

Managing Missed Interactions in Distributed Virtual En-

vironments

S. E. Parkin, P. Andras and G. Morgan

School of Computing Science, University of Newcastle upon Tyne, UK

Abstract

A scalable distributed virtual environment (DVE) may be achieved by ensuring virtual world objects

communicate their actions to only those objects that fall within their influence, reducing the need to send

and process unnecessary messages. A missed interaction may be defined as a failure to exchange mes-

sages to appropriately model object interaction. A number of parameters under the control of a DVE de-

veloper may influence the possibility of missed interactions occurring (e.g., object velocities, area of in-

fluence). However, due to the complexities associated with object movement and the deployment envi-

ronment (e.g., non-deterministic object movement, network latency), identifying the value for such pa-

rameters to minimise missed interactions while maintaining scalability (minimal message passing) is not

clear. We present in this paper a tool which simulates a DVE and provides developers with an indication

of the appropriate values for parameters when balancing missed interactions against scalability.

Categories and Subject Descriptors (according to ACM CCS): H.5.1 [Information Interfaces and Presen-

tation]: Multimedia Information Systems - Artificial, Augmented, and Virtual Realities C.2.4 [Distributed

Systems]: Distributed Applications

1. Introduction

Providing distributed virtual environments (DVEs) that

may scale to support many hundreds and thousands of

users while satisfying real-time (responsive virtual

worlds) and consistency (participants view mutually

consistent events) requirements is a significant research

challenge. In addition, as message exchange is the only

way to propagate events to geographically dispersed

users, care must be taken to prevent exhaustion of

bandwidth and available processing resources.

Interest management is an approach to achieving

scalability in a DVE (e.g., [ZP91] [GB95]): freeing up

bandwidth and processing resources via targeted mes-

sage passing (not broadcast), ensuring messages are

only sent to recipients that may be interested in them.

Defined areas within a virtual world are used to restrict

message passing: a message and its receivers are associ-

ated to an area of a virtual world. Areas used for re-

stricting message passing are commonly termed areas of

influence and an object is said to exert influence (send

messages) to all other objects that share its area of in-

fluence.

When modelling restricted message passing based on

object localities in a virtual world there is an opportu-

nity for missed interactions. Missed interactions occur

when objects that should interact don’t due to a lack of

message exchange. Missed interactions are related to

the consistency-throughput tradeoff mentioned by

Singhal and Zyda [SZ99]:

“It is impossible to allow dynamic shared state to

change frequently and guarantee that all hosts simul-

taneously access identical versions of the state”.

Considering the consistency-throughput tradeoff,

missed interactions occur because the degree of incon-

sistency present in a DVE is sufficient to allow an ob-

ject’s traversal of an area of influence to go undetected

by an interest management scheme. Assuming that net-

working and processing resources may not be easily

altered, there are three parameters within a DVE that

may be manipulated by a developer in an effort to

minimise missed interactions: (i) frequency of message

Eurographics Symposium on Virtual Environments (2006)
Roger Hubbold and Ming Lin (Editors)

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org

sends; (ii) object velocities; (iii) sizes of areas of influ-

ence. At the moment, deriving values for such parame-

ters is left to a developer’s ad-hoc estimation.

We argue that due to the way objects move and inter-

act in a virtual world, ad-hoc estimations by developers

are not the most appropriate manner in which to attain

values for parameters that influence missed interactions

and scalability in DVEs. We present a simulation tool

that allows a developer to make a more appropriate

choice for determining the values of such parameters.

We demonstrate our findings via a series of experiments

that highlight the usefulness of our simulation tool.

Section 2 continues with background and related work,

section 3 describes our simulator, section 4 describes

our experiments and section 5 presents our conclusions.

2. Background and related work

In this section we describe approaches to interest man-

agement and how these approaches are associated to the

missed interaction problem. A classification of the

missed interaction problem is presented and the com-

mon steps a developer may take to minimise missed

interactions are described.

As this is the first time a classification of missed in-

teractions has been explicitly described we decided to

limit the scope of our work. We restrict our model to

the origins of interest management and only consider

client/server and peer-to-peer DVE implementations.

2.1 Interest Management

Interest management may be classified into two catego-

ries: (i) region based; (ii) aura based. In the region

based approach (e.g., [ZP93] the virtual world is com-

monly divided into well defined uniform sized regions

(figure 1.i) that are static in nature (i.e., their bounda-

ries are defined at virtual world creation time). The

recipient of a message resides within the same, or

neighbouring, region as the sender. In the aura based

approach (e.g., [GB95]) each object is associated to an

aura (usually a sphere) that defines an area of the virtual

world over which an object may exert influence. Ide-

ally, an object may potentially communicate their ac-

tions to only objects that fall within their aura.

The aura based approach to interest management

provides a more accurate model of object interaction on

which to base message exchange than the region based

approach. Figure 1 describes a virtual world scene us-

ing region and aura based interest management. Using

auras we may determine that object e (plane) may influ-

ence objects c and d. However, in the region based

approach object e may only influence object d (as c is

in another region). We could expand the area of influ-

ence of object e to additional regions and so allow e to

influence c, but this would result in object e appearing

to influence object f (messages unnecessarily sent from

e to f).

a

b

c

d

e
a

b

c

d

e

1

2

3

4

f f

(i) Region (ii) Aura

Figure 1: Areas of influence.

An alternative to exerting influence only when an ob-

ject is within an aura is when auras overlap. In this

model the individuals in figure 1 (c and d) may influ-

ence the plane (e). This particular approach is com-

monplace when most objects in the virtual world are

similar in nature (i.e., all human type avatars). In addi-

tion, gaming environments tend to favour this scenario

as influencing someone else without their ability to

react detracts from game play (is not fair) [S05].

2.2 Message exchange

To facilitate message exchange a communication sub-

system must exist that identifies message recipients in a

manner suitable for implementing an interest manage-

ment scheme. In the region based approach, message

exchange may be achieved by associating each region

with an identifier that may be used to send/receive mes-

sages to/from. For example, each region may be as-

signed an IP-multicast address. If an object, say Obja,

traverses a region boundary, say region 1 to region 2,

Obja will subscribe as a sender/receiver for region 2’s

IP-multicast address and unsubscribe from region 1’s

IP-multicast address. Objects need only be aware of

which region they are in to enable message passing to

occur. There is no need for individual objects to contact

each other directly to determine message recipients.

Due to the lack of static regions in the aura approach,

identifying message recipients is via the objects them-

selves (peer-to-peer) or via a server. In a peer-to-peer

approach all objects must exchange messages periodi-

cally to realise when aura influence is exerted over

objects. Such messages are commonly termed heartbeat

messages (indicating the location of a sending object)

and occur infrequently to avoid exhausting available

bandwidth and message processing resources. Once

aura influences have been determined, via a heartbeat

message, then high frequency message exchange be-

tween objects may be enacted. In the peer-to-peer ap-

S. E. Parkin, P. Andras & G. Morgan / Managing Missed Interactions in DVEs

c© The Eurographics Association 2006.

28

proach this is commonly achieved independently be-

tween two objects: if an object, say Obja, receives a

heartbeat message from Objb, and determines that Objb

is influencing Obja then Obja will make it known that it

is interested in receiving Objb’s high frequency mes-

sages.

In the server approach to aura based interest man-

agement all objects send high frequency messages to a

server, which assumes responsibility for determining

interaction via aura influences. Once a server deter-

mines the appropriate influences then high frequency

messages may be relayed between objects via the

server.

2.3 Missed Interaction

For the purposes of defining different types of missed

interactions, we introduce the notion of a session. A

session is an unbroken period of influence exerted by

one object over another. Using a session, we may de-

scribe two types of missed interactions: Complete –

throughout a session no messages were exchanged as

expected; Partial – throughout a session a smaller

number of messages were exchanged than expected.

A session may be unary or binary in nature depending

on the expected flow of message exchange. A binary

session occurs when both objects should exchange mes-

sages (they are influencing each other). A unary session

occurs when only a single object should send messages

(only one object is influenced). In the region based

approach all sessions are binary (as objects that share a

region influence each other). In the aura approach unary

sessions are possible if an object must be within an aura

to be influenced. Missed interactions may manifest

themselves as a unary session when a binary session

should have occurred. For example, two objects, say

Obja and Objb, should be exchanging messages, but

only Obja has realised this during the session.

The manner in which a DVE is implemented (server

or peer-to-peer) has an influence on missed interac-

tions. A server must inform objects of sessions taking

place before missed interaction occur. As all messages

are sent between objects and a server at a high fre-

quency, missed interactions relate to the speed (scal-

ability) of the server in determining interaction. In a

peer-to-peer based solution missed interactions are

related to heartbeat message exchange: the less frequent

heartbeat messages are exchanged the more likely

missed interactions will occur.

2.4 Avoiding missed interactions

Although much effort has gone into building scalable,

responsive DVEs, attempts to minimise missed interac-

tions have received little interest in the literature. In

fact, no attempt has been made to describe the types of

missed interactions that may occur and how these may

relate to different interest management schemes given

client/server and peer-to-peer implementation models.

Minimising missed interactions is achieved in an ad-

hoc manner at the moment: manipulation of maximum

velocity of objects, varying interval between heartbeat

message exchanges and altering the area of influence

size. Basically, if missed interactions are occurring too

frequently as to render the DVE inoperable then a de-

veloper may (i) reduce the maximum velocities of ob-

jects or (ii) increase the areas of influence so there is a

greater chance influence may be resolved before areas

of influence are traversed by objects. In addition, when

taking a peer-to-peer approach the interval between

heartbeat message exchanges may be decreased.

Altering the parameters, described above, that govern

the function of a DVE will manifest themselves as a

change in Quality of Service (QoS) presented to users:

decreasing the velocity of objects may reduce the re-

sponsiveness of a virtual world whereas increasing

areas of influence or decreasing interval times between

heartbeat message exchanges may result in unnecessary

message passing. The key question is “what should

parameters governing influence and message exchange

frequency be set at to provide a scalable, responsive

virtual world”?

2.5 Contribution of paper

We have emphasised the difficulties in determining

parameters that have an influence on missed interac-

tions, responsiveness and scalability in a DVE. Rather

than an ad-hoc approach for determining such parame-

ters, we have developed a simulation tool to provide a

more appropriate indication of parameter values. Such a

tool allows experimentation with different parameter

values while allowing a developer to see how such pa-

rameter values have an affect on missed interactions

and the volume of messages sent in a simulated DVE.

This allows a developer to balance scalability and re-

sponsiveness (limited message passing) against missed

interactions.

The contribution of the paper may be summarised as

follows: (i) provide a clear understanding of the missed

interaction problem; (ii) describe a simulation tool to

aid in managing missed interactions; (iii) provide per-

formance figures giving an indication as to how best to

manage missed interactions.

S. E. Parkin, P. Andras & G. Morgan / Managing Missed Interactions in DVEs

c© The Eurographics Association 2006.

29

3. Simulating a DVE

When developing our simulator we decided to concen-

trate on a single approach to interest management and

implementation. We chose aura based interest manage-

ment deployed in a peer-to-peer implementation as

auras provide a more accurate, therefore desirable,

model of influence than regions (see 2.1). In addition,

this choice provides a more challenging test as missed

interactions are also dependent on heartbeat message

exchange.

3.1 Objects

We want to simulate an environment that is similar to a

virtual world supported by a DVE application. This

requires simulating object movement in a three dimen-

sional space. We assume an object’s movement is de-

pendent on object type and there is more than one type

of object present. For example, a plane will tend to

follow a more deterministic flight path at high veloci-

ties as opposed to an avatar (digital representation of

DVE user) that may exhibit a more non-deterministic

movement at lower velocities.

When investigating the literature we found that the

majority of studies concentrated on human behaviour

during “crowding” in the real world. For example,

studying crowds when leaving/entering stadiums in

large numbers to improve safety [BBP*05] or studying

crowds in urban areas to improve town layouts

[HBJ*05]. The mathematical models and associated

analysis that have been applied in the real world have

not been applied in virtual worlds. Furthermore, there is

no proof that what occurs in the real world may be rep-

licated in a virtual world. However, we found that

spread throughout the DVE literature there is an under-

standing that objects, particularly avatars, will crowd

and disperse throughout a simulation (objects rarely

stand in isolation in a virtual world – there is a drive to

interact) [SZ99].

When considering which virtual world properties to

simulate we decided against introducing obstacles: we

decided to allow objects to roam freely without hin-

drance. The reason for this decision was to ensure that

figures we receive from the simulation would be free

from virtual world environmental constraints (such as

space limitations due to obstacles). This will give a

clear indication of missed interactions occurring due to

underlying networking and processing constraints as

opposed to reflecting the influence virtual world obsta-

cles may be having on missed interactions. However,

exploring how different virtual world layouts, and the

associated dynamics of crowding, influence missed

interactions is an interesting area for research, but is

beyond the scope of this paper.

Introducing types for objects based on velocity and

style of movement is a necessity for modelling missed

interactions. As can be seen from the descriptions pro-

vided in section 2.3, object velocities may vary to such

an extent that one object may pass another before influ-

ence can be detected and message passing enacted. The

style of movement is also a factor in determining

missed interactions: influences of objects that have a

tendency to stop moving for periods of time may be

identified more accurately in real-time than those ob-

jects constantly on the move.

When considering the style of movement, we define

four types of object movement style for our simulation:

• Direct – Objects move, without stopping,

along a linear path at a fixed velocity.

• Indirect – Objects move along a linear path

at a fixed speed but may deviate for periods

of time from their path.

• Stuttering – Objects move along a linear

path at a fixed speed (when moving) but may

pause for periods of time.

• Static – Objects do not move.

Our choice is based on the assumption that these styles

of movement exhibit the basic combinations of directed

object movement possible. By combining these styles

there is a possibility of deriving quite complex move-

ment scenarios. However, in the first instance concen-

trating on these styles was considered sufficient for our

purposes.

An attempt is made to provide realistic movement of

objects within the virtual world via the positioning of

targets. A number of targets (T) are positioned within

the virtual world that objects (O) travel towards. Each

target has the ability to relocate during the execution of

an experiment. Relocation of targets is determined after

the elapse of some random time (between Tt
min and

Tt
max) from the time the previous relocation event oc-

curred. Furthermore, objects may change their targets in

the same manner (random time between Ot
min and Ot-

max). Given that the number of targets is less than the

number of objects and Tt
min, T

t
max, O

t
min and Ot

max are

set appropriately, objects will cluster and disperse

throughout the simulation.

3.2 Messages

To model missed interactions we need to structure the

simulations in such a way as the delays associated to

processing and networking overheads are present. That

is, the delayed receiving of heartbeat messages that lead

to missed interactions must be modelled.

S. E. Parkin, P. Andras & G. Morgan / Managing Missed Interactions in DVEs

c© The Eurographics Association 2006.

30

Introducing network latency and processing overhead

complicates the simulation, as the sending of a message

and the receiving of a message will not occur at the

same point in global time. Therefore, the receiver, say

Obj1, of a heartbeat message sent by Obj2 will be mak-

ing a judgement on whether the current known aura of

Obj1 overlaps with the aura of Obj2 with the position of

Obj2’s aura described at the time Obj2 sent the message.

This means that the judgement Obj1 makes is arrived at

using out of date data relating to Obj2’s aura.

To model the delay associated to network latency and

processing overhead we introduce two variables that

describe two periods of time: Dlat describes delay asso-

ciated to network latency; Dprc describes processing

time required to resolve interest management (process-

ing overhead). For example, given low numbers of

objects but limited networking resources Dlat would be

set high whereas Dprc would be set low.

As we do not wish our simulation to be influenced by

real processing delays present in an execution environ-

ment (e.g., CPU speed, memory availability, pre-

emptive operations in the operating system) we base

our measure for time on algorithm iterations. That is,

one iteration of our simulation counts as one unit of

time.

3.3 Parameters

A number of parameters may be set on a per object

basis: velocity, heartbeat interval, high frequency inter-

val, network and processing delay, aura size, and object

type. There are a number of parameters that may be set

that relate to the virtual world itself: size, number of

objects, and number of targets.

Targets may be specifically placed around the virtual

world and objects assigned targets. As there may be

many hundreds, possibly thousands, of objects in a

single simulation such values may be loaded into the

simulation via a file. Creation of such a file is left to the

developer. However, the simulator does allow a quick

setup of a simulation (and creation of appropriate file),

setting up aura size, velocity, heartbeat interval and

high frequency interval on a per object type basis.

3.4 Outputs

The simulator provides graphical representations (line

graphs), describing complete missed interactions, true

interactions (when interactions should have occurred),

unary interactions, partial interactions and number of

messages sent (high frequency and heartbeat). Graphs

are drawn in real-time on the screen for a developer to

inspect as the experiment progresses. In addition, a file

is produced that contains, in text format, the data relat-

ing to the outputs listed, allowing a developer to load

their data into an analysis tool (e.g., spreadsheet) for

further inspection. Figures 2 and 3 are screenshot from

the simulator showing true aura overlap and high fre-

quency message exchange graphs generated during a

simulation.

Figure 2: True aura overlaps graph.

Figure 3: High frequency message exchange

4. Performance

To demonstrate the usefulness of our simulator we car-

ried out an experiment to aid in determining the appro-

priate parameters for a DVE implementation. Our goal

was similar to many developers of DVEs and has been

mentioned a number of times throughout the paper, but

is worth repeating here for clarity:

At what time interval should I send heartbeat

messages and at what size should I set auras to

minimise missed interactions while ensuring I

don’t overburden the available networking and

processing resources (achieve scalability)?

4.1 Experiments

Two series of experiments were conducted to determine

the influence varying aura size and heartbeat interval

have on missed interactions (complete and partial) and

the number of messages sent. In each experiment all

parameters remained the same except the parameter in

question (i.e., aura size, heartbeat interval):

Number of objects: 50, Virtual world size:

50003, Number of iterations: 500, Number of

targets: 2, Distribution of object types: 25%

(equal distribution), Velocity: randomly chosen

between 10 and 20 for all objects, High frequency

S. E. Parkin, P. Andras & G. Morgan / Managing Missed Interactions in DVEs

c© The Eurographics Association 2006.

31

message interval: 5 (for all objects), Network la-

tency: 2 (for all objects), Processing latency: 1

(for all objects), Number of targets: 2.

The parameter values used in the experiments model an

environment with a low number of objects in a high

performance network. Objects are moving relatively

quickly in the simulation (direct moving objects capa-

ble of moving from one side of the world to another

within the execution time of the experiment).

Targets are not relocated, ensuring that most objects

will have a reasonable chance of reaching their targets

during the execution of an experiment. This guarantees

that aura overlaps will be common, and grow in com-

monality as the simulation progresses. Figures 2 and 3

are actual graphs derived from one of the instances of

our experiments, with figure 2 showing that true aura

overlaps do increase as expected due to clustering.

In the first experiment series we increased heartbeat

intervals gradually from 5 through to 50 inclusive leav-

ing aura sizes for all objects at 80. In the second series

of experiments we increased the aura size (for all ob-

jects) from 5 through to 300 inclusive leaving heartbeat

interval at 25 for all objects. At each experimental step

we ran ten experiments and derived the mean value

associated to complete missed interactions, partial in-

teractions and number of messages sent.

4.2 Results

The results are shown in the graphs displayed in figures

4 through to 9. We first consider the graphs that relate

to the experiments in which the heartbeat interval was

altered (figures 4, 5 and 6).

In the graph shown in figure 4 we observe that as the

heartbeat interval increases the number of messages

sent decreases. This decrease in messages sent is sig-

nificant in that at a heartbeat interval of 5 there are

~250,000 messages sent compared with ~50,000 sent

when the heartbeat interval is 50. This indicates that

heartbeat messages dominate the number of messages

sent. This is to be expected as a heartbeat message is

sent to all objects. This calculation approximates an

estimate a developer could carry out when determining

how many messages are sent:

Determine number of messages sent if all objects

send messages to all other objects: Number of

objects * Number of objects – 1 = 50 * 49 =

2450

Determine the number of times all objects would

send messages to all other objects: Number of

iterations / heartbeat rate = 500 / 5 = 100 (send

rate = 5), 500 / 50 = 10 (send rate = 50)

From the above calculations determine, ap-

proximately, how many heartbeat messages are

sent overall: 2450 * 100 = 245, 000, 2450 * 10

= 24, 500

The graph in figure 4 approximates the estimate when

heartbeat interval is around 5. However, as the heart-

beat interval increases to 50 the difference between the

estimate and the actual values deviate significantly,

indicating that high frequency message exchange

(which is dependent on aura overlap detection) influ-

ences the figures in this range. This graph does indicate

that the simulator is providing results that may be con-

sidered equivalent, in respect of messages sent, to what

a developer can best estimate and is not, therefore, de-

picting something unexpected. The graph, therefore, is

most useful when heartbeat messages become less

dominant as a percentage of all messages sent.

The complete missed interactions graph (figure 5)

rises from 20% to almost 40% for heartbeat intervals

changing from 5 to 10, but after 10 the graph flattens

out, rising only a few percentage points between heart-

beat interval values 10 and 50. This indicates that if a

developer wants to see a marked improvement when

avoiding complete missed interactions then heartbeat

intervals lower than 10 must be considered. In addition,

the graph indicates that a developer may as well use a

heartbeat interval of 50 rather than 15 (saving network-

ing and processing resources).

In the graph shown in figure 6 the percentage of par-

tial missed interactions rises as the heartbeat interval

rises. This graph is interesting in that it does not flatten

out in the same manner as the complete missed interac-

tions graph in figure 5. Therefore, although the number

of complete missed interactions differs little between

heartbeat rates of 10 and 50, there is a rise from 4% to

16% for partial missed interactions in the same period.

Different Heartbeat Rates (Messages Sent)

0

50000

100000

150000

200000

250000

300000

0 10 20 30 40 50 60

Heartbeat rate

N
u
m
b
e
r
o
f
M
e
s
s
a
g
e
s

Figure 4: Number of messages sent as function of

heartbeat interval.

Heartbeat Interval

Heartbeat Interval

Varying Heartbeat Intervals (Messages Sent)

S. E. Parkin, P. Andras & G. Morgan / Managing Missed Interactions in DVEs

c© The Eurographics Association 2006.

32

Different Heartbeat Rates (Complete Missed Interactions)

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60

Heartbeat rate

M
is
s
e
d
 I
n
te
ra
c
ti
o
n
s
 (
a
s
 %
 o
f
tr
u
e

in
te
ra
c
ti
o
n
s
)

Figure 5: Number of missed interactions as function

of heartbeat interval.

Different Heartbeat Rates (Partial Missed Interactions)

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60

Heartbeat rate

P
a
rt
ia
l
In
te
ra
c
ti
o
n
s
 (
a
s
 %
 o
f

d
e
te
c
te
d
 b
in
a
ry
 i
n
te
ra
c
ti
o
n
s
)

Figure 6: Number of partial missed interactions as

function of heartbeat interval.

In the graphs described in figures 7 through 9 we show

what affect varying aura size has on the number of mes-

sages sent, complete missed interactions and partial

missed interactions. Estimating the appropriate aura

size is not as straightforward as estimating how many

messages will be sent. Developers could assume the

worst case scenario when determining aura size: how

far can two objects travel directly towards and past each

other at full speed during a heartbeat interval – aura

must be large enough to cover this size. This would

give a large aura size (>200 in our experiment). This

type of estimate is not very useful as objects may not be

moving directly towards each other in non-direct ways.

The graph in figure 7 indicates that messages sent in-

creases slightly as the experiment progresses. This indi-

cates that heartbeat messages are predominantly respon-

sible (given our earlier estimate relating to graph 4). As

the heartbeat interval remains unchanged then the rising

curve indicates how high frequency messages become a

larger proportion of all messages sent as more and more

auras overlap. We can see that varying aura size has

little impact on the volume of messages sent.

On inspecting the graph in figure 8 we can determine

that the fewest missed interactions occurred with aura

size set to 37. In fact, as aura size grew larger than 37

there was a minor increase (1% - 3%) in complete

missed interactions. This may be explained by a rise in

aura overlaps relating to objects that are moving to

different targets, but their auras overlap for a brief pe-

riod as they pass each other (when world size remains

fixed there is more chance of such overlaps). The aura

size is much smaller than a worst case estimate. In fact,

such an estimate would have resulted in more missed

interactions.

Figure 9 shows the partial missed interactions. This

shows a similar curve as the complete missed interac-

tions, but the fewest partial missed interactions occurs

with an aura size of 32, slightly lower than the optimum

aura size for complete missed interactions.

Different Aura Sizes (Messages Sent)

0

10000

20000

30000

40000

50000

60000

70000

80000

0 100 200 300 400

Aura Size

N
u
m
b
e
r
o
f
M
e
s
s
a
g
e
s

Figure 7: Number of messages sent as function of aura

size.

Different Aura Sizes (Complete Missed Interactions)

0

20

40

60

80

100

0 100 200 300 400

Aura Size

M
is
s
e
d
 I
n
te
ra
c
ti
o
n
s
 (
a
s
 %
 o
f
tr
u
e

in
te
ra
c
ti
o
n
s
)

Figure 8: Number of complete missed interactions as

function of aura size.

Different Aura Sizes (Partia l Missed Interactions)

0

10

20

30

40

50

60

70

80

90

0 100 200 300 400

Aura Size

P
a
rt
ia
l
In
te
ra
c
ti
o
n
s
 (
a
s
 %
 o
f
tr
u
e

in
te
ra
c
ti
o
n
s
)

Figure 9: Number of partial missed interactions as

function of aura size.

From our experiments it is clear that basic estimations

of the type a developer may deduce are not sufficient

Heartbeat Interval

Heartbeat Interval

Varying Heartbeat Intervals (Complete Missed Interactions)

Varying Heartbeat Intervals (Partial Missed Interactions)

S. E. Parkin, P. Andras & G. Morgan / Managing Missed Interactions in DVEs

c© The Eurographics Association 2006.

33

for determining appropriate values that govern a DVE.

There may be more intricate estimations using more

formulas, but in our experiences we have not come

across them (either in the literature or industry). The

simulator provides information not readily available

using estimation alone.

5. Conclusions

Using a simulation of a DVE to determine appropriate

values for parameters that govern a virtual world is

unique. Our simulator provides results, via a series of

graphs, which clearly demonstrate how various parame-

ter settings can influence scalability and missed interac-

tions. Using our simulator a developer may tailor the

characteristics of the objects that inhabit a simulated

virtual world (movements and velocities), ensuring that

a variety of DVE application types may be accommo-

dated. For example, virtual worlds that may have ob-

jects of greatly varying velocities and diverse move-

ment characteristics (e.g., planes and people in military

type simulations) to objects that share similar velocities

(e.g., people in collaborative tasks).

We have demonstrated the usefulness of our simula-

tor via experimentation in this paper. We have also

employed our simulator in determining the parameters

for our own DVE implementation [MLK05].

We consider this an introductory paper to the area of

missed interactions in DVEs. We hope the community

will explicitly address the missed interaction problem in

their own DVE research in the future. For example, at

the time of writing this paper IBM appears to be putting

significant effort into online game technology [IBM06]

(commercial DVEs). Although this work is of high

quality and tackles well defined problems, there is no

explicit mention in their work of missed interactions

and how to overcome them. This is not an anomaly on

IBM’s behalf, as the community have neglected to de-

fine missed interactions with respect to their own work

so far.

Our next step is to incorporate our middleware moni-

toring software [MPM*05] with our simulator to pro-

vide appropriate changes to our DVE parameters to

accommodate changes in networking and processing

resources and virtual world properties during runtime.

Simulator may be found at:
http://homepages.cs.ncl.ac.uk/graham.morgan.

Acknowledgements

This work is funded by UK EPSRC Grant GR/S63199:

"Trusted Coordination in Dynamic Virtual Organisa-

tions" and UK EPSRC Grant GR/S04529/01: “Middle-

ware Services for Scalable Networked Virtual Envi-

ronments”.

References

[BWA97] BARRUS J. W., WATERS R. C.,

ANDERSON D, B.: “Locales: Supporting Large

Multiuser Virtual Environments”, IEEE Computer

Graphics and Applications 16,6, Nov, (1997), pp.

50-57

[BBP*05] BROCKLEHURST D., BOUCHLAGHEM

D., PITFIELD D., PALMER G., STILL, K.:

“Crowd circulation and stadium design: low flow

rate systems”, Structures & Buildings, (2005), Vol-

ume: 158, Issue: 5

[GB95] GREENHALGH C., BENFORD S.:

“MASSIVE: a distributed virtual reality system in-

corporating spatial trading”, Proceedings IEEE 15th

International Conference on distributed computing

systems (DCS 95), Vancouver, Canada, (1995)

[HBJ*05] HELBING D., BUZNA L., JOHANSSON

A., WERNER T.: “Self-Organized Pedestrian

Crowd Dynamics: Experiments, Simulations, and

Design Solutions”, Transportation Science, Vol. 39,

No. 1, (2005), pp. 1–24

[IBM06] IBM: Online Game Technology, IBM Sys-

tems Journal (2006), Vol. 45, No. 1

[MLK05] MORGAN G., LU F., AND STOREY K.:

“Interest Management Middleware for Networked

Games”, In Proc. of the I3D 2005. ACM

SIGGRAPH Symposium on Interactive 3D Graph-

ics and Games, Washington, DC, April 3-6, (2005)

pp. 57-63

[MPM*05] MORGAN G., PARKIN S., MOLINA-

JIMENEZ C., SKENE J.: Monitoring Middleware

for Service Level Agreements in Heterogeneous

Environments, In the proc. of the fifth IFIP confer-

ence on e-Commerce, e-Business, and e-

Government (I3E 2005), October 26-28, (2005),

IFIP Volume 189 pp. 79-93

[S05] SWEENEY T.: “Unreal Networking Architec-

ture”, http://unreal.epicgames.com/Network.htm,

viewed December (2005)

[SZ99] SINGHAL S., ZYDA, M.: “Networked Virtual

Environments, Design and Implementation”, Addi-

son Wesley, (1999)

[ZP93] ZYDA M. J., AND PRATT D. R.: “NPSNET:

A 3D visual simulator for virtual world exploration

and experience”, In Tomorrow’s Realities Gallery,

Visual Proceedings of SIGGRAPH 91, (1991) p. 30

S. E. Parkin, P. Andras & G. Morgan / Managing Missed Interactions in DVEs

c© The Eurographics Association 2006.

34

