
Computational Aesthetics in Graphics, Visualization, and Imaging (2009)
O. Deussen and P. Hall (Editors)

CubeCam: A screen-space camera manipulation tool

Nisha Sudarsanam,† Cindy Grimm, ‡ Karan Singh §

delivered by

EUROGRAPHICSEUROGRAPHICS

D LIGITAL IBRARYD LIGITAL IBRARY
www.eg.org diglib.eg.org

Abstract

We present CubeCam, an image-space camera manipulation widget that uses a projected cube to both visualize
the relationship of the camera to the scene and as an interaction tool to change that camera. The cube geometry
reflects the use of perspective lines by artists in order to establish the scene projection. We allow the user to
interactively change the camera by changing the cube’s projection in the image plane. We incorporate pie menus,
ghosting, and a crossing-style interface to reduce mouse movement and make it simpler for novice users to learn
and experiment with the interface. Finally, we provide a novel method for visualizing camera bookmarks.

Keywords: Camera control, Projection, Perspective

1. Introduction

Manipulating the camera in a complex environment is a chal-
lenging problem. At the very least there are six degrees of
freedom (position and orientation) that need to be specified,
and if the full camera model is utilized this can be as high
as eleven (depth of field, center of projection, aspect ratio
and skew). All of these must be mapped to the two degrees
of freedom supplied by a mouse or other pointer device.
The traditional approach uses menu options, sliders, short-
cut keys, and key modifiers to change what the mouse mo-
tion maps to. For some camera motions, such as spinning the
camera around an object [Hul90] or navigating a character in
a game, there is an obvious mapping from mouse motion to
a restricted set of camera movements, for example, orien-
tation or 2D position on a plane. For more general camera
placement this approach begins to break down, both because
the user must learn a large number of modes and also be-
cause the mouse motions may no longer map naturally to
the changes in projection.

To address this problem we turn to perspective lines, a
technique commonly used by artists to “sketch out” the per-
spective of a scene. The basic idea behind this approach is
that rectilinear geometry, such as buildings or lines of trees,

† e-mail: nisha.sudarsanam@gmail.com
‡ email:cmg@cse.wustl.edu
§ email:karan@dgp.toronto.edu

Figure 1: CubeCam in 2-pt perspective (left) versus the IBar
(right). The transparent planes provide feedback on the cur-
rent focus center and a clearer picture of the cube shape.

produces lines in the image plane that converge to vanish-
ing points. By sketching out these lines the artist can quickly
experiment with different perspective views of the scene.

Previous work on camera placement, the IBar [SGS04],
used a very simplified version of this to control the camera
(see Figure 1). The edge of a cube is rendered in two-point
perspective, and the user changes the camera by grabbing
and moving different parts of the IBar. This approach is par-
ticularly effective for camera panning and zooming, but less
so for other camera changes. It also suffers from the mode
problem — the user has to memorize which parts of the IBar
do what.

In this paper we move to a 2D widget that more explicitly
captures the relationship between changing perspective lines
and changing the scene projection. The user is presented

c© The Eurographics Association 2009.

DOI: 10.2312/COMPAESTH/COMPAESTH09/065-071

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/COMPAESTH/COMPAESTH09/065-071

N. Sudarsanam & C. Grimm & Karan Singh / CubeCam

1-pt:

Pan, zoom, zoom & dolly

 2-pt:

Center of projection, dolly

 3-pt:

Constrained and virtual trackball rotation

 Pie-menu

Figure 2: The three perspective views of a cube form CubeCam. Each primitive is associated with a set of camera operations,
listed underneath it. The red icon in the top right corner is the pie-menu button which when crossed pops up a pie-menu of
options shown in the box.

with a rendering of a cube and changes that 2D rendering by
grabbing and manipulating parts of the cube. We use three
different perspective renderings of the cube (see Figure 2) in
order to ensure that there is a better cognitive match between
changing the cube and the resulting perspective change. For
example, a cube in three-point perspective maps naturally
to rotation motions while a cube in two-point perspective is
better for presenting center of projection changes.

We use a combination of Crossing [AG04] and Pie
Menus [CHWS88] to minimize modes and to keep the inter-
action entirely in the image plane. We give the user explicit
control over focus planes and rotation points through ma-
nipulation of transparent planes attached to the cube and by
attaching the cube to elements in the scene. Finally, we em-
ploy ghosting both as a training device for novice users and
as a visualization technique for exploring camera changes.

Bookmarks: Most applications include some method for
“bookmarking” useful viewpoints. We present a novel ap-
proach to displaying some (or all) of the bookmarks in the
image plane itself as part of the interaction widget. The
bookmarks can be sorted by relevance to the current view-
point, and the user can easily “page” through them to find
the one they want.

Contributions: We present an in-screen, interactive wid-
get for controlling a camera. It is particularly suited for ex-
ploring and then fine-tuning the projection.

1.1. Contributions

CubeCam is a simple, intuitive camera manipulation inter-
face. CubeCam can visualize both the relationship of the
camera with the scene and the state of the camera itself,
while staying in the 2D image plane. Specifically, Cube-
Cam explicitly visualizes important aspects of any camera
manipulation interface such as the camera’s focal plane and

pivot point about which camera rotations take place. Cube-
Cam provides an intuitive interface because it allows users
to define camera operations in terms of the change they want
to see in the projected image.

Visual aids such as ghosting of the scene help novice users
learn the different functions of CubeCam and also allows
advanced users to experiment with possible camera changes
before actually making them. Finally, CubeCam allows users
to find and visualize nearby camera bookmarks.

Overview: The paper has the following structure: Sec-
tion 2 places this paper in context with previous work in this
area. Section 3 describes the features of the interface includ-
ing ghosting. Section 4 describes camera bookmarks while
Section 6 provides the conclusion.

2. Related work

For mouse-based systems, camera control paradigms fall
roughly into two categories, camera-centric and object-
centric. In the camera-centric paradigm, operations are ap-
plied to the camera as if it were a real object in the scene.
This mirrors camera placement in the real world, and many
of the camera operations (dolly, pan, and roll) reflect that.
The external parameters, position and orientation, can be
specified either “through the lens”, or by manipulating a
pictorial representation of the camera in a second window.
The internal camera parameters, with the exception of focal
length, are changed through textual input.

In the object-centric paradigm, the camera is centered on
an object and the viewpoint is rotated relative to the object
(as if there were a virtual trackball around the object [Hul90,
HSH04, KMF∗08]). The camera can also be zoomed in and
out. This paradigm is useful when there is a single object
in the scene (or one object of importance) and the user is
simply choosing a direction from which to view it.

A recent study [KMF∗08] looked at using a cube for both

c© The Eurographics Association 2009.

66

N. Sudarsanam & C. Grimm & Karan Singh / CubeCam

Zoom & Dolly in-out

Pan

Zoom in-out

Change focal plane

Pie-menu

Change focal plane

Dolly in-out

Center of projection

Rotate X

Rotate Y
Rotate Z

Virtual trackball

Rotation

planes

Change

planes

Pie-menu Pie-menu

Figure 3: Diagrams of the three views. Any of the edges
work, i.e., all of the outside edges in 1-point perspective will
change the zoom.

control and visualization of the view direction. They com-
pared clicking on the cube, menu selection, and trackball
when trying to match a given view. Interestingly, trackball
was both the fastest and the most preferred by the users. The
authors suggest that interactivity is key here — even if the
user moves in the wrong direction, they can quickly correct.

Three or six degrees of freedom devices permit other in-
teresting navigation techniques [BKH97], such as the palm-
top world [SCP95], the “grab and pull” approach [PBWI96]
and virtual fly-throughs [WG95]. The latter can also be used
in mouse or keyboard-based systems if the camera’s move-
ment is restricted to a well-defined floor plane (most first-
person shooters use this approach).

An alternative approach to directly specifying the cam-
era is to use image-space constraints [Bli88, GW92]. In this
approach, points in the scene are constrained to appear at
particular locations, or to move in a specified direction, and
the system solves for the camera parameters that meet those
constraints.

The recently-introduced IBar [SGS04] is, in some sense,
a specialization of the constraint approach, where the points
are the points of the edge of a cube. Like CubeCam, the
IBar is a screen-space widget where changing the widget
changes one or two camera parameters. The IBar and Cube-
Cam have similar goals; both systems move beyond current
menu-based camera manipulation techniques to a unified
screen-space camera primitive. The underlying mathemati-
cal framework of the two systems are similar. Thus, both
systems support the same set of camera operations. How-
ever, CubeCam improves and extends the interface presented
to the user.

• (improved) Rendering: The IBar’s shape provides infor-
mation on the perspective, but has no feed back on rota-
tion or focus points.

• (improved) Camera primitive Interface: In the IBar in-
terface, each camera operation is associated with one part
of that widget. Some of these associations are not obvious
and tend to be confusing for a novice user. The CubeCam
associations are more natural.

• (improved) Rotation: In addition to rotation around the

focus point, CubeCam also supports rotation around an
arbitrary point in the scene or around a selected axis.

• New Features: CubeCam supports both visualizing and
manipulating the focal plane and the rotation point.
Ghosting is used to preview camera changes. Finally,
CubeCam supports visualization and classification of
camera book marks in-screen.

3. The CubeCam Interface

We first discuss the interface elements that are common to all
of the perspective views. We then describe, for each perspec-
tive view, which camera operations are available and how the
user invokes them.

For all mouse-widget selection interactions we employ a
variation of the CrossY style [AG04] approach, which lets
the user perform selection with strokes instead of multiple
clicks. For example, there are several actions which affect
the camera widget but are not camera operations themselves,
namely: switching between perspective views, switching be-
tween object- and scene-centric, toggling ghosting, toggling
bookmarks, changing bookmark placement algorithms, and
hiding the CubeCam interface. Rather than use a traditional
menu or check boxes, we use a pie-menu which is invoked
by crossing a dot on the screen (see Figure 2). This allows
the user to bring up the pie-menu, select their choice, and
close the pie-menu all in one stroke.

All three perspective views allow the user to interactively
specify the focal distance. This is not a camera parameter
per-se, but it does change the effective behavior of certain
camera motions. For a zoom plus a dolly-in or a center of
projection change, the focal distance specifies what part of
the scene will stay the same size. For rotations, it is the point
around which the rotation occurs. To select the focus dis-
tance the user slides a transparent plane through the scene
using the red handles on the widget (see Figure 3). To select
a rotation point the user positions three planes — this allows
the user to pick any point in the scene, not just a point along
the view vector, which is what most systems support.

The CubeCam widget can operate in either scene-centric
(centered on the 2D screen) or object-centric (centered on
the object’s projected 2D bounding box). Note: If the wid-
get’s controls extend off the screen we scale the widget down
so that they are still reachable. In scene-centric mode, the
CubeCam always snaps back to the center of the screen and
to a default orientation after the camera manipulation is com-
plete. This is useful for navigating around the scene as a
whole. In object-centric mode, the CubeCam widget is tied
to the bounding box of the currently selected object. This
is useful for positioning and orienting a specific object at a
particular location in the 2D image plane.

c© The Eurographics Association 2009.

67

N. Sudarsanam & C. Grimm & Karan Singh / CubeCam

Focal plane is behind all

objects in the scene

All objects in front of focal plane increase in size.

Dragging inner edge to increase

perspective distortion

Focal plane moved with sliders.

Focal plane intersects

the bowl

Bowl stays the same size.

Increasing perspective

distortion

Figure 4: Using the position of the focal plane to control the effects of perspective distortion.

3.1. 1-Point Perspective view

The 1-pt perspective view supports zooming (by making the
entire projected cube bigger or smaller), panning (by moving
the projected cube), and perspective distortion (by changing
the relative projected sizes of the front and back of the cube).

The degree of perceived perspective distortion is a func-
tion of the distance of the camera eye point to the object
in question — the closer the camera is to the object, the
more distortion. Unfortunately, changing the camera dis-
tance also changes the projected size of the objects in the
scene. To counter-act this, the system automatically adjusts
the zoom to keep objects at the specified focal distance the
same size [GS05]. By changing the focal distance using the
focal plane, the user can control what part of the scene re-
mains fixed (see Figure 4).

3.2. 2-Point Perspective View

2-pt perspective view supports camera dollying in and out
and center of projection change. A camera dolly is speci-
fied by making the cube bigger or smaller (see Figure 5).
To change the center of projection, move the cube’s cen-
terline. Changing the center of projection causes the scene
to “slide” in the opposite direction. To counter-act this, the
system automatically pans the camera in the opposite direc-
tion [GS05], keeping objects on the focal plane in the same
spot. The user can select what stays still by positioning the
focal plane using sliders on the slanting edges of the cube
(see Figure 6).

3.3. 3-Point Perspective View

The 3-pt perspective view supports both constrained rotation
around an axis or traditional virtual trackball manipulation
(see Figure 7). This is a two-stroke action; the first stroke
determines the type of rotation, the second actually performs

Selecting outer edge

to start dolly out.

Dragging inward to

shrink cube

New projection,

widget snaps back

Figure 5: Camera dolly in the 2-pt perspective view.

the rotation. To initiate trackball rotation, the user crosses a
corner of the cube (two edges). To perform a constrained ro-
tation the user crosses a single edge (the one corresponding
to the desired rotation axis). Now the user clicks and drags
on any point on the cube to perform the actual rotation. Note
that if the camera is in object-centric mode then the avail-
able rotation axes are determined by the object’s coordinate
system.

By default, the camera will rotate about the focal point
(scene-centric) or the center of the selected object (object-
centric). This point can be both visualized and changed using
three semi-transparent, perpendicular planes (see Figure 8).
The planes are aligned along the principal axes of the cube
and can be re-positioned using sliders located on the three
edges. The rotation point is the intersection of the rotation
planes. This provides the user with explicit control over the
desired center of rotation.

3.4. Ghosting

Our goal is to present the user with an in-screen camera ma-
nipulation interface that naturally encapsulates specific pro-
jection changes. By creating three perspective views (and
hence three versions of the widget) we simplify the individ-

c© The Eurographics Association 2009.

68

N. Sudarsanam & C. Grimm & Karan Singh / CubeCam

The focal plane

intersects the

bowl

Center of projection

changed by dragging

the cube edge

All the objects

except the bowl

are shifted.

The focal plane

intersects the

vase

All the objects

except the vase ar

shifted

Center of projection

changed

Figure 6: Using the focal plane to determine which object stays still when changing the center of projection.

Crossing the vertical edge selects

a rotation around the Y-axis.

The cube is rotated

by dragging it.

Crossing multiple edges

selects Virtual trackball.

The red path is the cursor path

used to rotate the cube.

Figure 7: Constrained rotation (left) and Virtual trackball (right).

Changing the rotation point by moving the

planes using the yellow handles

Rotation point

Figure 8: Positioning rotation planes to specify the rotation
center.

ual widgets but complicate the overall interface. In order to
help the user interactively learn what different actions do we
turn to ghosting. When ghosting is active, users manipulate
the camera primitive as they would normally, but instead of
actually changing the projection the result is presented as a
ghosted overlay on the original scene. This allows the user
to see both the original projection and the changed widget
and projection in the same view (see Figure 9). This is both

Rendering ghost views for different camera motions

Camera pan Dolly plus zoom Rotation around Up

Figure 9: Ghosting helps users see the effects of the cam-
era movement before doing it. Green line shows direction of
mouse movement.

a learning tool and a way for advanced users to experiment
with possible camera changes before actually making them.

To create a ghost camera the current scene is rendered to
the back-buffer using the ghost camera. The scene is ren-
dered under the original lighting but in a non-photorealistic
style with the silhouette edges highlighted. The contents of
the back-buffer are copied into a texture which is alpha-
blended on top of the original scene.

4. Camera Bookmarks

It is very useful to be able to save cameras and snap back to
them at will. For example, when modeling a surface, a user
might bookmark a handful of orthogonal views and close-

c© The Eurographics Association 2009.

69

N. Sudarsanam & C. Grimm & Karan Singh / CubeCam

Bookmarking two views. Most

similar view is placed on top.

Mousing over icon

shows ghost view.

Figure 10: Adding two bookmarks, sorted by eye point. Icon
is made by rendering the scene with silhouette edges (inset
shows blowup of icon image). Right: Mousing over the icon
shows a ghosted view of the bookmark.

ups of complex geometry. An animator might also use book-
marks to start laying out an animation sequence. In both of
these cases, we need to provide the user with a method for
quickly searching through existing views. Although the user
could simply create a text list, appropriately naming each
camera, we believe that a visual search mechanism is more
useful and faster. The bookmark “list” is displayed as icons
arranged on the screen, with each icon showing an image of
the scene from that view. As the user mouses over the icons a
ghost image is rendered on top of the current scene. Double
clicking on the icon switches to that bookmark’s view.

We support two bookmark placement algorithms. The first
is a simple static approach — the user simply places the icon
where they want it on the screen. For example, for key fram-
ing an animation the user might place the icons sequentially
across the top of the screen.

The second approach automatically places the bookmark
icons in a circle on the screen. The bookmarks are sorted by
similarity to the current view, with the most similar view at
the top. If the CubeCam is in 1-point or 2-point perspective
view, the ordering is based on the relative eye points of the
cameras, otherwise, it is based on orientation.

To order cameras based on eye point, each bookmarked
camera’s eye point is projected onto the film plane of the
current camera. The magnitude of the vector from the origin
to the projected eye point is used to order the bookmarks
(Figure 10).

For orientation, the rotation distance is calculated by mea-
suring the length of the geodesic path between the quater-
nion of the current camera, qc and the quaternion of the
bookmarked camera qi (Figure 11).

GeodesicPath(qc,qi) = Log(qc
−1,qi)

As the number of bookmarks in the scene increases, the
circle of bookmarks created by the automatic placement al-
gorithm becomes more crowded. To prevent the occlusion

Figure 11: Bookmarks ordered by similarity of orientation.

of bookmarks in the circle, we vary the size of the icon as a
function of the number of bookmarks in the scene by making
the size 2π

√
2r

3n , where r is the radius of the circle and n is the
number of bookmarks.

Similar to ghosting, we render the scene with edges high-
lighted when making the bookmark icon.

5. Examples and Remarks

The accompanying video demonstrates the complete func-
tionality of the CubeCam and also includes an example of
using CubeCam to create an extreme perspective view of a
table with some objects.

6. Conclusion

We have presented CubeCam, a simple intuitive screen-
space camera manipulation widget. CubeCam supports vi-
sualizing and changing the camera in image-space, allowing
the user to better understand the relationship of the cam-
era to the scene. Users can explicitly visualize and adjust
the camera’s focal-plane and rotation point. Visual aids such
as ghosting help users remember the different operations
associated with each camera perspective view. Finally, we
demonstrate a novel, in-screen visualization technique for
camera bookmarks that incorporates current view informa-
tion.

Acknowledgments: This work was funded in part by NSF
grant 0238062.

References
[AG04] APITZ G., GUIMBRETIÈRE F.: Crossy: a crossing-based

drawing application. In UIST ’04: Proceedings of the 17th an-
nual ACM symposium on User interface software and technology
(New York, NY, USA, 2004), ACM, pp. 3–12.

[BKH97] BOWMAN D. A., KOLLER D., HODGES L. F.: Travel
in immersive virtual environments: An evaluation of viewpoint
motion control techniques. IEEE Proceedings of VRAIS’97, 7
(1997), 45–52.

[Bli88] BLINN J.: Where am i? what am i looking at? In IEEE
Computer Graphics and Applications (1988), vol. 22, pp. 179–
188.

[CHWS88] CALLAHAN J., HOPKINS D., WEISER M., SHNEI-
DERMAN B.: An empirical comparison of pie vs. linear menus.

c© The Eurographics Association 2009.

70

N. Sudarsanam & C. Grimm & Karan Singh / CubeCam

In CHI ’88: Proceedings of the SIGCHI conference on Human
factors in computing systems (New York, NY, USA, 1988), ACM
Press, pp. 95–100.

[GS05] GRIMM C., SINGH K.: Implementing the ibar camera
widget. Journal of Graphics Tools 10, 3 (November 2005), 51–
64. This is the full implementation details for the UIST 2004
paper. There is source code available.

[GW92] GLEICHER M., WITKIN A.: Through-the-lens camera
control. In Siggraph (July 1992), Catmull E. E., (Ed.), vol. 26,
pp. 331–340. ISBN 0-201-51585-7. Held in Chicago, Illinois.

[HSH04] HENRIKSEN K., SPORRING J., HORNBAEK K.: Virtual
trackballs revisited. In IEEE Transactions on Visualization and
Computer Graphics (Mar 2004), vol. 10, pp. 206–216.

[Hul90] HULTQUIST J.: A virtual trackball. In Graphics Gems.
1990, pp. 462–463.

[KMF∗08] KHAN A., MORDATCH I., FITZMAURICE G., MATE-
JKA J., KURTENBACH G.: Viewcube: a 3d orientation indicator
and controller. In SI3D ’08: Proceedings of the 2008 symposium
on Interactive 3D graphics and games (New York, NY, USA,
2008), ACM, pp. 17–25.

[PBWI96] POUPYREV I., BILLINGHURST M., WEGHORST S.,
ICHIKAWA T.: The go-go interaction technique: Non-linear map-
ping for direct manipulation in VR. In ACM Symposium on User
Interface Software and Technology (1996), pp. 79–80.

[SCP95] STOAKLEY R., CONWAY M. J., PAUSCH R.: Virtual
reality on a WIM: Interactive worlds in miniature. In Proceedings
CHI’95 (1995).

[SGS04] SINGH K., GRIMM C., SUDARSANAM N.: The ibar: A
perspective-based camera widget. In UIST (October 2004).

[WG95] WLOKA M. M., GREENFIELD E.: The virtual tricorder:
A uniform interface for virtual reality. In ACM Symposium on
User Interface Software and Technology (1995), pp. 39–40.

c© The Eurographics Association 2009.

71

