
H e mispherical Projection for Progress ive R adios ity
Calc ulation on M assive ly Parallel Architectures

c. RenaudJ F. BricoutJ E. Lepretre

ABSTRACT
This paper describes a massively parallel implementation of the progressive radiosity
algorithm. Our algorithm is based on an hemispherical projection approach, which
provides an accurate form factor approximation. As the projection plane is mapped
onto a processor mesh, we propose different techniques decreasing computation time
by reducing as much as possible processor inactivity. This approach successfully han
dles large sets of form factor sampling elements.

1.1 Introduction

During the last ten years, image synthesis has considerably developed in the fields of
communication means, simulation and conception techniques . An increasing requirement
of realism has appeared, which can only be obtained by taking into account global il
lumination phenomena. The radiosity [5] approach solves all light interactions between
purely diffuse surfaces, tesselated into many planar patches. Geometric quantities, called
form factors, must be computed to build an energy equation system. Solving this system
provides a global viewpoint independent solution for scene illumination.

In this paper, we discuss a massively parallel approach of the progressive radiosity
algorithm, based on an hemispherical projection method. This projective approach, based
on the Nusselt equivalent, uses an unique projection plane and provides an accurate
form factor representation. Optimization techniques have been introduced to reduce the
computation time of the projection step. T his reduction is especially noticeable when the
number of sampling elements increases. Our approach provides an efficient use of data
parallelism by successively computing all of the geometric steps onto the entire set of
processing elements .

We have implemented our algorithm on a MP-l machine to get some measures. This
machine includes a scalar execution unit and a data-parallel unit . The dataparallel unit
is organized as a 2D array of 1024 processing elements (PEs).

1.2 The Radiosity IVlethod

The radiosity method [5] is based on thermal engineering th~ory, and requires to compute
all light exchanges between every pair of objects of a scene: These computations allow to
achieve the light energy balance in the scene. The move of the observer does not require
any new lighting computation, as radiosity is viewpoint independent.

This method assumes that surfaces are perfectly diffuse (incident light energy is reflected
with the same intensity in all directions) . The surfaces are partitioned into planar patches ,
for which total light emission per unit area is supposed constant. At last , the energy
conservation law requires a closed environment.

The radiosity equations system is :

N

E j = E j + pj L FjiEj for j = 1 to N (1.1)
j=O

http://www.eg.org
http://diglib.eg.org

~. ltenaU<1 , I'. tsnCQut, t; . Lepretre

where

Bj is the radiosity of patch j (total light energy quantity emitted per unit area and
per unit time)

E j its self emitted light energy (sources)

Pj its reflectance factor (wavelength dependent)

Fj ; the form factor between the patches j and i (part of light emitted by pa.tch j
which reaches patch i, after a straight path)

N the number of patches in the scene

Equation 1.1 shows that the light energy emitted by a patch is the sum of the patch
self energy (Ej} and the part of incident energy, coming from the other patches, which is
reflected by the patch. To solve this system, the form factors between each pair of patches
must be computed. When it is completed, the system is solved with the Gauss-Siedel
matrix inversion method [2], to get patch radiosities . This resolution diagram has two
main drawbacks:

- on one hand, all form factors must be computed and stored, to allow the ma.trix
inversion. The cost of such a storage is in 0(N2), where N is the number of patches.

- on the other hand, a picture can be displayed only after form factors and radiosity
computation is completed. There is not any feedback to the user before several
computation hours.

Then, a reformulated radiosity algorithm has been proposed by Cohen [IJ, which allows
to display pictures before radiosity completion. Let us note t.hat, in the initial radiosity
method, radiosity B; of patch i is computed by gathering the energy of each patch of the
environment onto the patch i. Hence, each patch radiosity must be known to be able to
update patch £ ra.diosity.

Progressive refinement radiosity reverses this process: radiosity is shot from patch i
to all other patches. So, each step consists in determining patch i radiosity contribution
to the radiosity of all other patches, by computing fonn factors F*i. As energy emission
decreases with time, this process converges to the same solution that the full -matrix
algorithm. In order to accelerate the visual convergence, the successive shooting patches
are chosen according to their energy. The most energetic patch is chosen at each step ,
providing the greatest lighting changes. After each shooting step, the radiosity of each
patch has been updated, and it is possible to display an intermediate picture, even if the
solution is not completed. Moreover, since form factors are computed on-the-fly (only one
row of the form factors matrix is computing at each step), the memory cost is reduced to
O(N) .

1.3 Form Factor Computation

Visibility between patches is the main problem in form factor computation. Several ap
proaches, based on projective algorithms, have been proposed to comput.e visibilit.y be
tween shooting patch and all other patches in the database. This visibilit.y is obtained by
projecting the environment onto one or more surfaces, and then by applying a z-buffer
opera.tion.

82

Hemispherical Projection for Progressive Radiosity Calculation on Massively Parallel Architectures

1.3.1 Hemisphere Approximation

Ideally, the sampling surface is a half-sphere, but the high complexity of a depth buffer
algorithm onto such a surface leads to use hemisphere approximations for projections.
The hemisphere can be approximated by a hemicube [2], taking advantage of well-known
planar z-buffer algorithms.

As this approach genera.tes over-sampling and needs to compute five projections, sin
gle plane approaches have been proposed [6] [7] . The hemisphere is approximated by a
very large plane parallel to the shooting patch, in order to sample most of the incident
directions. As these methods also generate oversampling, different sampling patterns have
been proposed to reduce the number of sa.mples and computation time. However , those
algorithms "loose" energy from grazing directions .

1.3.2 Using the Hemisphere Sustaining Disk

Form factors can be computed using the hemisphere sustaining disk in the following way.
Two successive projections are performed. The first one is a central projection on the
hemisphere, easily done by normalizing the coordinates of the vertices of each pa.tch. The
second one is an orthogonal projection onto the plane sustaining the hemisphere (See
figure 1.1a). As the central projection of an edge onto the hemisphere is a geodesic (arc
of a great circle), its orthogonal projection is an arc of an ellipse, with the same center
as the hemisphere's. Using an adequate coordinates transformation (See Annexe A) , the
equation of an elliptic arc can be written as:

Au + Bv + C VI - u2 - v2 = 0 (1.2)

As shown on figure Llb, the projection of an entire pa.tch is then delimited by a set of
elliptic arcs, creating a possibly concave boundary in t.he (u, v) space.

v

__ ~ __ ~ __ +--+*-__ -+~u

a) Projection onto the disk b) Elliptic arcs based boundary

FIGURE 1.1. Use of the hemisphere sustai ning disk for projection

The square enclosing t.he disk is divided into same sized square proxels (by anaJogy
with pixei, we call proxel a. Projected Element onto which the patch is projeded) . This
subd ivision provides the sa.me contribution to the form fador for each proxel , and allows
to use a cartesian coordinate system (u, v) for all project.ion operations. The problem
is to determine, [or each proxel, jf it is inside or outside the project.ed patch out.line.
For the Pixel-Planes 5 machine, a method to determine t.he inside of such outlines has

C. Renaud, F. Bricout, E. Lepretre

been introduced by Goldfeather [4]. We derive a simpler solution from his work, using
sign comparisons, end providing an efficient implementation (See Annexe A for further
details).

1.3.3 Advantages and drawbacks

The hemisphere approach has significant advantages compared to approximations. The
unique projection plane required by this algorithm reduces the number of geometric trans
formations, in regard to the hemicube.

Hemispheres provides a more accurate radiosity distribution by avoiding the loss of
grazing directions energy, due to single plane approximations.

Moreover, as all sampling elements contribute equally to the form factor (cf. the Nus
selt equivalent), oversampling does not appear. Then, for an equal number of sampling
elements, a better form factor approximation is obtained.

However, we must keep in mind that the determination of the inside of an outline made
of elliptic arc is still expensive, in regard to computation time.

1.4 MP-l Overview

The DEC MP-l is a massively parallel single instruction, multiple data (SIMD) computer
system, with one to sixteen thousand processor elements (PEs) [3]. It contains three major
subsystems, which are (See figure 1.2):

The front end processor (workstation running the ULTRIX Operating System)

The Input/Output system

The Data Parallel Unit (DPU) containing an array of at least 1024 PEs, an array
control unit (ACU) and PE communication mechanisms.

FIGURE 1.2 . The MP-l system diagram

The ACU controls the PE array. It performs operations on singular data and sends
data and intruct ions to each PE simultaneously. Each PE is a load/store arithmetic pro
cessing element, with thirty-two 32 bits registers and 16KB of RAM, and performs both
integer and floating point operations. Communications between the PEs a.nd the ACU use
a special bus. Communica.tions between PEs use either a X-network or a Global router.
The Xnet connects each PE to its S direct neighbours, and allows direct communications

84

Hemispherical Projection for Progressive Radiosity Calculation on Massively Parallel Architectures

between any PEs that lies on a straight line from the original PE in one of the 8 neigh
bouring directions. Communications between any particular PE and a subset of other PEs
use a three stage hierarchy of crossbar switches called Global Router.

1.5 A massively parallel approach

The projection of a patch onto a plane divided into several sampling elements is implPcitly
a massively parallel operation. However, it has to be implemented carefully in a SIMD
context, in order to reach a good load-balancing and to reduce processor inactivity.

The first step of the algorithm is the elimination of patch that are trivially invisible from
the source. This reduces the number of patches to take in account during the next steps.
The second is geometric computations, which prepares the a.ctive patches for projection.
Then the projection algorithm computes the covered proxels and performs depth buffer
operations. Finally, form factors are computed and radiosity updated. An important issue
of our approach is that all computation is done on the PE array. The patch database
and the projecting plane are distributed over the entire set of processing elements, and
the radiosity algorithm is divided into several steps, in order to eliminate idle processors.
Those steps are described below.

1.5.1 Elimination of trivially invisible patch

In order to use the PE array in the best way, the visibility of every pa.tch from the
shooting patch is first computed. A patch is marked as invisible if it is entirely behind the
shooting patch, or if it does not face it . Each PE computes the potentially visible patches
it manages, and sorts them. As the local patch set can be seen as a stack, the sort stores
the visible patches on top of the stack. This layout results in an efficient load-balancing
for the following computation steps, since all the processing elements will compute an
active patch.

1.5.2 Projection parameters computation

As projection parameters computation is the same for each patch, it is applied simulta
neously onto the full PE array, taking advantage of the SIMD architecture. Geometric
transformations are first applied on the patches. Their coordinates are transformed into
the source patch coordinate system, and clipping is performed using the z = 0 plane.
Projection parameters (elliptic arc equations, initial values, ...) are then comput.ed and
stored with the patch data. After this process, N patches are ready for projection, where
N is the number of available processors in the array.

1.5.3 The projection step

As this is the most computationally demanding stage of the algorithm, care must be taken
in order to ensure an efficient load-balancing over the processors. To determine which
proxels are covered with the projected patch, we have to compute, for each one, whether
it is inside or outside the outline defined by elliptic arcs. Each arc equation is evaluated
for each proxel , setting an activity flag to false if the proxel is on the wrong side of the
arc. After all evaluations are done, a proxel is inside the projected outline if its activity
flag is still set to true. Note that as the square root that appears in equation 1.2 only
depends on the proxel coordinates, it is computed once when initializing the projection
plane, and then stored as part of a proxel data. A proxel will also contain a. patch ident.ity,

C. Renaud , F . BricQut, E. Lepretre

The depth buffer operation is performed for each inner proxel (u,v), by computing
the true distance between the proxel and the patch, and comparing it with the previously
stored value. A detailed explanation about the distance computation is given in Appendix
A.

This projection process is applied one patch at a time, using all available computation
resources. This provides a more efficient use of the SIMD approach than by simultaneously
projecting different patches, since the computation volume is different from one patch to
another. As each PE manages a different patch, each processor has to diffuse sequentialy
its local parameters to all the other processors. When receiving a patch, the processors
compute its projection and wait for the next patch parameters. Diffusion is performed
using the communications between PEs and ACU , because the Xnet and the Global
Router are not well suited for diffusion. To diffuse its pa.tch parameters, a PE sends them
to the ACU, which diffuses them to a.ll the PE array.

1.5.4 Form factor computation

The last stage of the algorithm evaluates form fa.ctor and updates radiosity. In order to
compute a patch form factor, the number of proxels the patch covers must be known, but
proxels are distributed over the PE array. So, a patch form factor must be propagated
toward each PE, in order to be sure that each proxel covered by the patch has been taken
in account. Propagation is performed using local communications between PEs (xnet
instruction) . A PE receiving a patch form factor searches this patch in its loca.l proxels,
and increases the form factor when the patch covers some of them. This operation is done
for N patches at a time.

When the form factors have been computed, each PE updates the radiosity of its local
patch, and a reduce instruction is applied on those values in order to determine the most
energetic patch in the current set .

Those operations are performed for ea.ch level of patch stack, the fina.l most energetic
patch being chosen among the most energetic patches selected into the previous levels.
Thi s patch will be used in the next radiosity shooting step, according to the progressive
radiosity algorithm.

The following pseudocode procedure resumes the organisation of the algorithm.

While not convergence do
compute and sort the visible patches
For each visible patch stack level do

compute the projection parameters
For each current patch /* one per- PE */

diffuse the local projection parameters
apply the projection process

EndFor
EndFor
compute form factors and update radiosities
choose the new shooting patch

EndWhile

86

Time (s)

Hemispherical Projection for Progressive Radiosity Calculation on Massively Parallel A rchitectures

1.5.5 Proxel distribution and bounding boxes

As we do not have as much PEs as proxels, each processor has to manage several proxels.
Since all processors have to project the same patch at a time, contiguous proxels are
distributed on neighbour processors (using a cyclic distribution). The projection plane
is cut into projection areas, each one containing as many proxels as PEs. This approach
limits the number of idle processors, compared to contiguous proxel zone approach (see
figure 1. 3) .

FIGURE 1.3. Block and cyclic distribution of proxels

The projection equations have to be evaluated for each proxel. However, the average
area covered by patch projections is generally small in regard to the projection plane. So,
we evaluate the projection equations only in a rectangular area, bounding the projection
outline. This removes all projection zones where the patch is not projected. When the
number of areas increases with precision requirements, this method greatly accelerates the
projection process . As the projected outline is elliptic arc based, we propose, in Appendix
B, a method to compute the bounding rectangle of such outlines.

1.6 Results

Our algorithm has been applied on different databases. Each one of them represents
various illumination conditions and numbers of patches. We present here some results [or
two different databases, containing 2,000 and 14,000 patches. For each one, we measured
the average computation time per shooting stage and the number of proxels inside the
projected outline per area (See figure 1.4). Resolution of the projection plane has regula.rly
been increased, in order to improve sampling precision (a resolut ion value N means that
the square enclosing the projection circle is divided into N X N square proxels) .

o scene 1 : 2000 patches

Projection plane resolution

a)

Nb covered proxels per area

''''
no
120

110

100

liliiii scene 1 : 2000 patches

h,'::;::',',l scene 2 : 14000 patches

3264 96121

Projection plane resolution

b)

FIGURE 1.4 . Computation times (a) and average number of useful PEs (b)

c. Renaud, F . I3ricout, E. Lepretre

Results first show that, as the number of sample elements increases, computation time
grows particularly slowly, even for very high resolutions. This is a direct effect of the
bounding rectangles, which limits dramatically the number of areas to consider for pro
jection. For example, a 1024 x 1024 projection plane is split into 1024 (32x32) areas, and
only 3 to 5 of them are concerned with each patch projection.

However, computation remains time consuming. This can be explain by three factors:

• The SIMD approach generates useless computation for proxels which are outside
the projected outline. The graph in figure l.4b shows the average number of useful
proxels per projected area (in the current implementation, an area covers 32 x 32
proxels). Note that in the two datahases, the patch sizes, expressed in the same
coordinate syst.em, are approximatively the same, but the second one is nine times
bigger than the first one. As a consequence, distances between patches are more
important in the second database than in the first one. Moreover, the projected
surfaces are smaller, and there are less useful PEs.

• The patch diffusion, from one processor to all others, takes a great part of the total
computation time, even when using the fastest diffusion scheme. The patch pro
jection parameters (including patch sustaining plane, elliptic arcs equations, patch
identity, bounding rectangles, initial and incremental values) contains about 100
bytes of data. The diffusion time for 1024 patch parameters is approximatively of
0.75 second, and can not be reduced. Let us note that the total diffusion time only
depends on the total number of patches in the database. This time will not change
when the PE array size will grow.

• Elliptical and distance evaluations require floating point operations that are time
consuming on the MP-I, because of the 4 bits PE architecture. Assuming triangu
lar patches, each proxel computation needs 9 products and 6 summations for the
inside evalua.tion, and 3 products and 2 summations for the distance computation.
Nevertheless when a projected patch overlaps several areas, those operations are
performed only for the first area, the next ones being com.puted using summa.tions
of delta values.

Those results have been obtained on a 32 x 32 PEs machine, and are to be test.ed
on a 128 x 128 PEs configuration. However, using a more powerful MP-l configuration
should not provide linear speedup. As the number of PEs will grow, the part of useful
PEs will decrease, and no more speedup cou ld be obtain when the array size will be more
important than the average bounding rectangle size.

1.7 Conclusion

Our approach introduces massive parallelism, as much as possible, in each stage of t.he
radiosity algorithm. Form factors are computed using an hemispherical projection ap
proach, providing more accurate form factor approximation than previous method, for
the same number of proxels. By taking care of using all available processors efficiently,
and by reducing the number of sampling elements to consider, our approach computes
each shooting sLa.ge vvith very low influence of the projecting plane resoluLion. Our ap
proach, however, generates a great part of useless PEs, due to the SIMD context. We
have so to study more precisely the different steps of the algorithm, in order to balance
computations and communications tasks and to obtain a greatest efficiency.

88

Hemispherical Projection for Progressive Radiosity Calculation on Massively Parallel Architer.t.nres

1.8 Appendix A: Derivations for hemispherical projection

Goldfeather proposes in [4] to transform pa.tch edges defined in the (x, y , z) space into a
(u, v, p) space defined as follows:

(

~ :: ¥x
2 + y2 + z2

v=M.
p

(

X = pu
-<==} y = pv

z = p..jC"1-_-u--;;2-_-v--;;-2

Projecting an edge onto the hemisphere sustaining plane is the same a.s to compute a
geodesic. This geodesic is the intersection between the hemisphere and' the plane defined
by the origine of the sphere and the two vertices of the edge. The plane eq uat.ion is as
follows :

IT : Ax + By + Cz = 0

By replacing (x,y,z) with (u,v,p), we get the equation of the projected ellipse:

E(u, v) : Au + Bv + CJ(1- u2
- v2

) = 0

However, this equation does not describe the entire ellipse, but only a half one. This
can be easy understood by remembering that an ellipse has a quadratic form. The entire
ellipse equation is found by squaring equation 1.2.

This equation describes the half of the ellipse where we can found the projected edge.
We will call this half the Positive Half Ellipse (PHE), as the edge that projects on it is
above the z = 0 plane.

v v

E(u,v) =0

u
+----r---~~ u

FIGURE 1.5 . Use of the PIlE a) a PHE b) the inside sign

The PHE cut out the projection circle into two parts, the sign of E(u, v) being different
in each part (see figure reffig:phe). One of those regions contains to proxels tha.t are inside
the projected pa.tch, in regard to the plane IT equation, applied to the current edge.

As each edge projection defines such circle division, a proxel (uO, vG) is inside the
projected patch if it is inside each PHE, tha.t is if E(uG, vG) has t he same sign as an Inside
proxel for each edge. However, it is not necessary to know an inner point to compute all
the inside proxels. VI.,le assume that all the patches have the same orienta.tion, clockwise
or counterclockwise. Then evaluation of the E(u, v) equations for each edge gives the
same sign for the inside of the outline (posi tive for clockwise orientation a.nd nega.tive for
counterclockwise orientation).

For each proxel (uO, vO), we have then to compute a value B(uO, vO) for each projected
egde, and to compare the sign of these values to the predefined inside sign . If all the signs
are the same that the inside's, the depth buffer comparison is performed.

Spencer [8] suggests to use a constant value of the distance between the hemisphere
center and each point of a patch. However, this is only correct for very small or very
distant patches. The true distance is also computed for each point of a patch [4]. Taking a
point P of coordinates (x, y, z), its distance to the hemisphere center is p = }x2 + y2 + Z2.

Let us note

IT : A' x + B' y + C' z + D' = 0

the patch sustaining plane equation. Using the previous coordinates tra.nsformation,
this equation is rewritten:

where u and v a.re the point P projected coordinates (coordinates of the proxel where
the distance has to be computed). Distance from this proxel to the point P is given by

D'

p = - A'u + B'v + C'}l - u2 - v 2

As only a relative distance is needed , assuming that it grows when p grows, the distance
is computed using the following expression:

I 1 " " "."j p = -- = A u + B v + C 1 - u 2 - v2

P

where the value of the square root is stored in each proxel (u,v), and A", B
n

and C"
are constant for a given patch.

1.9 Appendix B: Derivation of an elliptic arc bounding rectangle

We computes the bounding rectangle of an elliptic arc by using the tangent properties.
The higher point of the ellipse is one of the points where the tangent is horizontal (see
figure 1.6b). Moreover, an horizontal line cuts the ellipse in two points, except in the
higher and the lower point.

Vmn

a) b)

FIGURE 1.6. Bounding rectangl e (a) and ext rema values for an ellipse (b)

90

Hemispherical Projection [or Progressive Radiosity Calculation on Massively Parallel Architectures

By computing the intersection between the ellipse and a line V, and by reducing the
solution set to a single intersection, we can find the two possible values Vmin and V max :

Vmin =-

where A, Band C are the coefficients of the plane defined with the two vertices of the
edge and the cent er of the hemisphere.

By replacing those values in the E(u, v) equation, we find the corresponding values of
u , and then the higher and lower points:

p (-ABVmq:r V.) p. - (-ABVmjn V.)
max - A2+C2 ,max mm - A2+C2 , min

Using the same way, we can derive the points corresponding to the most left and the
most right points of the ellipse, using vertical tangents . The values we obtain are then:

U max = U min =-

P (-ABUrnax
right = B2+C2 U) P (-ABUmjn

, max left = B2+C2 , U min)

As this bounding rectangle bounds the entire ellipse (See figure 1.6a), simple tests are
then required to get the bounding rectangle of the elliptic arc. We explains here the
method for the higher value of V. It can be generalized for the other values we search.

v
Arcl

u

FIGURE 1.7. The two possible cases for the elliptic arcs

Two cases are possible, depending on the position of the projected arc onto the ellipse.
In the first case (arc 1 of figure1.7), an extrema exists between the two extremities of the
arc. Then, it must be used as the higher value of the bounding rectangle, the lower value
being one of the two extremi ties V value. In the second case (arc 2), no extrema exists
between the two points. The higher value of the two points is choosen, the lower value
gi ving the lower val ue of the bouding rectangle.

The global bounding rectangle of a projected patch is the union of all the edge bounding
rectangles .

1.10 References

[1] M.F. Cohen, S.E. Chen, J .R. Wallaee, and D.P. Greenberg. A progressive refine
ment approach to fast radiosity ima.ge generationthesis. SIGGRAPH'88, 22(4) :75-84,
August 1988.

C. Renaud , F . Bricout , E. Lepretre

[2] M.F. Cohen a.nd D.P. Greenberg. The hemicube: a ra.diosity solution for complex
environments. SIGGRAPH'85, 19(3):31- 40, July 1985.

[3] Digital Equipment Corporation. DECmpp Architecture Specification, January 1992.

[4J J. Goldfeather. Progressive radiosity using hemispheres . Technical Report TR 89-002,
University of North Carolina at Cha.pel Hill, February 1989.

[5J C.M. Goral , K.E. Torrance, D.P. Greenberg, and B. Battaile. Modeling the interaction
of light between diffuse surfaces. SIGGRAPH'84 , 18(3):213-22, July 1984.

[6] R.J . Recker, D."V. George, and D.P. Greenberg. Acceleration techniques for l)l'ogres
sive refinement ra.diosity. Comp7der Gmphics, 24(2):59-66, March 1990.

[7] F. Sillion and C. Puech. A general two-pass method integrating specula.r and diffuse
reflection. SIGGRAPH'89, 23(3):335-344, Augus t 1989.

[8] S.N. Spencer. The hemisphere radiosity method: a tale of two algorithms. Eurograph
ics Workshop on Photosimuiat ion, Realism and Physics in Computer Graphics, pages
127- 135, June 1990.

92

