
Eurographics Symposium on Parallel Graphics and Visualization (2007)
Jean M. Favre, Luis Paulo dos Santos, and Dirk Reiners (Editors)

Dynamic Regions of Interest for Interactive Flow Exploration

M. Wolter1, C. Bischof2, T. Kuhlen1

1Virtual Reality Group, RWTH Aachen University
2Institute for Scientific Computing, RWTH Aachen University

Abstract

Virtual Reality (VR) provides a useful tool for understanding complex, unsteady flow phenomena. The user can

directly interact with the data and therefore benefits from a spatial coherence of action and result. However,

visualization in virtual environments imposes very high demands on interactivity in order to maintain this

coherence. Exploration of large, unsteady datasets in VR requires efficient visualization or data reduction

algorithms to produce results within acceptable waiting times. We propose a technique for reducing required data

especially suited for direct interaction in virtual environments. We use a distributed system to parallely extract

a dynamic region of interest (DROI) from the simulation data. This DROI is adapted according to the user’s

interaction behavior and allows for the analysis of local flow features. With this reduction we provide interactive

extraction of local features from large, time-varying datasets.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Parallel Processing I.3.7
[Computer Graphics]: Virtual Reality I.6.6 [Simulation and Modelling]: Simulation Output Analysis

1. Introduction

In the explorative analysis of complex, unsteady simulation
data, Virtual Reality (VR) has shown to be a useful instru-
ment. Time-varying 3D structures are perceived in a natural
way, which delivers a deeper insight into complex flow phe-
nomena. Moreover, direct and natural manipulation of ob-
jects is a central benefit gained from virtual environments.
The common example is a data probe or a particle seeder
moved by a hand-attached manipulation interface through
3D space. This possibility of interaction creates a spatial co-
herence of the user’s action and the perceived results.

However, this coherence is easily destroyed, as Virtual
Reality imposes high demands on interactivity. High latency
or a low graphical update rate immediately have a significant
negative effect on the user’s acceptance of a virtual environ-
ment, worse than in a desktop environment. To maintain this
coherence, Bryson [Bry04] suggested the following timing
restrictions:

• The graphical update rate must be greater than 10 frames
per second.

• Interaction responsiveness (of direct interaction) must be
less than 100 milliseconds.

• Data updates should be available in less than one third of
a second.

The enormous increase in computing power available to-
day has resulted in ever increasing dataset sizes generated
by computer simulations. For large datasets, these interac-
tivity requirements are not easily met. Especially the visu-
alization of time-varying data requires the periodical read-
ing of large files from slow secondary storage. Additionally,
a time-varying data domain changes continuously, immedi-
ately invalidating previously computed results at each data
time change. Even for very simple visualization algorithms
like a point probe, the memory bottleneck prevents fast data
updates. A lot of research has been done in the field of ef-
ficient data access and out-of-core methods, but most solu-
tions are optimized for specific visualization methods.

One approach to accelerate the computation is the us-
age of parallel computers and distributed systems. By paral-
lelization of the feature extraction and the rendering process,
a high performance gain can be achieved. However, distri-
bution means communication, and communication results in
additional latencies, which have to be compensated.

We introduce a distribution concept which takes advan-

c© The Eurographics Association 2007.

http://www.eg.org
http://diglib.eg.org


M. Wolter, C. Bischof, T. Kuhlen / Dynamic Regions of Interest for Interactive Flow Exploration

tage of the knowledge about the user’s exploration behavior.
This concept aims at interactive visualization of large, time-
varying data where parameter changes originate from a di-
rect interaction interface inside the virtual environment. We
use the fact that, when using a direct manipulation metaphor
for extracting features from time-varying data, this mani-
pulation primarily concerns spatial parameters. Temporal
parameters change continuously as the user watches the an-
imation of successive time steps. Thus, it is easier to predict
which time step is going to be visualized next than to predict
the exact movement of the user’s interaction device.

We exploit this difference in requirements for a specially
suited distribution method: instead of computing a feature
directly from the complete dataset, we confine the required
data to a region around the user’s interaction device. All spa-
tial parameter changes are computed locally on this limited
region. As the region is connected with the user’s direct in-
teraction behavior, we define it as a region of interest (ROI).

To provide the required data for temporal parameter
changes, a high performance computer loads the dataset and
continuously extracts a spatially connected ROI from each
time step. These regions are transmitted to the visualiza-
tion system just in time before the corresponding time step
is displayed. Whenever the data time changes, the analyzed
regions become invalid and are immediately removed from
memory. We define a set of ROIs for consecutive time steps
as a dynamic region of interest (DROI).

Dynamic regions of interest make it possible to analyze
time-varying datasets with a large set of visualization meth-
ods while satisfying interactivity criteria required for immer-
sive virtual environments. Each DROI contains only a small
part of the spatial and temporal extent of the whole dataset.
Since they are computed on a parallel HPC machine, a large
number of regions can be extracted concurrently. With the
usage of spatially reduced data and the avoidance of slow
secondary storage or network bottlenecks, interactive update
rates can be maintained at the visualization system.

The rest of this paper is structured as follows: section 2
briefly summarizes related work regarding interactive visu-
alization especially in virtual environments. Section 3 de-
scribes the setup which motivated our work and which we
used to evaluate our method. The method itself is explained
for time-invariant data in section 4, and expanded to the
time-varying case in section 5. We measured different up-
date rates using several datasets and report the achieved re-
sults in section 6. Section 7 resumes benefits and drawbacks
and gives an outlook for future work.

2. Related Work

One of the first available systems for VR-based flow visual-
ization was the Virtual Wind Tunnel and its follow-up, the
Distributed Virtual Wind Tunnel [BGY92]. The latter intro-
duced a connection to a vectorized post-processing back-

end, which then was responsible for post-processing com-
putations. In the Virtual Windtunnel, any scalar or vector
field can be attached to a data probe to obtain quantita-
tive data at any point. Recently, Allard et al. introduced
FlowVR [AGL∗04], a middleware which can be used to
flexibly connect various modules to form a distributed VR-
application. Data parallel execution of modules can be ob-
tained by distributing several identical modules to different
nodes in a cluster. Another distributed software environment
is COVISE [RFL∗98], which focuses on cooperative work.
In addition, it integrates a module for Virtual Reality called
COVER. Modules containing processing steps like I/O, fil-
tering or rendering can be distributed across different work-
stations.

All of these systems provide VR capability and use dis-
tributed approaches to achieve the required flexibility and
performance, but they do not consider the interacting user
for the distributed visualization process.

Parallel data streaming for large datasets using the Vi-
sualization ToolKit (VTK) was presented by Ahrens et. al.
[ABM∗01]. Their approach achieves a nearly linear speedup
for data parallelization with a large number of processors.
They also divide data into regions to process data piecewise.
This data streaming aims at reducing the memory footprint,
therefore acting as an out-of-core strategy.

Regions of interest are a well-known technique in com-
puter graphics. One of the first applications in 3D was the
MagicSphere [CMS94] used for multiresolution rendering.
One of the latest applications of this class of techniques for
volume rendering was presented by Krüger [KSW06].

This work is methodically based on [WHS∗06], where
priority scheduling for parallelization of time-varying data
was proposed. Priorities were assigned to time steps accord-
ing to their relevance for the user’s exploration. A weak point
of this method is that it is not really interactive, as parameter
changes only have effect after some time. In this work we
therefore introduce a system suitable for interactive parame-
ter changes.

3. Distributed System

Several strategies for parallel and distributed computation
and rendering of large datasets are possible. To classify our
approach, we will briefly describe the framework we apply
for exploration in virtual environments.

We use parallel machines to compute extraction algo-
rithms on large datasets. This has the advantage that algo-
rithms are "close to the data". Several different distribution
strategies for the visualization process exist. Our approach
uses remote data handling and extraction in combination
with local rendering. The typical workflow is as follows:
the user in a virtual environment issues a visualization com-
mand, which is handled by a parallel machine and the re-
sults are transmitted to a visualization system, where they

c© The Eurographics Association 2007.

54



M. Wolter, C. Bischof, T. Kuhlen / Dynamic Regions of Interest for Interactive Flow Exploration

rendering nodes

TCP/IP

database

cluster master

SAN TCP/IP

HPC

raw data visualization primitives image data

Figure 1: A distributed hardware architecture for flow field

exploration in virtual environments. Each request from a

user is executed by the high performance computer (HPC)

and results are transmitted to the cluster of rendering nodes,

which render the images for several displays.

are rendered. One advantage of this method when used with
VR is that the effect of head-tracking is computed locally
at the visualization system. The disadvantages are that geo-
metrical primitives of arbitrary size must be transmitted, the
local computer must be capable of rendering the extracted
data, and each user command requires a round-trip over the
network to produce extracts. The complete system setup is
depicted in figure 1.

The raw simulation data resides on a storage system at-
tached to a high performance computer (HPC). Flow fea-
tures are extracted using the Viracocha software [GHW∗04],
which builds on VTK [SML06]. Visualization primitives are
sent to the front-end node (cluster master) of a PC cluster.
We use a cluster made up of several off-the-shelf personal
computers with commodity graphics cards to drive a five-
sided CAVE-like display system. With this setup, no special-
purpose hardware is needed to operate this room-mounted
VR display.

The received primitives have to be distributed to each ren-
dering node using a dedicated network. All nodes run a mir-
rored application with synchronized application states. They
only differ in their viewport into the virtual world, which
changes with the user’s head movement. The user’s head and
interaction devices are tracked with an optical tracking sys-
tem which provides a high accuracy at 60 Hz update rate
(which is therefore the upper limit for input device updates).

4. Time-Invariant Regions of Interest

First, we will describe how to extract a region of interest for
interactive exploration from a single time step. This is the
case when the user stops the animation and starts investiga-
ting a specific region of the data domain. The user utilizes a
tracked input device for direct manipulation of some point of
interest. We will refer to the position of this point of interest
briefly as the input position pin.

Figure 2: The visualization pipeline based on interactive

ROI extraction. Each reload including transmission takes

treload . Two types of updates occur: a position update by user

movement taking tposupd and a data update of the current

ROI taking tdataupd .

As the user moves the input device through the dataset,
the point of interest moves accordingly. Associated with the
input position is a visualization pipeline (see figure 2) speci-
fying the feature the user is interested in. Instead of comput-
ing this feature on the complete dataset, we create a region
of interest (ROI) around the input position. In this context,
we define a region of interest as a spatial region of user-
defined size corresponding to a selected subset of the origi-
nal dataset.

The point of interest is an input parameter of the visual-
ization filter and also affects the ROI, which is the data the
filter works on. To be useful as a data source, the ROI must
keep the following condition:

At every time, the data needed by the filter com-
ponent for an arbitrary position pin is provided by
the region of interest ROI(pin).

This points out that the extraction of global features or in-
tegrated features which could cover the global data environ-
ment may not be combined with this method, as data is only
available inside ROI(pin). Hence, the minimal bound for the
ROI is given by the filter’s input request. The larger the fea-
ture extracted by the pipeline in the data domain, the larger
the user must define the size of the ROI.

As the user may freely move the point of interest through
the data domain, the ROI must be computed such that this
condition is fulfilled. In a time-invariant exploration, the ROI

c© The Eurographics Association 2007.

55



M. Wolter, C. Bischof, T. Kuhlen / Dynamic Regions of Interest for Interactive Flow Exploration

Figure 3: Scheme of the update mechanism for time-invariant data. ROI are depicted as spheres, but various shapes are possible.

Left: The input position moves into the boundary region due to the user’s direct manipulation. Right: The recomputed ROI has

its center near the new point of interest.

may only be left by a spatial movement, not by a data time
change (see figure 3). Therefore, the system has to guarantee
that a new ROI is extracted and transmitted before the user
leaves the current ROI.

The reload time treload of a ROI depends on the size and
topology of a single time step, the algorithm used to extract
the ROI, and the performance of the extracting parallel sys-
tem as well as the available network bandwidth. As these
factors may differ, we propose two methods for extracting
the ROI from a single time step.

1. The most accurate method is to extract a subgrid, that
is cutting a part out of the original grid. Depending on
the type of the original grid, this may produce a large
subgrid with a varying number of cells. In regular grids,
this method produces accurate results with a predictable
number of cells. In unstructured grids, interesting regions
most likely to be analyzed by the user tend to have a high
spatial resolution, resulting in a complex ROI.

2. Subsampling of the specified region produces equal sized
regular grids every time, but introduces interpolation er-
rors. Depending on the visualization method applied in-
teractively to the ROI, this typically speeds up the com-
putation and rendering time at the visualization system.
For some visualization techniques a subsampled regular
grid is favorable, e.g., for volume rendering in the region
of interest.

Assuming a maximal velocity vmax of the tracked input
device and an estimated time treload for recomputation and
transmission, a new region is requested if the extracted fea-
ture (in the data domain, not its geometric size) enters a
boundary of width rbound from the border of the current ROI:

rbound

vmax
> treload ⇔ rbound > vmax · treload (1)

The distance rbound is the maximum distance the user can
move in the time span treload . The assumption of a maximum
velocity is adequate, as a user exploring a dataset will lose
the context of his analysis if he moves too fast. The control
over the structure and the size of the ROI is left to the user.
There is a lower limit for the size of a useful region, as the
region must contain the size of the extracted feature and the
boundary. If treload is long, the boundary must be chosen
respectively large. If the boundary fills out the complete ROI,
each user movement results in a reload.

At the visualization system, the visualization pipeline (fig-
ure 2) is now updated in two cases. First, the point of inter-
est changes due to user interaction. Second, the ROI changes
due to a reload, which occurs frequently because of data time
changes (see section 5). Let tupd be the computation time
for each update of the applied pipeline. This time may de-
pend on the type of update, therefore we have to distinguish
tposupd and tdataupd . As the point of interest updates may oc-
cur with a high frequency (up to the update rate of the input
device), tposupd should be smaller than tdataupd .

As an example, exchange of the underlying dataset can
result in the construction of auxiliary data structures (e.g.,
a k-d-tree for point location), to speed up later requests. To
restrict the interactivity criteria only to the position updates
without additional initialization cost, the initialization of the
pipeline with new data is done before the ROI becomes valid.
This changes the estimation time for the distribution algo-
rithm to treload + tdataupd .

While methods for time-critical computations exist which
cancel running computations or adapt the input data size in
order to provide interactive response times, we focus on the
concept of providing the user with useful data parameterized
by the user himself. Therefore, the user may choose if he

c© The Eurographics Association 2007.

56



M. Wolter, C. Bischof, T. Kuhlen / Dynamic Regions of Interest for Interactive Flow Exploration

Figure 4: Three different local visualization methods in the vicinity of the point of interest (see also color insert). Left: Velocity

vectors depicted as glyphs around the point of interest. Middle: A cutsphere centered at the point of interest using Image Space

Advection. Right: The point of interest is a seeder for streamlines, which are rendered as Virtual Tubelets (depicted together

with critical points, which are not part of the ROI).

wants to use subsampled or exact data, and how large the
region of interest is.

As mentioned in section 3, for some immersive virtual
environments the display system itself consists of multiple
nodes. All rendering nodes are synchronized and provided
with data by a single master node, which is the rendering
cluster’s front-end receiving the ROIs from the high per-
formance computer. The master distributes all ROIs to the
rendering nodes, which execute the pipeline locally. Even
though this approach wastes resources by concurrently exe-
cuting the same task, it induces less latency for highly fre-
quent position updates. Therefore, any additional cost intro-
duced by the display cluster is contained in the reload time
treload and not in the more frequently occuring update time
of the visualization pipeline.

4.1. Local Features Inside the ROI

Different feature extraction algorithms may be applied, as
long as the computation and rendering of these features do
not violate the interactivity criteria. Maintaining an interac-
tive visualization is the user’s responsibility, as he may freely
define visualization pipelines executed on the region of inter-
est.

We propose three visualization pipelines of different size
and complexity, which we consider useful to analyze local
flow phenomena (see figure 4).

• A simple point probe visualized using arrow glyphs. It
requires the least size, as only a number of points have to
be evaluated in the data domain (see figure 4, left).

• An implicit function (e.g., a sphere) cutting the ROI. The
resulting cut object is colored by a scalar value and over-
layed with an Image Space Advection texture [LJH03]
displaying information about the vectorfield on the ob-
jects surface (see figure 4, middle).

• The point of interest serves as particle seeder for stream-
line computation. Here, the region is not restricted by the
seeder, but the resulting streamlines are restricted by the

region. Therefore, we propose to display additional infor-
mation to the user to determine if streams were aborted
because they left the ROI. To provide a better depth im-
pression in the virtual environment, the streamlines are
rendered as tubes using Virtual Tubelets [SKH∗05] (see
figure 4, right).

It should be noted that particularly streamlines are only
meaningful for steady data. We regard the computation of
pathlines as future work, since ROIs from at least two time
steps must be available for a local computation.

4.2. Prediction

If treload spans several seconds, the user may have moved a
considerable distance towards the current ROI’s boundary.
To avoid frequent reloads, the recomputed ROI should be
centered at the new point of interest by the time it replaces
the current ROI. As this position is not known at the time the
new ROI is requested, the new position has to be estimated.

We decided to use a simple dead reckoning algorithm to
extrapolate the user’s movement. We apply a first order pre-
dictor using the following equation:

pnew = pcurrent + treload · v (2)

where v is the input device’s velocity. While there are bet-
ter algorithms predicting user movements in virtual envi-
ronments (e.g., Kalman filters), we consider the simple pre-
dictor satisfactory, as a high accuracy is not fundamental.
As the extrapolated position is only the center point of a
larger region, the prediction error is negligible as long as it
is small compared to the size of the ROI. In the case of long
reload times, more accurate predictors should be employed,
as these simple predictors are too inaccurate for long predic-
tion times. This issue is a topic for future studies.

5. Dynamic Regions of Interest

Expanding the time-invariant method to a time-varying
analysis raises new problems. We refer to an animated vi-

c© The Eurographics Association 2007.

57



M. Wolter, C. Bischof, T. Kuhlen / Dynamic Regions of Interest for Interactive Flow Exploration

sualization setup, where data time continuously changes and
all time steps are running in an endless loop. The user may
influence the display time tdisp each time step is shown, start
and stop the animation at any time, or move to selected time
steps. Data results which are not available at the time the cor-
responding time step is displayed lead to a gap of the contin-
uous visualization.

As we focus on methods for a continuous animation of
time steps, this implies that new ROIs for single time steps
must be available with the change rate of data time. The vi-
sualization system holds a buffer of size n for ROIs. As the
entries in this buffer correspond to consecutive time steps,
we call this set of ROIs a dynamic region of interest (DROI).
This expands the condition in section 4 to:

At every time, the data needed by the filter com-
ponent for an arbitrary input position pin at data
time t is provided by the dynamic region of inter-
est DROI(pin, t).

In order to satisfy this condition, the system must provide
an updated DROI whenever the point of interest leaves the
spatial or temporal extents of the current DROI (see figure
5).

First, we will consider only the temporal condition. The
user leaves the current ROI after every display time span
tdisp as the region for this time step becomes invalid. This
is a more frequent event than a reload due to a position up-
date, but can be predicted very well. To deliver the ROIs
just in time, we use the system for continuous visualiza-
tion explained in more detail in [WHS∗06]. In short, the dis-
crete time steps of the dataset are distributed by a dynamic
load-balancing algorithm to processes running on a parallel
machine. The distribution algorithm optimizes the assign-
ment not for best speed-up, but for a just-in-time arrival of
computed results with respect to the continuous visualiza-
tion. For a more detailed description of the applied parallel
techniques, especially the parallel architecture and scalabil-
ity, please refer to [WHS∗06].

The number of ROI extraction processes n used of the par-
allel machine is chosen according to the following equation:

n · tdisp > treload ⇔ n >
treload

tdisp

(3)

After an initial waiting time, a continuous transmission of
ROIs is provided. After each reload time treload , a time span
of n · tdisp is covered, that is data for n time steps is available
for local computation. If a gap occurs in this stream due to an
inaccurate estimation of treload (as tdisp stays constant), the
point of interest will be invalid for a time span of tdisp. To
counteract these cases, we use the worst computation time
as the estimation value.

Second, the DROI must fulfill the spatial condition. The
position predictor must make an accurate estimation for a
prediction time up to n · tdisp, which is the time covered by

Figure 5: With changing data time (t1 to t4) and input posi-

tion, a changing DROI is computed. The center positions for

the time-dependent ROIs are estimated.

one iteration of the parallel computation taking treload in to-
tal. Each process computes a single time step i out of n and
predicts the position of the point of interest after i · tdisp.

Even with a currently stopped animation in an analysis of
a single time step as described in section 4, a DROI of n

consecutive ROIs is computed. While this again wastes re-
sources as it is unnecessary for exploring the time-invariant
data, the user may at any time start the animation again.
Without a buffer of n ROIs, he would have to wait for treload

until a large enough DROI is computed.

6. Results

We measured update times and display times achieved with
our implementation of DROIs using two different datasets.
The dataset designated as shock consists of 919 time steps
of a rectilinear grid. Each time step contains 1.95 million
grid points, adding up to a total file size of 70 GB. The
simulation data describes an ultrasonic shock induction with
the goal of investigating the vortex structures depending on
the induction angle. A second dataset denoted as propfan is
made up of 50 time steps, each with 2.5 million points in an
unstructured moving grid. It simulates a propulsion turbine
with moving fans. The total dataset size is 9.5 GB.

The high performance system we used is a Sun Fire E6900
computer with 24 UltraSparc IV 1.2 GHz dual core pro-
cessors. Visualization nodes are equipped with a 3.2 GHz
dual Xeon, 2 GB main memory, and an NVIDIA GeForce
6800 GT. The systems are connected via a non-dedicated
100 MBit/s network.

For both datasets, the size of the ROI in the data domain
is approximately 20% of the axis length for all three spatial
dimensions. Three different resolutions of the ROI are ex-
amined: a subgrid, a resampled grid with resultion 163, and

c© The Eurographics Association 2007.

58



M. Wolter, C. Bischof, T. Kuhlen / Dynamic Regions of Interest for Interactive Flow Exploration

Figure 6: Achievable display times per time step using parallel computation of the DROI. Left: Display times for the shock

dataset. Right: Display times for the propfan dataset.

a resampled grid with resolution 323. For these three types
of ROI reload times and update times for the proposed local
features are measured.

Table 1: Reload times for time-invariant ROIs

ROI extract worst
case of
treload [s]

standard
deviation
of treload [s]

avg.
number
of cells

shock dataset
subgrid 3.08 0.11 27114
resample 323 2.391 0.192 29791
resample 163 0.641 0.056 3375
propfan dataset
subgrid 4.08 0.124 26767
resample 323 4.593 0.84 29791
resample 163 0.985 0.057 3375

The worst case reload times for steady ROIs are de-
picted in table 1. In the rectilinear grid, the reload time
for a subgrid-ROI is considerably larger than the subsam-
pled version, however in the unstructured grid this effect
decreases, as point location takes more time. The mea-
sured reload times are relatively stable, which makes sure
that most reload times fall below the worst time estimation
treload . The reload times are dominated by the subgrid algo-
rithm and the resampling algorithm, respectively. Required
data is well predictable, which results in low I/O waiting
times. The algorithms used are non-optimized VTK algo-
rithms. In addition, the applied UltraSparc processors have a
limited single processor serial performance. First tests with
an optimized and parallelized resampling algorithm showed
promising results for the reduction of reload times.

Figure 6 shows achievable display times per time step tdisp

for the parallel extraction of the DROI. With up to 32 pro-
cessors, a maximum data time change rate of approximately
3 time steps per second can be achieved with subsampled re-
gions in the shock dataset and up to 2 time steps per second

for the more complex propfan dataset. The frame rate stayed
above 20 fps, thus allowing for interactive manipulation.

Table 2: Update times for several local features

ROI extract glyph
probe [ms]

cutobject
[ms]

streamlines
[ms]

shock dataset
original data 33 1200 700
subgrid 3 16 26
resample 323 <1 5 16
resample 163 <1 1 11
propfan dataset
original data 20 1100 220
subgrid 2 36 24
resample 323 <1 23 8
resample 163 <1 8 7

Table 2 shows update times for the three different local
visualization methods. All three pipelines are constructed of
VTK components (with own renderers). For the glyph probe,
a simple arrow shaped glyph at one probe point is used. The
implicit function of the cut object is a sphere with a radius
of 20% of the ROI’s size. The particle seeder injected eight
particles integrated forward and backwards.

The data labeled "original" is a measurement of the up-
date times on the original, full-size dataset, with the dataset
already available in main memory. Using the restricted data
domain of the ROI, all three methods update data notice-
ably faster than the required 333 ms, even faster than the
demanded direct interaction response time of 100 ms. These
results point out that more complex visualization methods
can be used when working with DROIs.

On the original dataset, even when no file I/O is necessary,
only simple point probing is possible with acceptable update
times. That is, even if enough main memory was available
on the visualization system, without online reduction of the
data interactivity could not be achieved.

c© The Eurographics Association 2007.

59



M. Wolter, C. Bischof, T. Kuhlen / Dynamic Regions of Interest for Interactive Flow Exploration

7. Conclusions

We presented the concept of dynamic regions of interest to
enable interactive exploration for large, time-varying CFD
datasets. By taking the user’s direct interaction into consid-
eration, a spatially and/or topologically reduced region of
interest is computed. As this region surrounds the direct in-
teraction point, local features can be extracted with high ef-
ficiency.

The user keeps full control over this region’s parameters
while the system adapts itself to changing user behavior.
DROIs represent a very flexible approach, as they may be
used with a large set of visualization methods and are con-
trollable by the user during the exploration process. When
the parameters for a parallel just-in-time extraction of re-
gions are adjusted, DROIs enable a continuous exploration
independent of the number of time steps.

Choosing reasonable parameters for the input device’s
maximum velocity, ROI size and resolution, and an appro-
priate prediction technique remains an open question. To ob-
tain meaningful parameters, user studies have to be carried
out. The definition of non-biased tasks for several probing
techniques is a non-trivial task. We are currently discussing
such a study with engineers and psychologists, but the exe-
cution and analysis remains future work.

The weak point of this method are inaccurate estimations
(for reload time and position). Bottlenecks for resources
(network and parallel computer) result in inaccurate worst
reload time estimations. When reload times grow large due
to complex single time steps this results in inaccurate posi-
tion predictions, as the prediction time gets too long. In these
cases, the computed DROI may not satisfy the required con-
ditions and the user’s exploration is disturbed. We suggest
to provide feedback about the current state and layout of the
DROI to the user on demand, so that gaps are perceived as
such.

The only solution is to optimize the computation of the
DROIs by applying hybrid parallelization, faster I/O and
more efficient data structures. This will be the focus of our
future research, as well as the examination of more accurate
movement prediction algorithms.

Acknowledgement

The authors would like to thank the Institute of Aerody-
namics at RWTH Aachen University, the German Aerospace
Centre (DLR) and the Institute of Propulsion Technology at
Cologne for the simulation datasets kindly made available.

References

[ABM∗01] AHRENS J., BRISLAWN K., MARTIN K.,
GEVECI B., LAW C., PAPKA M.: Large-Scale Data Visu-
alization using Parallel Data Streaming. IEEE Computer

Graphics and Applications 21, 4 (2001), 34–41.

[AGL∗04] ALLARD J., GOURANTON V., LECOINTRE

L., LIMET S., MELIN E., RAFFIN B., ROBERT S.:
FlowVR: a Middleware for Large Scale Virtual Reality
Applications. In Proceedings of Euro-Par ’04 (2004),
pp. 497–505.

[BGY92] BRYSON S., GERALD-YAMASAKI M. J.: The
Distributed Virtual Windtunnel. In Proceedings of the

IEEE Supercomputing ’92 (1992), pp. 275–284.

[Bry04] BRYSON S.: Direct Manipulation in Virtual Real-
ity. In Visualization Handbook (2004), Hansen C., John-
son C., (Eds.), Elsevier, pp. 413–430.

[CMS94] CIGNONI P., MONTANI C., SCOPIGNO R.:
MagicSphere: An Insight Tool for 3D Data Visualization.
Computer Graphics Forum 13, 3 (1994), 317–328.

[GHW∗04] GERNDT A., HENTSCHEL B., WOLTER M.,
KUHLEN T., BISCHOF C.: VIRACOCHA: An Efficient
Parallelization Framework for Large-Scale CFD Post-
Processing in Virtual Environments. In Proceedings of

the IEEE Supercomputing ’04 (2004).

[KSW06] KRÜGER J., SCHNEIDER J., WESTERMANN

R.: ClearView: An Interactive Context Preserving
Hotspot Visualization Technique. IEEE Transactions on

Visualization and Computer Graphics 12, 5 (2006), 941–
948.

[LJH03] LARAMEE R., JOBARD B., HAUSER H.: Im-
age Space Based Visualization of Unsteady Flow on Sur-
faces. In Proceedings of the IEEE Visualization ’03

(2003), IEEE Computer Society, pp. 131–138.

[RFL∗98] RANTZAU D., FRANK K., LANG U., RAINER

D., WÖSSNER U.: COVISE in the CUBE: An Envi-
ronment for Analyzing Large and Complex Simulation
Data. In 2nd Workshop on Immersive Projection Tech-

nology (IPT ’98) (1998).

[SKH∗05] SCHIRSKI M., KUHLEN T., HOPP M.,
ADOMEIT P., PISCHINGER S., BISCHOF C.: Virtual
Tubelets - Efficiently Visualizing Large Amounts of Par-
ticle Trajectories. Computers and Graphics 29, 1 (2005),
17–27.

[SML06] SCHROEDER W., MARTIN K., LORENSEN B.:
The Visualization Toolkit User’s Guide, 5th ed. Kitware,
Inc., 2006.

[WHS∗06] WOLTER M., HENTSCHEL B., SCHIRSKI M.,
GERNDT A., KUHLEN T.: Time Step Prioritising in Par-
allel Feature Extraction on Unsteady Simulation Data.
In Proceedings of Eurographics Symposium on Parallel

Graphics and Visualization (EGPGV ’06) (2006), Euro-
graphics/ACM SIGGRAPH, pp. 91–98.

c© The Eurographics Association 2007.

60




