
Copyright © 2007 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for commercial

advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit

is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions Dept, ACM

Inc., fax +1 (212) 869-0481 or e-mail permissions@acm.org.

Graphics Hardware 2007, San Diego, CA, August 04-05, 2007.

© 2007 ACM 978-1-59593-625-7/07/0008 $5.00

Graphics Hardware (2007)
Timo Aila and Mark Segal (Editors)

Tight Frame Normal Map Compression
Jacob Munkberg,1 Ola Olsson,1 Jacob Ström2 and Tomas Akenine-Möller1

1Lund University 2Ericsson Research

Abstract
We present a new powerful and flexible fixed-rate normal map compression algorithm with higher quality than
existing schemes on a test suite of normal maps. Our algorithm encodes a tight box with uniform normals inside
the box, and in addition, a special mode is introduced for handling slowly varying normals. We also discuss
several error measures needed to understand the qualities of different algorithms. We believe the high quality of
our technique makes it a potential candidate for inclusion in OpenGL ES.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Texture

1. Introduction
Normal maps, also called bump maps [Bli78], allow for sig-
nificant geometry savings, while preserving the illusion of
geometric detail. Therefore, they are very popular in the lat-
est generation of games. Texture bandwidth is a limiting fac-
tor, and to allow heavy use of normal maps in a real-time
engine, there is a need of a compact representation of these
textures. The focus of this article is twofold. First, we will
discuss error measures for evaluating the quality of normal
maps, and second, we will present a new compression al-
gorithm. We argue that it is important to study not only the
PSNR of the resulting maps, but also the maximum pixel er-
ror, and the error distribution over the images alongside with
rendered results of the maps in use. Governed by our error
measures, we present a new high quality compression algo-
rithm, suitable for hardware implementation. Our technique
supports fast decompression and shows a robust behavior for
a large range of input data.

2. Previous Work
A number of algorithms have been suggested for normal
map compression. Most of these are fixed rate algorithms,
which allows for fast random access without index tables,
palettes or traversal trees.

Standard color texture compression techniques are not
well suited for normal maps, which often contain many sharp
features. To the best of our knowledge, Deering was the
first to present compression of normals [Dee95]. By using
symmetries on the sphere, and encoding the “sextants” of
the octants, each normal could be stored in 12 bits. Note
that this work was targeted for geometry compression. Fen-
ney and Butler [FB04] also encode by the octants, but se-
lect one of four octant-pairs, each parameterized with 7+7
bits. Each normal uses 16 bits. The 3Dc format [ATI05] is a
dedicated normal map compression technique, which com-
presses blocks of 4× 4 pixels. The 16 (unit length) normals

in a block are projected onto the unit circle, and the axis-
aligned bounding box of the projected values is quantized
into an 8×8 grid, giving 64 positions to choose from inside
the box. Four values are encoded to determine the size of the
box, and 3 + 3 bits are encoded per normal in the block to
determine which point in the grid to select. This results in a
total of 128 bits per block of 16 pixels, or 8 bits per pixel. By
exploiting unused encoding combinations, and using them
as additional compression modes, an enhanced 3Dc (here
abbreviated e3Dc) algorithm was defined [MAMS06]. This
algorithm handles very slowly varying normal maps (e.g.,
car hoods), rotated frames and more uniform reconstruction
point distributions. We have borrowed techniques for better
point distributions and bit extraction from this work. Normal
map encodings with adaptive bit rates [?,YP06] achieve bet-
ter compression rates than fixed-rate approaches with com-
parable quality, but rely on complex addressing for decom-
pression along with more memory accesses to index tables,
which can make a hardware implementation significantly
more complex. Vector quantization allows for more com-
pact normal map compression and achieves impressive qual-
ity and compression rates [YA06]. However, the approach is
limited to 8-bit normals, which is shown to be insufficient
for slowly varying normal maps. An error analysis for nor-
mal maps based on unity condition [YHA05] discussed the
impact of the popular elimination of the z-component while
compressing normal maps. An interesting conclusion is that
as long as the normals have small x, y and small errors in
those components the z-error will be even smaller.

3. Error Analysis
As normal maps are not viewed directly, but rather used in
shaders to define the local normal vector, standard image
quality metrics are not directly applicable. It can be argued
that the mean square error (MSE), is a good measure, as
it gives an (averaged) error that indicates the quality of the
normal map. However, it does not tell us whether there is a

mailto:permissions@acm.org
mailto:permissions@acm.org
http://www.eg.org
http://diglib.eg.org

J. Munkberg, O. Olsson, J. Ström, & T. Akenine-Möller / Tight Frame Normal Map Compression

constant small error over all pixels or a small set of pixels
with large errors. An excellent discussion of the limitations
of the MSE is described in Wang et. al’s paper about struc-
tural similarity [WBSS04], where different distortions are
added to an image, all with equal MSE. A smooth normal
map with a few isolated divergent normals will often look
unacceptable as the divergent normals will give rise to cracks
in the smooth surface. Therefore, we also use the max error,
and histograms of the angular error (see below) per image
together with MSE values, to ensure that the algorithms be-
have robustly.

MSE is computed as a summation over all normals in the
image:

MSE =
1

w×h ∑(x̂− x)2 +(ŷ− y)2 +(ẑ− z)2, (1)

where w and h are the width and the height of the image, x ∈
[−1,1] is the x-component of the uncompressed normal and
x̂ ∈ [−1,1] is the corresponding compressed x-component,
and similar for y and z. For normals, we use the Peak Signal
to Noise Ratio (PSNR):

PSNR = 10log10

(
1

MSE

)
, (2)

where the nominator is one, since the peak signal for a nor-
mal of unit length will always be equal to one by construc-
tion.

There are mainly three components which will be affected
by the precision of the normal in real-time graphics: diffuse
shading, specular shading, and specular reflection. The er-
rors in a rendered image due to the diffuse and specular
shading are relatively small compared to that of the spec-
ular reflection. Even a small angular error in a normal may
result in a different texture access in the environment map.
Therefore, it is important to look at the direct angle differ-
ence between the compressed and original normal, as well as
studying bump mapped images with environment mapping.

We propose using the angular deviation [ANRS05], de-
noted Ead , defin ed as:

Ead = arccos(no ·nc) , (3)

which measures the difference in angle between the uncom-
pressed normal (no) and the compressed one (nc).

In addition, we will show false color images of the er-
rors in the normals maps, and also render images with en-
vironment mapped and bump mapped surfaces. For these,
we will compute the structural similarity [WBSS04] quality
measure.

4. New Algorithm
Let us start with a simple motivating example. Imagine we
have a normal map, as in Figure 1, consisting mainly of
parallel lines. If the lines are axis-aligned, 3Dc will handle
this example pretty well, as a tight axis-aligned bounding
box (AABB) would capture the details. If the lines are ro-
tated, however, the projected values will be more spread out.

Thus, the AABB will inevitably grow, resulting in less accu-
rate encoding. The enhanced 3Dc (e3Dc) algorithm handles
this by including a small set of angles, thus making the en-
coder less sensitive to directed features. However, we would
like generalize this. The artist should not need to try out
the “best” initial position before baking the texture for best
compressed quality. We also note that texture atlases contain
many small maps, which are packed into a single texture.
This is often an automatic process, and can create arbitrarily
oriented small texture pieces. This is another case where a
rotation-invariant normal map compression scheme would
be desired.

38 / 46 / 50 36 / 39 / 46 38 / 39 / 46 40 / 42 / 49 36 / 40 / 46

Figure 1: An example with strong directed features. PSNR
values are listed for 3Dc / e3Dc / Tight Frame respectively.

4.1. Tight Frame Encoding
Here, we describe our rotation-invariant normal map com-
pression algorithm. Instead of creating a bounded interval
for our x- and y-values, we express a bounding box in a
new coordinate frame using only two points, p = (px, py) &
q = (qx,qy), and the aspect ratio, a = height

width , where width
is ||p − q||, and height is the height of the rotated box.
Figure 2 shows this setup. The two axes of this coordinate
frame are simply ê1 = q − p, and ê2 = (−ê1y , ê1x). The
lower left point in this frame is s = p− 0.5aê2. It should
be noted that a similar setup has been discussed in HDR
texture compression [MCHAM06]. Once we have defined
this oriented bounding box (OBB), we distribute points uni-
formly in the box, using the aspect ratio to select the num-
ber of divisions along the two axes. For example, in the
case of a very wide OBB, it makes more sense to use more
points along the widest axis. This variable point distribu-
tion (VPD) [MAMS06] becomes more powerful in our algo-
rithm, as it is easier to find a compact OBB than a compact
AABB (3Dc), or fix-rotation AABB (e3DC). See Figure 3
for an illustration of the benefits of VPD.

The flexibility of the OBB combined with the redistribu-
tion of sample points (VPD) makes for a simple, yet pow-
erful algorithm which gives high quality compression when

p

q

height

e₂̂
e₁̂

widths

Figure 2: The coordinate system of our tight frame (TF) cod-
ing algorithm.

c© Association for Computing Machinery, Inc. 2007.

38

J. Munkberg, O. Olsson, J. Ström, & T. Akenine-Möller / Tight Frame Normal Map Compression

h =i 0,1 2-7 8-15
Figure 3: Without (top) and with (bottom) variable point dis-
tribution (VPD). By adapting the point distribution to the
aspect ratio of the bounding box, the area is more evenly
sampled. hi is a four bit number, as described below.

there is correlation to exploit between the x- and y-channels.
Hereafter, this technique is called tight frame (TF) coding.
The target of our algorithm is 8 bits per pixel (bpp), i.e., 128
bits for 4× 4 pixels. Similar to 3Dc and e3Dc, we use six
bpp for indices. This leaves 32 bits for encoding the bound-
ing box. The information needed to reconstruct the bounding
box comprises the two points p & q and the aspect ratio a.
To stay in the bit budget of 32 bits, p and q are quantized
to 7 + 7 bits per point, leaving four bits to a. Note that the
points p and q can always be oriented so that a is a number
between zero and one. Being able to encode a = 1.0 means
that there are two ways of expressing the same bounding box
(rotate the first box 90 degrees). In order to avoid this redun-
dancy, we use a maximum value of a which is somewhat
smaller than 1.0. In addition, a = 0.0 is not particularly use-
ful. For these reasons, we use the following reconstruction
levels: a = 1

32 + hi
1

16 , where hi is the 4-bit number stored.
Since a increases in steps of 1

16 , the height can be inexpen-
sively calculated from the width using shifts, additions, and
integer multiplication with hi only.

4.2. Differential Mode
Similarly to e3Dc, we include a special mode for handling
slowly varying normals inside a block. This is mode is trig-
gered when px ≥ qx and py ≥ qy [MAMS06], and the same
trick is used to recover the payload bits for this mode. How-
ever, our encoding is slightly different. To increase the accu-
racy of the bounding box positions (p and q) of this mode,
we encode normals inside a (non-rotated) square. We en-
code the lower-left corner of the square using 2× 11 bits,
and the length of the square side is coded using 8 bits. In-
side the square, we use 8× 8 uniformly distributed points,
which costs 3 + 3 index bits per pixel. All in all, this mode
costs 22 + 8 + 16× 6 = 126 bits per block. Since we target
slowly varying normals with this mode, we limit the square’s
side length for added precision. As an example, we can use
a maximum length of 1/4. This implies that the minimum
side of the square is 1

4×28 = 1
1024 . If we select a smaller

maximum size, say 1/32, we get square sizes in [1
32768 , 1

32].
For the test series used in this paper, a max length of 1/4
worked well. For comparison, e3Dc uses a differential mode
with 2×11 bits for positions and 2×4 bits for a differential
vector. This implies a length of the differential vector in the

smaller interval [1
512 , 1

32], but the mode is not restricted to
squares, making it a bit more flexible, where applicable.

4.3. Decompression
A proposal for a hardware decompressor is illustrated in Fig-
ure 8. The two vectors spanning the bounding box, v̂ = aê2
and ê1, as well as the lower left point s, are calculated by the
green part. The red part calculates the same values for the
differential version of the coder. The blue part assigns the
right bits for the variable point distribution.

Without implemeting 3Dc, e3Dc and TF in VHDL, it is
hard to estimate relative gate counts for the different algo-
rithms. However, comparing Figure 8 with the diagram of
e3Dc [MAMS06] et al., we see that TF has twice the num-
ber of "multiply and divide" units compared to e3Dc, plus
two extra smaller multipliers in the green area. Thus a fair
guess would be that TF is up to twice as complex as e3DC,
which in turn is slightly more complex than 3Dc.

5. Results
To evaluate the visual quality of our compressor, we
have used 20 representative normal maps, which are the
same ones used previously in normal map compression re-
search [MAMS06].

In Figure 4, we present both individual PSNR and maxi-
mum angle deviation for the test suite. As can be seen, our al-
gorithm has slightly better scores than e3Dc for the majority
of the normal maps, and significantly better scores than 3Dc
for all maps. For the “bumpy”-map, e3Dc is better due to that
our algorithm uses 7+7 bits for the endpoints, while e3Dc
uses 8+8. Further, as all normals in that image are essentially
along a horizontal line, there is no gain from being able to
rotate the boxes. In the ta-
ble to the right, we present
PSNR values obtained by

3Dc e3Dc TF
30.87 32.74 33.50

first averaging the MSE values for all the normal maps.
PSNR is then computed on this accumulated MSE using
Equation 2. Note that it is not correct to simply average the
PSNR scores of the individual images, since this is not a lin-
ear operator. In the extreme — if one image would get zero
error, it would get infinite PSNR and the aggregate PSNR
figure would also be infinite, irrespectively of the errors in
the other images. Averaging the MSE and then calculating
the PSNR avoids this pitfall. As can be seen, our algorithm
has better scores than both 3Dc and e3Dc.

The maximum angle error (bottom part of Figure 4) indi-
cates that our algorithm is more robust than the other algo-
rithms in all but one image. In Figure 5, we show the his-
tograms over the angular error. Intuitively, it is better to have
less area to the right, and more area to the left. As can be
seen, our TF algorithm consistently performs a bit better in
this respect.

To further illustrate the improvement of our algorithm, we
show false color images of the compressed normal maps in
Figure 6, and zoomed-in renderings in Figure 7.

c© Association for Computing Machinery, Inc. 2007.

39

J. Munkberg, O. Olsson, J. Ström, & T. Akenine-Möller / Tight Frame Normal Map Compression

20

30

40

50

60

70

80
P

S
N

R

3Dc

0

5

10

15

20

25

M
A

X
 A

N
G

U
LA

R
 D

E
V

IA
TI

O
N

3Dc
e3Dc
TF

bu
m
py

ca
r

do
t1

do
t2

do
t3

do
t4

lu
m
py

m
et
al

N
or
m
al
M
ap

on
et
ile

tu
rt
le

vo
ro
no

i

sl
ow

M
ap

bu
lg
e1

0

m
ul
tiB

ul
ge

st
ar

bo
xe

s

to
ru
s

sk
in

ba
rr
el

e3Dc
TF

Figure 4: The PSNR (top) and the maximal angular error
(bottom) of all images in the test. We can clearly see a more
robust behavior for our tight frame (TF) algorithm in both
error measures. Please note that all encoders are optimized
for MSE.

6. Conclusion

In a sense, our work here is quite incremental, since we
have basically put together building blocks from other tex-
ture & normal map compression research. However, we have
shown that this novel combination gives a powerful normal
map compression algorithm with high quality under a wide
set of error/quality measures. Furthermore, for mobile de-
vices, compression algorithms are very important, and we
hope that our technique can be considered for inclusion in
OpenGL ES.

Acknowledgments

We acknowledge support from the Swedish Foundation for Strategic
Research and Vetenskapsrådet. Thanks for the NVIDIA fellowship.
Thanks to Jon Hasselgren for proofreading.

References

[ANRS05] ABATE A. F., NAPPI M., RICCIARDI S.,
SABATINO G.: Fast 3D Face Recognition Based On Nor-

0 2 4 6 8 10
102

103

104

105

106

Angle error in degrees

N
um

be
r o

f p
ix

el
s

(lo
g

sc
al

e)

3Dc
e3Dc
TF

Figure 5: The error distribution of the algorithms.

mal Map. In Proceedings of ICIP (2005), vol. 2, pp. 946–
949.

[ATI05] ATI: Radeon X800: 3Dc White Paper. Tech. rep.,
2005.

[Bli78] BLINN J.: Simulation of Wrinkled Surfaces. In
Proceedings of SIGGRAPH (1978), pp. 286–292.

[Dee95] DEERING M.: Geometry Compression. In Pro-
ceedings of SIGGRAPH (1995), ACM Press, pp. 13–20.

[FB04] FENNEY S., BUTLER M.: Method and Appara-
tus for Compressed 3D Unit Vector Storage and Retrieval.
Patent WO 2004/008394 A1, 2004.

[MAMS06] MUNKBERG J., AKENINE-MÖLLER T.,
STRÖM J.: High Quality Normal Map Compression. In
Graphics Hardware (2006), pp. 95–101.

[MCHAM06] MUNKBERG J., CLARBERG P., HASSEL-
GREN J., AKENINE-MÖLLER T.: High Dynamic Range
Texture Compression for Graphics Hardware. ACM
Transactions on Graphics, 25, 3 (2006), 698–706.

[WBSS04] WANG Z., BOVIK A. C., SHEIKH H. R., SI-
MONCELLI E. P.: Image Quality Assessment: From Error
Visibility to Structural Similarity. IEEE Transactions on
Image Processing, 13, 4 (2004), 600–612.

[YA06] YAMASAKI T., AIZAWA K.: Fast and Efficient
Normal Map Compression Based on Vector Quantization.
In Proceedings of ICASSP (2006), vol. 2, pp. 2–12.

[YHA05] YAMASAKI T., HAYASE K., AIZAWA K.:
Mathematical Error Analysis of Normal Map Compres-
sion Based on Unity Condition. In Proceedings of ICIP
(2005), vol. 2, pp. 253–269.

[YP06] YANG B., PAN Z.: A Hybrid Adaptive Normal
Map Texture Compression Algorithm. In International
Conference on Artificial Reality and Telexistence (2006),
IEEE Computer Society, pp. 349–354.

c© Association for Computing Machinery, Inc. 2007.

40

