
1

A pel-based Volume Rendering Accelerator

GUnter Knittel

WSI I GRISt

University of TUbingen, Germany

Abstract
We discuss the underlying algorithms, design
principles and implementation issues of an
extremely compact and cost-efficient volume
rendering accelerator for PCI-based systems. It
operates on classified and shaded data sets
which have been coded and compressed using
Redundant Block Compression (RBC), a tech
nique originating from 2D-imaging and
extended to 3D. This specific encoding scheme
reduces drastically the required data traffic
between the volume memory and the processing
units. Thus, the volume data set can be placed
into the main memory of the host, eliminating
the need of a separate volume memory. Fur
thermore, the tri-Iinear interpolation needed
for perspective raycasting is very much simpli
fied for RBC-transformed data sets.
All in all, these techniques allow a volume ren
dering accelerator to be implemented as a sin
gle-chip coprocessor, or as an FPGA-based
prototype for monochrome data sets as pre
sented in this work. Although using a lossy
compression scheme, image quality is still high,
and expected frame rates are between 2 and
5Hz for typical data sets of 2563 voxels.

Keywords: graphics hardware, volume rendering,
ray casting, data compression

Motivation

Real-time volume rendering requires such a high
computing power that it can only be achieved on
supercomputers, high-end workstations, worksta
tion networks or special-purpose hardware. The
high computing requirements stem from the algo
rithmic complexity of volume visualization and

t Universitiit Tiibingen
Wilhelm-Schickard-Institut fUr Informatik
Graphisch-Interaktive Systeme (WSI I GRIS)
Auf der Morgenstelle 10, C9
D-72076 Tiibingen, Germany
Phone: ..497071 295463
FAX: ..497071 29 5466
email: knittel@gris.informatik.uni-tuebingen.de
www: http://greco.gris.informatik.uni-tuebingen.de/

the sheer amount of data to be processed. The
visualization of volume data sets typically
involves the segmentation, or classification of
structures of interest, and their meaningful display
on the screen. In a raycasting pipeline, this can
easily tum into 100 operations per raypoint, giving
16GOPS for 2563 data sets to be rendered at 10Hz.

Depending on the chosen algorithm and the

machine architecture, the needed memory band

width can also reach the GByte/s-range.

However, most potential users are not in reach of a

supercomputer or a high-end workstation. Work

station networks most often do not deliver the

expected speed due to a limited interconnection

bandwidth or heavy loads by other users. Current

academic and commercial designs tend to be large,

massively parallel architectures (see [9], [12], [14]

and various contributions in these proceedings)

and thus, tend to be very expensive as well.

To make the benefits of volume rendering avail

able to a wide audience (e.g., in medical educa

tion) we must take every effort to reduce the costs

of a volume visualization system.

Although highly desirable in general, interactive

classification is not needed in a large number of

applications, e.g., when the materials of the data

set are well-known, or when automatic segmenta

tion is not reliable enough and must therefore be

done manually by human specialists (for example,

in medical diagnosis).

For the moment, we consider the classification to

be a preprocessing step, perfonned once before a

large number of views are produced. For a com

prehensive understanding of the data set, however,

a number of requirements should be satisfied:

o 	the users should be placed into a virtual envi
ronment, where they can step right through the
data set to gain the maximum insight.

o 	The system must preserve the three-dimen
sional nature of the data, provide perspective
views and retain the depth infonnation.

o 	If the data set can be classified into different
materials, it should be possible to display either
one of them or any combination translucently
without perfonning a re-classification.

o 	Finally, the system must provide high rendering
speed and high image quality.

73

http:http://greco.gris.informatik.uni-tuebingen.de
mailto:knittel@gris.informatik.uni-tuebingen.de
http://www.eg.org
http://diglib.eg.org

However, for a broad acceptance on the market, a
volume rendering accelerator should not increase
the price of a graphics workstation or even a PC
significantly.
Our approach to fulfil these contradictory require
ments is based on a very simple data encoding
scheme, which is discussed in detail in chapter 2.
Chapter 3 explains the rendering method. The
underlying technologies (the PCI-bus and FPGAs)
are introduced in short in chapter 4 and 5, respec
tively. Implementation issues are discussed in
chapter 6. Image quality and expected rendering
performance are illustrated in chapter 7.

2 Algorithm

Processing starts with the classification of the data
set. The voxels are grouped and tagged according
to the material they belong to (e.g., bone and tis
sue, see [6]). Each material is shaded separately
according to whether only its surface should be
displayed or its entire region [13]. Thus, we use
one opacity transfer function for each material
having an upper bound equal to 1. Then the data is
encoded and compressed as explained in the fol
lowing section.
The data set is visualized using the raycasting
algorithm. OUf method offers arbitrary perspective
projections and even walk-throughs. Conse
quently, the raypoints do not coincide with the grid
points and the data set is therefore tri-linearly
interpolated at the resample locations. The visual
appearance is further improved by performing
depth-cueing. The material tags in conjunction
with user-supplied transparency parameters allow
us to display a given structure exclusively or to
blend different materials during rendering.

2.1 Compression and redundant Coding

The compression algorithms are borrowed from
2D image processing [4],[5],[10] and are briefly
reviewed for completeness.
Given an 8-bit grey scale picture, the image is
divided into 4x4 pixel blocks in which the pixels
are grouped according to whether their greyvalue
is above (Of equal to) or below the average grey
value TJ of the entire block. The result of this oper
ation is a 16 bit decision vector D for each block.
For each group of "lower" and "upper" pixels new
greyvalues a and b are computed such that the
block mean TJ and the variance 0-2 are preserved.
Given q and p as the number of pixels above and
below the block mean, respectively, a and b are
computed by:

a = '11- cr· Jq/p and b = '11 + 0 . ./jj7q (1)

The new values a and b are appended to the 16 bit
decision vector to form the code element for one

4x4 pixel block. Using 8 bits for both a and b, this
scheme achieves a reduction to 2 bits per pixel.
The example demonstrated above is a variant of
the block truncation coding (BTC) algorithm [5].
Note that the decompression is particularly inex
pensive: for each pixel in the image to be created,
examine the corresponding decision bit and write
either a or b.
The reduction to 2 bits per pixel can be maintained
for 24-bit RGB pictures using the color cell com
pression (CCC) technique [4]. The decision crite
rion now is the mean luminance Y, where

Y = 0.3· R + 0.59· G + 0.11 . B (2)

The mean values Ru, Gu and Bu, computed from
the color components of the upper pixels, are
assigned to the upper group. The same is done for
the lower pixels. At this time, a 64 bit word
DRtGtB/RuGuBu represents a 16 pixel block. In
the next step, a look-up table of 256 colors is con
structed which best represents the set of colors
present in the code elements, for example, by
using the median cut algorithm [11]. Each RGB
triple is then replaced by a pointer P into that look
up table, so that finally a 4x4 pixel block is com~
pressed into a 32 bit code element D PI Pu' Option
ally, two separate color look-up tables could be
used for the upper and lower colors.
The decompression expenses for CCC are slightly
increased, since two table look-ups must be per
formed additionally for each pixel block.
Note that these compression schemes do not
achieve the optimal quantization in terms of mean
square error or mean absolute error [5], but offer
an easy implementation and a high speed.
The application of these compression techniques
to volume data sets is straightforward. Since most
workstations can handle 32 bit words conve
niently, we chose to pack 12 voxels into one 32 bit
code element, as shown in Figure 1.

2

z

td 0
x/\.

31 20 l 0
1010101010101110111111101 t

7
01101009 0 8 0 7 Os 0 5 0 4 0 3 O2 0 1 Do)
~ t --------Decision Bits Code Element

In this example only the black voxels are above the threshold

Figure 1: Voxel Block and Decision Vector

74

1

The decision vector occupies 12 bits in any given
code element. Thus we can spend 10 bits to char
acterize the upper and the lower group. The actual
contents of these bit fields depend on the kind of
data set and the visualization method used. For
example:

Q 	 Blood vessels are commonly visualized from
MR data sets using a maximum projection. The
resolution of the scanning devices is typically
12 bits. Since only the maximum value along a
ray is displayed, one can discard all voxels
below a certain threshold during compression
without losing relevant information. The
remaining voxel values are then quantized in 10
bits, e.g., by a histogram equalization [8].

Q 	 For grey-level gradient shading, the upper and
lower bit fields hold the emitted light intensity
in up to 10 bit resolution.

Q 	 For colored gradient shading, pointers into 1 K
entry color look-up tables can be used. Pu = 0
denotes an empty code element, i.e., all voxel
values are zero.

Q 	 If only 8-bit greyvalues or pointers are used,
the remaining bits can be used to group the
voxels into different materials. For each code
element, the bits are set according to the mate
rial tag which occurs the most often.

Consequently, each volume rendering method
requires its own coding scheme.
Considering just a single code element, we can see
the first major advantage of this method: after per
forming a single memory access, all voxels needed
for tri-linear interpolation are available. To make
this true for the entire data set, we have to com
press and code all voxels redundantly, as shown in
Figure 2. As a consequence, all voxels at positions
0, 1, 2, 3, 8, 9, 10 and 11 in Figure 1 are repre

z

td
Code Bement n Code Element n+ 1

Notshownforcmri~:
redundant operation applies for y-direction as well

Figure 2: Redundant Block Compression

sented 8 times, and the voxels at position 4, 5, 6
and 7 are stored 4 times in the coded data set. This
is why we call this method Redundant Block Com
pression (RBC). Thus, for original data sets of 16
bit voxels, the coded data set has just the same
size. To be precise, if the original data set dimen
sions were xxyxz, the coded data set occupies
2xxxyxz bytes.

2.2 Simplified Tri-Linear InteIpolation

The second major advantage of this coding scheme
is that the tri-linear interpolation is simplified to
the largest extent. Let's consider a volume cell
with the eight greyvalues CO"C7 at the corners as
shown in Figure 3.

C,~

C
/" .,./ /"

2./ .;' ./'
Cs

1 - Y
'" ,.,. ./'

.,./ .;"
.;' C .,./

C

.;'
, ,..,.. ,/

y

./' ./' ./'

z

td
x

Figure 3: Tri·Linear Interpolation

The desired greyvalue C at the offset (a,J);y) within
the cell is given by:

C = co' (I- a) . (1 -~) , (1 - 1)

+C j • (I-a) ,~, (1-1)

+ C2 ' (1 - a) . (l -~) '1 	 (3)

Written differently:

C = Co'(i)o+C j '(i)j+C2 '(i)2+ .. ,+C7 '(i)7 (4)

Since there are only two different greyvalues Cu
and CI in any given volume cell, we can factor out
(4) in 256 possible ways:

C =C ' «(i)a+(i)b+ ... +(i)c)u
(5)

+C,' «(i)d+(i)e+ ... +(i)t)

The weightfactors con can be considered as the con
tents of the subvolumes shown in Figure 4.
Obviously, they sum up to 1. If COL is the compound
weight for C[, then

(6)

75

x

C7

1-y

y

Co ·C4
1- .I~ 1 ~Iex -(J(

Figure 4: Weightfactors

Ifall Ct, ~ and y have 4 bit precision, which is suffi
cient in most practical cases. then any given distri
bution of upper and lower values in (5) can give
4096 possible values for 0)/' All in all. 0)1 depends
on an 8 bit decision vector and three 4 bit offsets,
giving a total of 1M =220 different configurations.
Thus we can easily precompute the weightfactors
for each possible configuration and store them in a
table. Furthermore, as implied by (6). we do not
store Cu and CI in the code elements, but instead
Cuand (Cu-CI). Then, a complete tri-linear interpo
lation is performed by

o assembling the weightfactor address from the
decision vector and the offsets,

o one table look-up and

o one multiplication and one subtraction.

For maximum performance, the weightfactor table
should be stored in a local memory (e.g., a PROM)
placed on the accelerator sub-system.
For colored data sets, the accelerator additionally
needs one or optionally two color look-up tables
(CLUT). Accesses to the weightfactor table and
the CLUT(s) can be done in parallel. The render
ing speed is maintained if the accelerator contains
separate processing units for each of the color
components.
The size of the tables is not critical: if truncated to
8 bits, we need IMByte for the weights, (available
in a single EPROM device) and at most 1.5KBytes
for the CLUTs (possibly integrated on the acceler
ator chip), if 8-bit indices are used.

2.3 Distance Coding

Classified and shaded data sets contain a high per
centage of empty voxel blocks, for which Pu;Cu =
O. In this case, the remaining bits of the code ele
ment are redefined. We define 8 overlapping
neighborhood octants (corresponding to the 8 pos
sible orientations of a ray in terms of the sign of its
components) and determine for each octant the
largest integer radius (in grid units) which can be

Code element • . t.. . j ...• ..• Octant 0
in question

L Octant 3z
Octant 2

31 16

Ixlxlx\x\xlxlxlx\xlxlxlxlx\xI1Io\1
E1SE14E13 E12E11 E10 E9 Ea E7 Efl Es E4 E3 ~ El Eo

If grey area stacked up three times in z-direction is
empty, a distance of two can be skipped if all ray
components are positive. Not shown for other OOants.

Figure 5: Distance Coding

skipped safely due to an empty neighborhood. See
Figure 5 for an explanation in 2D. The largest step
can be 8 grid units if Cu or Pu have 8 bits, or 4 units
if 10 bits are used for these quantities.
The advantage of this technique is that no separate
acceleration data structure (e.g., an octree) is
needed, and thus, skipping empty space requires
neither additional memory capacity nor band
width. The spatial arrangement of objects in the
neighborhood of an empty block is described more
precisely as in previous worlc (see [15]), so that an
unnecessary reduction of the stepsize in the vicin
ity of objects that will not be hit occurs less often.
The maximum stepsize of 8 (in grid units) is usu
ally satisfactory except for the regions outside the
bounding volume of the objects. Thus, techniques
like PARC [3], which use a large set of polygons to
better describe the bounding volume of an object
can very well complement our method, and will be
implemented in a later version.

3 Rendering

In the remainder of this paper we will only con
sider monochrome data sets, since the accelerator
prototype only works on greyvalues.
The coded data set is placed into the main memory
of the pcr-host and rendered by the accelerator
using perspective raycasting. Computation of cam
era parameters according to user inputs and ray
generation is performed by the host-CPU. After
having obtained all ray-parameters from the CPU,
the accelerator processes all points of that ray
autonomously and returns the results to the CPU or
writes the pixel color directly into the frame buffer
of the system. The ray-parameters include:

o 	the physical address of the data set, set up once
per session,

76

o 	a threshold value, a "landing run," a set of
material properties (see section 3.1) and the
coordinates of the Manhattan Distance Refer
ence Point (see section 6.3), set up once per
frame,

:J 	 the coordinates X.ex, y.~, Z:y of the first resam
pIe point, the total number of raypoints, the ini
tial attenuation factor fi and the increments of
these quantities, set up once per ray.

Linear depth-cueing [7] is performed according to
the nearest and the farthest point of the volume, as
depicted in Figure 6:

Screen

I
I I

1L::::1:''IIfil" ' !
! I

Attenuation Factor f 0 I ' 1·maxraypoints.~f

Figure 6: Linear Depth-Cueing

In the following section we will describe the ren
dering procedure in more detail.

3.1 Rendering Details

After being set up with the ray-parameters, the
accelerator computes the physical address of the
first raypoint, arbitrates for PCI-ownership and
fetches the code element. If the code element is
empty, the skip distance within the code element is
selected by the value in the ray orientation register.
The raypoint counter is decremented and the
address of the next raypoint and its depth-cueing
factor are calculated according to the skip distance
(which is set to zero for non-empty cells). The next
memory access is initiated immediately thereafter.
Parallel to that, if the volume cell is non-empty, the
address of the weightfactor is assembled, and the
local look-up-table is accessed. Besides that, the
material tag bits within the code element address
the material properties RAM, which holds a user
definable property for each specific material. The
possible properties are:
o 	Invalid: The material is currently of no interest,

and the raypoint is discarded.
o 	Opaque: The material is subject to the threshold

operator.

o 	 Translucent: The light intensities of all ray
points of that material are accumulated.

As soon as the weightfactor is available, the sim
plified tri-linear interpolation is performed if the

raypoint is valid. The raypoint can still be dis
carded if the interpolated intensity is below the
threshold. In the other case, the light intensity is
attenuated according to the associated depth cue
ing factor.
In case of translucent material, the final value is
added to all values of previous points of the same
material.
In case of opaque material, a special threshold
operator applies. For the first point in opaque
material exceeding the threshold" the raypoint
counter is set to a user-programmable landing run
(or to the actual value, whichever is less), and only
the largest value found within that distance will be
returned to the host.
In the prototype implementation currently under
development, four different materials can be
defined, and thus. the accelerator has four accumu
lators in case all materials are set to translucent.
The grey value of an opaque material is stored in a
separate register.
Thus, separate frames for each material are pro
duced. from which the final screen is composed by
the host-CPU. Note that this is an inexpensive 2D
operation, which is performed very quickly. Thus,
if the user wishes to blend the structures differ
ently, but the camera parameters haven't changed.
no volume rendering operation must be done and
the system responds immediately.
A maximum projection is performed by setting all
material to opaque and the landing run to infinity.

4 The pel-Bus

In the PC-market, the PCI-Bus (Peripheral Com
ponent Interconnect [1]) has almost completely
replaced all existing bus standards within a few
months. Besides that, it is more and more becom
ing a standard in the workstation area as well. The
PCI-bus constitutes an acceptable trade-off
between low costs and high system speed.
A typical PCI-system is shown in Figure 7. The
PCI-bus is a multi-master bus, allowing a device
on an expansion card to initiate a transfer while the
CPU can potentially continue its work out of the
cache.
The PCI-bus is designed for burst transfers, i.e., a
large number of data transfers following a single
address transfer as shown in Figure 8. For this rea
son, and to reduce system costs, it has a multi
plexed address/data-bus of 32 bits. Both the
initiator and the target control a handshake signal
(lRDY and TROY in Figure 8) to insert waitstates
if necessary.
All transactions are synchronous to a common
clock. Current specifications allow clock rates of
up to 33MHz and thus, a 32-bit PCI-system has a
theoretical peak transfer rate of I32MByte/s.

77

5

CPU

MAIN
MEMORY

EXPANSION CARDS

~ /
ON·BOARD (PLANAR) DEVICES

Figure 7: Typical PCI-System

CLOCK

/q:
FRAME \ ! /:!!

!'«
-.J

I.JJ !.:F ,...1
~ IIRDY

i I.JJ!
----~------~~! .:F ~I~~

TROY / g /

/ / I AD31..0
....,.__--.;) . ;

/

(), 1\ "1.-..,..__.....

Initiator Initiator Target Initiator Bus
signals signals signals signals idle
address ready to data last
avaHable receive ready transfer

Figure 8: PCI-Burst-Transaction (Example)

XILINX FPGA Architecture

The two different parts used in this design provide
a high number of I/O-blocks (116 for the
XC3195A and 160 for the XC4013), each of them
offering a bi-directional buffer and register pair
[2]. All arithmetic and logical units are imple
mented in so-called Configurable Logic Blocks
(CLBs), which basically consist of two flipflops
and a set of function generators. A function gener
ator is a look-up table (SRAM) which is addressed
by the input variables. The number of input vari
ables varies between four and five. Implementing
a boolean function is done by loading the function
generator RAM with the appropriate data. The
number of CLBs is 484 for the XC3195A and 516
for the XC4013. For the XC4013, each CLB can
be configured as a 16x2 bit SRAM, so that this
device offers up to 18.432 bits storage capacity.

6 Implementation

A simplified block diagram of the accelerator is
given in Figure 9. The on-board bus structure is
given for clarity only and can be adapted to other
requirements; essentially there is one 68 bit local
bus and one 25 bit bus connecting the 4013
devices. The different units are described in the
following sections.

6.1 Pel-Interface Unit

The PCI-Interface Unit manages the dataflow
through several buses and controls the operation of
all other units via point-to-point control lines. On
the PCI-side, it offers a combined MasterfTarget
interface.
Data from memory is fetched in packets of four
code elements, which form one cache b1ock, via a
read-burst transfer. Since there is no principal ray
direction, we place a subcube of 2x2x2 volume

78

..I

INTERFACE

XC3195A

BCONTROL

(20 LINES)

MULTIPLY- AND

ACCUMULATE

UNIT

IDT7210L

VISUALIZATION- ["L""''i"')jIFUlSH
UNIT A

XC4013

u;
w
z
:;

~
oa:
Iz
o o
c(

VISUALIZATION- CACHE
I"';"<C;"~{"'I

UNITB

XC4013

64Kx 32

CCONTROL (16 LINES)

Figure 9: Overall Architecture

cells into one cache block, as shown in Figure 10.
The linear offset n of a code element in memory is
derived from its logical coordinates by

(7)

A cache block is stored in four consecutive loca

the system, we use two identical Visualization
Units which follow two different rays in parallel.

The Visualization Unit basically consists of three
sub-units: the address sequencer, the PROM inter
face and the greyvalue processor as shown in Fig
ure 11.

tions in the high-speed SRAM. The grid point with
the smallest X-, Y- and Z-coordinates within a
cache block is called the Reference Point.

z

y
x

Figure 10: Cache Block Organization

6.2 Visualization Unit

Each of the two Visualization Units implements
the complete rendering algorithm. The reason for
the presence of two such units is as follows: Since
the address of the next resample location depends
on the actual volume cell (by means of the distance
coding), there is a certain delay before a Visualiza
tion Unit can hand out the next address after hav
ing obtained a code element. To avoid idle times in

GREYVALUE
Weightfactor

PROCESSOR -1~epth-cueing w
Factor u

~~
00:Cell

Offset
O:w

ADDRESS a. I
~

SEQUENCER

1 1 IINPUT REGISTER.

T

PROM
Address

Grey- Terminal Next Code
Values COunt Address Element

Figure 11: Visualization Unit

The address sequencer is a collection of incre
menters, one for each the X-, y- and z-component
of the ray points, the depth-cueing factor and the
raypoint number. Increments are added according
to the skip distance. An inexpensive implementa
tion uses an 8-entry on.<hip SRAM, which holds

79

the pre-computed increments, and which is
addressed by the skip distance as shown in Figure
12.

Ray Orientation
Register
(Sign Bits)

\

Code
Element

Figure 12: SRAM-based Incrementers

The weightfactor address is assembled as

D7..0 'Y./...4 13-/...4 Cf.-J ..-4 if Xo=O or

Dll. .4'Y-l...4 ~.J...4 fl.-l...4 if Xo=1.

The greyvalue processor computes Cu- WI*lCu-C1)

and, if the result is greater than the threshold, mul
tiplies the greyvalue with the depth-cueing factor
in a second pass. It has an 8x8--+8 bits multiplier
with a delay time of 50ns. As mentioned above,
the greyvalue processor has four accumulators and
one register for opaque material, from where the
host-CPU can read the results.

6.3 Cache

The cache system consists ofaXILINX 4013
device and two 64Kx16 high-speed SRAM
devices. The cache organization is direct mapped,
however, relative to the one-dimensional coordi
nate system of the actual ray. We use the Manhat
tan Distance of the Reference Point of the actual
resample location to the Reference Point which
has the smallest distance to the eye point (which is
called the Manhattan Distance Reference Point) as
cache index. Therefore, the cache tag RAM needs
384 entries. Each tag RAM entry holds the logical
coordinates of the Reference Point of the cache
block and a valid flag and thus stores 22 bits. The
tag RAM has a total capacity of 8448 bits, and thus
fits into the XC4013 device. A simplified block
diagram of the tag RAM is shown in Figure 13.
The operation is as follows: whenever the PCI
Interface Unit reads a code element address from
either one of the Visualization Units, the Manhat
tan Distance D and the logical coordinates

MANHATTAN

DISTANCE

Z7.. 1 Y7.. 1 X7..1

L-..,.-J SRAM Address Register

CACHE

ADDRESS

Figure 13: Tag RAM and Cache Control

Z7..0YU;XU of the code element are transferred to
the Cache Controller. The tag RAM is addressed
by the Manhattan Distance, and the stored logical
cache block coordinates Z'u Y ,uX'7..1 are com
pared with the newly generated ones. In case of
equality and a set valid flag, a cache hit is sig
nalled to the PCI-Interface Unit, which does not
start a PCI-transfer. The cache RAM is read at
(DZoYo), and the code element is passed to the
requesting Visualization Unit.
In case of a cache miss, the new logical cache
block coordinates are written into the tag RAM
together with a set valid flag. The Cache Control
ler then waits for the four code elements forming a
cache block and writes them sequentially at
addresses (DOO), (DOl), (DlO) and (Dll) into the
cache RAM.
Note that this is a read-only cache, i.e., no modi
fied entries must ever be written back to main
memory, and that the valid flags need to be reset
only once after a data set was loaded.
According to the cache block organization, rays
are generated in the order of square screen blocks
instead of scanlines to maximize the cache hit
ratio.

7 Performance and Image Quality

For verification and measurement purposes, a soft
ware implementation of the algorithm was made.
The example given here is a CT data set from a
human skull. Data set dimensions are
256x256x216. All material except bone was
removed during the pre-processing step. The bone
surface was shaded using six light sources at infin
ity.

80

COMPARATOR

CACHE

CONTROL

UNIT

HIT I READ!

MISS WRITE

a) b)

Figure 14: Human Skull

The picture in Figure 14a was created by sending

256x256 rays through the data set, and bi-linearly

interpolating the frame to the final 512x512 screen

resolution. The bone surface was detected by using

the threshold operator as explained in section 3.1.

Figure 14b shows a magnified portion of the same

data set.

For a round-trip or a walk-through, between 1 and

2 million ray points must be processed for each

frame. The cache hit ratio varies between 35% for

large viewing distances and close to 98% for walk

throughs.

A software simulator for a single Visualization

Unit was written based on the following (pessimis

tic) assumptions:

o 	The processing of a raypoint takes 240ns
(empty cell or material discarded), 360ns (ray
point intensity is smaller than threshold) or
480ns (complete processing).

o 	A read-burst of four code elements (a cache
line fill) takes 450ns.

o A cache hit takes 60ns.

Let's consider Figure 14a: the frame required

exactly 1.058.672 raypoints, of which 580.276
caused a cache miss. 801152 raypoints were in
empty space. Execution time is 568ms, giving
1.76Hz. Since no simulator for parallel operation
of two Visualization Units is available, we can
only estimate that the frame rate will be in the
range of 25 to 35Hz.
The magnified view in Figure 14b required
775.312 ray points, of which 140.417 caused a
miss. 411.214 visited volume cells were empty.
Execution time is 332ms, giving a frame rate of
about 5Hz. A summary is given in Table 1. For
these performance measurements, the distance of
two raypoints was set to 0.95, and the maximum
skip radius was 3.

8 Future Work

So far we have only talked about the display of
RBC-data. In the current implementation, the
entire pre-processing stage including classifica
tion, shading, encoding and distance coding is
done in software. This can take up to 30 minutes,
which is far from being interactive. For this task,
however, we can take advantage of the in-system-

Ref.
#of

Raypoints
Misses Hits

Hit
Ratio
[%]

Empty
Cells

Execution
lime

[s]

Estimated
Frame Rate

[Hz]

Figure 148 1.058.672 580.276 478.396 45.2 801.152 0.568 2.5 -3.5

Figure 14b 775.312 140.417 634.895 81.9 411214 0.332 4-5

Table 1: Performance Summary

81

programmability of the FPGA devices, and
employ what is called reconfigurable computing.
Thus, for each step of the pre-processing algo
rithm, the accelerator is configured differently to
provide maximum speed-up. Hardware resources
are plenty (finally we got the reason for the pres
ence of the multiply-and-accumulate unit), so that
we're optimistic to bring the pre-processing time
into the range of seconds.

9 	 Conclusions

We presented a compact and cost-efficient volume
rendering accelerator which can bring volume
visualization even into the PC market. Using a
standard Gate Array technology, production costs
can very well meet the absolute low-cost require
ments of that market segment. Nevertheless, image
quality and rendering speed are still high. Applica
tion areas which will benefit from this develop
ment are education in medicine, biology,
chemistry and more, but also medical diagnosis
and non-destructive testing.

10 	 Acknowledgments

This work was done for the research project SFB
328, funded by the German Science Foundation
DFG, and was supervised by Prof. StraBer. Special
thanks to Andreas Schilling, to whom lowe the
idea of using the Manhattan distance as cache
index, and many others which were born during
exciting discussions.

11 References

1 Anonymous, "PCI Local Bus Specification,
Rev. 2.0", PC! Special Interest Group, PO Box
14070, Portland, OR 97214, April 1993

2 Anonymous, "The Programmable Logic Data
Book", XILINX Inc., San Jose, CA, 1994

3 R. S. Avila, L. M. Sobierajski and A. E.
Kaufman, "Towards a Comprehensive Vol
ume Visualization System", Proceedings of the
IEEE Visualization '92 Conference, Boston,
MA, October 19-23, 1992, pages 13-20

4 G. Campbell, T. A. DeFanti, J. Frederiksen,
S. A. Joyce, L. A. Leske, J. A. Lindberg and
D. J. Sandin, "Two Bit/Pixel Full Color En
coding", SIGGRAPH '86 Conference Pro
ceedings, Computer Graphics, Vol. 20, No.4,
August 1986, pages 215-223

5 E. J. Delp and O. R. Mitchell, "Image Com
pression Using Block Truncation Coding",

IEEE Transactions on Communications, Vol.
COM-27, No.9, Sept. 1979, pages 1335-1342

6 	 R. A. Drebin, L. Carpenter, P. Hanrahan,
"Volume Rendering", Computer Graphics,
Vol. 22, No.4, August 1988, pages 65-74

7 	 J. D. Foley, A. van Dam, S. K. Feiner and J.
F. Hughes, "Computer Graphics: Principles
and Practice", Addison-Wesley, Reading,
MA, 1990, pages 727-728

8 	 R. C. Gonzalez and P. Wintz, "Digital Image
Processing", Addison-Wesley, Reading, MA,
1987

9 	 T. Giinther, C. Poliwoda, C. Reinhart, J.
He~er, R. Minner, H.-P. Meinzer, H.-J.
Baur, "VIRIM: A Massively Parallel Proces
sor for Real-TIme Volume Visualization in
Medicine", Proceedings of the 9. Eurographics
Hardware Workshop, Oslo, September 12-13,
1994

10 	 D. R. Halverson, "On the Implementation of
a Block Truncation Coding Algorithm", IEEE
Transactions on Communications, Vol. COM
30, No. II, Nov. 1982, pages 2482-2484

11 	 P. Heckbert, "Color Image Quantization for
Frame Buffer Display", SIGGRAPH '82 Pro
ceedings, Computer Graphics, Vol. 16, No.4,
August 1982, pages 297-307

12 	 A. Krikelis, "A Modular Massively Parallel
Processor for Volumetric Visualisation Pro
cessing", Proceedings of the Workshop on
High Performance Computing for Computer
Graphics and Visualisation, Swansea. UK,
July 3-4, 1995

13 	 M. Levoy, "Display ofSurfaces from Volume
Data", IEEE Computer Graphics & Applica
tions, Vol. 8, No.5, May 1988. pages 29-37

14 	 H. Pfister and A. Kaufman, "Real-TIme Ar
chitecture for High-Resolution Volume Visual
ization", Proceedings of the 8. Eurographics
Hardware Workshop. Barcelona, September
6-7, 1993, pages 72-80

15 	 K. J. Zuiderveld, A. H. J. Koning and M. A.
Viergever, "Acceleration ofRay-Casting Us
ing 3D Distance Transforms", Proceedings of
Visualization in Biomedical Computing,
Chapel Hill, NC, October 13-16, 1992, pages
324-335

82

