
Eurographics Symposium on Parallel Graphics and Visualization (2006)
Alan Heirich, Bruno Raffin, and Luis Paulo dos Santos (Editors)

An Application of Scalable Massive Model Interaction using
Shared-Memory Systems

Abe Stephens,1 Solomon Boulos,2 James Bigler,1 Ingo Wald,1 Steven Parker1

1 Scientific Computing and Imaging Institute, University of Utah.
2 School of Computing, University of Utah.

Figure 1: Left: Phong shaded mechanical component with shadows. Center: Transparent massive model rendering which allows
occluded structures to be examined in context. Right: Ambient occlusion shader inside the cockpit. (3D data provided byThe Boeing
Company.)

Abstract

During the end-to-end digital design of a commerical airliner, a massive amount of geometric data is produced.
This data can be used for inspection or maintenance throughout the life of theaircraft. Massive model interactive
ray tracing can provide maintenance personnel with the capability to easily visualize the entire aircraft at once.
This paper describes the design of the renderer used to demonstrate thefeasibility of integrating interactive ray
tracing in a commerical aircraft inspection and maintenance scenario. Wedescribe the feasibility demonstra-
tion involving actual personnel performing real-world tasks and the scalable architecture of the parallel shared
memory renderer.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Ray tracing I.3.2 [Com-
puter Graphics]: Distributed/network graphics

1. Introduction

The quantity of data produced by today’s engineering design
and applications often exceeds the rendering capabilities of
conventional interactive computer graphics. Engineers may
produce tens of gigabytes of geometric model data while
designing a complete product such as an airplane, but in
many cases they are unable to visualize all of the data at
once. This restriction may be acceptable while designing in-
dividual components of separate systems where context isn’t
important–however for tasks that follow fine-grained design,
looking at the whole dataset at one time may be more useful.

The Boeing 777-200 dataset was used as the geometric
model for this demonstration. The 3D model data consists
of approximately 350 million triangles and is made avail-
able by the Boeing Company although geometry within the
dataset is slightly altered. The dataset has appeared several
times in architectural walk-through or massive model visu-
alization literature [DWS05,GM05,WDS04,DWS04]. This
paper, in contrast to the others, describes the first feasibil-
ity demonstration involving actual Boeing personnel using
an interactive ray tracer as a tool to perform tasks from a
real-world job scenario.

Designing an interactive ray tracer around a shared mem-

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org

Stephens et al. / An Application of Scalable Massive Model Interaction using Shared-Memory Systems

ory system with enough main memory to avoid the need
for out-of-core techniques greatly simplifies implementa-
tion. It also eliminates the need to implement a custom
high-performance communication layer in software that is
necessary for most cluster based implementations [WBS02,
DPH∗03a].

1.1. Engineering Task

The scenario used for the demonstration was adopted from a
real-world engineering process. The participating personnel
include a quality analyst who discovers a problem with an
aircraft’s forward landing gear and a liaison engineer who is
responsible for directing a solution to the problem.

First the quality assurance analyst on site inspects the po-
tential problem and begins a remote collaborative session li-
aison engineer. This session includes both the ray traced vi-
sualization of the aircraft and audio and video conferencing.
The liaison engineer further directs the analyst’s inspection
and determines the best course of action to correct the prob-
lem (see Figure1.1). The scenario requires both remote vi-
sualization and remote collaboration using the visualization.
The engineers might be on opposite ends of a production fa-
cility or could be geographically separated if the problem is
detected in the field.

The interactive 3D model provided by the ray tracer serves
the same purpose as conventional schematic manuals. It pro-
vides both participants with greater context of what they are
looking at as well as a shared view of the correct assem-
bly. During the demonstration the renderer was run in a col-
laborative workspace on a large shared memory system and
was displayed both for the liaison engineer on a display wall
and remotely on a tablet computer for the quality analyst.
Without whole model visualization the liaison engineer and
quality analyst must carefully direct each other to the same
schematic diagrams and use them to separately identify and
resolve the problem.

1.2. Rendering Techniques

The Boeing 777-200 dataset may be rendered on a single
workstation using out-of-core, simplification, and visibil-
ity precomputation techniques [GM05]. The exploration and
rendering methods used in this paper, including transparent
surfaces, cutting planes, object identification and removal,
and ambient occlusion (which is a special case of obscu-
rances technique [ZIK98] and described in studio production
by Landis [Lan02]) are not easily implemented with GPU
techniques on such large models. In the demonstration, par-
ticipants used transparent rendering and cutting planes very
frequently. Usually they moved the camera to a point of in-
terest, used cutting planes or object hiding to remove large
structures in front of their point of interest, and then adjusted
surface opacity to see all necessary structures in the back-
ground. This sequence of operations cannot be easily per-
formed using schematic manuals or by rendering techniques

Figure 2: Demonstration Scenario: Quality analyst inspects
aircraft landing gear, discovers problem. Then uses a remote
visualization of the aircraft to communicate with liaison en-
gineer. Both use collaborative visualization to address the
problem.

that rely on pre-computed visibility since the user alters oc-
cluding surfaces as they explore the model.

2. Related Work

Large model interactive ray tracing has been applied to sev-
eral scientific visualization and engineering design prob-
lems. In this section, we briefly review previous work related
to the design of our system for large model visualization.

2.1. Interactive Ray Tracing

The past decade of advances in computing resources has
allowed interactive ray tracing to progress from simple,
sub-sampled images on 256 processors [KH95] to approx-
imate global illumination on small clusters [WKB∗02]. Ear-
lier work involving massively parallel ray tracing [GP90,
Muu95] has accurately predicted the possibility of high per-
formance of single workstation ray tracing today [RSH05].
We believe this work will act in a similar manner: what we
achieve now with supercomputers will be available in 5-10
years on a single workstation.

Interactive ray tracing for large volume visualization was
first demonstrated by Parker et. al [PPL∗99]. The system
achieved linear scaling up to 128 processors and near-linear
scaling for 1024 processors. This system was extended to
clusters and allowed an 8x increase in the size of the volume
data [DPH∗03b].

Ray tracing of very large scenes have been demonstrated
by several authors. In [PKGH97], Pharr et al. presented a
system for ray tracing scenes over an order of magnitude
larger than the available memory of their workstation us-
ing an out-of-core geometry caching approach. Reinhard et
al. provided a system to distribute rendering of large scenes
to several processors [RJ97]. In [PMS∗99], a scene with 35

c© The Eurographics Association 2006.

Stephens et al. / An Application of Scalable Massive Model Interaction using Shared-Memory Systems

million spheres was rendered interactively using an SGI Ori-
gin 2000. Wald et al. obtained interactive performance for
the Boeing 777 dataset of 350 million polygons on a sin-
gle PC using out-of-core techniques and a high performance
kd–tree implementation [WDS04].

2.2. GPU Large Model Visualization

Ray tracing is not the only viable method for large model
visualization. The first system to render the Boeing dataset
interactively, Boeing’s FlyThru application, does not use ray
tracing but instead relied on fast hardware from SGI and
used model simplification [ABM96]. Correa et al. demon-
strated an interactive out-of-core rendering system based
on visibility preprocessing and prefetching that allowed a
user to control the approximation error [CKS03]. The UNC
GAMMA group has repeatedly demonstrated the feasibil-
ity of large scale model visualization using view dependent
culling and mesh simplification [WVBSGM02, YSGM04].
The floating point performance of the GPU has also been
used to interactively render the Boeing 777 dataset at im-
pressive frame rates using precomputation of visibility and
LOD techniques [GM05].

The majority of these methods for rendering such large
models on the GPU either require several hours of prepro-
cessing, remove occluded surfaces or are optimized for par-
ticular viewing conditions. Exploring the model in an engi-
neering setting requires the ability to look inside of parts and
behind surfaces. This requires modifying the visibility infor-
mation, which makes visibility precomputation infeasible.

3. Manta Interactive Ray Tracer

The Manta Interactive Ray Tracer is an open source, highly
portable renderer for shared memory supercomputers and
high performance multi-core workstations. Both the config-
uration of the rendering pipeline and the scene graph are
highly extensible. Manta is designed to be more general pur-
pose than renderers created by Wald et al. or Reshetov et al.
[RSH05] which are more highly optimized for specific situ-
ations. In addition to massive triangle rendering, Manta may
be configured to render large volumes or sphere datasets.

Manta achieves interactive performance on small (8–12
processor) Itanium 2 shared memory system configurations
and has scaled up to 512 processors for high resolution ren-
dering. Because the renderer only targets shared memory
systems the extra overhead associated with porting cluster
based software architectures to a shared memory system are
avoided. This additional overhead is likely the cause of scal-
ability problems with large shared memory systems with
ports of cluster based renderers.

3.1. Acceleration Structure

The Boeing 777 aircraft model consists of approximately
350 million polygons. Manta uses a kd–tree constructed us-
ing a surface area heuristic [MB89] to accelerate ray tracing

performance. With a target audience of shared memory su-
percomputers, we use a parallel build algorithm to reduce the
time required to build the acceleration structure. The quality
of the structure can be controlled through user selected pa-
rameters and influences the total build time and final kd–tree
file size.

The kd–tree used in the experiments for this paper and
the interactive sessions with quality engineers was built over
night using a 64 processor system and is approximately
29 GB in size. The Boeing 777 data itself is 28 GB for trian-
gle data including smooth vertex normals and 1.3 GB for
part model numbers and group identification information.
We have found that a build requiring just two hours produces
a marginally acceptable tree (in terms of rendering perfor-
mance), but we use the higher quality tree for its improved
performance during rendering. The 64 GB runtime size of
the renderer with the model and kd–tree loaded is within the
main memory size of most shared memory supercomputer
and high end multi-core server configurations produced to-
day.

3.2. Ray Packets

Manta’s highly modular architecture relies on virtual func-
tion calls to pass control between routines. Statically sized
ray packets are used to pass ray tracing data up and down the
call stack and help amortized the overhead of virtual func-
tion lookups. Ray packets in Manta are considerably larger
then those used by other renderers. Each element in the ray
packet contains a ray direction and origin and information
about the minimum intersection point along the ray such as
pointer to a hit primitive and material shader.

Each ray packet includes a set of flags with general infor-
mation about all of the rays it contains. These flags are used
in the code to apply special case optimizations. For example
if all of the rays in the packet have a common origin, an cer-
tain optimized intersection or shading routine may be used.
Flags are also set after specific properties are computed, such
as inverse ray direction, so that the properties are only com-
puted once during the life of a packet.

In addition to amortizing the cost of virtual function
lookups, ray packets increase opportunities for instruction
level parallelism. On in-order processors with several float-
ing point units, like the Intel Itanium 2, code must be written
such that the compiler produces software pipelined loops in
order to increase instruction level parallelism. Additionally,
ray packets are laid out in memory as structures-of-arrays.
This vertical organization of member fields (so that an array
of three component vectors would be stored as a separate ar-
ray of each component) enables simple loading into SIMD
registers and further increases the opportunity for instruction
level parallelism.

The default ray packet size in Manta is 32 elements. Our
experiments show that eight elements are sufficient to amor-
tize virtual function looks for most situations. Larger packets

c© The Eurographics Association 2006.

Stephens et al. / An Application of Scalable Massive Model Interaction using Shared-Memory Systems

are benefitial when special case optimizations using packet
flags are available or vertical code is used to increase instruc-
tion level parallelism. When Manta is run on systems with
SSE units, large ray packets are broken into smaller four el-
ement wide packets during traversal or shading. Although
with two floating point scalars per operand are available on
the Itanium 2 their use through SSE intrinsics is not as ben-
eficial relative to the SSE units on other processors.

Lastly, ray packets increase memory access coherence
during traversal, triangle intersection, and write-back to the
frame buffer. Primary rays are sent coherently by the im-
age traverser and pixel sampler (described below), some care
must be used to send secondary rays or shadow rays coher-
ently.

3.3. Pipeline and Rendering Stack

Manta’s modular components are organized into a rendering
call stack of routines executed asynchronously within each
thread and a multi-stage pipeline which contains points for
synchronization. The simplest rendering pipeline contains
two stages; image display and rendering. This configuration
is shown in Figure3.

One frame buffer is operated on by each stage in the
pipeline. Threads synchronize for state changes between
each stage. In the example pipeline in Figure3(a) image
display is the first stage, executed by only one thread, and
the second stage is rendering. There is a one stage lag be-
tween rendering and image display so as the current frame
is displayed, the next frame is rendered. Additional stages
can be added to the pipeline and the display component may
be changed depending on the application. During feasibil-
ity demonstration a special display component was used to
write each frame to a SHM segment. In most cases a GLX
display component is used.

During the rendering stage of the pipeline each thread
asynchronously traverses the rendering stack. This call stack
of modular components consists of an Image Traverser, Pixel
Sampler, Renderer, and lastly scene graph (see Figure3(b)).
Inside the Image Traverser each thread operates on a tile of
the image which is assigned by a load balancer. The Image
Traverser determines integer pixel coordinates within a tile
and invokes the pixel sampler. The pixel sampler assigns co-
ordinates within each pixel to individual rays. Ray packets
are statically allocated in the pixel sampler and then sent up
the rendering stack with input data (the pixel sampler as-
signs sub-pixel image space coordinates, the camera assigns
each ray packet element an origin and direction, etc). The
Renderer component of the rendering stack is responsible
for invoking the camera, sending the ray packet to the scene
graph for intersection, and dispatching ray packets to mate-
rial shaders. Ambient occlusion shading employs a slightly
different rendering stack configuration described in section
4.3.

(a)

(b)

Figure 3: Two stage rendering pipeline (a) executed by
all threads and rendering call stack (b) executed asyn-
chronously in each thread.

3.4. Synchronization and Transactions

While ray tracing is traditionally considered embarassingly
parallel, the design of an interactive ray tracer quickly re-
veals practical difficulties. For example, although each ray’s
computation is independent, the scene state must be consis-
tent throughout the rendering of the frame. This requires that
there are several points during rendering that require all the
threads to synchronize.

Synchronization of the Manta pipeline occurs in two
places; reconfiguration (changing the number of available
processors or modifying the pipeline) and at the conclusion
of rendering a frame for state changes. How to synchronize
for state changes is an important consideration in the design
of an interactive ray tracer. While double buffering all state
is one possibility, Manta maintains a FIFO queue of incre-
mental state changes called Transactions.

Transactions are extremely short callbacks executed by a
single thread before each pipeline stage. Camera movement
and object selection are common examples. These callbacks
can safely modify any shared state in the renderer. Transac-
tions allow the renderer to run completely asynchronously
from a graphical user interface. The application sends trans-
actions to Manta and Manta displays frames directly through
GLX. Manta supports other forms of callbacks for animation
that may be executed either by one thread or in parallel.

Balanced load is maintained by labelling each task as in-
herently load balanced, dynamically load balanced or load

c© The Eurographics Association 2006.

Stephens et al. / An Application of Scalable Massive Model Interaction using Shared-Memory Systems

imbalanced. Dynamically load balanced tasks, such as ren-
dering are invoked last in order to mask the overhead of load
imbalanced tasks like image display. Ultimately the load bal-
ancer is responsible for ensuring good scaling as the number
of processors increases. The barriers and counters used for
synchronization and work assignment are implemented us-
ing high performance atomic operations and do not create a
bottle neck.

4. Visualization Techniques

In this section, we describe the different shading and user
inspection features that were implemented in Manta to im-
prove user exploration of the Boeing 777.

4.1. Cutting Planes and Hiding Objects

The Boeing 777 dataset is incredibly complex. Within most
visible portions of the model lies a complex network of
wiring, cabling and other small structures. To allow users to
see these otherwise occluded objects, Manta allows the user
to place and manipluate cutting planes while rendering (See
Figure4).

The cutting plane is placed on top of the scene graph. This
allows the cutting plane to modify each ray intersection in-
terval so that objects on the culled side of the plane will not
return valid intersections.

In addition to removing geometry with cutting planes,
Manta allows users to click on and hide individual objects in
the dataset. As with cutting planes, objects that match hidden
serial numbers simply do not return intersections with rays.
Figure4 demonstrates the use of a cutting plane to remove
the top of the aircraft and the removal of several objects in
the forward galley to reveal structure below.

Figure 4: Using a cutting plane to examine the forward gal-
ley and then selecting and hiding individual objects to reveal
the structure below.

4.2. Transparent Rendering

While cutting planes and object hiding allows for a wide
range of model inspection, it is sometimes necessary for
a user to maintain their current context while investigat-
ing occluded surfaces. Through the use of a user controlled

global transparency value, Manta allows users to see oc-
cluded structures in a less binary manner. Transparent ren-
dering of the dataset provides users with a very different in-
spection ability then a traditional architectural walk through
provides (See Figure5).

Figure 5: Comparison between Lambertian shading with
shadows and transparent rendering in the engine nacelle.
Transparent rendering reveals the intricate details of the as-
sembly and preserves context in the area, while standard
Lambertian shading hides much of the detail.

Transparency is implemented by modifying the kd–tree
traversal to blend colors between sorted subsequent trian-
gle intersections along a ray. This approach is similar to ray
marching through a volume dataset. The termination criteria
of the traversal was altered to allow rays to attenuate as they
passed through the model instead of terminating the ray after
it passed through a leaf node containing a valid intersection.
In most cases, users adjusted opacity so that they could see
through a small number of surfaces but still maintain con-
text within the model. As is common for volume rendering,
once the opacity reaches a cutoff value (0.95 was used for
the images in this paper) the ray traversal is terminated for
efficiency.

Varying the transparency value increases the cost of ren-
dering. As the global transparency value is varied, rays will
need to intersect more triangles and kd–tree nodes. We have
measured performance to be linear as opacity increases from
moderate values with the Boeing 777 dataset on a 16 proces-
sor Itanium 2 system.

4.3. Ambient Occlusion

While the previous visualization methods allow a user to in-
teractively inspect the Boeing 777 model, the renderings are
far from an accurate depiction of the real parts the quality
assurance analyst will see on site. Providing the liason engi-
neer with a full interactive global illumination may allow for
more meaningful interaction with the model. This approach
is complicated due to the computational burden of global il-
lumination and lack of lighting and material information for
the model.

The computational burden of global illumination stems
from the large number of secondary rays required to com-
pute an acceptable solution. For each primary ray, several

c© The Eurographics Association 2006.

Stephens et al. / An Application of Scalable Massive Model Interaction using Shared-Memory Systems

secondary rays are required. The material information in-
cluded with the dataset is a simple color coding; an advanced
global illumination solution would desire identification of
metallic, glass and plastic objects. More importantly, how-
ever, an accurate lighting simulation of the aircraft would
require the placement of light sources which do not come
with the model. In the case of field work, these light sources
would need to be defined to match the analyst’s environment.

Despite this lack of information, we can use ambient oc-
clusion to provide a result that is qualitatively similar to
a diffuse global illumination solution without relying on
placement of light sources. Ambient occlusion approximates
the amount of ambient light that would reach a surface by
sampling a hemisphere about the intersection point with sec-
ondary rays. This results in renderings with increased con-
trast around small geometric details due to local occlusions
(See Figure6). The ratio of occluded to total samples is cal-
culated and used as an ambient term. Secondary rays are
considered occluded if they intersect another surface with
a user controlled cutoff distance.

To reduce the computational overhead involved in using
many secondary rays, ambient occlusion was implemented
in Manta following existing instant global illumination tech-
niques [WKB∗02]. Interleaved sampling [KH01] was used
to select a small subset of precomputed ray directions in a
hemisphere. This subset was transformed to the orientation
of each primary ray intersection point hemisphere and sec-
ondary rays were produced for each direction. The hit ratio
on the hemisphere for each primary ray intersection point
was filtered together using a kernel similar to that used by
Ward for irradiance caching [WRC88].

Manta’s rendering stack was reconfigured to more closely
follow the direction of Wald et al.ś instant global illumi-
nation. The Image Traverser and Pixel Sampler compo-
nent functionality was combined so that filtering could be
performed on a discontinuity buffer spanning many pixels.
Each rendering thread maintained an individual discontinu-
ity buffer. Additionally the Renderer component, at the top
of Manta’s rendering stack (see3(b)) was modified to store
hit and material information in the discontinuity buffer.

4.4. Remote Visualization

Remote rendering and collaboration is an essential compo-
nent of the demonstration scenario (see Figure1.1) and is
an important consideration for any large shared memory vi-
sualization system. Larger configurations are often accessed
in machine rooms from users’ work areas over local area
networks with insufficient bandwidth and may be shared re-
sources within an organization. Remote visualization also re-
duces the need to transfer massive, possibly proprietary, data
sets to collaborators.

Compression utilities such as OpenGL Vizserver read
back frame buffers from the graphics driver, apply a va-
riety of compression algorithms to the image stream and

Figure 6: Comparison between Lambertian shading with
shadows and ambient occlusion (5x5 filter, four secondary
rays) of the overhead control panel in the cockpit. Ambient
occlusion enhances the contrast between the panel and indi-
vidual buttons, switches and dials.

then transmit it to a remote client. The compression utility
is transparent to the rendering application and provides for
some collaboration – users may interact with the same appli-
cation running on the host system and will see each others’
mouse pointers. Using this type of utility it is possible to
control an interactive ray tracing session with modest reso-
lution from a laptop across the Internet.

5. Results

The Boeing 777 dataset has been rendered using Manta on
a variety of systems with different configurations. On most
configurations memory is the greatest limiting factor. The
standard small system to render the dataset is a 12 proces-
sor Itanium 2 SGI Prism. This configuration was used at a
demonstration of Manta at SIGGRAPH 2005. The renderer
is commonly run at higher resolutions on a 64 processor sys-
tem and has been scaled up to 128 and 512 processor config-
urations.

5.1. Renderer Performance

The feasibility demonstration in this paper was targeted at a
128 processor system with 256 gigabytes of main memory.
The system was used to render the aircraft model, compress
the image stream for remote vizserver connections, and han-
dle several additional interaction streams from video confer-
encing. 112 of the 128 processors were used for ray tracing,
other applications used the remaining processors.

All of the benchmarks were conducted using a program
that sends camera update transactions from a pre-recorded
path to Manta at a prescribed rate and approximates the be-
havior of a real user. In the benchmark plots thex axis in-
dicates the transaction number when each data point was
recorded.

Figure7(a) contains a processor scaling plot of the ren-
derer’s performance using a simple shadowed Phong mate-
rial on the demonstration system. Resolution 1024x768 was
used for the benchmark. The software scales well through 64

c© The Eurographics Association 2006.

Stephens et al. / An Application of Scalable Massive Model Interaction using Shared-Memory Systems

processors (average 22 fps). On 126 processors Manta ran at
82 percent of linear with an average speed of 40.0 fps.

The results in both Figure7(b) and Figure7(c) were
recorded on an older 62p 1.5 GHz Itanium 2 SGI. The alpha
value 0.3 was used in Figure7(b) this is nearly the minimum
useful alpha value and consititues a lower bound on transpar-
ent performance. Alpha 0.3 is marginally fast enough to be
useful on 60 processors. It is likely that a user would need to
navigate using less tranparency and then decrease the value
after finding the location of interest.

The 800x600 resolution is too high to render using the am-
bient occlusion shader with reasonably sized systems. Un-
fortunately a 128 processor configuration was not available
to test the shader on. (see figure7(c)) Decreasing the reso-
lution is necessary to obtain more interactivity, but not real-
time results. Currently the shader would best be used to pro-
duce a high quality image after the user stops moving the
camera quickly.

5.2. Discussion

One limitation of our system is that the objects can only be
hidden, not moved with the model. While being able to hide
or see through an object may be a useful mechanism for in-
spection, it may be more intuitive to allow a user to simply
move objects out of the way. This limitation is inherited from
the static nature of the acceleration structure used and is a
topic for future work.

The high cost of the ambient occlusion shader, relative
to transparent or shaded surface rendering prohibits it from
being feasible to use in the aircraft maintenance and qual-
ity scenario. Never-the-less, five frames per second is still
interactive and will contine to improve with overall system
performance.

It is important to make the distinction between technolo-
gies which are feasible to integrate in a real-world pro-
cess, and those that are practical to widely deploy. Today of
course, not every member of an engineering organinzation
can have a 128 processor system beside their desk – collab-
orative/remote rendering must be used instead.

The visualization objective of the feasibility demonstra-
tion was to build a system that would integrate massive
model rendering with a real-world engineering process–and
obtain an acceptable level of performance. Manta’s general
purpose modular design permitted straight forward integra-
tion in a work flow with other applications. The renderer’s
scalable architecture enabled it to be deployed on a suffi-
ciently large system.

6. Acknowledgements

This work was funded by the DOE ASC Center for the Sim-
ulation of Accidental Fires and Explosions and the Utah
Center of Excellence for Interactive Ray-Tracing and Photo
Realistic Visualization. The feasibility demonstration was

 0

 10

 20

 30

 40

 50

 60

8 16 32 48 64 96 112 126

fp
s

Number of Processors

 100%

 100%

 98%

 96%

 92%

 88%

 85%

 82%

 100%

 100%

 98%

 96%

 92%

 88%

 85%

 82%

(a) Shadowed Phong shading 128 processor 1.6 GHz (Demonstra-
tion machine). 1024x768 pixels

 0

 5

 10

 15

 20

 25

12 4 8 16 32 48 56 60

fp
s

Number of Processors

 96%

 95%

 94%

 92%

 91%

 93%

 95%

 90%

 89%

 88%
 85%

 87%

 96%

 95%

 94%

 92%

 91%

 93%

 95%

 90%

 89%

 88%
 85%

 87%

Phong
alpha 0.40

(b) Shadowed Phong and very low alpha value. 62 processor 1.5
GHz. 800x600 pixels

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 8 16 32 56 60

fp
s

Number of Processors

 93%

 91%

 88%

 84%

 86%

 92%

 92%

 89%

 84%

 86%

 93%

 91%

 88%

 84%

 86%

 92%

 92%

 89%

 84%

 86%

3x3 4 rays
5x5 2 rays

(c) Ambient Occlusion. 3x3 and 5x5 filters. 62 processor 1.5 GHz.
512x512 pixels

Figure 7: Scaling performance on a variety of machines.
Each plot indicates the average performance along a cam-
era path consisting of several thousand camera updates.
Considerable variation in scene complexity is experienced
along the paths. The solid line drawn with each plot indi-
cates linear performance. The ratio between measured and
linear performance is indicated at each data point.

c© The Eurographics Association 2006.

Stephens et al. / An Application of Scalable Massive Model Interaction using Shared-Memory Systems

supported by Silicon Graphics Incorporated, The Boeing
Company, and Intel Corporation. The authors would like to
thank Hansong Zhang, Kenny Hoff, Dan McLachlan, Jimmy
Wang, and Rocky Rhodes for their assistance from SGI as
well as David Kasik and Jim Troy from Boeing.

References

[ABM96] A RBABANEL R. M., BRECHNER E., MCNEELY W.:
FlyThru the Boeing 777. InACM SIGGRAPH, Visual Proceed-
ings(1996).

[CKS03] CORREA W. T., KLOSOWSKI J. T., SILVA C. T.:
Visibility-based prefetching for interactive out-of-core rendering.
In PVG ’03: Proceedings of the 2003 IEEE Symposium on Par-
allel and Large-Data Visualization and Graphics(Washington,
DC, USA, 2003), IEEE Computer Society, p. 2.

[DPH∗03a] DEMARLE D., PARKER S. G., HARTNER M.,
GRIBBLE C., HANSEN C.: Distributed Interactive Ray Trac-
ing for Large Volume Visualization. InProceedings of the IEEE
PVG(2003), pp. 87–94.

[DPH∗03b] DEMARLE D. E., PARKER S., HARTNER M.,
GRIBBLE C., HANSEN C.: Distributed interactive ray tracing
for large volume visualization. InIEEE Symposium on Parallel
and Large-Data Visualization and Graphics(Oct. 2003), pp. 87–
94.

[DWS04] DIETRICH A., WALD I., SLUSALLEK P.: Interac-
tive Visualization of Exceptionally Complex Industrial Datasets.
In ACM SIGGRAPH 2004, Sketches and Applications(August
2004).

[DWS05] DIETRICH A., WALD I., SLUSALLEK P.: Large-Scale
CAD Model Visualization on a Scalable Shared-Memory Ar-
chitecture. InVision, Modeling, and Visualization(July 2005),
pp. 303–310.

[GM05] GOBBETTI E., MARTON F.: Far Voxels – a multireso-
lution framework for interactive rendering of huge complex 3d
models on commodity graphics platforms.ACM Transactions
on Graphics 24, 3 (August 2005), 878–885. Proc. SIGGRAPH
2005.

[GP90] GREEN S. A., PADDON D. J.: A Highly Flexible Mul-
tiprocessor Solution for Ray Tracing.The Visual Computer 6, 2
(1990), 62–73.

[KH95] K EATES M. J., HUBBOLD R. J.: Interactive ray tracing
on a virtual shared-memory parallel computer.Computer Graph-
ics Forum 14, 4 (Oct. 1995), 189–202.

[KH01] K ELLER A., HEIDRICH W.: Interleaved Sampling.Ren-
dering Techniques(2001), 269–276. (Proceedings of the 12th
Eurographics Workshop on Rendering).

[Lan02] LANDIS H.: Production-Ready Global Illumination. In
SIGGRAPH 2002 RenderMan in Production Course Notes. July
2002.

[MB89] M ACDONALD J. D., BOOTH K. S.: Heuristics for ray
tracing using space subdivision. InProceedings of Graphics In-
terface(1989), pp. 152–63.

[Muu95] MUUSS M.: Towards real-time ray-tracing of combi-
natorial solid geometric models. InProceedings of BRL-CAD
Symposium(1995).

[PKGH97] PHARR M., KOLB C., GERSHBEIN R., HANRAHAN

P.: Rendering Complex Scenes with Memory-Coherent Ray
Tracing. Computer Graphics 31, Annual Conference Series
(Aug. 1997), 101–108.

[PMS∗99] PARKER S. G., MARTIN W., SLOAN P.-P. J.,
SHIRLEY P., SMITS B. E., HANSEN C. D.: Interactive ray trac-
ing. In Proceedings of Interactive 3D Graphics(1999), pp. 119–
126.

[PPL∗99] PARKER S. G., PARKER M., L IVNAT Y., SLOAN P.-
P., HANSEN C., SHIRLEY P.: Interactive ray tracing for volume
visualization.IEEE Transactions on Computer Graphics and Vi-
sualization 5, 3 (1999), 238–250.

[RJ97] REINHARD E., JANSEN F. W.: Rendering Large Scenes
using Parallel Ray Tracing.Parallel Computing 23, 7 (July
1997), 873–885.

[RSH05] RESHETOVA., SOUPIKOV A., HURLEY J.: Multi-level
ray tracing algorithm. In(Proceedings of SIGGRAPH(2005),
pp. 1176–1185.

[WBS02] WALD I., BENTHIN C., SLUSALLEK P.: OpenRT -
A Flexible and Scalable Rendering Engine for Interactive 3D
Graphics. Tech. rep., Saarland University, 2002. Available at
http://graphics.cs.uni-sb.de/Publications.

[WDS04] WALD I., DIETRICH A., SLUSALLEK P.: An Inter-
active Out-of-Core Rendering Framework for Visualizing Mas-
sively Complex Models. InRendering Techniques 2004, Pro-
ceedings of the Eurographics Symposium on Rendering(2004),
pp. 81–92.

[WKB∗02] WALD I., KOLLIG T., BENTHIN C., KELLER A.,
SLUSALLEK P.: Interactive Global Illumination using Fast Ray
Tracing. Rendering Techniques(2002), 15–24. (Proceedings of
the 13th Eurographics Workshop on Rendering).

[WRC88] WARD G. J., RUBINSTEIN F. M., CLEAR R. D.: A ray
tracing solution for diffuse interreflection. InComputer Graphics
(Proceedings of SIGGRAPH 88)(Aug. 1988), vol. 22, pp. 85–92.

[WVBSGM02] WILLIAM V. BAXTER I., SUD A., GOVIN-
DARAJU N. K., MANOCHA D.: Gigawalk: interactive walk-
through of complex environments. InEGRW ’02: Proceed-
ings of the 13th Eurographics workshop on Rendering(Aire-
la-Ville, Switzerland, Switzerland, 2002), EurographicsAssocia-
tion, pp. 203–214.

[YSGM04] YOON S.-E., SALOMON B., GAYLE R., MANOCHA

D.: Quick-VDR: Interactive view-dependent rendering of mas-
sive models. InVIS ’04: Proceedings of the conference on Vi-
sualization ’04(Washington, DC, USA, 2004), IEEE Computer
Society, pp. 131–138.

[ZIK98] Z HUKOV S., IONES A., KRONIN G.: An ambient light
illumination model. InNinth Eurographics Workshop on Render-
ing (June 1998), pp. 45–56.

c© The Eurographics Association 2006.

Stephens et al. / An Application of Scalable Massive Model Interaction using Shared-Memory Systems

Figure 1: Top Left: Phong shaded mechanical component
with shadows. Bottom: Transparent rendering. Top Right:
Ambient occlusion shader. (3D data provided by The Boe-
ing Company.)

Figure 5: Comparison between Lambertian shading with
shadows and transparent rendering in the engine nacelle.

Figure 6: Comparison between Lambertian shading with
shadows and ambient occlusion (5x5 filter, four secondary
rays).

c© The Eurographics Association 2006.

