
Designing a halftoning coprocessor

Anders KUGLER, Roger D. HERSCH

Laboratoire de Systemes Peripheriques,
Swiss Federal Institute of Technology, Lausanne (EPFL), Switzerland.

May 1993

Abstract

Halftoning is a fairly slow process when executed
by software on conventional processors. To speed up
half toning, a half toning algorithm has been developed and
integrated into a dedicated hardware architecture. This
paper describes the implementation of the architecture
with a XILINX Field Programmable Gate Array (FPGA)
and compares its performances with results obtained by a
software implementation. A discussion on how to improve
the present architecture concludes the paper.

Introduction

Generating a binary image from a gray scale
image in such a way that the resulting image gives the
impression of having gray scale tones is called halftoning.
In the past several halftoning techniques have been
developed. For producing regular periodic screen
elements, dithering algorithms allow generating both
dispersed and clustered screen cells [Hou831 . The
halftoning process which is developed in this paper is
based on a regular grid of dither cells. Each cell contains
N ordered binary pixels and offers N+1levels of gray.

Transforming a gray scale image into a binary
image is slow due to the very large amount of pixels
involved. For each binary pixel in the destination image,
the gray level of the corresponding pixel in the source
image has to be compared with the threshold level of the
corresponding pixel in the dither cell [Foley90). It is
possible to precompute the screen cells for each gray level.
Then, to each binary pixel in the destination image
corresponds one pixel of the screen cell which represents
the gray level of the current pixel in the source image.
This method is faster than comparing for each binary pixel
a prestored dither threshold value with a gray level,
because several binary pixels of the destination image are
generated at once.

Two halftoning algorithms have been developed
previously: fonvard mapping and backward mapping. In
the forward mapping algorithm, each gray pixel in the
source image is taken and the corresponding binary pixeis
of the destination image are filled. The second method
considers each binary pixel in the destination image, from
left to right and from top to bottom and fills it according to
its corresponding gray pixel in the source image.
Bachvard mapping can be executed word by word in one
pass through the destination image. Both of these methods

are thoroughly discussed in [Morgan93]. It turns out that
backward mapping is faster than forward mapping.

In order to decrease the time of half toning we
propose a hardware architecture including a FPGA
halftoning coprocessor.

Proposed hardware architecture

The proposed hardware architecture (Figure 1) is
composed of a microprocessor, dynamic memory, a fast
static memory and a FPGA integrated circuit (lC). The
memory contains the source image and will receive the
destination image bitmap. The memory is shared between
a transputer (T800) and an application specific FPGA
circuit A fast static memory (256K 16 bit-wide words, 25
ns) was added to reduce access time for retrieving the
screen cells.

The application specific integrated circuit (ASIC)
is a XILINX 4010 Field Programmable Gate Array and
contains the application which was designed to increase
the speed of the half toning algorithm.

~ic
8MB

Application
specific

coprocessor

Fig. 1 - General architecture

Transpuler

The advantage of using a XILINX FPGA is that
it is reconfig urable for any other application which
requires the sarrle general architecture. Currently, the 4010
is the biggest FPGA available from XILINX. It offers 400
configurable logic blocs (CLB).

Most operations (reading the source image,
generating the addresses of the screen cells, retrieving the
corresponding screen element, shifting and masking the
output word) are executed in parallel. The operations are
controlled by a state machine and the boundaries of the
gray pixels in the destination image are computed on the
Oy. Such operations are implemented using incremental
methods .

At each memory access cycle, four gray scale
pixels (4 bytes) from the source image are read and stored

http://www.eg.org
http://diglib.eg.org

in a buffer. The address of the screen cell in the screen cell
table is computed and the screen element (16 bits) is
retrieved from the static RAM. The screen element is
shifted and the valid bits are masked. A bitwise OR
between the shifted screen element and the previous resull
is performed, before storing the final destination image
word in memory.

A sequencer coordinates the flow of the main
operations with the rest of the computations (updating
pointers to the screen cell boundaries, etc ...) and controls

adr

a.OCK -li-----:>~ I
Sequencer

From host
mjCl'oproccs.sor-;--.... ~

ASIC

Fig. 2 - The proposed hardware architecture

The backward mapping algorithm and its
hardware implementation

The backward mapping algorithm contains three
loops. The outer loop executed by the half toning
coprocessor scans the source image lines. The inner loop
reads each gray pixel of the current line in the source
image and computes the corresponding bitmapped screen
element. Only the two inner loops are executed by the le.
The outermost loop, which scans the source image pixels,
is accomplished by the microprocessor because it requires
computations which are difficult to implement by
hardware. When it comes to continue with the next line in
the source image, the microprograrn in the IC interrupts
the microprocessor and waits for a signal to restart with a
new cycle.

The algorithm, as executed in the circuit, was
taken from the original backward mapping algorithm and
split into several steps. Each step is carried out during a
cycle time, which is chosen as short as possible. The
sequencer controls the flow of these steps. The cycle Lime
of the steps is limited by the worst-case speed of the
circuit. A cycle needs to be long enough to allow the new
values to propagate from one register to the next one

32

me wnte ana reau operaUUlI:i lU UIC :'UIDCU U'CU'UIY. r.

certain number of registers (8-bit and 12-bit wide) contain
local values or values initialized directly by the
microprocessor. An 8-bit wide control register is directly
accessible and interfaces the application specific circuit
with the program running on the host processor. Before
starting the algorithm, the microprocessor writes initial
values in the registers of the ASIC. Figure 2 shows the
proposed hardware architecture.

From host microprocessor and
source image memory

114

adr

Screen cell
Static RAM

through the logic between the registers (adders,
comparators, multiplexers ...).

The backward mapping algorithm is segmented
into parts which are integrated in the ASle. How the
algorithm was split into different stages is explained
below. Some of the values in registers are initialized
directly by the microprocessor, before the start of the
application . The static RAM is filled with the computed
screen cells once, and can then be used for halftoning the
full image.

One scan line of the binary destination image
after another is generated . This algorithm can be
summarized with the following pseudo-code. The numbers
refer to the stages of the sequencer. On the left hand side
are the number of cycles, necessary to carry oul the
computations at each step.

Trw

microprograrn instruction cycle time,
equal to the clock cycle time

time for the shift operation

time for a read or write operation

Halftoning by backward mapping

FOR EACH scan line in the source image DO this outemwst loop is done by the microprocessor

1 Ti

I -Trw
4

1 Ti

1 Ts + 1 Ti

1 Ti

ITs + 1 Ti

ITi

1

2

3

4

5

6

7

8

9

FOR EACH corresponding row in the destination image DO
• calculate the pointer to the corresponding grayscale pixellocation (XAdr. Y Adr) mapped into the
output bitrnap

FOR EACH gray level pixel in the current row of lhe source image DO

• if necessary. retrieve the gray level (Gray) of lhe next four pixels from memory

• calculate the address (DataPixAdr) of the corresponding screen element
• calculate the position (LeftCol) of the next gray pixel mapped into the output

bitrnap

• read the word from the screen cell table
• shift the word to align the screen cell wilh lhe binary output word (DataPixShifl)

• mask the valid bits in the word to avoid overwriting the binary pixels associated
with the previous gray pixel

• OR the result with the previous result
• update lhe pointer (NextLeftCol) to the destination bitmap for the next word

REPEAT

• store the output image word to lhe destination bitmap memory
• update the address (DataPixAdr) of the current screen element

• read the next word from the screen cell table
• shiflthe word to align the screen cell with the binary output word
• update the pointer (NextLeftCol) to the destination bitmap for the next

word

UNTIT... the position of the next grayscale pixel mapped into the destination
bitmap is reached

• increment the position (LeftCol) and continue with the next gray scale pixel in the
current row of the source image

END FOR

• mask the last word of the destination image scan line if necessary
• write that last word to memory
• increment the destination image row counter and continue with the current scan line of the

source image

10 END FOR
• send an interruption to the microprocessor to continue wilh lhe next scan line of the image

END FOR

The sequencer generates the different stages of
the algorithm, and each stage takes a defined cycle time. A
stage starts on the falling clock edge and ends with the
next falling clock edge. On the rising clock edge, between
these two limits, precomputed values are latched in
registers. Some of the operations of the algorithm require
more cycles and lhe corresponding stages take more time
than just one cycle.

The main registers, necessary to calculate the
address of the bitrnapped screen cells , are shown in
figure 3. Figure 4 details how the address of the screen

element is computed arithmetically from the screen cell
boundaries (XAdr, Y Adr), the gray level (Gray), the
screen cell tiling size (RectH, RectW, DispX) and the
position (LeftCol, NextLeftCol) of the source image pixels
mapped into the output bitrnap [Morgan 92] .

9~CY
12 » address of bianap scrOCD <%11

CaiOJiale
LeftCoi

Screen bitmap plI 18
Daul'UAdr

12 .

Fig. 3 - Calculating the address of the screen cell

, J6

Du tput buffer

'--y----' Fig. 5 - Thefinal operation on the shifted screen cell

Fig. 4 - Computing ehe screen cell address

As the memory used for the screen cells is a fast
static RAM, the operation which fetches the screen
element can be achieved within a single instruction cycle.
On the other hand, reading or writing to the dynamic
memory requires more than one instruction cycle.

The length of the instruction cycle is function of
the clock cycle time. The amount of logic through which
values propagate limits the clock frequency. Typically, the
stage of the algorithm during which the shifted pixels are
masked needs to be long enough so that the 16-bit wide
value at the entrance of the output buffer becomes valid
(Figure 5).

When routing the layout of Ule lc' the design is
mapped onto the available FPGA logic. Combinatorial
logic is transformed into function generators and the
registers are divided into latches. which are spread out
over the whole area of the le.

11 6

Shifting a 16-bit wide word to the left or to the
right by a certain amount is usually implemented with a
barrel shifter. This method has the advantage of being fast
but requires a lot of space and is out of range of the size of
the FPGA which is used here. The solution which was
finally adopted consists of a register which shifts a word
one bit at the time and a counter (figure 6). The counter
counts how many times the screen cell ought to be shifted.
Less space is needed for that solution than for a barrel
shifter. but this solution is much slower.

Therefore the cycle time for the shift operation is
longer than a single clock cycle and depends on the shift
value. For convenience, the counter is pulsed with the
same clock as the rest of the application.

Shift
Screen cell from Slalic RAM

.~6

Shift ieflJright

Shifted Screen Cell
CLOCK

Fig. 6 - Implemeneing the shift operation

After having described the general architecture,
we will now concentrate on the results and the
performance obtained with the proposed hardware
solution. Undoubtedly two operations in the algorithm are
lime-consuming. Accessing the memory to read or to write
takes more time than one instruction cycle. Shifting too, is
not fast and can even be slower than a read or write
operation.

Only a larger FPGA than the XlLINX 4010 can
speed up the application. The shift operation should be
realized with a barrel shifter. Since a barrel shifter is a
combinatorial logic part, the instruction cycle necessary
for shifting the screen cell would be eliminated.

Performance and results with the XILINX
FPGA technology available in 1992

The application which was implemented fills 80%
of the FPGA and is equivalent in size to 9492 Gate Array
gates. The determined upper speed limit of the application
is 4 MHz and the resulting instruction cycle time 250 ns.
Speed can be increased with a larger circuit, in which the
logic would be less packed. People used to work with
XILINX FPGAs report that the limit below which they can
be used efficiently is around 50 % CLB utilization.

The size of the registers is limiting the maximum
width of the resulting destination bitrnapped image to
4096 pixels. Wider output images can be generated by
cutting the input and destination images into smal ler parts.

Since the shifting operation is slow and due to the
lack of pipeline, the speed of the circuit is twice slower
than its software equivalent, running on a Sparc-2
workstation . The size and complexity of the design
combined with the current FPGA technology make it
impossible to go faster.

The scale factors were chosen to generate images
covering a whole A4 page at output resolutions of 2540
and 5080 dpi . These are typical resolutions used for high
quality printing. The tables below show the processing
times (in minutes and seconds) to halftone an image
scanned at 300, 600 and 800 dpi.

Backward nwpping running on a Sparc-2 workstation:

Source image resolution 300 dpi

Output resolution: 2540 dpi 2:42
Output resolution : 5080 dpi 7:03

Bachvard mapping on the proposed
hardware architeclllre:

Source im age resolution 300 dpi

Output re so lution : 2540 dpi 5:34
Output reso lution: 5080 dp i 15: 13

600 dpi 800 dpi

4:49 6:06
ll : 14 13:32

600 dpi 800 dpi

9:50 11 :27
22: 15 26:58

Model-based performance evaluation

It is poss ible to estimate the time taken by the
ASI C to halftone a given image. To calculate tl1e expected
time, let us consider tl1e following variables:

Ti instruction cycle time

microprocessor clock period

average cycle time for the shift
operation

Trw average cycle time for a read
or write operation

In our version, Tj = 250 ns, T llP = 50 ns, T s = sI!
* Ti, T rw = 2 * Ti + 3 * T llP, sI! stands for the average
shift value of which is 8.

The time is calculated by counting the number of
different instruction cycles in each loop and summing the
values . Be aware that the last step, which terminates the
algorithm and sends an interruption to the microprocessor,
is not counted because that step tells the processor to
continue with the next line of the source image. The
transition time between the interruption and the start of the
next step in the ASIC is small and can be omitted.

Since the memory which stores the images is
shared between the microprocessor and the IC, the
memory cycles are based on the microprocessor clock
period.

The time (in nanoseconds) taken to halftone a
source image with a size of ImSrcW * ImSrcH, given a
size of ImDstW * ImDstH for the resulting destination
bitmap image, can be calculated with the following
formula

t(lmSreW.lm DstW, ImDstH) =

ImDstH 1
Im SreH' ---' (T; + T rw + Im SreW, (- T rw

ImSrcH 4
Im DstW

+Ts+4T; + ' (Tj+Trw+Ts }))=
16·lmSrcW

I
ImDstH·(Tj + T rw+ lmSreW'(-Trw+Ts +

4
ImDstW

4 T; + • (T j + T rw + T s)))
16'lmSrcW

Backward mapping on the proposed architecture
according 10 the estinwtion model, using Ti = 250 ns:

Source image resolution 300 dpi 600 dpi 800 dpi

Output resolution : 2540 dpi 5:46 9:39 12:14

Output resolution: 5080 dpi 15:18 23:04 28:15

We observe that the results approximated by the
model closely match real execution times.

Possible improvements with future
FPGA technologies

Using a larger FPGA would enable us to go at
leas t 3 times faster. A new version of the IC could be
dri ven with a higher frequency and should integrate a
barrel shifter (T s = 0) instead of the "step by step" shifter
used here . The tables below indicate the performance
which could be reached with a larger and faster circuil.
BacJ.. .. ward mapping on a larger and/aster circuit:

Here, we assume driving the ASIC with a shorter
clock cycle time (Ti = 100 ns). Using a barrel shifter to
shift t11e bits enables us to go faster (Ts = 0). 111e fonnula
for the half toning time therefore becomes:

1(lmSrcW.lmDsIW. lmDsIH) =

I ImDstW
lm DSIH o(Tj + T rw + ImSrcW 0(-T rw + 4Tj + o(Tj + T rw)))

4 16 0 lmSrcW

The speed up reaches a factor of 3 in speed,
compared to the software implementation running on a
Sparc-2 workstation.

Source image resolution 300 dpi 600 dpi 800 dpi

Output resolution : 2540 dpi 0:53 1:29 1:53
Output resolution: 5080 dpi 2:22 3:33 4:21

When replacing the slow dynamic memory with a
very fast source scan line buffer (RFO access time below
50 ns), it would be possible to gain a speedup factor of 4
with the proposed hardware solution, compared with our
software implementation.

Backward mnpping on a larger and faster architecture
with afast FIFO:

Clock cycle time: Ti = T rw = 100 ns .

Source image resolution 300 dpi 600 dpi 800 dpi

Output resolution: 2540 dpi 0:39 1: 10 1:31
Output resolution: 5080 dpi 1:33 2:36 3: 18

Possible improvement with a faster
ASIC technology

Experience shows that under normal
circumstances it is difficult to drive a XIUNX FPGA with
frequencies above 10 MHz. This disadvantage
compromises with the convenience of having a multi
purpose programmable le.

However, it is interesting to estimate the
performance of the proposed architecture using an ASIC
technology which is faster than XILlNX, such as ACTEL
or even an application specific integrated circuit, using
standard cells (VLSI) . In that situation, the speed of the
application would only be limited by the source scanline
FIFO access time. The FIFO can be chosen to be as fast as
25 ns, which would limit the instruction cycle time to 60
ns approximately.

Bachvard mapping with a faster ASIC:

Clock cycle time: Ti = 60 ns, T rw = 50 ns.

Source image resolution 300 dpi 600dpi 800 dpi

Output resolution: 2540 dpi 0 :23 0:41 0:54
Output resolution: 5080 dpi 0:54 1:31 1:56

This solution achieves an improvement in speed
by a factor of 7, compared with the software
implementation. The resulting hardware solution would
only be limited by the memory access time. Since we try
to make a complete memory access within a single cycle.
the instruction cycle time Ti cannot be smaller than the
memory access time.

118

Conclusion

The process of half toning is time-consuming.
Even on a powerful workstation, it takes between 2 and 5
minutes to halftone a complete A4 page at 2540 dpi. The
hardware solution, based on the 1992 XILINX FPGA
technology is two times slower than its software
equivalent, running on a Sparc-2 workstation. Since the
FPGA chip used for the implementation was too small to
hold the fairly large amount of necessary logic, the design
was adapted to fit the limited amount of available logic,
inducing severe performance degradation.

An estimation model, based on the existing
design. reveals that the use of a larger FPGA combined
with a fast re-readable FIFO memory could highly
improve half toning performance. Future FPGA
technologies would enable us to gain a factor of 4 and a
standard cell based VLSI design a factor of 7 in speed
over !be standard Sparc-2 software implementation.

An ideal fully parallel and fully pipelined
architecture [Morgan93] would bring a gain in speed by a
factor of 20, but this could only be realized by a highly
complex application VLSI design.

This paper shows that only high-performance
VLSI solutions are able to compete effectively with
modern and high-performance processor architectures.

References

[Foley90] James Foley, Andries van Dam, Steven
Feiner, John Hughes, Computer Graphics: Principles and
Practice. Addison-Wesley, 1990.

[Hou83] Hsieh S. Hou, Digital Document
Processing. Chapter 4: Digital Halftoning and Shading,
John Wiley & Sohns, 1983.

[Morgan93] Marc Morgan et aI., Acceleration of
Ha/fioning, SID Digest of Technical papers, Vol. XXIV,
151-154,1993.

