
EUROGRAPHICS 2011/ A. Day, R. Mantiuk, E. Reinhard, and R. Scopigno Areas Paper

A Streaming Framework for Seamless Detailed Photo

Blending on Massive Point Clouds

Ruggero Pintus1, Enrico Gobbetti1, and Marco Callieri2

1Visual Computing Group - CRS4, Italy
2Visual Computing Group - ISTI-CNR, Italy

Abstract

We present an efficient scalable streaming technique for mapping highly detailed color information on extremely

dense point clouds. Our method does not require meshing or extensive processing of the input model, works on

a coarsely spatially-reordered point stream and can adaptively refine point cloud geometry on the basis of image

content. Seamless multi-band image blending is obtained by using GPU accelerated screen-space operators, which

solve point set visibility, compute a per-pixel view-dependent weight and ensure a smooth weighting function over

each input image. The proposed approach works independently on each image in a memory coherent manner, and

can be easily extended to include further image quality estimators. The effectiveness of the method is demonstrated

on a series of massive real-world point datasets.

Categories and Subject Descriptors (according to ACMCCS): Computer Graphics [I.3.3]: Digitizing and scanning—
; Computer Graphics [I.3.7]: Three-Dimensional Graphics and Realism—.

1. Introduction

Modern 3D scanners have greatly increased their resolution
and speed, making it possible to produce massive datasets
in a very short time. This abundance of sampled points
finds a perfect field of application in Cultural Heritage (CH),
where both dense and extensive sampling is required. While
a typical representation for such data has been triangulated
meshes, in recent years there has been a renowned interest
towards the direct use of point clouds, which are easier to
create, manage and render. However, since a dense geomet-
rical sampling is not enough to cope with all the needs in CH
study and preservation, 3D models are often enriched with
color information. Even if there are hardware solutions able
to sample geometry and color altogether, their color qual-
ity and resolution are often deemed insufficient for CH. For
this reason, it is necessary to rely on additional photographic
datasets. In this case, one needs to register the photos with
the 3D model and then to transfer color to geometry.

All currently proposed solutions for large models use trian-
gle meshes, either obtained directly from the geometric ac-
quisition procedure (e.g., the intrinsic range map structure),
or after a triangulation of raw unstructured point clouds.

Among these works, texture-based methods work well when
we have high-resolution images but small meshes (few mil-
lion faces), while techniques that deal with huge datasets
(tens or hundreds of million faces) employ out-of-core multi-
resolution data structures (both for geometry and images) and
per-vertex mapping. The latter methods are scalable in terms
of color and geometry complexity, but require vast amounts
of processing (and pre-processing) time.

In this paper, we present an efficient scalable out-of-core
streaming technique for mapping highly detailed color in-
formation directly on extremely dense 3D point clouds us-
ing a constant small in-core memory footprint. We work di-
rectly on a coarsely spatially-reordered point stream, which
can be adaptively refined by the method on the basis of image
contents. Seamless multi-band image blending at each input
point is obtained by GPU accelerated screen-space operators,
which solve point set visibility, compute a local per-pixel
view-dependent weight and also ensure a weighting function
that smoothly varies over each input image. To our knowl-
edge, this is the first method capable to perform seamless
image blending on massive unstructured point clouds. Our
results show that the resulting system is fast, scalable, and

© The Eurographics Association 2011.

http://www.eg.org
http://diglib.eg.org

Ruggero Pintus et al. / Seamless Detailed Photo Blending on Massive Point Clouds

high quality. In particular, we are able to process models with
several hundred million points and billions of pixels in times
ranging from minutes to a few hours (see Sec. 10), outper-
forming current state-of-the-art techniques in terms of time
while achieving the same high quality.

2. Related work

Image blending for texturing 3D models is a wide and ex-
tensively studied field with a lot of successful applications,
especially in CH [DCC∗10,HSKM10]. In the following, we
discuss only techniques closely related to ours.

Triangulated meshes are the dominant 3D data representation
in CH applications. However, the use of point clouds has re-
cently gained a lot of attention, either because it is a sensi-
ble choice to explore in real-time huge datasets (e.g., as the
Domitilla Catacomb [SZW09]), or because it allows peculiar
shading with interactive manipulation of lighting (e.g., as the
Dancers Column [DDGM∗04]). The possibility to efficiently
render these datasets by using the GPU [BK03,GM04] is cer-
tainly the main cause of this shift between representations.
Given this tendency, and the fact that producing high quality
triangulations from sampled point clouds is a costly task, the
techniques that work directly on unstructured point clouds
are becoming more and more important.

Despite this interest towards point clouds, in literature
there is a distinctive lack of techniques for the color map-
ping which directly operates on point sets (in particular,
on massive ones). Color mapping on point clouds passes
in most cases through global or local triangulation of the
dataset [PV09]. In other cases, the colored point clouds just
contain the color returned by the scanner [SZW09], which
mixes data from multiple scans in a single point cloud and
generally produces unpleasant confetti-style color variations,
unsuited for CH usage. Tools for the manipulation and edit-
ing of point clouds, such as PointShop [ZPKG02], typically
just implement basic operations for color transfer between
photos and the point set, and are not applicable to very large
datasets that do not fit in main memory.

Most works on color mapping are targeting triangulated
meshes, and deal in particular with the problems related to
the integration of data coming from different photos. If a
surface element (vertex or face) is viewed by more than
one camera, there is a set of candidate pixels which con-
tribute to its final color. Since a simple averaging of images
produces color discontinuities, all recent papers compute a
per-pixel weight to drive the per-vertex (or per-face) tex-
ture blending. They use different approaches such as surface
orientation [BMR01, Bau02], texture discrepancy between
adjacent triangles [XLL∗10], viewing distance [CCCS08],
number of texels per triangle [APK08], image-space dis-
tance to depth contours [CCCS08,Bau02], user defined sten-
cil masks [CCCS08], photometric estimators [BMR01], etc..
Most of them are strictly dependent on a face-based repre-
sentation, while some can also be applied to point clouds.

Our weighting scheme is inspired by the masks of Callieri
et al. [CCCS08], but uses a single screen-space operator, ap-
plied to the depth frame buffer, which incorporates the effect
of many previously mentioned weights. Further, it ensures
a smooth weighting function even in the presence of user-
defined stencil masks, leading to continuous blends.

Various methods exist to manage the computed weights to
blend images. Some techniques employ a best fragment ap-
proach using a Markov Random Field to assign a single
image to each surface patch [GWO∗10, XLL∗10]. The re-
sulting texture is optimized using gradient domain blend-
ing [PGB03] or other image-stitching methods. Some pa-
pers use global or local color correction applied to adjacent
patches [XLL∗10, BFA07, AF03]. Other methods perform
a per-vertex blending with weighted averaging [CCCS08,
BMR01]. All of these approaches could be used in a multi-
band framework blending [BA83, APK08], where an im-
age is decomposed in frequency bands and for each of
them a different weighting function is applied. As in Baum-
berg [Bau02], we use a two frequency band blending, avoid-
ing blurring or ghosting due to small misregistration of the
cameras with the 3D model.

Most of the discussed techniques assume that both geom-
etry and images fit in memory, which limits the scalabil-
ity of the methods. Some methods assume, instead, that the
3D model is very small and fits in memory, while the im-
age and mask dataset are stored in out-of-core structure (e.g.,
[XLL∗10,CCCS08]). Callieri et al. [CCCS08] deal with mas-
sive models by using two out-of-core structures, one for the
model and one for images and masks. However, random
access traversals increase processing time. Our streaming
framework efficiently blends images on massive point clouds
in a low-memory setting and through memory-coherent op-
erations, providing unprecedented performance. None of the
mentioned techniques support, as we do, adaptive geometry
refinement as a function of image content.

3. Technique overview

The proposed technique is outlined in Fig. 1. We take as in-
put a point stream and a set of images with the corresponding
camera parameters for inverse projection from image plane to
3D space. We start by coarsely reorganizing the stream in a
spatially coherent order by making it follow a space-filling
curve. For each image, we then perform the following oper-
ations. We render the point cloud from the camera point of
view, using a rendering method that performs a screen-space
surface reconstruction. We then estimate a per-pixel weight
with a screen-space operator applied to the depth buffer and
with the contributions of other possible masks (e.g., user de-
fined stencil masks). Then, we extract an edge map from
weights, compute a distance transform on it and multiply the
weight by a function that has zero values on the edges and
grows smoothly accordingly with the distance map. In this
way, we ensure that the weighting function varies smoothly

© The Eurographics Association 2011.

26

Ruggero Pintus et al. / Seamless Detailed Photo Blending on Massive Point Clouds

over each image, avoiding color discontinuities for a seam-
less blending. We use these weights to project color from im-
age pixels to points. For each image we perform two stream-
ing passes, which exploit the spatial ordering for visibility
culling. In the first pass the model is rendered in the depth
buffer, while in the second pass we accumulate colors and
update weights. A multi-band approach is adopted and dif-
ferent weights are computed for each frequency band. After
all images are blended, we perform one last streaming pass to
produce the final color for each point the final color by merg-
ing band contributions. For adaptive point cloud refinement,
before applying the color blending algorithm, we traverse the
entire pipeline once to update the geometry, by replacing the
accumulation pass with the point population step (see Sec. 9).

4. Out-of-core Streaming Implementation

Projecting high resolution images on detailed models is a
challenging problem. This is mainly due to a combination
of ever increasing model complexity with the current hard-
ware design trend that leads to a widening gap between slow
data access speed and fast CPU and GPU data processing
speed. This is particularly true when images and models are
so large that they cannot be fully loaded in memory for pro-
cessing. Developing efficient data access and management
techniques is key in solving our problem efficiently.

In this work, we took the decision of sequentially process-
ing images one after the other. I/O times are thus reduced,
and main memory usage remains constant. Point clouds are,
instead, processed using a streaming approach for all re-
quired operations, which are projecting the model to the
depth buffer, accumulating colors and weights, and selec-
tively refining the model on the basis of image contents.

The fundamental idea behind this approach is to always pro-
cess data sequentially by reading from disk only a limited
buffer at any time. This allows processing massive data sets
very efficiently due to coherent memory-access and disk
look-ahead pre-fetch policies. Moreover, the system is fully
scalable, since at any given time only a fixed small fraction
of the entire data set needs to reside in main memory. All
our operations are applied only to points visible from the cur-
rent camera. Thus, in order to reduce work, we reorganize the
stream so that visibility culling can be efficiently performed
while remaining within a streaming framework. This is done
by coarsely reordering it along a space filling curve, and by
rapidly skipping unnecessary sections while streaming.

Reordering occurs once during pre-processing, and requires
only two additional streaming passes over the input point
cloud. In the first pass, we coarsely estimate the local density
of the cloud by using a small in-core regular grid of cubic
cells that subdivides the bounding box of the input dataset
and counting the number of points per cell. The size of a sin-
gle cubic cell is heuristically estimated in advance from the

maximum expected number of points per cell by l =

√

AM
N ,

where A is the side area of the model bounding cube,M is the

Figure 1: Algorithm Pipeline. The inputs are a point stream

and an image set. After a fast pre-processing, for each image

we render and fill in the point cloud, compute a per-pixel

weight, and accumulate color, updating temporary out-of-

core arrays for each frequency band. In the last streaming

pass, we combine band contributions.

approximate desired point count per cell, and N is the total
number of samples. From this regular grid, we then estimate
the output point stream layout, by traversing the grid in 3D
Morton order, and sequentially allocating blocks of points in
the output point cloud. In a second and final pass on the in-
put point cloud, we fill the output point cloud, maintained as
a memory-mapped array, by reading in chunks of points, lo-

© The Eurographics Association 2011.

27

Ruggero Pintus et al. / Seamless Detailed Photo Blending on Massive Point Clouds

cally sorting them inMorton order [Mor66] to increase mem-
ory coherence, and writing them out at the correct output lo-
cation.

The end result of this pre-processing step is a coarsely re-
ordered point cloud, paired with an array of cell descriptors
containing for each cell the cell bounding box, for visibil-
ity culling, the position of the first contained sample in the
output array, and the number of contained samples. The 3D
set of points is thus transformed in a one-dimensional spa-
tially coherent set that increases the likelihood that neigh-
boring cells produce the same visibility check output dur-
ing streaming passes. This results in increased performance,
since it removes unnecessary I/O and processing operations,
while decreasing the number of jumps over the point stream,
optimizing the disk look-ahead pre-fetch behavior.

Figure 2: Visibility insight. Visibility is related to the acces-

sibility of a point with respect to the camera. Red dots are

occluded points, while green dots are visible points.

5. Point cloud rendering with screen-space surface

reconstruction

In order to implement our image composition method using
small and efficient screen-space operators, we need, as input,
a screen-space representation of the surface defined by the
point cloud. Given the position, orientation and camera pa-
rameters, we employ a point-based technique implemented
in GPU that solves point visibility and fills the holes in the
depth buffer between projected visible points. Visibility com-
putation is based on the concept of “accessibility” of a point
with respect to the camera. In Fig. 2 we show an example in
2D; the green dots represent the points with a “big” solid an-
gle (visible points), while the red ones have a “small” solid
angle (invisible points). For each frame pixel (background or
projected) we check a fixed image-dependent neighborhood
in the depth buffer to estimate if neighbor points occlude it
or not. After the visibility pass, a sparse depth buffer has to
be filled to obtain a smooth and usable representation. We
employed a non-linear iterative method that is implemented
in a multi-pass off-screen diffusion process and exploits a
bilateral-filtering approach with a 3x3 kernel. We perform
two different operations: screen filling uses the information
from the visibility pass to compute the depth value of back-
ground points (holes between projected points), while filter-
ing meaningfully blends the original and the reconstructed
data (to eventually remove the noise coming from the previ-
ous filling). The main idea is to update depth values at each
iteration with a weighted average of the neighbors using the

following weights: wi =
(

1− ri
2

)

[

1−min
(

1, |zi−z0|
δ

)]

. The

first is a radial term, while the other term is 1 if the central
pixel and the pixel i have the same depth, while tends to zero
if the difference in depth grows. δ is the tolerance used for
considering two z values comparable, and therefore partici-
pating to blending.

Since background points do not have a valid initial depth,
which is necessary for the filtering, we initialize them with
the median of the neighbors. The choice of median instead
of average comes from an edge preserving filling strategy. At
the end, the output is a consistent filled depth texture.

6. Weighting function

The weighting function depends on two estimations; the for-
mer is a local per-pixel weight computation, while the latter
(detailed in Sec. 7) is a distance map driven by edges ex-
tracted from the local weight. Both are implemented with
fragment shaders. Fig. 3(left) shows the rendered point cloud
we use to explain each step of our technique. It is a part
of a church acquired with a time-of-flight laser scanner. In
the second column there are the images we want to map and
blend, while the images in the third one are the corresponding
user defined stencil masks.

The local weight depends on the depth signal and requires a
single GPU pass. For each projected point i, let us call Pi and
PS
i its eye and screen coordinates. The position of the cam-

era PC in eye coordinate is the origin. We look in a screen-
space region of dimension K around point i and, for each
pixel k in this neighborhood, we consider its Pk and P

S
k . Then

we compute wi =

∑
K
k=1 w

S
kwk

∑K
k=1 w

S
k

, where wk = 1− |~nc ·~nk|, with

~nc =
Pc−Pi

‖Pc−Pi‖
and~nk =

Pk−Pi
‖Pk−Pi‖

, and wS
k =

[

1−
‖PS

k −PS
i ‖

2

R2

]4

.

The weight wS
k is a screen-space radial modulation and the

value R ensures that both all pixels inside the neighborhood
have a non-zero contribution and the nearest point outside
it has a zero weight. The term wk incorporates in a single
value the effects of the most used weight estimators. Surface
Orientation: if the surface is orthogonal with the viewing
direction all dot products are zero (we have the maximum
value), while the sum of absolute values of the dot prod-
uct ensures that the more the surface is tilted, the less is the
weight value. Silhouettes and Contours: depth discontinuities
result in very high dot products, so the per-pixel weight has
low values over object silhouettes and depth buffer borders.
Fig. 3(fourth column) shows the obtained weights. We could
integrate them with other masks too (e.g., distance, focus,
stencil, image border masks etc.). In our case, we apply user
defined stencil masks (as in [CCCS08]); they are very useful
to remove from photos objects unrelated to CH models (e.g.,
people visiting the site, scaffoldings etc.). The combination
of weights and stencil masks is depicted in Fig. 3(right). If
we use this weight to blend images, we obtain the colored
model in Fig. 4 (top-left), which has color seams due to dis-
continuities in weight. These discontinuities comes from the

© The Eurographics Association 2011.

28

Ruggero Pintus et al. / Seamless Detailed Photo Blending on Massive Point Clouds

Figure 3: Weighting Function Computation. From left to right: rendered point cloud; photos being blended; user defined

stencil masks; per-pixel weights; masked per-pixel weights.

stencil mask, occlusions, image boundaries, and non-smooth
weight transitions over the geometry.

Figure 4: Photo Blending Strategy. Photo blending of two

widely different images acquired with different color settings

and lighting conditions. On the left, masked per-pixel weights

are used. On the right weights are smoothed with our method.

Inset figures show the contributions of the two images, indi-

cated in red and blue.

7. Seamless blending through weight smoothing

To produce a seamless blending, the main idea is to find
edges in the computed weighting function and to modulate
weights over the image with a function proportional with the
distance from those discontinuities. We first apply an edge
extractor to find edges in the weight and we assign a zero
weight to these pixels and a value equal to 1 to the oth-
ers Fig. 5(top row). This is implemented in a single GPU
pass. In order to take into account image boundaries, we set
boundary weights to zero. For non-edge pixels we compute a
quadratic function of the normalized distance from the near-
est edge, using a multi-pass screen-space operator. We use a
jump-based approach similar to Rong and Tan [RT06]. They
perform a jump pass and some diffusion passes of step length
1 to decrease the residual error. We instead perform only two
jump passes and in the second pass we set the distance as
the less between the new and the old value. In this way the
error will converge to zero and we ensure a smooth distance
field Fig. 5(middle row). Then, we multiply normalized dis-
tance mask with the previous weight function. Fig. 5(bottom
row) shows final weights. As showed in Fig. 4(right) this ap-
proach guarantees a weight sufficiently smooth to produce a
meaningful and seamless color signal. To better explain the
behavior of the proposed method, small sub-figures in Fig. 4
show the results of the corresponding blending strategy in

Figure 5: Smooth weight generation. Rows from top to bot-

tom: edge map; distance transform; per-pixel weight modu-

lated with distance transform term. Figures are modified in

brightness and contrast in order to enhance readability.

the extreme case of two completely different images (red and
blue).

8. Color accumulation and multi-band blending

We perform a streaming pass over the point set to project im-
age color on the 3D model. For each sample we project its
position in the depth buffer and, using a tolerance factor, we
decide whether it is visible or not. If the point passes the visi-
bility check, we accumulate the color information taken from
the current image using the computed weight. We maintain,
during the loop on the image set, two temporary values for
each point: the weighted color and the sum of the previous
computed weights. Since we adopt a multi-band blending,
the accumulation is performed for each band separately. For
this reason, we have to split the input image set in NB sets,
where NB is the number of frequency bands, and, for each
point, we need to maintain a vector of NB tuples of color

© The Eurographics Association 2011.

29

Ruggero Pintus et al. / Seamless Detailed Photo Blending on Massive Point Clouds

and sum of weights. For each band we need to decide the
weighting strategy too. Typically, linear filters are used for
low-frequency bands, while non-linear or even best-weight

approaches are used for high-frequency signals. At the end of
M image projections we need an additional streaming pass to
merge all the bands together. As in Baumberg ([Bau02]), we
decide to apply a two band approach. We apply a blurring op-
erator to obtain the low frequency image set, while each high
frequency image is computed as the difference between the
original and the low-frequency version. The computation of
low and high frequency bands is fast performed in GPU. We
use the weighting function w explained in Sec. 6 for the first
set, while we use w4 for the high-frequency band. As shown
in Fig. 6, two band method avoids blurring or ghosting due
to non-perfect alignment between images and point cloud.

Figure 6: Multi-band blending. Comparison of single-band

(lower triangle) and multi-band (upper triangle) blending.

Multi-band blending avoids blurring due to small 2D-3D

misalignment.

9. Adaptive point cloud refinement

A major problem arises if the number of pixels in the im-
age set is much greater than the geometrical sampling. In this
case a lot of details in the image will be lost in the colored 3D
model, since our approach produces a color per point and for
each image we assign to a sample a weight and a color corre-
sponding with one pixel only. If we look at a pixel neighbor-
hood we could apply techniques similar to feature-preserving
down-sampling to avoid missing high frequency components
but, if the number of points is too low compared to the pixel
sampling, the issue remains critical. Since during the off-
screen rendering we build a non-sparse view-dependent sur-
face representation of the model, we can re-project back the
new filled points from the depth buffer to the object to in-
crease point cloud local density. A brute-force approach is to
re-project back all the points corresponding with valid pix-
els, such that the final model will have more points than the
sum of all valid pixels; roughly speaking, no pixel color in-
formation is lost. This increases the number of points even
if we don’t need it, e.g., in the parts with a single, flat color.

Our idea is to adaptively add points only for the color fea-
tures. Exploiting multi-band computation, we add a point to
the geometry if the corresponding high frequency pixel value
is above a fixed threshold. Since we blend one image at a
time we cannot re-project points and accumulate colors to-
gether in a single streaming pass, because each added point
could be visible from an already mapped photo; this will pro-
duce a non-coherent image blending. If we want to add high
frequency points we must perform the entire pipeline twice.
The first time we substitute the accumulation pass in Fig. 1
with the re-projection and for each image we update the ge-
ometry in the out-of-core structure. After all images are con-
sidered, we re-launch the original algorithm to blend the tex-
tures on the new adaptively over-sampled point cloud. Fig. 7
shows how very fine details are better preserved if this adap-
tive point cloud refinement is adopted. A part of the model
in Fig. 7(left) is critical because while in the high resolu-
tion images it was acquired a very narrow and long crack of
the real model (highlighted in the red rectangle), the point
cloud has a low local density. Fig. 7 (middle) shows both
the row and the rendered point cloud after texturing in the
case no refinement is applied; the crack is not continuous and
in some parts it is barely visible. Our refinement technique
adaptively adds points only across the crack, without loss of
any segments and making geometrical features clearly read-
able Fig. 7 (right). The rendering of the point cloud only (in
upper triangles) shows how we are able to reach high quality
results in terms of fine detail preservation just adding a very
low number of points.

Figure 7: Adaptive point cloud refinement. Left: complete

model. Middle: image blending on original point cloud.

Right: image blending on adaptively refined point cloud.

10. Results

The proposed technique was implemented on Linux using
C++ with OpenGL and GLSL. Our benchmarks were ex-
ecuted on a PC with an Intel 2.4GHz CPU, 4GB RAM,
a 500GB 7200RPM Hard Disk and a NVidia GeForce
GTX 460. To evaluate the effectiveness of our approach, in
terms of both computational time and quality, we present re-
sults on massive 3D datasets mapped with a high number of
images (see Table 9). David is a 3D model acquired with
a triangulation laser scanner, while Church and Archaeologi-
cal Site are models from time-of-flight laser scanner. All tests
were executed with disk caches flushed.

© The Eurographics Association 2011.

30

Ruggero Pintus et al. / Seamless Detailed Photo Blending on Massive Point Clouds

Model Resolution (# Points) Images (width x height) M pixels No Morton Morton Tmp Disk Space
David 28M 67 (2336x3504) 548 5m21s 5m12s 960MB
Church 72M 162 (3872x2592) 1625 4h30m 47m30s 2.2GB
Arch. Site 133M 19 (3872x2592) 19 2h55m 1h43m 4GB
David 470M 67 (2336x3504) 548 21h6m 4h40m 14GB

Table 1: Dataset specifications and algorithm performances. .

Figure 8: Colored David 0.25mm dataset. A 470 million points 3D model with color coming from a 548 Mpixel dataset (67

photos).

The parameters guiding the method depend on the sampling
rates of the point cloud and the image set. First of all, the
size of visibility kernel and the number of filling iterations
grow as the maximum ratio between pixel sampling rate and
3D sampling rate. In turn, since the filling operation, for each
point, ensures smoothness inside a region that depends on the
number of iterations, weight should be computed within a re-
gion of similar size. For the datasets presented here, we used
very conservative settings corresponding to a 21x21 visibil-
ity kernel (and thus 21 filling iterations). Finally, the role of
the edge extractor is to limit the maximum acceptable value
of the normalized weight screen-space gradient, assigning a
zero weight if the slope is higher than a threshold, which we
set at the 10% of the highest possible difference between two
weight values (i.e., 0.1).

Results obtained with David at 28M points (56M triangles)
can be compared with those obtained with a similar hardware
configuration and using the current state-of-the-art work
dealing with massive models [CCCS08], which also main-
tains both the 3D model and the images out-of-core. They
build a multi-resolution data that requires about 50 minutes
of pre-processing and they randomly access this data during
the blending; for this reason their approach takes about 15.5h
(930 minutes) for the entire computation (pre-processing in-
cluded). Their temporary files have a disk space occupancy
of 6.2 GB. Our results clearly shows that our method outper-
forms previous solutions. The proposed streaming approach,
by using space partitioning, results in a speed up of two or-
ders of magnitude. It should be noted that models of this
size, since our data structures are very compact, can be effec-
tively cached by the I/O subsystem in memory, which is not
possible for the more costly multi-resolution triangulations
employed by Callieri et al.. The increase is, however, also
evident for models which are much larger. E.g., our David

470M can be processed in less than five hours, while Callieri
et al. [CCCS08] require over fifteen hours for the David 28M
dataset.

Our visibility culling method, based on Morton ordering, is
particularly valid for large datasets that do not fit in main
memory, as in the cases of Church, Archaeological Site and
David 470M. With these datasets we have a large fraction
of time needed to traverse the point stream, so the precom-
puted Morton-ordering helps to increase efficiency in both
rendering the geometry and accumulating colors. TheChurch
dataset (Fig. 4) is a point cloud with 72M points and 162 pho-
tos (more than 1.5G pixels) and it takes 2 minutes and 14 sec-
onds for pre-processing and 45 minutes 12 seconds for tex-
ture blending with visibility check; this is about the 17% of
the 4 hours and 30 minutes needed for the computation with-
out visibility check (no Morton-ordering). The computation
requires temporary disk occupancy of 2.2GB. The Archaeo-
logical Site model (Fig. 6) has 133M points and we project
19 images of 10M pixels in 1 hour and 43 minutes (about
13 mins. pre-processing and 1.5h blending); the size of tem-
porary files is 4GB. The blending without Morton-ordering
and visibility culling takes about 3 hours. The biggest model
we have tested is the David with 470M points and 67 im-
ages (548M pixels). Its size on disk is about 18GB for the in-
put and output point cloud, 212MB for the images and about
14GB for temporary files. The pre-processing time needed
to order the point set is about 17 minutes while the blending
time is about 264 minutes; the computation without order-
ing and visibility checks requires 21 hours, about five times
more.

Representative examples of the quality of the photo blend-
ing are presented in Fig. 8, which depicts some details of the
David 470M dataset. Finally, Fig. 9 illustrates another ex-
ample of high quality blending using adaptive point cloud

© The Eurographics Association 2011.

31

Ruggero Pintus et al. / Seamless Detailed Photo Blending on Massive Point Clouds

refinement. In this figure, we show another critical part of
the same 3D model in Fig. 7. Here the low resolution point
cloud results in bad feature preservation while, in the refined
textured model, we add some points in the color contours
(high frequency pixels) to achieve a meaningful representa-
tion of silhouettes (e.g., non-noisy iris boundaries). The orig-
inal point cloud in Fig. 7 and Fig. 9 has 800Kpoints and the
image set contains more than 60Mpixels; a brute force re-
finement (re-project all valid pixels in the image set) would
add 13.3Mpoints, while the result of our adaptive method
has only 700Kpoints more than the original. Thus, we get
a highly detailed colored model saving 94% of the points.

Figure 9: Adaptive point cloud refinement. Left: complete

model. Middle: image blending on original point cloud.

Right: image blending on adaptively refined point cloud.

11. Conclusions and future work

We have presented an efficient scalable streaming technique
for mapping highly detailed color information on extremely
dense point clouds. Our seamless multi-band image blend-
ing method works directly on a coarsely spatially-reordered
point stream and can adaptively refine point cloud geome-
try on the basis of image content. It works independently
on each image in a memory coherent manner, and can be
easily extended to include further image quality estimators.
Currently, photo blending is applied as an off-line processing
task. Since blending of single images is relatively fast, we are
extending the system by integrating it within the same inter-
active application used for alignment. This would allow fast
visual checks of the quality of the result, and could help with
image registration. In particular, by analyzing the correlation
of images in areas of multiple overlap, it should be possible
to guide the system in the alignment phase.

Acknowledgments. This research is partially supported by EU FP7
grants 231809 (3DCOFORM) and 242341 (INDIGO). Geometric
data courtesy of Digital Michelangelo project.

References

[AF03] AGATHOS A., FISHER R. B.: Colour texture fusion of
multiple range images. In 3DIM (2003), pp. 139 – 146.

[APK08] ALLENE C., PONS J.-P., KERIVEN R.: Seamless
image-based texture atlases using multi-band blending. In ICPR

(dec 2008), pp. 1 –4.
[BA83] BURT P. J., ADELSON E. H.: A multiresolution spline

with application to image mosaics. ACM ToG 2, 4 (1983), 217–
236.

[Bau02] BAUMBERG A.: Blending images for texturing 3d mod-
els. In British Machine Vision Association Conf. (2002), pp. 404–
413.

[BFA07] BANNAI N., FISHER R. B., AGATHOS A.: Multiple
color texture map fusion for 3d models. Pattern Recogn. Lett.

28 (April 2007), 748–758.
[BK03] BOTSCH M., KOBBELT L.: High-quality point-based ren-

dering on modern gpus. In Pacific Graphics (Oct. 2003), pp. 335–
343.

[BMR01] BERNARDINI F., MARTIN I. M., RUSHMEIER H.:
High-quality texture reconstruction from multiple scans. IEEE

Transactions on Visualization and Computer Graphics 7, 4 (Oct./
Nov. 2001), 318–332.

[CCCS08] CALLIERI M., CIGNONI P., CORSINI M., SCOPIGNO

R.: Masked photo blending: Mapping dense photographic data set
on high-resolution sampled 3d models. Computers & Graphics

32, 4 (Aug. 2008), 464–473.
[DCC∗10] DELLEPIANE M., CALLIERI M., CORSINI M.,

CIGNONI P., SCOPIGNO R.: Improved color acquisition and
mapping on 3d models via flash-based photography. J. Comput.

Cult. Herit. 2 (2010), 1–20.
[DDGM∗04] DUGUET F., DRETTAKIS G., GIRARDEAU-

MONTAUT D., MARTINEZ J.-L., SCHMITT F.: A point-based
approach for capture, display and illustration of very complex
archeological artefacts. In VAST 2004 (Dec. 2004), pp. 105–114.

[GM04] GOBBETTI E., MARTON F.: Layered point clouds. In Eu-
rographics Symposium on Point Based Graphics (2004), pp. 113–
120.

[GWO∗10] GAL R., WEXLER Y., OFEK E., HOPPE H., COHEN-
OR D.: Seamless montage for texturing models. Computer

Graphics Forum 29, 2 (2010).
[HSKM10] HANKE K., STOELLNER T., KOVACS K., MOSER

M.: Combination of different surveying methods for archaeo-
logical documentation: the case study of the bronze age wooden
chest from mitterberg. In CAA. (2010).

[Mor66] MORTON G. M.: A computer Oriented Geodetic Data

Base; and a New Technique in File Sequencing. Tech. rep., 1966.
[PGB03] PÉREZ P., GANGNET M., BLAKE A.: Poisson image

editing. ACM Trans. Graph. 22, 3 (2003), 313–318.
[PV09] PU S., VOSSELMAN G.: Building facade reconstruction

by fusing terrestrial laser points and images. Sensors 9, 6 (2009),
4525–4542.

[RT06] RONG G., TAN T.-S.: Jump flooding in gpu with appli-
cations to voronoi diagram and distance transform. In Proc. I3D

(2006), pp. 109–116.
[SZW09] SCHEIBLAUER C., ZIMMERMANN N., WIMMER M.:

Interactive domitilla catacomb exploration. In VAST09 (Sept.
2009), Eurographics, pp. 65–72.

[XLL∗10] XU L., LI E., LI J., CHEN Y., ZHANG Y.: A gen-
eral texture mapping framework for image-based 3d modeling. In
ICIP 2010. (2010), pp. 2713 –2716.

[ZPKG02] ZWICKER M., PAULY M., KNOLL O., GROSS M.:
Pointshop 3d: an interactive system for point-based surface edit-
ing. In SIGGRAPH ’02 (2002), ACM, pp. 322–329.

© The Eurographics Association 2011.

32

