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Abstract
Color analysis of images for the purpose of color balancing, color contrast, and color correction is critical in
image processing applications. Color analysis of images for the purpose of palette extraction has received less
attention. Motivated by the question of how best to transfer color between two non-photorealistic images in such
a way that artistic intent and image aesthetics are taken into consideration, we consider a palette driven approach
to the image color transfer problem. Our goal is the transfer of chromatic content from a source image to a
destination image with careful consideration given to “value structure” and artistic intent. We show examples of
color transfers using our methods.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation,
I.4.8 [Image Processing and Computer Vision]: Scene Analysis

1. Introduction

The problem of automatically re-targeting (i.e. transferring)
traits from a source image to a destination image has re-
ceived increased attention following the explosion in pop-
ularity of non-photorealistic rendering [GG01]. Re-targeting
problems gained further impetus from the success of Hertz-
mann et al [HJO∗01] in synthesizing (i.e. generating) images
with certain desired traits by using a technique they called
image analogies. Central to their technique was presenting
an example of an image “relationship” by exhibiting images
A to B such that when given imageA′ they could synthesize
an imageB′ with the property that, by analogy,A′ andB′

also satisfied the relationship. Clever use of their technique
provided a means of synthesizing images for which texture
and other stylistic traits were re-targeted from a source im-
age. In this paper, we consider the problem of re-targeting
color from a source image to a destination image. Because
it raises important and interesting questions about the quan-
tification of color aesthetics, our particular emphasis is on
color re-targeting of non-photorealistic images. Color re-
targeting is often referred to as image color transfer or image
re-coloring.

1.1. Grayscale re-coloring

The re-coloring of grayscale images using semi-automated
techniques, where users provide cues in order to facilitate the
image re-coloring, has been investigated by several research
groups. In Welsh et al [WAM02], grayscale re-coloring was
achieved by asking users to identify and associate small rect-
angles, called “swatches,” in both the source and destination
images to indicate how certain key colors should be trans-
ferred. Using a technique reminiscent of image analogies,
Levin et al [LLW04] produced grayscale re-colorizations of
videoby having users pick colors from a source image and
draw freehand curves to cue where and how color transfer
should occur for selected destinationframes. Also of inter-
est is an image re-coloring scheme forgamutreplacement
described in [RGW05] that uses grayscale re-colorization
methods.

1.2. Non-interactive re-coloring

Turning to non-interactive (i.e. fully-automated) color trans-
fer techniques, Reinhard et al [RAGS01] used statistical
methods in order tocolor correctnatural landscape images
by transferring color “characteristics” from a source im-
age to a destination image. Their transfer methods relied
heavily on the properties obeyed by natural images when
they are analyzed in Ruderman’sℓαβ color space [RCC01].
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Chang et al [CSN02] also considered color correction of
landscape images, invoking an absolute color categoriza-
tion scheme and relying on geometric techniques to mod-
ify colors based on their locations within convex regions
of L∗a∗b∗ that were determined from their categorization.
They subsequently refined the process to encompass more
general color transfer problems [CSN03] [CUSN04]. Cur-
ran [Cur02] described a “computer enabled” recoloring pro-
cess by Cai which featured a grayscale NASA image that
was re-colored using a “coloring system from Monet.” Cur-
ran implied that this re-coloring was obtained using a fully
automated re-coloring system. This re-coloring can also be
found on Cai’s web page devoted to descriptions of his
MONETO and SALIENT projects athttp://www.andrew.
cmu.edu/user/ycai/moneto.html. Although details have
not been published, it seems reasonable to assume that the
origins of this work trace back to [CS02]. Grundland and
Dodgson [GD05] use sophisticated global color space trans-
formation techniques inLa′′b′′ color space, which they re-
fer collectively to ashistogram warping, to achieve image
color transfer based on “key color” assignments. Evidently
their system can operate in either fully-automatic or semi-
automatic mode. Morovic and Sun use 3D color histogram
matching for similar purposes [MS03] [MS02].

1.3. Re-coloring for artistic effect

None of the systems described so far address the color
transfer problem from an artist’s point of view. Meier et
al [MSK04] describe a suite of interactive software tools
that integrate historical, expert, and theoretical knowledge
to help organize color palettes that can be used for image re-
coloring. Some of their internal palettes were extractedby
handfrom digital versions of artist’s masterpieces.

Motivated by the color transfer problem for non-
photorealistic images, as well as color transfer for artistic
effect, we consider the color transfer problem from a palette
extraction point view. That is, we consider the problem of
automatically extracting a palette from a non-photorealistic
image in such a way that it can be used to reconstruct the
image degradation free while simultaneously capturing the
essence of its color aesthetics. As an application, we use
a naive palette color correspondence algorithm to examine
the aesthetic results when color is transferred between some
well-known fine art non-photorealistic images. The broad
outline of our color transfer approach is as follows.

• Segment the image based on color.
• Form palette and identify each image segment with a

palette color.
• Form color pairings between source and destination

palettes.
• Transfer chromatic content from source to destination.

We begin by surveying some of the techniques first described
in [GH03].To help illustrate our methods we will consider

the problem of color transfer from Van Gogh’sStarry Night
to Cezanne’sSkulls. Thumbnails of these two images are
shown in Figure1. Detailed pseudocode for all of the crit-
ical modules plus implementation details of the data struc-
tures and color spaces we use are available in our technical
report available athttp://www-viz.tamu.edu/faculty/
house/papers/02palette-techreport.pdf.

Figure 1: Thumbnails of test Van Gogh and Cezanne images.

2. Color Segmentation

Since color image segmentation is a complex subject pos-
sessing a voluminous literature, even a cursory treatment
is beyond our scope. In this section we describe a slow,
memory intensive hybrid color segmentation algorithm that
we developed for research purposes in order to investigate
the ramifications of trying to introduce value structure con-
siderations during color segmentation while simultaneously
maintaining full control over the number of segments in
the segmentation. Our method is based on a bottom-up re-
gion growing algorithm. By using the pixel representation
scheme of [BK91], we are able to maintain statistics on the
area, boundary length, and averageℓαβ color of each re-
gion. Moreover, by organizing region merge events into a
binary tree and using a recursive tree traversal algorithm, we
are able to losslessly reconstruct the original image from its
color segmentation and merge-event tree. Merge events are
triggered by edge priorities that are calculated on the basis of
color differencesbetween adjacent regions. Edge priorities
must be constantly updated during the region merging pro-
cess. Figure2 hints at the difficulty of edge priority updating
by showing how a merge event combining regionsN1 and
N2 triggered by edgeeaffects the priorities of edges marked
e′, f , g, andh. The calculation of edge priority depends on
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the color space used. From an artist’s point of view, it would
be helpful if such calculations could be done in a color space
such asHSV or HWB. However,digital images are prone to
color artifacts that render the hue channel essentially useless
for certain ranges of the other channels in such spaces. Al-
though it may not be the optimal choice, based on the results
of [RAGS01], we used Euclidean distance inℓαβ space for
the transfer results shown in this paper.

Figure 2: Edge priority update consequences of region
merge event triggered by edge e during segmentation.

A further consequence of color artifacts in digital images
is that if one tries to color segment until a pre-specified num-
ber of regions is obtained, then because of the existence of
outlier or “accent” pixels, one runs the risk of winding up
with one large region accounting for upwards of eighty per-
cent of the image. In such cases the segmentation corrupts
the imagecomposition, something we clearly wish to avoid.
This phenomenon is especially acute for the kind of non-
photorealistic images we wish to consider. If we want to
segment until we obtainn regions, one way to cope with this
difficulty is to segment until we obtainn+ k regions, then
interrupt the segmentation and force the nextk merge events
to involve only the smallest remaining regions. As Figure3
shows, given regionN this means perhaps a decision must be
made about whether to mergeN with one of the two larger
regions (labelledX andX′) or one of the two smaller regions
(labelledY andY′). Moreover, as Figure4 shows, regard-
less of how such decisions are made, there may be further
consequences caused by demanding that the segmentation
be reproducible by requiring, for example, that one consider
the smallest regions in scanline order. Thus even though it
makes artistic sense to organize color compositions by re-
gion merging and color averaging, the available digital in-
frastructure may not prove wholly suitable to the task.

In fact, execution time constraints and memory con-
straints caused by segmentations yielding too many regions
with large areas lead us to segment using a truncatedim-
age pyramid, a multi-resolution technique that has proved
successful in texture synthesis [HB95]. Segmenting the top
layer of such a pyramid simplified palette extraction, but as

Figure 3: The quandary of over whether to force the merge
of region N with X, X′, Y , Y′, or Z.

Figure 4: Segmentation of downsampled image (upper left)
is interrupted and to reveal unmerged pixels shown in blue
(upper right) that are then force merged with either largest
adjacent regions (lower left) or smallest adjacent regions
(lower right) to demonstrate how segmentation artifacts may
occur.

will be seen below, led to difficulties in downsampling and
maintaining global color continuity during color transfer.

3. Palette Extraction

Due to the nature of its intrinsic topology, an image color
segmentation typically contains many regions with virtually
identical colors. Since theℓαβ color space is logarithmic,
makes too fine a distinction between dark colors, we defined
colors from two regions to be identical, for our purposes,
provided their Euclidean distance in RGB space was suffi-
ciently small. By implementing a straightforward partition-
ing algorithm based on this idea, we were able to reduce a set
of n segmentcolors to a much smaller set ofd distinctcolors
by choosing as the color representative from the resulting
equivalence class the averaged color of the largest region.
This lowered the number of colors under consideration from
n = 159 tod = 22 for Starry Night, and fromn = 119 to
d = 13 for Skulls. The reason these images have different
values for the number of segmentsn is because even though
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the number of forced merge eventsk is the same for both
images, in order to take into account differences in image
complexity, the value ofn+ k where the segmentation pro-
cess is interrupted was determined by setting an edge priority
threshold.

Visual inspection of thed colors still under consideration
indicated that usually severalshadesof the desired colors
were still present. In order to make the palette color asso-
ciations needed for color transfer, it was necessary to fur-
ther reduce the set of colors by identifying color shades.
This proved to be a surprisingly vexing problem. Because
the value structure of our images was important to us, and
because no color space we tried was uniformly successful at
shade clustering, we settled upon an interative shade cluster-
ing algorithm that used HSV space to help cluster the shades
of the most vivid colors andℓαβ space to help cluster the
shades of the darkest colors. More precisely, after sorting the
distinct colors by saturation, we let each unused color be a
representative for the shades found in a “wedge” around that
color in HSV space. Next, we repeated the process inℓαβ
space defining the neighborhoods about each unused color
using a thin “slab”. This provided us with palettes of size
p= 10 colors forStarry nightand sizep= 8 colors forSkulls
as shown in Figure5. A “true black” chip is suppressed from
theStarry Nightpalette for reasons which will be explained
later. It should be pointed out that because our algorithms
are non-interactive and deterministic, our extracted palettes
can be thought of asfeature vectorsfor our images [JFS95].
One of the reasons for using the test images we chose is
the presence of dark and neutral colors that pose a challenge
to algorithms that attempt to distinguish color shades that
are distinct from perceptual black and white, “colors” that
eventually required special considerations during our color
transfer process.

4. Palette Color Associations

Although one of our primary motivations was to consider
palette color associations that would give rise to re-colorings
that were faithful to the artistic intent and style of the source
image and therefore transfer as much of its aesthetic con-
tent as possible, for testing purposes we adopted a naive,
elementary approach. Note that for color transfer to make
sense, every color in the destination palette must be paired
with some color from the source palette, but not all colors
from the source palette must be members of such pairings.
Our palette color associations are based on a heuristic that
maps colors used most often to each other. Details are given
in [GH03]. Here it suffices to say that the two palette colors
responsible for the largest areas (i.e. most prominent col-
ors) are always paired, the two palette colors responsible for
the second largest areas areencouragedto be paired, and
the remaining pairings are determined by alignments of the
palette color vectors after they have been normalized using
a procedure that was inspired by the color correction meth-

Figure 5: Segmented test images located at the apexes of
the image pyramids are shown with their segments colored
by their associated palette colors and are accompanied by
their palettes — palette color “chips” together with a bar
chart to show the percentage of the image area that each
color is assigned to.

ods presented in [RAGS01]. Figure6 shows the pairings for
transferring color fromStarry Nightto Skulls. Unfortunately,
because the vivid yellow and gold of theStarry Nightpalette
were seen as outliers by our pairing algorithm, they did not
participate in this re-coloring.

5. Color Transfer Implementation

Image segmentation palette extraction depends on averaged
color. In order to implement image color transfer, we must
transfer chromatic content from source image to destination
image on a pixel basis. Each destination pixel is the leaf of
a path in the destination merge-event tree that leads from
that pixel to a region in the segmentation. That region has
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Figure 6: Re-coloring plus palette pairings for a128×128
pixel version ofSkulls using the testStarry Night image
as source image. The top row of the pairings shows the
palette colors extracted fromSkulls. The middle row shows
the “corrected” palette colors. The bottom row indicates the
pairings withStarry Nightpalette colors.

an associated destination palette color which, in turn, has
been paired with a source palette color. Our task is to find
a corresponding source pixel that has a path in the source
merge-event tree that leads to a region in the segmenta-
tion that is associated with that source palette color. Space
prohibits presenting the details of how we accomplish such
“path matching,” but Figure7 shows why it is important. The
more source pixels that participate in the color transfer, the
better the chances are that instances of visually rich color
texture in the source image will be transferred to the desti-
nation image.

The fact that we work within an image pyramid means
that multiple image color transfers take place, one for each
layer of the pyramid. Thus if we re-color a 128×128 image
using a three layer pyramid, our system actually yields a re-
coloring of the original 128× 128 image plus re-colorings
of downsampled64×64 and 32×32 versions of the image.
This brings up several new issues to discuss since the re-
coloring algorithms described above only govern what oc-
curs in the very top layer of the pyramid. Lower layers of
the pyramid are re-colored piecemeal, by applying our re-
coloring algorithm exactly as described above each of the
segmentations of the “pieces” in the layer that project onto
the segments in the layer immediately above, with the un-
derstanding that forced merge-events are now prohibited by
settingk = 0 when the segmenting of each piece is done.
While the heuristic is that this should enable us torefinethe
re-coloring of the layer above as additional color information
is revealed due to segmenting the layer below, in practice we
are often defeated by downsampling artifacts on one hand
when new and unexpected colors are encountered, and shad-
ing problems on the other hand when extracted palette rep-

Figure 7: The top row shows color transfer results using our
test images when all three of theℓαβ channels are trans-
ferred from source to destination. The bottom row shows the
improved value-preserving color transfer that results when
only theα and β channels are transferred. The left column
shows the results of color transfer when only one source
pixel per source region participates in the color transfer.
The right column shows the improved results of color trans-
fer when path matching is invoked to allow more than one
source pixels per region to participate.

resentatives arise that wind up being treated differently than
they were in preceding layers. To help address the former
problem, we removed those palette colors from thesource
palette that were responsible for the least amount of area in
the segmentation. In the absence of such palette pruning, a
re-coloring of an image with itself would faithfully repro-
duce the image. With such pruning, we obtain a lossy ver-
sion of the image such as the one shown in Figure8. We
have no solution to the shading problem. It explains why
the two nearly white areas at the bottom of the testSkulls
image appeared re-colored differently in the re-coloring of
Figure6. When treated as two separate pieces, one was as-
signed a palette color that was considered to be “true white”
hence was not recolored for reasons explained below, while
the other was re-colored from source pixels.

Figure 8: A re-coloring of the testStarry Nightimage with
itself to show the extent to which pruning palette colors in the
source image leads to a lossy reconstruction of the image.
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Using an image pyramid also leads to color-transfer ro-
bustness problems. To see this, compare the 128×128 low-
resolution re-coloring of the thumbnail ofSkullsin Figure6
that was obtained using a palette extracted from a downsam-
pled 32×32 version of that image with the 512×512 high-
resolution re-coloring in Figure11that was obtained using a
palette extracted from a downsampled 128×128 version of
that image.

Another artifact of downsampling is the treatment that
boundary pixels of image features receive. Figure9 shows
the palette extractions fromYellow Cowby Franz Marc and
Mask Still Life III by Emil Nolde together with the palette
color pairings for a bi-directional re-coloring. The recolor-
ings are shown in Figure12. One can observe many in-
correctly re-colored pixels that arose when their projections
wound up in inappropriate segments.

Figure 9: Extracted palettes and palette pairings for a bi-
directional re-coloring between Franz Marc’sYellow Cow
and Emil Nolde’sMask Still Life III.

6. Color Correction

For our non-photorealistic images, trying to transfer only the
α andβ chroma channels from source pixels to destination

pixels led us to confront several additional problems. One
particularly acute problem was trying to transfer chroma
from dark source colors to light destination colors because
more often than not, the resulting color was out-of-gamut.
This we partially addressed by attenuating channel values
during color transfer in order to help lessen the chances of
oversaturation. Regardless of whether a color transfer was
from light to dark, or vice versa, it was always the case that
our final conversion fromℓαβ color space to RGB color
space left many destination pixels out-of-gamut. This we
“fixed” by first applying a global image correction factor
in RGB color space based on the ninety-fifth percentiles of
each the R, G, and B values and then clamping the out-of-
gamut pixels in any remaining “hot spots.” It was primarily
because we could never settle upon a suitable color space to
perform all of our computations and still remain in gamut
that we adopted the measure of excluding “true whites”
and “true blacks” from our palettes. This meant that non-
photorealistic images with color gradients involving white,
black, and other neutral colors were usually not suitable can-
didates for image color transfer. This fact, together with the
fact thatSkullsuses a limited range of hues in its palette
while Starry Nighthas a much broader range of hues, also
helps to explain why we were never able achieve our goal
of obtaining a bi-directional re-coloring using both of those
images.

There is one final feature to discuss that also impacts the
out-of-gamut question. It is motivated by considering value-
structure techniques that artists are taught. If an artist adds a
new color to the palette at a later stage of a painting’s com-
pletion, then much of the existing composition often must
be re-worked in order for that color to be properly integrated
into the final result. In the same vein, prior to color trans-
fer, we pre-conditioned ourdestinationimages by invoking
an algorithm to adjust theℓ channel values so that the re-
sulting histogram closely matched theℓ channel histogram
of the source image. This explains how the colors labelled
“corrected” palette colors in the middle rows of our palette-
pairing figures were obtained. Figure10 shows the result of
pre-conditioning Fragonard’s well-knownYoung Girl Read-
ing and an early, but obscure, painting by Kandinsky for
potential bi-directional re-coloring. Since pre-conditioning
renders the Fragonard virtually useless, it is easy to see why
only the Kandinsky re-coloring shown in Figure11was rea-
sonably successful.

7. Conclusions

We have shown that deciding how to extract a palette from
a digital image, make palette associations between two im-
ages, and implement color re-targeting given palette asso-
ciations are three very difficult problems, problems that are
probably best treated separately. Further, we have shown that
deciding whether it is best to extract a palette from anon-
photorealisticimage by using color histogram models such
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Figure 10: Top Row: Fragonard’sYoung Girl Reading
and an early painting of Kandinsky. Bottom Row: Pre-
conditioned versions of these two images showing value ad-
justments made prior to bi-directional color transfer.

as [PNS03] or [WSM99], absolute color naming systems or,
as we have done, color segmentations deserves further study.

The method we presented here for color transfer has sev-
eral strengths and weaknesses with important implications
for future work. Our method’s principal strengths are ide-
ological. First, it is based on a model that makes artistic
and aesthetic sense — reducing an image to a palette —
therefore it is well motivated. Second, it is top down result-
ing in color transfer proceeding from coarse to fine which
again re-inforces our intuition of how color transfer process
should physically take place. Third, by employing multiple
color systems, it is able to more clearly identify and tackle
a broader range of luminosity, hue, and perceptual color is-
sues. Thus our work clarifies the difficulty of using existing
computationalcolor models to solveperceptualcolor prob-
lems that arise during color transfer. Our method’s principal
weaknesses are technical. First, because of the many dis-
parate ways we chose to handle color our method requires
a large number of parameters, and while all our figures were
made using the same settings for these parameters, questions
regarding how widely applicable our settings are or how best
to tune our settings remain unanswered. Second, because of
the hybrid nature of our color segmentation algorithm, our

color transfer is slow, requiring hours instead of minutes for
512× 512 images. Third, because we use an image pyra-
mid, local-global color consistency and coherency issues
arise during color transfer. Thus future work will need to re-
examine the use of segmentation, consider how to streamline
color analysis, and find better ways to take into consideration
the global color relationships within an image.
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