisation as a texture to that mesh.
To handle the small overlapping regions in multi projection
environments we use an additional blending texture that de-
fines the visibility of each pixel in the final rendering. It is
applied for each colour channel in a pixel shader. The sound
and motion modules are implemented straight forward. The
first one mixes some recorded engine noise samples depend-
ing on the engine load, the second one is controlled by a set
of parameters (velocities and accelerations) that are trans-
mitted into the device driver of the motion platform.

By now the whole simulator system is used almost all of
the time for research and development with the goal to have
a VR-environment that matches the real world in the focused
aspects as good as possible. At this point we refer the reader
to the video (provided as additional material) "Interactive
Automotive Simulator" showing the described VR-System
in action.

6. Conclusions and Future Work

We demonstrated a new approach for designing and imple-
menting a general interactive VR-System with special fo-
cus on extensibility. We identified abstract module types
starting from the general system-user-loop and presented
abstract methods for communication, system control, and
visualisation. Additionally a detailed specification and de-
scription of these modules is given. Moreover, a hierarchical
data pipeline for content creation is presented that integrates
seamlessly into the prior defined system. To demonstrate the
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Figure 16: Screen shot of the visualisation.

practicability and flexibility of our approach, we outlined the
implementation in the field of a interactive automotive sim-
ulator.

In order to provide support for a wider field of possible ap-
plications more hardware and software components have to
be integrated into the general system in the future. Concern-
ing hardware we want to integrate support for VR typical pe-
ripherals (tracking systems, data gloves, speech and gesture
recognition etc.). We also scheduled the integration of new
software technologies for data management with a database
to simplify collection and reduction of data obtained in er-
gonomic studies. Another issue is the integration of a com-
mon physics engine for simulating rigid body objects. Fi-
nally a generalised sound module is planned that fulfils the
requirements of a VR-System and supports EAX or Dolby
Surround. Each extension of the system should be imple-
mented as an separate module in order to profit from the easy
to use extensibility capabilities of our approach.
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