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Abstract 

Halftoning is a fairly slow process when executed 
by software on conventional processors. To speed up 
half toning, a half toning algorithm has been developed and 
integrated into a dedicated hardware architecture. This 
paper describes the implementation of the architecture 
with a XILINX Field Programmable Gate Array (FPGA) 
and compares its performances with results obtained by a 
software implementation. A discussion on how to improve 
the present architecture concludes the paper. 

Introduction 

Generating a binary image from a gray scale 
image in such a way that the resulting image gives the 
impression of having gray scale tones is called halftoning. 
In the past several halftoning techniques have been 
developed. For producing regular periodic screen 
elements, dithering algorithms allow generating both 
dispersed and clustered screen cells [Hou831 . The 
halftoning process which is developed in this paper is 
based on a regular grid of dither cells. Each cell contains 
N ordered binary pixels and offers N+1levels of gray. 

Transforming a gray scale image into a binary 
image is slow due to the very large amount of pixels 
involved. For each binary pixel in the destination image, 
the gray level of the corresponding pixel in the source 
image has to be compared with the threshold level of the 
corresponding pixel in the dither cell [Foley90). It is 
possible to precompute the screen cells for each gray level. 
Then, to each binary pixel in the destination image 
corresponds one pixel of the screen cell which represents 
the gray level of the current pixel in the source image. 
This method is faster than comparing for each binary pixel 
a prestored dither threshold value with a gray level, 
because several binary pixels of the destination image are 
generated at once. 

Two halftoning algorithms have been developed 
previously: fonvard mapping and backward mapping. In 
the forward mapping algorithm, each gray pixel in the 
source image is taken and the corresponding binary pixeis 
of the destination image are filled. The second method 
considers each binary pixel in the destination image, from 
left to right and from top to bottom and fills it according to 
its corresponding gray pixel in the source image. 
Bachvard mapping can be executed word by word in one 
pass through the destination image. Both of these methods 

are thoroughly discussed in [Morgan93]. It turns out that 
backward mapping is faster than forward mapping. 

In order to decrease the time of half toning we 
propose a hardware architecture including a FPGA 
halftoning coprocessor. 

Proposed hardware architecture 

The proposed hardware architecture (Figure 1) is 
composed of a microprocessor, dynamic memory, a fast 
static memory and a FPGA integrated circuit (lC). The 
memory contains the source image and will receive the 
destination image bitmap. The memory is shared between 
a transputer (T800) and an application specific FPGA 
circuit A fast static memory (256K 16 bit-wide words, 25 
ns) was added to reduce access time for retrieving the 
screen cells. 

The application specific integrated circuit (ASIC) 
is a XILINX 4010 Field Programmable Gate Array and 
contains the application which was designed to increase 
the speed of the half toning algorithm. 
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Fig. 1 - General architecture 
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The advantage of using a XILINX FPGA is that 
it is reconfig urable for any other application which 
requires the sarrle general architecture. Currently, the 4010 
is the biggest FPGA available from XILINX. It offers 400 
configurable logic blocs (CLB). 

Most operations (reading the source image, 
generating the addresses of the screen cells, retrieving the 
corresponding screen element, shifting and masking the 
output word) are executed in parallel. The operations are 
controlled by a state machine and the boundaries of the 
gray pixels in the destination image are computed on the 
Oy. Such operations are implemented using incremental 
methods . 

At each memory access cycle, four gray scale 
pixels (4 bytes) from the source image are read and stored 
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in a buffer. The address of the screen cell in the screen cell 
table is computed and the screen element (16 bits) is 
retrieved from the static RAM. The screen element is 
shifted and the valid bits are masked. A bitwise OR 
between the shifted screen element and the previous resull 
is performed, before storing the final destination image 
word in memory. 

A sequencer coordinates the flow of the main 
operations with the rest of the computations (updating 
pointers to the screen cell boundaries, etc ... ) and controls 
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Fig. 2 - The proposed hardware architecture 

The backward mapping algorithm and its 
hardware implementation 

The backward mapping algorithm contains three 
loops. The outer loop executed by the half toning 
coprocessor scans the source image lines. The inner loop 
reads each gray pixel of the current line in the source 
image and computes the corresponding bitmapped screen 
element. Only the two inner loops are executed by the le. 
The outermost loop, which scans the source image pixels, 
is accomplished by the microprocessor because it requires 
computations which are difficult to implement by 
hardware. When it comes to continue with the next line in 
the source image, the microprograrn in the IC interrupts 
the microprocessor and waits for a signal to restart with a 
new cycle. 

The algorithm, as executed in the circuit, was 
taken from the original backward mapping algorithm and 
split into several steps. Each step is carried out during a 
cycle time, which is chosen as short as possible. The 
sequencer controls the flow of these steps. The cycle Lime 
of the steps is limited by the worst-case speed of the 
circuit. A cycle needs to be long enough to allow the new 
values to propagate from one register to the next one 
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certain number of registers (8-bit and 12-bit wide) contain 
local values or values initialized directly by the 
microprocessor. An 8-bit wide control register is directly 
accessible and interfaces the application specific circuit 
with the program running on the host processor. Before 
starting the algorithm, the microprocessor writes initial 
values in the registers of the ASIC. Figure 2 shows the 
proposed hardware architecture. 

From host microprocessor and 
source image memory 
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through the logic between the registers (adders, 
comparators, multiplexers ... ). 

The backward mapping algorithm is segmented 
into parts which are integrated in the ASle. How the 
algorithm was split into different stages is explained 
below. Some of the values in registers are initialized 
directly by the microprocessor, before the start of the 
application . The static RAM is filled with the computed 
screen cells once, and can then be used for halftoning the 
full image. 

One scan line of the binary destination image 
after another is generated . This algorithm can be 
summarized with the following pseudo-code. The numbers 
refer to the stages of the sequencer. On the left hand side 
are the number of cycles, necessary to carry oul the 
computations at each step. 

Trw 

microprograrn instruction cycle time, 
equal to the clock cycle time 

time for the shift operation 

time for a read or write operation 



Halftoning by backward mapping 

FOR EACH scan line in the source image DO this outemwst loop is done by the microprocessor 
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FOR EACH corresponding row in the destination image DO 
• calculate the pointer to the corresponding grayscale pixellocation (XAdr. Y Adr) mapped into the 
output bitrnap 

FOR EACH gray level pixel in the current row of lhe source image DO 

• if necessary. retrieve the gray level (Gray) of lhe next four pixels from memory 

• calculate the address (DataPixAdr) of the corresponding screen element 
• calculate the position (LeftCol) of the next gray pixel mapped into the output 

bitrnap 

• read the word from the screen cell table 
• shift the word to align the screen cell wilh lhe binary output word (DataPixShifl) 

• mask the valid bits in the word to avoid overwriting the binary pixels associated 
with the previous gray pixel 

• OR the result with the previous result 
• update lhe pointer (NextLeftCol) to the destination bitmap for the next word 

REPEAT 

• store the output image word to lhe destination bitmap memory 
• update the address (DataPixAdr) of the current screen element 

• read the next word from the screen cell table 
• shiflthe word to align the screen cell with the binary output word 
• update the pointer (NextLeftCol) to the destination bitmap for the next 

word 

UNTIT... the position of the next grayscale pixel mapped into the destination 
bitmap is reached 

• increment the position (LeftCol) and continue with the next gray scale pixel in the 
current row of the source image 

END FOR 

• mask the last word of the destination image scan line if necessary 
• write that last word to memory 
• increment the destination image row counter and continue with the current scan line of the 

source image 

10 END FOR 
• send an interruption to the microprocessor to continue wilh lhe next scan line of the image 

END FOR 

The sequencer generates the different stages of 
the algorithm, and each stage takes a defined cycle time. A 
stage starts on the falling clock edge and ends with the 
next falling clock edge. On the rising clock edge, between 
these two limits, precomputed values are latched in 
registers. Some of the operations of the algorithm require 
more cycles and lhe corresponding stages take more time 
than just one cycle. 

The main registers, necessary to calculate the 
address of the bitrnapped screen cells , are shown in 
figure 3. Figure 4 details how the address of the screen 

element is computed arithmetically from the screen cell 
boundaries (XAdr, Y Adr), the gray level (Gray), the 
screen cell tiling size (RectH, RectW, DispX) and the 
position (LeftCol, NextLeftCol) of the source image pixels 
mapped into the output bitrnap [Morgan 92] . 
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Fig. 3 - Calculating the address of the screen cell 
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Fig. 4 - Computing ehe screen cell address 

As the memory used for the screen cells is a fast 
static RAM, the operation which fetches the screen 
element can be achieved within a single instruction cycle. 
On the other hand, reading or writing to the dynamic 
memory requires more than one instruction cycle. 

The length of the instruction cycle is function of 
the clock cycle time. The amount of logic through which 
values propagate limits the clock frequency. Typically, the 
stage of the algorithm during which the shifted pixels are 
masked needs to be long enough so that the 16-bit wide 
value at the entrance of the output buffer becomes valid 
(Figure 5). 

When routing the layout of Ule lc' the design is 
mapped onto the available FPGA logic. Combinatorial 
logic is transformed into function generators and the 
registers are divided into latches. which are spread out 
over the whole area of the le. 
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Shifting a 16-bit wide word to the left or to the 
right by a certain amount is usually implemented with a 
barrel shifter. This method has the advantage of being fast 
but requires a lot of space and is out of range of the size of 
the FPGA which is used here. The solution which was 
finally adopted consists of a register which shifts a word 
one bit at the time and a counter (figure 6). The counter 
counts how many times the screen cell ought to be shifted. 
Less space is needed for that solution than for a barrel 
shifter. but this solution is much slower. 

Therefore the cycle time for the shift operation is 
longer than a single clock cycle and depends on the shift 
value. For convenience, the counter is pulsed with the 
same clock as the rest of the application. 

Shift 
Screen cell from Slalic RAM 

.~6 

Shift ieflJright 

Shifted Screen Cell 
CLOCK 

Fig. 6 - Implemeneing the shift operation 

After having described the general architecture, 
we will now concentrate on the results and the 
performance obtained with the proposed hardware 
solution. Undoubtedly two operations in the algorithm are 
lime-consuming. Accessing the memory to read or to write 
takes more time than one instruction cycle. Shifting too, is 
not fast and can even be slower than a read or write 
operation. 



Only a larger FPGA than the XlLINX 4010 can 
speed up the application. The shift operation should be 
realized with a barrel shifter. Since a barrel shifter is a 
combinatorial logic part, the instruction cycle necessary 
for shifting the screen cell would be eliminated. 

Performance and results with the XILINX 
FPGA technology available in 1992 

The application which was implemented fills 80% 
of the FPGA and is equivalent in size to 9492 Gate Array 
gates. The determined upper speed limit of the application 
is 4 MHz and the resulting instruction cycle time 250 ns. 
Speed can be increased with a larger circuit, in which the 
logic would be less packed. People used to work with 
XILINX FPGAs report that the limit below which they can 
be used efficiently is around 50 % CLB utilization. 

The size of the registers is limiting the maximum 
width of the resulting destination bitrnapped image to 
4096 pixels. Wider output images can be generated by 
cutting the input and destination images into smal ler parts. 

Since the shifting operation is slow and due to the 
lack of pipeline, the speed of the circuit is twice slower 
than its software equivalent, running on a Sparc-2 
workstation . The size and complexity of the design 
combined with the current FPGA technology make it 
impossible to go faster. 

The scale factors were chosen to generate images 
covering a whole A4 page at output resolutions of 2540 
and 5080 dpi . These are typical resolutions used for high 
quality printing. The tables below show the processing 
times (in minutes and seconds) to halftone an image 
scanned at 300, 600 and 800 dpi. 

Backward nwpping running on a Sparc-2 workstation: 

Source image resolution 300 dpi 

Output resolution: 2540 dpi 2:42 
Output resolution : 5080 dpi 7:03 

Bachvard mapping on the proposed 
hardware architeclllre: 

Source im age resolution 300 dpi 

Output re so lution : 2540 dpi 5:34 
Output reso lution: 5080 dp i 15: 13 

600 dpi 800 dpi 

4:49 6:06 
ll : 14 13:32 

600 dpi 800 dpi 

9:50 11 :27 
22: 15 26:58 

Model-based performance evaluation 

It is poss ible to estimate the time taken by the 
ASI C to halftone a given image. To calculate tl1e expected 
time, let us consider tl1e following variables: 

Ti instruction cycle time 

microprocessor clock period 

average cycle time for the shift 
operation 

Trw average cycle time for a read 
or write operation 

In our version, Tj = 250 ns, T llP = 50 ns, T s = sI! 
* Ti, T rw = 2 * Ti + 3 * T llP, sI! stands for the average 
shift value of which is 8. 

The time is calculated by counting the number of 
different instruction cycles in each loop and summing the 
values . Be aware that the last step, which terminates the 
algorithm and sends an interruption to the microprocessor, 
is not counted because that step tells the processor to 
continue with the next line of the source image. The 
transition time between the interruption and the start of the 
next step in the ASIC is small and can be omitted. 

Since the memory which stores the images is 
shared between the microprocessor and the IC, the 
memory cycles are based on the microprocessor clock 
period. 

The time (in nanoseconds) taken to halftone a 
source image with a size of ImSrcW * ImSrcH, given a 
size of ImDstW * ImDstH for the resulting destination 
bitmap image, can be calculated with the following 
formula 

t(lmSreW.lm DstW, ImDstH) = 

ImDstH 1 
Im SreH' ---' (T; + T rw + Im SreW, (- T rw 

ImSrcH 4 
Im DstW 

+Ts+4T; + ' (Tj+Trw+Ts }))= 
16·lmSrcW 

I 
ImDstH·(Tj + T rw+ lmSreW'(-Trw+Ts + 

4 
ImDstW 

4 T; + • (T j + T rw + T s ))) 
16'lmSrcW 

Backward mapping on the proposed architecture 
according 10 the estinwtion model, using Ti = 250 ns: 

Source image resolution 300 dpi 600 dpi 800 dpi 

Output resolution : 2540 dpi 5:46 9:39 12:14 

Output resolution: 5080 dpi 15:18 23:04 28:15 

We observe that the results approximated by the 
model closely match real execution times. 

Possible improvements with future 
FPGA technologies 

Using a larger FPGA would enable us to go at 
leas t 3 times faster. A new version of the IC could be 
dri ven with a higher frequency and should integrate a 
barrel shifter (T s = 0) instead of the "step by step" shifter 
used here . The tables below indicate the performance 
which could be reached with a larger and faster circuil. 
BacJ.. .. ward mapping on a larger and/aster circuit: 

Here, we assume driving the ASIC with a shorter 
clock cycle time (Ti = 100 ns). Using a barrel shifter to 
shift t11e bits enables us to go faster (Ts = 0). 111e fonnula 
for the half toning time therefore becomes: 



1(lmSrcW.lmDsIW. lmDsIH) = 

I ImDstW 
lm DSIH o(Tj + T rw + ImSrcW 0(-T rw + 4Tj + o(Tj + T rw))) 

4 16 0 lmSrcW 

The speed up reaches a factor of 3 in speed, 
compared to the software implementation running on a 
Sparc-2 workstation. 

Source image resolution 300 dpi 600 dpi 800 dpi 

Output resolution : 2540 dpi 0:53 1:29 1:53 
Output resolution: 5080 dpi 2:22 3:33 4:21 

When replacing the slow dynamic memory with a 
very fast source scan line buffer (RFO access time below 
50 ns), it would be possible to gain a speedup factor of 4 
with the proposed hardware solution, compared with our 
software implementation. 

Backward mnpping on a larger and faster architecture 
with afast FIFO: 

Clock cycle time: Ti = T rw = 100 ns . 

Source image resolution 300 dpi 600 dpi 800 dpi 

Output resolution: 2540 dpi 0:39 1: 10 1:31 
Output resolution: 5080 dpi 1:33 2:36 3: 18 

Possible improvement with a faster 
ASIC technology 

Experience shows that under normal 
circumstances it is difficult to drive a XIUNX FPGA with 
frequencies above 10 MHz. This disadvantage 
compromises with the convenience of having a multi 
purpose programmable le. 

However, it is interesting to estimate the 
performance of the proposed architecture using an ASIC 
technology which is faster than XILlNX, such as ACTEL 
or even an application specific integrated circuit, using 
standard cells (VLSI) . In that situation, the speed of the 
application would only be limited by the source scanline 
FIFO access time. The FIFO can be chosen to be as fast as 
25 ns, which would limit the instruction cycle time to 60 
ns approximately. 

Bachvard mapping with a faster ASIC: 

Clock cycle time: Ti = 60 ns, T rw = 50 ns. 

Source image resolution 300 dpi 600dpi 800 dpi 

Output resolution: 2540 dpi 0 :23 0:41 0:54 
Output resolution: 5080 dpi 0:54 1:31 1:56 

This solution achieves an improvement in speed 
by a factor of 7, compared with the software 
implementation. The resulting hardware solution would 
only be limited by the memory access time. Since we try 
to make a complete memory access within a single cycle. 
the instruction cycle time Ti cannot be smaller than the 
memory access time. 
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Conclusion 

The process of half toning is time-consuming. 
Even on a powerful workstation, it takes between 2 and 5 
minutes to halftone a complete A4 page at 2540 dpi. The 
hardware solution, based on the 1992 XILINX FPGA 
technology is two times slower than its software 
equivalent, running on a Sparc-2 workstation. Since the 
FPGA chip used for the implementation was too small to 
hold the fairly large amount of necessary logic, the design 
was adapted to fit the limited amount of available logic, 
inducing severe performance degradation. 

An estimation model, based on the existing 
design. reveals that the use of a larger FPGA combined 
with a fast re-readable FIFO memory could highly 
improve half toning performance. Future FPGA 
technologies would enable us to gain a factor of 4 and a 
standard cell based VLSI design a factor of 7 in speed 
over !be standard Sparc-2 software implementation. 

An ideal fully parallel and fully pipelined 
architecture [Morgan93] would bring a gain in speed by a 
factor of 20, but this could only be realized by a highly 
complex application VLSI design. 

This paper shows that only high-performance 
VLSI solutions are able to compete effectively with 
modern and high-performance processor architectures. 
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