
Eurographics Symposium on Parallel Graphics and Visualization (2004)
Dirk Bartz, Bruno Raffin and Han-Wei Shen (Editors)

Memory-Savvy Distributed Interactive Ray Tracing

David E. DeMarle, Christiaan P. Gribble, and Steven G. Parker †

Scientific Computing and Imaging Institute
University of Utah

Abstract
Interactive ray tracing in a cluster environment requires paying close attention to the constraints of a loosely cou-
pled distributed system. To render large scenes interactively, memory limits and network latency must be addressed
efficiently. In this paper, we improve previous systems by moving to a page-based distributed shared memory layer,
resulting in faster and easier access to a shared memory space. The technique is designed to take advantage of
the large virtual memory space provided by 64-bit machines. We also examine task reuse through decentralized
load balancing and primitive reorganization to complement the shared memory system. These techniques improve
memory coherence and are valuable when physical memory is limited.

Categories and Subject Descriptors (according to ACM CCS): I.3.2 [Computer Graphics]: Graphics Systems–
Distributed/network graphics I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Ray tracing

1. Introduction

Datasets are growing in size at an alarming rate. Typical
datasets, including regular volumetric data, tetrahedral vol-
umes, surface models, and textures, are often hundreds of
megabytes or tens of gigabytes in size and are much larger
than the capacity of the physical memory in most uniproces-
sor machines. Parallel computers allow us to solve this prob-
lem because their processing power is great enough to render
the data and because their memory resources are plentiful
enough to hold the data. Amdahl’s law, which implies that
any amount of sequential processing limits parallel compu-
tational scaling, encourages us to take advantage of the sec-
ond feature of parallel computing and make the best possible
use of the parallel memory resources.

It is well known that ray tracing is trivially parallel. With
the huge number of data accesses incurred by ray tracing,
however, memory access delays quickly become the indivis-
ible portion of the rendering time and limit achievable scala-
bility when visualizing large, shared datasets. To reduce this
bottleneck, we apply a page-based distributed shared mem-
ory (PDSM) system to interactive ray tracing.

In our distributed interactive ray tracing system, each

† {demarle |cgribble |sparker}@sci.utah.edu

node in the cluster manages different pieces of the scene
data and reserves some local space to cache remote pieces.
Our renderer accesses data through the regular address space
by employing operating systems services, particularly vir-
tual memory. Accessing distributed memory through the vir-
tual memory system is beneficial because the shared mem-
ory software layer intervenes only when a missing page is
referenced. Figure 1 presents a high-level view of the pro-
cess by which render threads access scene data.

The page-based approach has the potential to allow clus-
ters of inexpensive machines to render large datasets quickly,
even when each node has a physical memory that can store
only a fraction of the total data. This point is important be-
cause, while next generation 64-bit machines are able to ad-
dress tremendous amounts of memory, the cost of that mem-
ory is a limiting factor in the quantity available on each node.
Efforts to employ the total sum of the memory in an efficient
and cost-effective manner are valuable.

Our new system has advantages over previous systems be-
cause memory access is fully decentralized, does not rely on
disk access, and has a natural programming interface. Shared
memory hits incur no overhead, so when the working set is
reasonably bounded and changes gradually between frames,
the system operates at nearly the same speed as if the data
had been replicated on each node.

c© The Eurographics Association 2004.

http://www.eg.org
http://diglib.eg.org


D. E. DeMarle, C. P. Gribble, & S. G. Parker / EG Memory-Savvy

Node 3's Memory

 Node 1's Memory

Render
thread

HIT MISS

Signal
handler

Comm
thread

 Node 1

network

Figure 1: Basic Page-Based DSM Architecture. The vir-
tual memory hardware detects misses, and the PDSM layer
causes remote references to be paged from across the net-
work.

Two additional changes to our renderer attempt to capital-
ize on this advantage. Both seek to increase hit rates, help-
ing to alleviate the large miss penalties and take advantage
of low hit times. The first change is to move from a central-
ized demand driven load balancing scheme, in which ren-
derers obtain work from the supervisor, to a decentralized
work stealing scheme. Work stealing helps reduce the varia-
tion in tile assignments between frames, enabling previously
cached data to be reused.

The second change seeks to improve hit rates by reorga-
nizing the scene data to improve coherence. The key obser-
vation is that spatially local primitives should be stored to-
gether in memory as well. Similar to data bricking for volu-
metric datasets [PSL∗98, CE97], this technique can improve
rendering rates by increasing the probability that a page of
memory will be reused once it has been loaded.

2. Related Work

DeMarle et al. [DPH∗03] use an object-based distributed
shared memory (ODSM) to render large volumetric datasets.
Distributed access to scene data in a switched network pro-
vides data at the combined bandwidth of all of the ma-
chines in the cluster. Badouel et al. [BBP94] achieved a
similar effect with a page-based distributed shared mem-
ory. Quarks [CKK95] and Adsmith [LKL97] are representa-
tive examples of full featured page- and object-based DSMs.
In this paper we compare the performance of both types of
DSM layers for distributed interactive ray tracing.

Wald et al. [WSB01] have explored coherent ray tracing
techniques in the distributed environment. They address the
challenge of rendering large, complex models interactively
by combining centralized data access and client-side caching

of geometry voxels. They take pains to exploit spatial co-
herence within BSP tree nodes and temporal coherence be-
tween subsequent frames. In their system, both tile assign-
ments and data retrieval go through central servers. In this
work we parallelize these functions to eliminate the central
bottlenecks.

Many authors have considered load balancing for parallel
ray tracing. For example, Heirich et al. [HA98] discuss the
necessity of dynamic load balancing for ray tracing in an in-
teractive setting and describe a scheme based on a diffusion
model. Reinhard et al. [RCJ99] present an advanced hybrid
load balancing scheme in which both objects and rays can
be transfered between processing elements. The data parallel
tasks allow their system to render large and complex scenes
efficiently while the demand driven tasks, consisting of co-
herent ray packets, balance the load more evenly. A complete
discussion of load balancing techniques for parallel render-
ing can be found in [CDR02]. We focus on decentralized
load balancing with work stealing as a simple and effective
method to balance the load while improving memory and
network performance characteristics.

As the gap between processor speeds and memory
and network speeds continues to widen, data locality
becomes increasingly critical to rendering performance.
Pharr et al. [PKGH97] use caching techniques to manage
model complexity in an off-line rendering process. They
complement lazy data loading with data reorganization in
a geometry cache. The reorganization ties spatial locality in
the three-dimensional space of the scene to locality in mem-
ory so that expensive disk access times can be amortized.
Cox et al. [CE97] apply similar methods for scientific visu-
alization of large datasets. The data reorganization technique
we describe targets the same goal, and in this paper, we ex-
amine its effect in a distributed shared memory environment.

3. Page-Based Distributed Shared Memory

In [DPH∗03], we presented a solution to the memory
problem in which a C++ dataserver object obtains data
from remote nodes when requested by one or more render
threads. With a well-constructed acceleration structure, vol-
ume bricking, caching, and strict attention to efficient ac-
cesses to the dataserver, more than 95% of data accesses re-
sulted in hits. Such a high hit rate allowed the program to
produce interactive visualizations of multi-gigabyte datasets,
despite the fact that miss penalties were on the order of
1000 µs.

The high hit rates in our renderer make the hit times a
tempting target for optimization. In an ODSM system, ev-
ery memory access must go through expensive access tests,
which are performed in software, to find a block and ensure
that it is available for the duration of its use. In our new sys-
tem, the virtual memory hardware of the machine handles
all memory accesses and a signal handler processes only the

c© The Eurographics Association 2004.



D. E. DeMarle, C. P. Gribble, & S. G. Parker / EG Memory-Savvy

exceptional case of a cache miss. The DSM system requires
no kernel modifications because it is implemented entirely
in user-space using standard Unix system calls. Because the
scenes are read-only during rendering, the DSM system does
not implement page invalidation, is not prone to false shar-
ing inefficiencies and does not require complex consistency
mechanisms.

The distributed memory space now occupies a reserved
range of virtual memory addresses. As before, each node as-
sumes ownership of different stripes of the shared memory
space and populates them with data at program initialization.
The remainder of the shared address range is initially empty
and unmapped.

During execution, render threads generate a segmentation
fault signal every time they access an unmapped address. A
registered handler catches the signal and retrieves the fault-
ing address. The handler finds the node that owns the page
of memory in which the faulting address resides, issues a
request to the owner, and suspends the render thread.

When the owner responds with the page, the communi-
cation thread first checks the number of cached pages. If
there are no open slots, a page is selected for eviction to
reclaim space. Currently a random page replacement policy
is used because of the difficulty of implementing a more so-
phisticated algorithm in user-space. Next, the communica-
tion thread receives the sent data directly into a newly cre-
ated page residing at the requested address and wakes the
render thread, which continues forward.

One strength of a PDSM is that data accesses do not re-
quire special handling in the application. The application
need not distinguish between items that lie in shared space
and those that do not. Programs that use large amounts of
memory can be developed in a similar fashion to those that
employ shared memory hardware. This ease of use makes
it feasible to render large scenes composed of any object
type. Additionally, placing the acceleration structure in the
shared memory space can be beneficial. Although accesses
to uncached portions of the structure impose slight penalties,
these do not occur frequently in practice. In fact, frequently
accessed root level data typically remain loaded while un-
used branches tend to be pruned away.

The primary disadvantage of a page-based system is that
it is limited to scenes that fit within the address space of the
machines on which it runs. For 32-bit machines, the maxi-
mum theoretical limit is 4 GB. In practice, however, operat-
ing system limits and the need to leave some addresses for
other program data make the limit slightly less than 2 GB.
Fortunately, the increasing availability of 64-bit machines
makes this limitation much less severe.

The core routines of the PDSM software layer are given
as pseudocode in Figure 2. In Section 6.1 we analyze the ef-
fectiveness of rendering large scenes using the PDSM space.

// At program start, this function is
// registered to handle SIGSEGV
void memintercept(siginfo_t* sinfo) {

void* faulting_addr = sinfo->si_addr;
int page_num = get_page_num(faulting_addr);
int owner = get_owner(page_num);
send_msg(owner, REQUEST_PAGE, page_num);
page_wait_sem.down();

}

// At program start, this function is
// registered to handle PDSM messages
void handlemessage(int sender, int msgid,

int page_num) {
if (msgid == REQUEST_PAGE) {

send_msg(sender, SENT_PAGE,
&page[page_num]);

} else {
int destslot = num_pages_loaded;
if (num_pages_loaded == cachesize) {

int victim = select_victim_page();
unmap(&page[victim],sizeof(page));
destslot = victim;

} else
num_pages_loaded++;

mmap(&(page[destslot]),sizeof(page));
recv_msg(sender, &page[destslot]);
page_wait_sem.up();

}
}

Figure 2: Page-Based DSM Core Functionality. These two
functions implement the distributed shared memory. mem-
intercept is invoked when a render thread accesses
memory that is unmapped, and handlemessage reacts to
the resulting network messages.

4. Decentralized Load Balancing

Even with faster access to shared scene data, each miss in-
flicts hundreds of microseconds of delay. The miss time is
largely a function of the network characteristics and is not
easily reduced. In an interactive rendering system, then, it
is critical to reduce the number of misses. Toward this end,
we have experimented with a decentralized load balancing
scheme that employs work stealing. Our algorithm is a sim-
plification of that in [RSAU91].

As in our previous system, rendering tasks are based on an
image-space division because primary rays can be traced in-
dependently. Before, the supervisor node maintained a work
queue, and workers implicitly requested new tiles from the
supervisor when they returned completed assignments. Al-
though the central work queue quickly achieves a well-
balanced workload, it results in poor memory coherence be-
cause tile assignments are essentially random and change ev-
ery frame.

c© The Eurographics Association 2004.



D. E. DeMarle, C. P. Gribble, & S. G. Parker / EG Memory-Savvy

With a work stealing load balancer, each render thread
starts frame t with the assignments it completed in frame
t − 1. This pseudo-static assignment scheme increases hit
rates because the data used to render frame t− 1 will likely
be needed when rendering frame t. The goal of this ap-
proach is similar to the scheduling heuristic described by
Wald et al. [WSB01].

Our new system uses a combination of receiver- and
sender-initiated task migration to prevent the load from be-
coming unbalanced when the scene or viewpoint changes.
Once a worker finishes its assignments for a given frame, it
picks a peer at random and requests more work. If that peer
has work available, it responds. To improve the rate of con-
vergence toward a balanced load, heavily loaded workers can
also release work without being queried. In our current im-
plementation, for example, the node that required the most
time to complete its assignments will send a task to a ran-
domly selected peer at the beginning of the next frame.

Figure 3 contains diagnostic images showing typical im-
age tile distributions for the original demand driven and the
new work stealing algorithms. Note the distribution of tiles
in the work stealing image is more regular. In Section 6.2 we
analyze the effectiveness of this optimization.

Figure 3: Comparing Task Assignment Strategies. Tiles ren-
dered by each node have unique gray-levels. On the left,
tasks constantly change with demand driven assignment. On
the right, assignments are more stable with work stealing,
allowing workers to reuse locally cached data more often.

5. Address Sorting

The problem of accessing data is acute in network memory
and out-of-core systems, where the access time to missing
memory is high. To decrease the number of misses, we care-
fully organize the layout of scene data in memory. If primi-
tives located together in three-dimensional space can be re-
arranged so they are also located together in address space,
pages are more likely to be reused. The effect of our tech-
nique is similar to that achieved by Pharr et al. [PKGH97].

We reorganize the memory layout of our input data using
a preprocessing program. This program reads a mesh file and
creates a multi-level grid acceleration structure that groups

nearby objects together. To sort the geometry for improved
coherence, we traverse the acceleration structure and write
the primitives, in order, to a new scene database. Although
the input data may contain neighboring triangles p and q
that are separated by tens of megabytes of address space, the
output data will contain new triangles p′ and q′ within a few
bytes of each other. The preprocessing program takes only a
few minutes for the models we tested.

Figure 4 shows graphically what it means to group trian-
gles in the shared address space according to spatial locality.
In the figure, all triangles within pages owned by a partic-
ular node have identical hues. Figure 4b demonstrates that,
without reorganization, neighboring triangles may be placed
far apart in memory or owned by different nodes. Figure 4c
shows the address alignment of the sorted mesh. With this
layout, neighboring rays are more likely to find the data they
need within an already referenced page and throughout the
lower levels of the memory hierarchy. In Section 6.3 we an-
alyze the effectiveness of this optimization.

6. Results

In this section, we benchmark interactive rendering sessions
under varying conditions to analyze the performance bene-
fits of the three techniques we have applied. All scenes have
a single light source and include hard shadows. For each test,
the images were rendered at a resolution of 512x512 pix-
els and were divided into 16x16 pixel tiles, except where
noted. Our test machine is a 32 node cluster consisting of
dual 1.7 GHz Xeon PCs with 1 GB of RAM. The nodes
are connected via switched gigabit ethernet. We run a sin-
gle rendering thread on each node, except where noted. The
reported node counts do not include the use of a single dis-
play machine.

6.1. Page-Based Distributed Shared Memory Analysis

The first test compares the hit and miss times for the ODSM
and PDSM layers that our ray tracer employs when render-
ing large datasets. Table 1 gives the measured hit and miss
penalties for object- and page-based DSMs recorded in a
random access test. In the test, one million 16 KB blocks
are chosen at random from a 128 MB shared memory space.
The access times have been recorded using the gettimeofday
system call. From this table, it is clear that the hit time of the
PDSM system is substantially lower than that of the ODSM
system. If the renderer is able to maintain high hit rates, the
PDSM layer results in higher frame rates.

Next we compare the performance of the ODSM and
PDSM layers in the ray tracer. We render isosurfaces of a
512 MB scalar volume created from a computed tomogra-
phy scan of a child’s toy. In the test, we replay a recorded
session in which the viewpoint and isosurface change, caus-
ing the working set to vary. Extra work is required to obtain

c© The Eurographics Association 2004.



D. E. DeMarle, C. P. Gribble, & S. G. Parker / EG Memory-Savvy

Hit Time Miss Time

Object-based DSM 10.2 629
Page-based DSM 4.97 632

Table 1: DSM Access Penalties. Average access penalties,
in µs, over 1 million random addresses to a 128 MB address
space on five nodes.

the rendered data when using the DSM systems because we
restrict the DSM layers to store only 81 MB on each node.

Figure 5 shows the recorded frame rates from the test and
a sampling of rendered frames. The test is started with a cold
cache. In the first half of the test, the entire volume is in
view, while in the second, only a small portion of the dataset
is visible. Both DSM layers struggle to keep the caches full
during the first part of the test. However, the lower hit time
of the PDSM allows it to outperform the ODSM throughout.
In later frames most memory accesses hit in the cache, so the
PDSM adds little overhead to data replication. Overall, the
average frame rates for this test are 3.74 fps with replication,
3.06 with the PDSM and 1.22 with the ODSM.

6.2. Decentralized Load Balancing Analysis

We now analyze the extent to which decentralized load bal-
ancing improves performance. For this test, we rendered two
of Stanford University’s widely available PLY format mod-
els. In particular, we report results using the models shown
in Figure 6. Details of these models and the run-time data
structures are given in Table 2.

In these tests, we place the geometry data and a large,
highly efficient acceleration structure in PDSM space. By
varying the local cache size, we can analyze how both load
balancing algorithms impact the performance of the dis-
tributed memory system.

Figure 7 shows the results. As memory becomes re-
stricted, the work stealing scheme maintains interactivity
better because it is able to reuse cached data more often
and yields fewer misses. We note, however, when memory
is plentiful, either approach works well.

A decentralized scheme also eliminates a synchronization
bottleneck at the supervisor that is amplified by the network
transmission delay. Unless frameless rendering is used, a
frame cannot be completed until all image tiles have been
assigned and returned. Asynchronous task assignment can
hide the problem, but as processors are added, message start-
up costs will determine the minimum rendering time. In this
case, the rendering time is at least the product of the mes-
sage latency and twice the number of task assignments in a
frame.

On a switch-based interconnect, a decentralized task as-

Figure 6: The Stanford Bunny and Dragon PLY Models.
This is a sample image taken from the interactive session
used for benchmarking.

0.0

25.0

50.0

75.0

100

125

 0  50  100  150  200  250
0.0

3.0

6.0

9.0

12.0

15.0

av
er

ag
e 

m
is

se
s/

w
or

ke
r/f

ra
m

e

fra
m

e 
ra

te
 [f

/s
]

local memory [MB]

TS frame rate
DD frame rate

0.0

25.0

50.0

75.0

100

125

 0  50  100  150  200  250
0.0

3.0

6.0

9.0

12.0

15.0

av
er

ag
e 

m
is

se
s/

w
or

ke
r/f

ra
m

e

fra
m

e 
ra

te
 [f

/s
]

local memory [MB]

DD misses/worker
TS misses/worker

Figure 7: Effect of Task Reuse with Limited Local Memory.
Each node is exhibits fewer misses when reusing previous
tasks. As a result, work stealing improves frame rates when
the local memory is limited.

signment scheme takes advantage of the fact that nodes B
and C can communicate at the same time as nodes D and E.
Work stealing eliminates all task assignment messages from
the supervisor and allows workers to assign tasks indepen-
dently. When the system is network bound, this approach
can potentially increase the frame rate by a factor of two.

To demonstrate, we render a small sphereflake scene con-
sisting of only 827 primitives. To emphasize the effect of
work stealing on the supervisor’s communication time, the
test uses 8x8 pixel tiles and two rendering threads per node.

c© The Eurographics Association 2004.



D. E. DeMarle, C. P. Gribble, & S. G. Parker / EG Memory-Savvy

Model

Bunny
Dragon

Total

Vertices Triangles Prim. Size Grid Total
[MB] [MB] [MB]

35947 69451 2.138 9.653 11.79
437645 871304 26.62 178.0 204.6

602045 1202281 28.76 187.7 216.4

Sorted Prim. Size Grid Total
Triangles [MB] [MB] [MB]

324635 7.978 8.415 16.39
3724385 91.92 163.8 255.7

7545220 99.90 172.2 272.1

Table 2: Characteristics of the Stanford PLY models, the preprocessed geometry data, and the acceleration structure.

Table 3 reports the measured time the supervisor spends
communicating, as well as the resulting frame rate. Note that
as the number of workers grows, the supervisor’s communi-
cation time remains constant with work stealing.

# of nodes 2 6 12 18 24 31

Demand Driven
Comm. time 0.06 0.07 0.08 0.08 0.09 0.09

Frame rate 1.51 4.25 8.18 11.1 12.0 12.3

Work Stealing
Comm. time 0.06 0.06 0.06 0.06 0.06 0.06

Frame rate 1.62 4.59 8.79 12.6 15.5 17.3

Table 3: Supervisor Communication Time. In the decentral-
ized approach, the supervisor’s communication time remains
constant as the number of worker nodes increases. Commu-
nication times are given in s/ f , frame rates in f /s.

6.3. Address Sorting Analysis

Our last test examines how sorting spatially local primitives
in address space affects performance. In this test, we use the
same PLY models as before, but we now render the data af-
ter preprocessing with the sorting program described in Sec-
tion 5.

Figure 8 shows that the effect of address sorting is similar
to that of decentralized load balancing. Specifically, when
the local memory of each node is small compared to the
total data size, sorting geometry decreases the number of
misses enough to increase the frame rates. However, when
the memory size is large enough to contain the working set,
sorting does not yeild improved performance. The accelera-
tion structure used for sorting is based on a uniform grid, and
as we traverse the structure, triangles that cross cell bound-
aries are duplicated. It is possible that using a different ac-
celeration structure would reduce this increase in data size.

We have also experimented with dereferencing vertex
pointers when sorting the geometry. The sorting process is
the same as described earlier, except that vertex pointers are
dereferenced and the vertex data is stored with each sorted

triangle. Data may be duplicated many times because ver-
tices are often shared by several triangles. The data bloat
resulting from this process is substantially higher, and, in
general, the achievable frame rates are lower still.

0.0

37.6

75.2

112.8

150.4

188

 10  20  30  40  50  60  70  80  90  100 110
0

3.0

6.0

9.0

12.0

15.0

av
er

ag
e 

m
is

se
s/

w
or

ke
r/f

ra
m

e

fra
m

e 
ra

te
 [f

/s
]

local memory [MB]

TS frame rate
TS sorted frame rate

0.0

37.6

75.2

112.8

150.4

188

 10  20  30  40  50  60  70  80  90  100 110
0

3.0

6.0

9.0

12.0

15.0

av
er

ag
e 

m
is

se
s/

w
or

ke
r/f

ra
m

e

fra
m

e 
ra

te
 [f

/s
]

local memory [MB]

TS misses/worker
TS sorted misses/worker

Figure 8: Effect of Address Sorting with Limited Local Mem-
ory. Each node exhibits fewer misses when memory is limited
because, with address sorting, spatially local primitives ex-
hibit better memory coherence.

7. Conclusion and Future Work

We have found that by utilizing virtual memory hardware
and associated operating system services to manage a shared
memory space, large datasets can be rendered more quickly
and easily than with a software-only solution. There are sig-
nificantly lower memory access penalties, and the program-
ming task of using the shared memory is also reduced. These
benefits make it possible to render large amounts of almost
any type of data.

Complementary to the PDSM is a distributed load bal-
ancing mechanism that improves cache hit rates and helps
overcome the network transmission latency barrier. Hit rates
can be improved further by sorting the scene data in address
space so that spatially local data exhibits improved memory
coherence. Both techniques are most useful when memory
available on each node is limited. Higher quality decentral-
ized load balancing heuristics and improved sorting algo-
rithms that reduce data replication are left as future work.

c© The Eurographics Association 2004.



D. E. DeMarle, C. P. Gribble, & S. G. Parker / EG Memory-Savvy

All three optimizations should be valuable in the context
of 64-bit clusters, where the virtual address space will likely
be substantially larger than the physical memory of any one
node. Techniques like ours will enable interactive visualiza-
tion of very large datasets with these clusters. We plan to test
our implementation on a 64-bit cluster in the near future.

A disadvantage of the user-space PDSM is that it is diffi-
cult to create a page-based memory that is usable by multi-
ple rendering threads. A race condition exists whenever the
communication thread fills a received page of data. Ren-
dering threads must be prevented from accessing the in-
valid page during this time. To overcome this limitation,
we have begun experiments with asynchronous signaling to
temporarily suspend all rendering threads during page han-
dling. When threads are stalled, however, efficiency drops.
More critically, all rendering code must be asynchronous
signal-safe for this approach to work. Preliminary testing is
currently underway.

Similar drops in efficiency result because render threads
are suspended while waiting for previously unmapped pages
to arrive. Rescheduling rays that cause segmentation faults
and allowing the render thread to trace other rays may elim-
inate this problem. PDSM performance may also be im-
proved with a better page replacement policy. Finally, a read-
write PDSM implementation will be required for rendering
most dynamic scenes.

Two other potential targets for optimization are the cen-
tralized result gathering phase of the computation and the
size of data transfers. Decentralized task assignment greatly
reduces the number of messages the supervisor must handle,
but we have not yet examined the delay incurred because
each rendered tile must be returned through the same bot-
tleneck. In addition, results by Wald et al. [WSB01] have
shown that on-the-fly compression for data transmitted over
the network can reduce access penalties. We would like to
investigate similar techniques in this page-based system.

Acknowledgments

This work has been sponsored in part by the National Sci-
ence Foundation under grants 9977218 and 9978099, by
DOE VIEWS and by NIH grants. The authors thank An-
thony Davis from HyTec, Inc. and Bill Ward and Patrick Mc-
Cormick at Los Alamos National Labs for the furby dataset.

References

[BBP94] BADOUEL D., BOUATOUCH K., PRIOL T.:
Distributing data and control for ray tracing in
parallel. IEEE Computer Graphics and Appli-
cations 14, 4 (1994), 69–77. 2

[CDR02] CHALMERS A., DAVIS T., REINHARD E.:
Practical Parallel Rendering. AK Peters Pub-
lishing, Nantick Massachusetts, 2002. 2

[CE97] COX M., ELLSWORTH D.: Application-
controlled demand paging for out-of-core visu-
alization. In Proceedings of IEEE Visualization
(1997), pp. 235–244. 2

[CKK95] CARTER J. B., KHANDEKAR D., KAMB L.:
Distributed shared memory: Where we are and
where we should be headed. In Fifth Workshop
on Hot Topics in Operating Systems (HotOS-V)
(1995), pp. 119–122. 2

[DPH∗03] DEMARLE D. E., PARKER S., HARTNER M.,
GRIBBLE C., HANSEN C.: Distributed interac-
tive ray tracing for large volume visualization.
In IEEE Symposium on Parallel and Large-Data
Visualization and Graphics (Oct. 2003), pp. 87–
94. 2

[HA98] HEIRICH A., ARVO J.: A competative analy-
sis of load balancing strategies for parallel ray
tracing. The Journal of Supercomputing 12, 1–2
(1998), 57–68. 2

[LKL97] LIANG W.-Y., KING C.-T., LAI F.: Adsmith:
An object-based distributed shared memory sys-
tem for networks of workstations. IEICE Trans-
actions on Information and Systems E80-D, 9
(1997), 899–908. 2

[PKGH97] PHARR M., KOLB C., GERSHBEIN R., HAN-
RAHAN P.: Rendering complex scenes with
memory-coherent ray tracing. Computer
Graphics 31, Annual Conference Series (1997),
101–108. 2, 4

[PSL∗98] PARKER S., SHIRLEY P., LIVNAT Y., HANSEN

C., SLOAN P.-P.: Interactive ray tracing for iso-
surface rendering. In Proceedings of IEEE Visu-
alization (Oct. 1998), pp. 233–238. 2

[RCJ99] REINHARD E., CHALMERS A., JANSEN F. W.:
Hybrid scheduling for parallel rendering using
coherent ray tasks. In IEEE Symposium on Par-
allel Visualization and Graphics (1999), ACM
Press, pp. 21–28. 2

[RSAU91] RUDOLPH L., SLIVKIN-ALLALOUF M., UP-
FAL E.: A simple load balancing scheme for
task allocation in parallel machines. In Proceed-
ings of the Third Annual ACM Symposium on
Parallel Algorithms and Architectures (1991),
ACM Press, pp. 237–245. 3

[WSB01] WALD I., SLUSALLEK P., BENTHIN C.: In-
teractive distributed ray tracing of highly com-
plex models. In 12th Eurographics Workshop
on Rendering (June 2001), pp. 277–288. 2, 4, 7

c© The Eurographics Association 2004.



D. E. DeMarle, C. P. Gribble, & S. G. Parker / EG Memory-Savvy

(a) (b) (c)

Figure 4: Improving Coherence via Data Reorganization. In (a), a standard rendering of the happy buddha PLY model. In (b),
the input mesh with each node’s triangles shown in a different hue. In (c), the reorganized mesh in which neighboring triangles
are more likely to reside in the same page of memory.

 0

 2

 4

 6

 8

 10

 12

 100  200  300  400  500  600  700  800

fra
m

e 
ra

te
 [f

/s
]

frame number

512MB replicated data
64MB cached in PDSM
64MB cached in ODSM

frame 2 frame 222 frame 460 frame 510 frame 710

Figure 5: Comparing Memory Organization. Frame rates are above and images from the test are below. The page-based DSM
outperforms the object-base DSM in all cases. Moreover, its performance is competitive with full data replication, even though
the local memory size is reduced to 16% of the total.

c© The Eurographics Association 2004.


