
H e mispherical Projection for Progress ive R adios ity 
Calc ulation on M assive ly Parallel Architectures 

c. RenaudJ F. BricoutJ E. Lepretre 

ABSTRACT 
This paper describes a massively parallel implementation of the progressive radiosity 
algorithm. Our algorithm is based on an hemispherical projection approach, which 
provides an accurate form factor approximation. As the projection plane is mapped 
onto a processor mesh, we propose different techniques decreasing computation time 
by reducing as much as possible processor inactivity. This approach successfully han
dles large sets of form factor sampling elements. 

1.1 Introduction 

During the last ten years, image synthesis has considerably developed in the fields of 
communication means, simulation and conception techniques . An increasing requirement 
of realism has appeared, which can only be obtained by taking into account global il
lumination phenomena. The radiosity [5] approach solves all light interactions between 
purely diffuse surfaces, tesselated into many planar patches. Geometric quantities, called 
form factors, must be computed to build an energy equation system. Solving this system 
provides a global viewpoint independent solution for scene illumination. 

In this paper, we discuss a massively parallel approach of the progressive radiosity 
algorithm, based on an hemispherical projection method. This projective approach, based 
on the Nusselt equivalent, uses an unique projection plane and provides an accurate 
form factor representation. Optimization techniques have been introduced to reduce the 
computation time of the projection step. T his reduction is especially noticeable when the 
number of sampling elements increases. Our approach provides an efficient use of data 
parallelism by successively computing all of the geometric steps onto the entire set of 
processing elements . 

We have implemented our algorithm on a MP-l machine to get some measures. This 
machine includes a scalar execution unit and a data-parallel unit . The dataparallel unit 
is organized as a 2D array of 1024 processing elements (PEs). 

1.2 The Radiosity IVlethod 

The radiosity method [5] is based on thermal engineering th~ory, and requires to compute 
all light exchanges between every pair of objects of a scene: These computations allow to 
achieve the light energy balance in the scene. The move of the observer does not require 
any new lighting computation, as radiosity is viewpoint independent. 

This method assumes that surfaces are perfectly diffuse (incident light energy is reflected 
with the same intensity in all directions) . The surfaces are partitioned into planar patches , 
for which total light emission per unit area is supposed constant. At last , the energy 
conservation law requires a closed environment. 

The radiosity equations system is : 

N 

E j = E j + pj L FjiEj for j = 1 to N (1.1 ) 
j=O 
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where 

Bj is the radiosity of patch j (total light energy quantity emitted per unit area and 
per unit time) 

E j its self emitted light energy (sources) 

Pj its reflectance factor (wavelength dependent) 

Fj ; the form factor between the patches j and i (part of light emitted by pa.tch j 
which reaches patch i, after a straight path) 

N the number of patches in the scene 

Equation 1.1 shows that the light energy emitted by a patch is the sum of the patch 
self energy (Ej} and the part of incident energy, coming from the other patches, which is 
reflected by the patch. To solve this system, the form factors between each pair of patches 
must be computed. When it is completed, the system is solved with the Gauss-Siedel 
matrix inversion method [2], to get patch radiosities . This resolution diagram has two 
main drawbacks: 

- on one hand, all form factors must be computed and stored, to allow the ma.trix 
inversion. The cost of such a storage is in 0(N2), where N is the number of patches. 

- on the other hand, a picture can be displayed only after form factors and radiosity 
computation is completed. There is not any feedback to the user before several 
computation hours. 

Then, a reformulated radiosity algorithm has been proposed by Cohen [IJ, which allows 
to display pictures before radiosity completion. Let us note t.hat, in the initial radiosity 
method, radiosity B; of patch i is computed by gathering the energy of each patch of the 
environment onto the patch i. Hence, each patch radiosity must be known to be able to 
update patch £ ra.diosity. 

Progressive refinement radiosity reverses this process: radiosity is shot from patch i 
to all other patches. So, each step consists in determining patch i radiosity contribution 
to the radiosity of all other patches, by computing fonn factors F*i. As energy emission 
decreases with time, this process converges to the same solution that the full -matrix 
algorithm. In order to accelerate the visual convergence, the successive shooting patches 
are chosen according to their energy. The most energetic patch is chosen at each step , 
providing the greatest lighting changes. After each shooting step, the radiosity of each 
patch has been updated, and it is possible to display an intermediate picture, even if the 
solution is not completed. Moreover, since form factors are computed on-the-fly (only one 
row of the form factors matrix is computing at each step), the memory cost is reduced to 
O(N) . 

1.3 Form Factor Computation 

Visibility between patches is the main problem in form factor computation. Several ap
proaches, based on projective algorithms, have been proposed to comput.e visibilit.y be
tween shooting patch and all other patches in the database. This visibilit.y is obtained by 
projecting the environment onto one or more surfaces, and then by applying a z-buffer 
opera.tion. 
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1.3.1 Hemisphere Approximation 

Ideally, the sampling surface is a half-sphere, but the high complexity of a depth buffer 
algorithm onto such a surface leads to use hemisphere approximations for projections. 
The hemisphere can be approximated by a hemicube [2], taking advantage of well-known 
planar z-buffer algorithms. 

As this approach genera.tes over-sampling and needs to compute five projections, sin
gle plane approaches have been proposed [6] [7] . The hemisphere is approximated by a 
very large plane parallel to the shooting patch, in order to sample most of the incident 
directions. As these methods also generate oversampling, different sampling patterns have 
been proposed to reduce the number of sa.mples and computation time. However , those 
algorithms "loose" energy from grazing directions . 

1.3.2 Using the Hemisphere Sustaining Disk 

Form factors can be computed using the hemisphere sustaining disk in the following way. 
Two successive projections are performed. The first one is a central projection on the 
hemisphere, easily done by normalizing the coordinates of the vertices of each pa.tch. The 
second one is an orthogonal projection onto the plane sustaining the hemisphere (See 
figure 1.1a). As the central projection of an edge onto the hemisphere is a geodesic (arc 
of a great circle), its orthogonal projection is an arc of an ellipse, with the same center 
as the hemisphere's. Using an adequate coordinates transformation (See Annexe A) , the 
equation of an elliptic arc can be written as: 

Au + Bv + C VI - u2 - v2 = 0 (1.2) 

As shown on figure Llb, the projection of an entire pa.tch is then delimited by a set of 
elliptic arcs, creating a possibly concave boundary in t.he (u, v) space. 

v 

__ ~ __ ~ __ +--+*-__ -+~u 

a) Projection onto the disk b) Elliptic arcs based boundary 

FIGURE 1.1. Use of the hemisphere sustai ning disk for projection 

The square enclosing t.he disk is divided into same sized square proxels (by anaJogy 
with pixei, we call proxel a. Projected Element onto which the patch is projeded) . This 
subd ivision provides the sa.me contribution to the form fador for each proxel , and allows 
to use a cartesian coordinate system (u, v) for all project.ion operations. The problem 
is to determine, [or each proxel, jf it is inside or outside the project.ed patch out.line. 
For the Pixel-Planes 5 machine, a method to determine t.he inside of such outlines has 
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been introduced by Goldfeather [4]. We derive a simpler solution from his work, using 
sign comparisons, end providing an efficient implementation (See Annexe A for further 
details). 

1.3.3 Advantages and drawbacks 

The hemisphere approach has significant advantages compared to approximations. The 
unique projection plane required by this algorithm reduces the number of geometric trans
formations, in regard to the hemicube. 

Hemispheres provides a more accurate radiosity distribution by avoiding the loss of 
grazing directions energy, due to single plane approximations. 

Moreover, as all sampling elements contribute equally to the form factor (cf. the Nus
selt equivalent), oversampling does not appear. Then, for an equal number of sampling 
elements, a better form factor approximation is obtained. 

However, we must keep in mind that the determination of the inside of an outline made 
of elliptic arc is still expensive, in regard to computation time. 

1.4 MP-l Overview 

The DEC MP-l is a massively parallel single instruction, multiple data (SIMD) computer 
system, with one to sixteen thousand processor elements (PEs) [3]. It contains three major 
subsystems, which are (See figure 1.2): 

The front end processor (workstation running the ULTRIX Operating System) 

The Input/Output system 

The Data Parallel Unit (DPU) containing an array of at least 1024 PEs, an array 
control unit (ACU) and PE communication mechanisms. 

FIGURE 1.2 . The MP-l system diagram 

The ACU controls the PE array. It performs operations on singular data and sends 
data and intruct ions to each PE simultaneously. Each PE is a load/store arithmetic pro
cessing element, with thirty-two 32 bits registers and 16KB of RAM, and performs both 
integer and floating point operations. Communications between the PEs a.nd the ACU use 
a special bus. Communica.tions between PEs use either a X-network or a Global router. 
The Xnet connects each PE to its S direct neighbours, and allows direct communications 
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between any PEs that lies on a straight line from the original PE in one of the 8 neigh
bouring directions. Communications between any particular PE and a subset of other PEs 
use a three stage hierarchy of crossbar switches called Global Router. 

1.5 A massively parallel approach 

The projection of a patch onto a plane divided into several sampling elements is implPcitly 
a massively parallel operation. However, it has to be implemented carefully in a SIMD 
context, in order to reach a good load-balancing and to reduce processor inactivity. 

The first step of the algorithm is the elimination of patch that are trivially invisible from 
the source. This reduces the number of patches to take in account during the next steps. 
The second is geometric computations, which prepares the a.ctive patches for projection. 
Then the projection algorithm computes the covered proxels and performs depth buffer 
operations. Finally, form factors are computed and radiosity updated. An important issue 
of our approach is that all computation is done on the PE array. The patch database 
and the projecting plane are distributed over the entire set of processing elements, and 
the radiosity algorithm is divided into several steps, in order to eliminate idle processors. 
Those steps are described below. 

1.5.1 Elimination of trivially invisible patch 

In order to use the PE array in the best way, the visibility of every pa.tch from the 
shooting patch is first computed. A patch is marked as invisible if it is entirely behind the 
shooting patch, or if it does not face it . Each PE computes the potentially visible patches 
it manages, and sorts them. As the local patch set can be seen as a stack, the sort stores 
the visible patches on top of the stack. This layout results in an efficient load-balancing 
for the following computation steps, since all the processing elements will compute an 
active patch. 

1.5.2 Projection parameters computation 

As projection parameters computation is the same for each patch, it is applied simulta
neously onto the full PE array, taking advantage of the SIMD architecture. Geometric 
transformations are first applied on the patches. Their coordinates are transformed into 
the source patch coordinate system, and clipping is performed using the z = 0 plane. 
Projection parameters (elliptic arc equations, initial values, ... ) are then comput.ed and 
stored with the patch data. After this process, N patches are ready for projection, where 
N is the number of available processors in the array. 

1.5.3 The projection step 

As this is the most computationally demanding stage of the algorithm, care must be taken 
in order to ensure an efficient load-balancing over the processors. To determine which 
proxels are covered with the projected patch, we have to compute, for each one, whether 
it is inside or outside the outline defined by elliptic arcs. Each arc equation is evaluated 
for each proxel , setting an activity flag to false if the proxel is on the wrong side of the 
arc. After all evaluations are done, a proxel is inside the projected outline if its activity 
flag is still set to true. Note that as the square root that appears in equation 1.2 only 
depends on the proxel coordinates, it is computed once when initializing the projection 
plane, and then stored as part of a proxel data. A proxel will also contain a. patch ident.ity, 
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The depth buffer operation is performed for each inner proxel (u,v), by computing 
the true distance between the proxel and the patch, and comparing it with the previously 
stored value. A detailed explanation about the distance computation is given in Appendix 
A. 

This projection process is applied one patch at a time, using all available computation 
resources. This provides a more efficient use of the SIMD approach than by simultaneously 
projecting different patches, since the computation volume is different from one patch to 
another. As each PE manages a different patch, each processor has to diffuse sequentialy 
its local parameters to all the other processors. When receiving a patch, the processors 
compute its projection and wait for the next patch parameters. Diffusion is performed 
using the communications between PEs and ACU , because the Xnet and the Global 
Router are not well suited for diffusion. To diffuse its pa.tch parameters, a PE sends them 
to the ACU, which diffuses them to a.ll the PE array. 

1.5.4 Form factor computation 

The last stage of the algorithm evaluates form fa.ctor and updates radiosity. In order to 
compute a patch form factor, the number of proxels the patch covers must be known, but 
proxels are distributed over the PE array. So, a patch form factor must be propagated 
toward each PE, in order to be sure that each proxel covered by the patch has been taken 
in account. Propagation is performed using local communications between PEs (xnet 
instruction) . A PE receiving a patch form factor searches this patch in its loca.l proxels, 
and increases the form factor when the patch covers some of them. This operation is done 
for N patches at a time. 

When the form factors have been computed, each PE updates the radiosity of its local 
patch, and a reduce instruction is applied on those values in order to determine the most 
energetic patch in the current set . 

Those operations are performed for ea.ch level of patch stack, the fina.l most energetic 
patch being chosen among the most energetic patches selected into the previous levels. 
Thi s patch will be used in the next radiosity shooting step, according to the progressive 
radiosity algorithm. 

The following pseudocode procedure resumes the organisation of the algorithm. 

While not convergence do 
compute and sort the visible patches 
For each visible patch stack level do 

compute the projection parameters 
For each current patch /* one per- PE */ 

diffuse the local projection parameters 
apply the projection process 

EndFor 
EndFor 
compute form factors and update radiosities 
choose the new shooting patch 

EndWhile 
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1.5.5 Proxel distribution and bounding boxes 

As we do not have as much PEs as proxels, each processor has to manage several proxels. 
Since all processors have to project the same patch at a time, contiguous proxels are 
distributed on neighbour processors (using a cyclic distribution). The projection plane 
is cut into projection areas, each one containing as many proxels as PEs. This approach 
limits the number of idle processors, compared to contiguous proxel zone approach (see 
figure 1. 3 ) . 

FIGURE 1.3. Block and cyclic distribution of proxels 

The projection equations have to be evaluated for each proxel. However, the average 
area covered by patch projections is generally small in regard to the projection plane. So, 
we evaluate the projection equations only in a rectangular area, bounding the projection 
outline. This removes all projection zones where the patch is not projected. When the 
number of areas increases with precision requirements, this method greatly accelerates the 
projection process . As the projected outline is elliptic arc based, we propose, in Appendix 
B, a method to compute the bounding rectangle of such outlines. 

1.6 Results 

Our algorithm has been applied on different databases. Each one of them represents 
various illumination conditions and numbers of patches. We present here some results [or 
two different databases, containing 2,000 and 14,000 patches. For each one, we measured 
the average computation time per shooting stage and the number of proxels inside the 
projected outline per area (See figure 1.4). Resolution of the projection plane has regula.rly 
been increased, in order to improve sampling precision (a resolut ion value N means that 
the square enclosing the projection circle is divided into N X N square proxels) . 

o scene 1 : 2000 patches 

Projection plane resolution 

a) 

Nb covered proxels per area 

'''' 
no 
120 

110 

100 

liliiii scene 1 : 2000 patches 

h,'::;::',',l scene 2 : 14000 patches 

3264 96121 

Projection plane resolution 

b) 

FIGURE 1.4 . Computation times (a) and average number of useful PEs (b) 
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Results first show that, as the number of sample elements increases, computation time 
grows particularly slowly, even for very high resolutions. This is a direct effect of the 
bounding rectangles, which limits dramatically the number of areas to consider for pro
jection. For example, a 1024 x 1024 projection plane is split into 1024 (32x32) areas, and 
only 3 to 5 of them are concerned with each patch projection. 

However, computation remains time consuming. This can be explain by three factors: 

• The SIMD approach generates useless computation for proxels which are outside 
the projected outline. The graph in figure l.4b shows the average number of useful 
proxels per projected area (in the current implementation, an area covers 32 x 32 
proxels). Note that in the two datahases, the patch sizes, expressed in the same 
coordinate syst.em, are approximatively the same, but the second one is nine times 
bigger than the first one. As a consequence, distances between patches are more 
important in the second database than in the first one. Moreover, the projected 
surfaces are smaller, and there are less useful PEs. 

• The patch diffusion, from one processor to all others, takes a great part of the total 
computation time, even when using the fastest diffusion scheme. The patch pro
jection parameters (including patch sustaining plane, elliptic arcs equations, patch 
identity, bounding rectangles, initial and incremental values) contains about 100 
bytes of data. The diffusion time for 1024 patch parameters is approximatively of 
0.75 second, and can not be reduced. Let us note that the total diffusion time only 
depends on the total number of patches in the database. This time will not change 
when the PE array size will grow. 

• Elliptical and distance evaluations require floating point operations that are time 
consuming on the MP-I, because of the 4 bits PE architecture. Assuming triangu
lar patches, each proxel computation needs 9 products and 6 summations for the 
inside evalua.tion, and 3 products and 2 summations for the distance computation. 
Nevertheless when a projected patch overlaps several areas, those operations are 
performed only for the first area, the next ones being com.puted using summa.tions 
of delta values. 

Those results have been obtained on a 32 x 32 PEs machine, and are to be test.ed 
on a 128 x 128 PEs configuration. However, using a more powerful MP-l configuration 
should not provide linear speedup. As the number of PEs will grow, the part of useful 
PEs will decrease, and no more speedup cou ld be obtain when the array size will be more 
important than the average bounding rectangle size. 

1.7 Conclusion 

Our approach introduces massive parallelism, as much as possible, in each stage of t.he 
radiosity algorithm. Form factors are computed using an hemispherical projection ap
proach, providing more accurate form factor approximation than previous method, for 
the same number of proxels. By taking care of using all available processors efficiently, 
and by reducing the number of sampling elements to consider, our approach computes 
each shooting sLa.ge vvith very low influence of the projecting plane resoluLion. Our ap
proach, however, generates a great part of useless PEs, due to the SIMD context. We 
have so to study more precisely the different steps of the algorithm, in order to balance 
computations and communications tasks and to obtain a greatest efficiency. 
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1.8 Appendix A: Derivations for hemispherical projection 

Goldfeather proposes in [4] to transform pa.tch edges defined in the (x, y , z) space into a 
(u, v, p) space defined as follows: 

( 

~ :: ¥x
2 + y2 + z2 

v=M. 
p 

(

X = pu 
-<==} y = pv 

z = p..jC"1-_-u--;;2-_-v--;;-2 

Projecting an edge onto the hemisphere sustaining plane is the same a.s to compute a 
geodesic. This geodesic is the intersection between the hemisphere and' the plane defined 
by the origine of the sphere and the two vertices of the edge. The plane eq uat.ion is as 
follows : 

IT : Ax + By + Cz = 0 

By replacing (x,y,z) with (u,v,p), we get the equation of the projected ellipse: 

E(u, v) : Au + Bv + CJ(1- u2 
- v2

) = 0 

However, this equation does not describe the entire ellipse, but only a half one. This 
can be easy understood by remembering that an ellipse has a quadratic form. The entire 
ellipse equation is found by squaring equation 1.2. 

This equation describes the half of the ellipse where we can found the projected edge. 
We will call this half the Positive Half Ellipse (PHE), as the edge that projects on it is 
above the z = 0 plane. 

v v 

E(u,v) =0 

u 
+----r---~~ u 

FIGURE 1.5 . Use of the PIlE a) a PHE b) the inside sign 

The PHE cut out the projection circle into two parts, the sign of E( u, v) being different 
in each part (see figure reffig:phe). One of those regions contains to proxels tha.t are inside 
the projected pa.tch, in regard to the plane IT equation, applied to the current edge. 

As each edge projection defines such circle division, a proxel (uO, vG) is inside the 
projected patch if it is inside each PHE, tha.t is if E(uG, vG) has t he same sign as an Inside 
proxel for each edge. However, it is not necessary to know an inner point to compute all 
the inside proxels. VI.,le assume that all the patches have the same orienta.tion, clockwise 
or counterclockwise. Then evaluation of the E( u, v) equations for each edge gives the 
same sign for the inside of the outline (posi tive for clockwise orientation a.nd nega.tive for 
counterclockwise orientation). 



For each proxel (uO, vO), we have then to compute a value B( uO, vO) for each projected 
egde, and to compare the sign of these values to the predefined inside sign . If all the signs 
are the same that the inside's, the depth buffer comparison is performed. 

Spencer [8] suggests to use a constant value of the distance between the hemisphere 
center and each point of a patch. However, this is only correct for very small or very 
distant patches. The true distance is also computed for each point of a patch [4]. Taking a 
point P of coordinates (x, y, z), its distance to the hemisphere center is p = }x2 + y2 + Z2. 

Let us note 

IT : A' x + B' y + C' z + D' = 0 

the patch sustaining plane equation. Using the previous coordinates tra.nsformation, 
this equation is rewritten: 

where u and v a.re the point P projected coordinates (coordinates of the proxel where 
the distance has to be computed). Distance from this proxel to the point P is given by 

D' 

p = - A'u + B'v + C'}l - u2 - v 2 

As only a relative distance is needed , assuming that it grows when p grows, the distance 
is computed using the following expression: 

I 1 " " "."j p = -- = A u + B v + C 1 - u 2 - v2 

P 

where the value of the square root is stored in each proxel (u,v), and A", B
n 

and C" 
are constant for a given patch. 

1.9 Appendix B: Derivation of an elliptic arc bounding rectangle 

We computes the bounding rectangle of an elliptic arc by using the tangent properties. 
The higher point of the ellipse is one of the points where the tangent is horizontal (see 
figure 1.6b). Moreover, an horizontal line cuts the ellipse in two points, except in the 
higher and the lower point. 

Vmn 

a) b) 

FIGURE 1.6. Bounding rectangl e (a) and ext rema values for an ellipse (b) 
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By computing the intersection between the ellipse and a line V, and by reducing the 
solution set to a single intersection, we can find the two possible values Vmin and V max : 

Vmin =-

where A, Band C are the coefficients of the plane defined with the two vertices of the 
edge and the cent er of the hemisphere. 

By replacing those values in the E( u, v) equation, we find the corresponding values of 
u , and then the higher and lower points: 

p ( -ABVmq:r V. ) p. - ( -ABVmjn V. ) 
max - A2+C2 ,max mm - A2+C2 , min 

Using the same way, we can derive the points corresponding to the most left and the 
most right points of the ellipse, using vertical tangents . The values we obtain are then: 

U max = U min =-

P ( -ABUrnax 
right = B2+C2 U ) P ( -ABUmjn 

, max left = B2+C2 , U min ) 

As this bounding rectangle bounds the entire ellipse (See figure 1.6a), simple tests are 
then required to get the bounding rectangle of the elliptic arc. We explains here the 
method for the higher value of V. It can be generalized for the other values we search. 

v 
Arcl 

u 

FIGURE 1.7. The two possible cases for the elliptic arcs 

Two cases are possible, depending on the position of the projected arc onto the ellipse. 
In the first case (arc 1 of figure1.7), an extrema exists between the two extremities of the 
arc. Then, it must be used as the higher value of the bounding rectangle, the lower value 
being one of the two extremi ties V value. In the second case (arc 2), no extrema exists 
between the two points. The higher value of the two points is choosen, the lower value 
gi ving the lower val ue of the bouding rectangle. 

The global bounding rectangle of a projected patch is the union of all the edge bounding 
rectangles . 
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