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Abstract
In this paper, we propose a model to estimate the expected running time of hierarchical collision detection that
utilizes AABB trees, which are a frequently used type of bounding volume (BV).
We show that the average running time for the simultaneous traversal of two binary AABB trees depends on two
characteristic parameters: the overlap of the root BVs and the BV diminishing factor within the hierarchies. With
this model, we show that the average running time is in O(n) or even in O(logn) for realistic cases. Finally, we
present some experiments that confirm our theoretical considerations.
We believe that our results are interesting not only from a theoretical point of view, but also for practical applica-
tions, e. g., in time-critical collision detection scenarios where our running time prediction could help to make the
best use of CPU time available.

1. Introduction

Bounding volume hierarchies (BVHs) have proven to
be a very efficient data structure for collision detection
(CD), even for (reduced) deformable models [JP04].

The idea of BVHs is to partition the set of object
primitives (e. g. polygons or points) recursively until
some leaf criterion is met. In most cases, each leaf
contains a single primitive, but the partitioning can
also be stopped when a node contains less than a fixed
number of primitives. Each node in the hierarchy is
associated with a subset of the primitives and a BV
that encloses this subset.

Given two BVHs, one for each object, virtually all
CD approaches traverse the hierarchies simultaneously
by an algorithm similar to Algorithm 1. It conceptu-
ally traverses a bounding volume test tree (BVTT; see
Figure 2) until all overlapping pairs of BVs have been
visited. It allows to quickly “zoom in” to areas of close

Figure 1: Some models of our test suite: Infinity Tri-
ant (www.3dbarrel.com), lock (courtesy by BMW) and
pipes.

proximity and stops if an intersection is found or if
the traversal has visited all relevant sub-trees. Most
differences between hierarchical CD algorithms lie in
the type of BV, the overlap test, and the algorithm for
constructing the BVH.

There are two conflicting constraints for choosing an
appropriate BV. On the one hand, a BV-BV overlap
test during the traversal should be done as fast as pos-
sible. On the other hand, BVs should enclose their sub-
set of primitives as tight as possible so as to minimize
the number of false positives with the BV-BV overlap
tests. As a consequence, a wealth of BV types has been
explored in the past, such as spheres [Hub96, PG95],
OBBs [GLM96], DOPs [KHM∗98, Zac98], Boxtrees
[Zac02,AdBG∗01], AABBs [vdB97,LAM01], spherical
shells [KGL∗98] and convex hulls [EL01].

In order to capture the characteristics of different
approaches and to estimate the time required for a
collision query, the cost function T = NvCv + NpCp +
NuCu + Ci was proposed [GLM96, KHM∗98, He99],
where

Nv,Cv = num. and avg. costs of BV overlap tests, resp.
Np,Cp = num./avg. costs of primitive intersection tests
Nu,Cu = num. and avg. costs of BV updates, resp.

Ci = initialization costs

An example of a BV update is the transformation
of the BV into a different coordinate system. Dur-
ing a simultaneous traversal of two BVHs, the same
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traverse(A,B)

if A and B do not overlap then
return

if A and B are leaves then
return intersection of primitives enclosed by A
and B

else
for all children Ai and B j do

traverse(Ai,B j)

Algorithm 1: Most hierarchical collision detection
methods implement this algorithm to traverse two
given BVHs.

BVs might be visited multiple times. However, if
the BV updates are not saved, then Nv = Nu. This
cost function was introduced by [WHG84] to ana-
lyze hierarchical methods for ray tracing and later
adapted to hierarchical collision detection methods
by [GLM96,KHM∗98,He99].

In practice, Nv, the number of overlap tests, usu-
ally dominates the running time, i. e., T (n) ∼ Nv(n),
because Np = 1

2 Nv in a binary tree and Nu ≤ Nv. While

it is obvious that Nv = n2 in the worst case, it has long
been noticed that, in practice, this number seems to
be linear or even sub-linear.

However, until now there is no rigorous average-case
analysis for the running time of simultaneous BVH
traversals.

Therefore, the goal of this paper is to present a
model, with which one can estimate the average num-
ber Nv, the number of overlap tests in the average case.
Since this is, to our knowledge, the first attempt, we
restrict ourselves to AABB trees. This allows to esti-
mate the probability of an overlap of a pair of bound-
ing boxes by simple geometric reasoning.

2. Related Work

In the last few years, some very interesting theoret-
ical results on the collision detection problem have
been shown. One of the first results was presented
by Dobkin and Kirkpatrick [DK85]. They have shown
that the distance of two convex polytopes can be de-
termined in time O

(
log2 n

)
, where n = max{|A|, |B|},

and |A| and |B| are the number of faces of object A
and B, respectively.

For two general polytopes whose motion is restricted
to fixed algebraic trajectories, [ST95] have shown that

there is an O
(
n

5
3 +ε

)
algorithm for rotational move-

ments, and an o(n2) algorithm for a more flexible mo-
tion that still has to be along fixed, known trajecto-
ries [ST96].

[SHH98] proved that for n convex, well-shaped poly-
topes (with respect to aspect ratio and scale factor), all

A,B

A1,B1

A

A1 A2 A1,B2 A2,B1 A2,B2

B

B1 B2

Figure 2: The BV test tree (BVTT) shows all possible
pairs of BVs that might need to be tested for overlap.
All hierarchical CD algorithms, such as the one in Al-
gorithm 1, basically perform a traversal through this
(conceptual) tree.

intersections can be computed in time O
(
(n+k) log2 n

)
,

where k is the number of intersecting object pairs.
They have generalized their approach to first average-
shape results in computational geometry [ZS99].

Under mild coherence assumptions, [VCC98]
showed linear expected time complexity for the CD
between n convex objects. They use well-known data
structures, namely octrees and heaps, along with the
concept of spatial coherence.

The Lin-Canny algorithm [LC91] is based on a
closest-feature criterion and makes use of Voronoi re-
gions. Let n be the total number of features, the ex-
pected run time is between O

(√
n

)
and O(n) depend-

ing on the shape, if no special initialization is done.

In [KZ03], an average-case approach for CD was pro-
posed. However, no analysis of the running time was
given.

3. Analyzing Simultaneous Hierarchy
Traversals

In this section, we will derive a model that allows to
estimate the number Nv, the number of BV overlap
tests. This is equivalent to the number of nodes in the
BVTT (see Fig. 2) that are visited during the traver-
sal. The order and, thus, the exact traversal algorithm
are irrelevant.

For the most part of this section, we will deal with
2-dimensional BVHs, for sake of illustration. At the
end, we extend these considerations to 3D, which is
fairly trivial.

The general approach of our analysis is as follows.
For a given level l of the BVTT, we estimate the prob-
ability of an overlap by recursively resolving it to sim-
ilar probabilities on higher levels. This yields a pro-
ducct of conditional probabilities. Then, we estimate
the conditional probabilities by geometric reasoning.

Let Ñ(l)
v be the expected number of nodes in the

BVTT that are visited on level l. Clearly,

Ñ(l)
v = 4l ·P[A(l)∩B(l) 6= ∅ ] (1)

where P[A(l) ∩B(l) 6= ∅ ] denotes the probability that
any pair of boxes on level l overlaps. In order to render
the text more readable, we will omit the “6= ∅“ part
and just write P[A(l)∩B(l) ] henceforth.
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Figure 3: Left: general configuration of the boxes, assumed throughout our probability derivations. For sake of
clarity, boxes are not placed flush with each other. Middle: The ratio of the length of segments L and L′ equals the
probability of A1 overlapping B1. Right: ditto for p21.

Overall, the expected total number of nodes we visit
in the BVTT is

Ñv(n) =
d

∑
l=1

Ñ(l)
v =

d

∑
l=1

4lP[A(l)∩B(l) ] (2)

where d = log4(n
2) = lg(n) is the depth of the BVTT

(equaling the depth of the BVHs).

In order to derive a closed-form solution for P[A(l)∩
B(l) ], we recall the general equations for conditional
probabilities:

P[X ∧Y ] = P[Y ] ·P[X |Y ] (3)

and, in particular, if X ⊆ Y

P[X ] = P[Y ] ·P[X |Y ] (4)

where X and Y are arbitrary events (i. e., subsets) in
the probability space.

Let o(l)
x denote the overlap of a given pair of bound-

ing boxes when projected on the x-axis, which we call
the x-overlap. Then,

P[A(l)∩B(l) ] = P[A(l)∩B(l) | A(l−1)∩B(l−1) ∧ o(l)
x > 0 ]

·P[A(l−1)∩B(l−1) ∧ o(l)
x > 0 ]

by Eq. 4, and then, by Eq. 3,

P[A(l)∩B(l) ] = P[A(l)∩B(l) | A(l−1)∩B(l−1) ∧ o(l)
x > 0 ]

·P[A(l−1)∩B(l−1) ]

·P[o(l)
x > 0 | A(l−1)∩B(l−1) ]

Now we can recursively resolve P[A(l−1) ∩ B(l−1) ],

which yields

P[A(l)∩B(l) ] =
l

∏
i=1

P[A(i)∩B(i) | A(i−1)∩B(i−1) ∧ o(i)
x > 0 ] ·

l

∏
i=1

P[o(i)
x > 0 | A(i−1)∩B(i−1) ] (5)

3.1. Preliminaries

Before proceeding with the derivation of our estima-
tion, we will set forth some denotations and assump-
tions.

Let A := A(l) and B := B(l). In the following, we will,
at least temporarily, need to distinguish several cases
when computing the probabilities from Eq. 5, so we
will denote the two child boxes of A and B by A1,A2
and B1,B2, resp.

For sake of simplification, we assume that the child
boxes of each BV sit in opposite corners within their
respective parent boxes.† Furthermore, without loss of
generalization, we assume an arrangment of A, B, and
their children according to Figure 3, so that A1 and B1
overlap before A2 and B1 do (if at all).

Finally, we assume that there is a constant BV di-
minishing factor throughout the hierarchy, i.e.,

a′x = αxax, a′y = αyay, etc.

Only for sake of clarity, we assume that the scale of
the boxes is about the same, i. e.,

bx = ax, b′x = a′x, etc.

† According to our experience, this is a very mild assump-

tion [Zac02].
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This assumption allows us some nice simplifications in
Equations 6 and 10, but it is not necessary at all.

3.2. Probability of Box Overlap

In this section, we will derive the probability that a
given pair of child boxes overlaps under the condition
that their parent boxes overlap.

Since we need to distinguish, for the moment, be-
tween 4 different cases, we define a shorthand for the
four associated probabilities:

pi j := P[Ai∩B j | A∩B∧ox > 0]

One of the parameters of our probability function

is the distance o(0)
x := δ, by which the root box B(0)

penetrates A(0) along the x axis from the right. Our
analysis considers all arrangments as depicted in Fig-
ure 3, where δ is fixed but B is free to move vertically,
under the condition that A and B overlap.

First, let us consider p11 (see Figure 3). By precon-
dition, A overlaps B, so the point P (defined as the
upper left (common) corner of B and B1) must be on a
certain vertical segment L that has the same x coordi-
nate as the point P. Its length is ay +by.

‡ Note that for
sake of illustration, segment L has been shifted slightly
to the right from its true position in Figure 3 (center).
If, in addition, A1 and B1 overlap, then P must be on
segment L′.

Thus,

p11 =
Length(L′)
Length(L)

=
a′y +b′y
ay +by

= αy. (6)

Next, let us consider p21 (see Figure 3; for sake of
clarity, we re-use some symbols, such as a′x). For the
moment, let us assume o21,x > 0; in Section 3.3 we
estimate the likelihood of that condition.

Analogously as above, P must be anywhere on seg-
ment L′, so

p21 = αy = p11

and, by symmetry, p12 = p21. Very similarly, we get
p22 = αy.

At this point, we have shown that pi j ≡ αy in our
model.

3.3. Probability of X-Overlap

We can trivially bound

P[o(i)
x > 0 | A(i−1)∩B(i−1) ] ≤ 1

‡ Actually, P can be chosen arbitrarily, under the condi-

tion that stays fixed on B as B assumes all possible posi-
tions. L would be shifted accordingly, but its length would

be the same.

αx ·αy T (n)

< 1/4 O
(
1
)

1/4 O
(

lgn
)√

1/8 ≈ 0.35 O
(√

n
)

3/4 O
(
n1.58)

1 O
(
n2)

Table 1: Effect of the BV diminishing factor αy on the
running time of a simultaneous hierarchy traversal.

Plugging this into Equation 2, and substituting that
in Equation 5 yields

Ñv(n)≤
d

∑
l=1

4l ·αl
y =

(4αy)d+1−1
4αy−1

(4αy 6= 1)

∈ O
(
(4αy)d)

= O
(
nlg(4αy)). (7)

The corresponding running time for different αy can
be found in Table 1. For αy > 1/4, the running time is
in O

(
nc), 0 < c ≤ 2.

In order to derive a better estimate for P[o(l)
x >

0 | A(l−1)∩B(l−1) ], we observe that the geometric rea-
soning is exactly the same as in the previous section,
except that we now consider all possible loci of point P
when A and B are moved only along the x-axis. There-
fore, we estimate

P[o(l)
x > 0 | A(l−1)∩B(l−1) ]≈ αx. (8)

Plugging this into Equations 2 and 5 yields an overall
estimate

Ñv(n)≤
d

∑
l=1

4l ·αl
x ·αl

y ∈ O
(
nlg(4αxαy)). (9)

This results in a table very similar to Table 1.

3.4. The 3D Case

As mentioned above, our considerations can be ex-
tended to 3D straight-forwardly. In 3D, L and L′ in
Equation 6 are not line segments any longer, but 2D
rectangles in 3D lying in the y/z plane. The area of L′

can be determined by (a′y +b′y)(a′z +b′z) and the area of
L by (ay +by)(az +bz). Thus,

p11 =
area(L′)
area(L)

=
(a′y +b′y)(a′z +b′z)
(ay +by)(az +bz)

=
4a′ya′z
4ayaz

= αyαz.

(10)
The other probabilities pi j can be determined analo-
gously as above, so that p11 = p12 = p21 = p22 = αyαz.

Overall, we can estimate the number of BV overlap
tests by

Ñv(n)≤
d

∑
l=1

4l ·αl
x ·αl

y ·αl
z ∈ O

(
nlg(4αxαyαz)). (11)

where d = log4(n
2) = lg(n).

Note that Table 1 is still valid in the 3D case.
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Figure 4: The number of visited BVTT nodes for
models shown in Fig. 1 at distance δ = 0.4.

4. Experimental Support

Intuitively, not only α should be a parameter of the
model of the probabilities (Eqs. 6 and 8), but also the
amount of penetration of the root boxes. This is not
captured by our model, so in this section we present
some experiments that provide a better feeling of how
these two parameters affect the expected number of
BV overlap tests.

We have implemented a version of Algorithm 1 using
AABBs as BVs (in 3D, of course). As we are only
interested in the number of visited nodes in the BVTT,
we switched off the intersection tests at the leaf nodes.

For the first experiment, we used a set of CAD ob-
jects, each of them with varying numbers of polygons
(Fig. 1). Fig. 4 shows the number of BV overlap tests
for our models depending on their complexities for a
fixed distance δ = 0.4. Clearly, the average number of
BV overlap tests behaves logarithmically for all our
models.

For our second experiment, we used artificial BVHs
where we can adjust the BV diminishing factors αx,y,z.
As above, the child BVs of each BV are placed in op-
posite corners. In addition, we varyied the root BV
penetration depth δ.

We plotted the results for different choices of α and
n, averaged over the range 0.0–0.9 for δ (see Fig. 5). For
larger α’s, this seems to match our theoretical results.
For smaller α, our model seems to underestimate the
number of overlapping BVs. However, it seems, that
the asymptotical running-time does not depend very
much on the amount of overlap of the root BVs, δ (see
Fig. 7).

5. Application to Time-Critical Collision
Detection

As observed in [KZ03], almost all CD approaches use
some variant of Algorithm 1, but often, there is no

special order defined for the traversal of the hierar-
chy, which can be exploited to implement time-critical
computing.

Our probability model suggests one way how to pri-
oritize the traversal. for a given BVH, we can measure
the average BV diminishing factor for each subtree
and store this with the nodes. Then, during run-time,
a good heuristic could be to traverse the subtrees with
lower α-values first, because in these subtrees the ex-
pected number of BV pairs we have to check is asymp-
totically smaller than in the other subtrees.

In addition, we could tabulate the plots in Figure 7
(or fit a function), and thus compute a better expected
number of BV overlaps during run-time of time-critical
collision detection.

6. Conclusion and Future Work

We have presented an average-case analysis for simul-
taneous AABB tree traversals, under some assump-
tions about the AABB tree, that provides a better
understanding of the performance of hierarchical col-
lision detections, which has been observed in the past.
Our analysis is independent of the order of the traver-
sal.

In addition, we have performed several experiments
to support the correctness of our model. Moreover, we
have shown that the running time behaves logarith-
mically for real world models, even for a large overlap
between the root BVs.

Several existing methods for hierarchical collision
detection may benefit from our analysis and our
model. Especially in time-critical environments or
real-time applications it could be very helpful to pre-
dict the running-time of the collision detection process
only with the help of two parameters that can be deter-
mined on-the-fly. We will try to speed up probabilistic
collision detection by the heuristics mentioned in this
paper.

We have already tried to derive a theoretical model
of the probabilities that depends on the BV diminish-
ing factor as well as the penetration distance of the two
root BVs. This would, hopefully, lead to a probability
density function describing the x-overlaps, thus yield-

ing a better estimat of Ñ(l)
v . However, this challenge

seems to be difficult.

Furthermore, a particular challenge will be a similar
average-case analysis for BVHs utilizing other types of
BVs, such as DOPs or OBBs. The geometric reasoning
would probably have to be quite different from the one
presented in this paper.

Finally, it would be very interesting to apply our
technique to other areas, such as ray tracing. And, fi-
nally, we believe one could exploit these ideas to obtain
better bounding volume hierarchies.
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Figure 5: For larger values of α, our theoretical model seems to match the experimental findings fairly well (left:
α = 0.7, right: α = 0.9.
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detection for continuously deforming bodies. In Euro-

graphics (2001), pp. 325–333. short presentation.

[LC91] Lin M. C., Canny J. F.: A fast algorithm for
incremental distance calculation. In Proceedings of the

IEEE International Conference on Robotics and Au-

tomation (1991), pp. 1008–1014.

[PG95] Palmer I. J., Grimsdale R. L.: Collision detec-
tion for animation using sphere-trees. Computer Graph-

ics Forum 14, 2 (June 1995), 105–116.

[SHH98] Suri S., Hubbard P. M., Hughes J. F.: Col-
lision detection in aspect and scale bounded polyhedra.

In SODA (1998), pp. 127–136.
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