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Abstract

Vegetation rendering and animation in real-time applications still pose a sig-
nificant problem due to the inherent complexity of plants. Both the high
geometric complexity and intricate light transport require specialized tech-
niques to achieve high-quality rendering of vegetation in real time. This
thesis presents new algorithms that address various areas of both vegetation
rendering and animation.

For grass rendering, an efficient algorithm to display dense and short grass
is introduced. In contrast to previous methods, the new approach is based on
ray tracing to avoid the massive overdraw of billboard or explicit geometry
representation techniques, achieving independence of the complexity of the
grass without losing the visual characteristics of grass such as parallax and
occlusion effects as the viewpoint moves.

Also, a method to efficiently render leaves is introduced. Leaves exhibit
a complex light transport behavior due to subsurface scattering and special
attention is given to the translucency of leaves, an integral part of leaf shad-
ing. The light transport through a leaf is precomputed and can be easily
evaluated at runtime, making it possible to shade a massive amount of leaves
while including the effects that occur due to the leaf structure such as varying
albedo and thickness variations or self shadowing.

To animate a tree, a novel deformation method based on a structural me-
chanics model that incorporates the important physical properties of branches
is introduced. This model does not require the branches to be segmented by
joints as other methods, achieving smooth and accurate bending, and can be
executed fully on a GPU. To drive this deformation, an optimized spectral
approach that also incorporates the physical properties of branches is used.
This allows animating a highly detailed tree with thousands of branches and
ten thousands of leaves efficiently.

Additionally, a method to use dynamic skylight models in spherical har-
monics precomputed radiance transfer techniques is introduced, allowing to
change the skylight parameters in real time at no considerable cost and mem-
ory footprint.
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Kurzfassung

Vegetationsdarstellung und Animation in Echtzeitapplikationen stellen im-
mer noch ein grosses Problem aufgrund der inhärenten Komplexität von
Pflanzen dar. Sowohl die geometrische Komplexität als auch der aufwändige
Lichttransport erfordern spezialisierte Techniken um eine hochqualitative
Darstellung von Vegetation in Echtzeit zu erreichen. Diese Doktorarbeit
präsentiert neue Algorithmen die unterschiedliche Bereiche von Vegetations-
darstellung und Animation bearbeiten.

Um Gras darzustellen wird ein effizienter Algorithmus für kurzes und
dichtes Gras eingeführt. Im Gegensatz zu vorherigen Algorithmen ist diese
neue Herangehensweise strahlenbasiert um die massive Überzeichnung von
Billboard- oder explizite Geometrierepräsentationstechniken zu verhindern.
Damit wird eine Unabhängigkeit von der Graskomplexität erreicht, ohne die
Charakteristiken von Gras wie Parallax und Verdeckung zu verlieren.

Zusätzlich wird eine Methode für effizientes Darstellen von Blättern ein-
geführt. Blätter besitzen ein komplexes Lichttransportverhalten und es wird
vor allem auf die Lichtdurchlässigkeit, ein integraler Bestandteil von Blatt-
schattierung, geachtet. Der Lichttransport durch ein Blatt wird vorberechnet
und kann leicht zur Laufzeit ausgewertet werden. Dies ermöglicht die Schat-
tierung einer grossen Anzahl an Blättern, einschliesslich Effekten die durch
die Blattstruktur entstehen wie variierende Reflektivität, Dicke oder Selbst-
abschattung.

Um einen Baum zu animieren wird eine neue Deformationsmethode auf
Basis eines Strukturmechanikmodells, das alle wichtigen physikalischen Ei-
genschaften von Ästen miteinbezieht. Dieses Modell erfordert nicht die Seg-
mentierung durch Joints wie vorhergehende Methoden, wodurch eine weiche
und akkurate Biegung ermöglicht wird, die vollständig auf der GPU aus-
geführt werden kann. Um diese Deformation anzutreiben wird eine spektrale
Herangehensweise benutzt die ebenfalls die physikalischen Eigenschaften von
Ästen benutzt. Diese Technik erlaubt es hochdetailierte Bäume mit tausen-
den Ästen und zehntausenden Blättern effizient zu animieren.

Desweiteren wird eine Methode eingeführt, die eine effiziente Nutzung
von dynamischen Himmelslichtmodellen mit Spherical Harmonics Precom-
puted Radiance Transfer Techniken ermöglicht. Sie erlaubt das Verändern
der Parameter in Echtzeit ohne nennenswerten Rechenaufwand und Spei-
cherverbrauch.
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Of all the wonders of nature,
a tree in summer is perhaps the most remarkable;
with the possible exception of a moose singing
”Embraceable You” in spats.

Woody Allen
1

Introduction

The field of computer graphics, i.e. the science of creating images and ani-
mations synthetically, has a remarkable speed in its technological advances.
Its applications are ubiquitous in modern technology, ranging from mobile
devices to computer games and movies, from medical applications to virtual
reality.

A more specific area of computer graphics, the field of real-time graph-
ics, is concerned with the interactive creation of images, allowing a user to
navigate or edit the contents interactively. Being interactive requires the
calculations to fulfill strong constraints, the image needs to be created in
about 16 milliseconds. To some extent, it is already possible to create pho-
torealistic applications within this constraint, though highly specialized and
sophisticated techniques and preprocesses have to be used.

The calculation power of hardware dedicated to create pictures interac-
tively doubles about every year, exceeding Moore’s Law and allowing for
more and more complex calculations to create realistic images interactively.
A modern hardware has the same power as a supercomputer a decade ago,
leveraging the possibility to parallelize the required calculations.

Of course, computer games are the main driving force behind this devel-
opment, but other applications also start to use the capabilities and possi-
bilities of a GPU1 to its full extent. Most modern computers are equipped
with a capable GPU, allowing the mainstream user to use applications with
sophisticated rendering techniques.

1.1 Motivation

Vegetation in all its different forms is almost always part of a scenery, be it
fully natural or urban. Even in completely cultivated areas or indoor scenes,
though not very dominant, potted plants or alley trees and patches of grass

1Graphics Processing Unit
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CHAPTER 1. INTRODUCTION

are usually part of a surrounding. With computer graphics simulating the
real world, it is no surprise that vegetation has been an essential and wide
ranging research area in computer graphics since the beginning.

Vegetation in computer graphics can be roughly categorized into the field
of modeling the growth of a plant by generating its geometry, and the field of
modeling the appearance and behavior of plants in an environment. Though
real plants all basically use the same processes to grow, a plethora of methods
can be applied to generate plants at various ages, ranging from fractals [71],
L-Systems [79] and procedural approaches [24] to full simulations of ecosys-
tems [27], among others. To display and to animate this generated geometry
interactively, specialized representations, lighting and shading techniques to-
gether with animation or simulation methods are applied to incorporate the
non-geometric attributes of vegetation. Of course, both fields are strongly
connected since the environment impacts the growth of a plant [43]. Also,
geometric representation and lighting or shading techniques are heavily de-
pendent on each other since geometric attributes need to be transported by
the representation in order to have them available for shading.

Though the generation of plants has received more attention than other
aspects of vegetation, only the combination of accurate geometry, appearance
and dynamic behavior results in a convincing result. Especially under real-
time conditions, all facets of displaying vegetation pose significant problems,
which makes interactive rendering and animation of vegetation one of the
biggest challenges in real-time graphics. In this thesis, we want to face this
challenge and provide solutions for a number of open problems.

1.2 Challenges

The term vegetation is a broad term, covering structures such as lawns up
to complete landscapes covered with a forest. Rendering vegetation is sub-
stantially different from rendering geometry with less geometric complexity
such as houses, manufactured products or other objects consisting of largely
connected surfaces.

Many computer games and virtual reality applications are already very
realistic, though most lack a realistic display of plants and trees due to their
inherent complexity. Especially for trees and grass, many standard acceler-
ation and simplification methods cannot be applied. This results in severe
compromises in the realism of their appearance compared to other parts of a
scene. There are several reasons why vegetation is more difficult to display
than other objects:

2



1.3. DISSERTATION THESIS

Geometric Complexity A lawn or meadow for example consists of mil-
lions of small grass blades and a full geometric representation is, due to both
memory and calculation time constraints, not feasible, and simpler repre-
sentations are needed. The goal is to still be able to render and animate
grass that looks convincing and volumetric in its appearance by keeping the
important visual properties of grass.

Concerning trees and treelike plants, it is possible to use a full geometry
representation on current hardware, though only a limited amount of poly-
gons can be spent on each branch and leaf depending on the corresponding
size and shape, also limiting the number of branches to a few thousand and
the number of leaves to a few ten thousand.

A tree in full geometry representation poses challenges to create realistic
animations under the given real-time constraint since every branch and leaf
is perceived as a separate part and thus needs to be treated separately. The
structure of a tree consists of a complex hierarchy of branches to which leaves
are attached, all of which interact with a turbulent wind field, and every part
of the tree must react consistently to wind in order to achieve a realistic and
convincing animation of a complete tree.

Light Interaction Vegetation is not only complex in geometry, also the
light interaction of leaves or grass blades is highly intricate. A leaf for ex-
ample usually consists of different layers and is strongly structured, which
has a profound impact on both the reflectance and translucency of leaves,
an integral part of the light interaction of vegetation. Additionally, many
leaves differ not only between species but also in their light transport on
the front and back, depending on the nature of the surface, and no general
assumptions can be made.

Natural Lighting To display realistic vegetation, care must be taken not
only about the geometry and light interaction, but also about the overall
lighting conditions in natural scenes. The subtle influences of a skylight need
to be incorporated in addition to the sun’s contribution into the calculations
in order to create convincing renderings of natural outdoor scenes.

1.3 Dissertation Thesis

This work focuses on some specific parts of this huge problem set, which
requires specialized techniques for different situations and plant species.

The main thesis of this work is that it is possible to render and animate
vegetation in real time by designing algorithms that fully execute on the

3



CHAPTER 1. INTRODUCTION

GPU, using its parallel processing power. This way, highly detailed effects
in all aspects of displaying vegetation can be calculated efficiently.

1.4 Contributions

A variety of new approaches and improvements over existing techniques is
presented in this thesis. They are mainly concerned with rendering and an-
imation of grass and trees, though a more general improvement for skylight
lighting for spherical harmonics precomputed radiance transfer is also intro-
duced, which may be used to achieve realistic vegetation lighting.

Grass Rendering and Animation To render short and dense grass effi-
ciently, a technique that uses front-to-back compositing of implicitly defined
grass slices is presented. To achieve that, the slices are ray traced in the
fragment shader, leveraging the parallel power of a GPU, which allows easy
integration into existing frameworks. Front-to-back compositing significantly
reduces the overhead and overdraw associated with common vegetation ren-
dering systems. The technique also does not require geometric specifications
of the grass since grass is treated as a volumetric grid over a carrier polygon.

A texture-based approach to animate the grass combines global wind
movements with local turbulences to emulate the highly complex interaction
of grass with turbulent wind, creating a convincing animation. These results
have been published in

• Ralf Habel, Michael Wimmer and Stefan Jeschke, Instant Animated
Grass. In Václav Skala, editor in chief, Journal of WSCG 2007, 15
1–3, pages 123–128, ISBN 978-80-86943-00-8

Leaf Rendering A new shading model for real-time rendering of plant
leaves that reproduces all important attributes of leaves is shown. It allows
for a large number of leaves to be shaded since the model can be instanced
over the complete plant. In particular, a physically based model for accurate
subsurface scattering on the translucent side of directly lit leaves is intro-
duced. A preprocess formulated as an image convolution is used and the
result is expressed in an efficient directional basis (Half-Life 2 Basis) that is
fast to evaluate. Additionally, a data acquisition method for leaves that uses
off-the-shelf devices is shown. The results of this work have been published
in

4



1.4. CONTRIBUTIONS

• Ralf Habel, Alexander Kusternig and Michael Wimmer, Physically
Based Real-Time Translucency for Leaves. In Jan Kautz and
Sumanta Pattanaik, editors, Rendering Techniques 2007 (Proceedings
Eurographics Symposium on Rendering) 2007, pages 253–263, ISBN
978-3-905673-52-4

Tree Animation A new method to animate the interaction of a tree with
wind in real time is presented. It combines statistical observations with
physical properties in two major parts of tree animation. The deformation
resulting from the forces of wind is approximated by a novel efficient two step
nonlinear deformation method, allowing arbitrary continuous deformations
and circumventing the need to segment a branch to model its deformation
behavior.

To animate the deformation, the interaction of wind with the dynamic
system representing a tree is stochastically modeled. The response functions
of branches to turbulent wind are precomputed in frequency space, allowing
to synthesize the branch motions efficiently by sampling a 2D motion texture.

The combination of both methods can be implemented inside a vertex
shader using only the GPU and allows animating thousands of branches and
ten thousands of leaves at practically no cost. This work has been published
in

• Ralf Habel, Alexander Kusternig and Michael Wimmer, Physically
Guided Animation of Trees. In P. Dutre and M. Stamminger,
editors, Computer Graphics Forum (Proceedings Eurographics 2009),
28(2)

Spherical Harmonics Lighting with the Preetham Skylight Model
A fast and compact representation of a skylight model for spherical harmonics
precomputed radiance transfer lighting is shown. This representation allows
dynamically changing the parameters of the skylight model on a per frame
basis. The method is applied to the Preetham skylight model since this model
can deliver both realistic colors and dynamic range and is the most used
model in real-time graphics. The parameters are separated in its spherical
harmonics extension and a polynomial two-dimensional linear least squares fit
for the principal parameters is performed to avoid any significant memory and
computation costs. To remove ringing, a domain specific Gibbs phenomena
suppression is executed before used for precomputed radiance transfer. The
results of this research have been published in
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CHAPTER 1. INTRODUCTION

• Ralf Habel, Bogdan Mustata and Michael Wimmer, Efficient Spheri-
cal Harmonics Lighting with the Preetham Skylight Model. In
Katerina Mania and Erik Reinhard, editors, Eurographics 2008 - Short
Papers 2008, pages 119–122, ISSN 1017-4656
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In creating, the only hard thing is to begin:
a grass blade’s no easier to make than an oak.

James Russell Lowell 2
Grass Rendering

2.1 Introduction

Interactive rendering of vegetation plays an important role in virtual reality
and computer games where grass is an essential part of most natural scenes.
Unfortunately, grass is also very complex. Modeling each grass blade indi-
vidually in a landscape would require a huge amount of geometry, making a
naive geometric approach impractical for interactive rendering. Also, quite
different kinds of grass exist, ranging from short mowed grass areas such as
football fields to high growing meadows in forest scenes.

To render grass efficiently, acceleration techniques and different represen-
tations of the grass geometry have to be applied, simplifying the rendering
process while still keeping the appearance of grass. A plethora of very differ-
ent approaches can be applied, depending on the grass properties as well as
relative position to the camera or other attributes. Usually, different meth-
ods are mixed to cover the full range from close-up views to complete terrain
viewpoints in order to optimize the quality to performance ratio. In Sec-
tion 2.2, different approaches to grass rendering are presented. Additionally,
their advantages and disadvantages are shown while in Section 2.3, the novel
ray tracing based approach to rendering grass is given.

2.2 State of the Art

Image-based Rendering (IBR) is in general the most common approach for
vegetation since geometry that is too complex to render can be well ap-
proximated by IBR techniques. By far, the most widely used and simplest
IBR approach displaying grass is to use semitransparent textured billboards.
These are instanced over the ground to create individual tufts or completely
covered grass areas, using different configurations of billboards such as star
shaped quadrilaterals or long stripes fitted to the terrain. This technique,

7



CHAPTER 2. GRASS RENDERING

with different optimizations, is used by virtually every commercial virtual
reality application or computer game. Usually, not only grass but the com-
plete vegetation is represented through billboards and billboard clouds. Even
the most advanced games still use billboards to represent vegetation as can
be seen in the game Crysis [3](see Figure 2.1). The big advantage of us-

Figure 2.1: A screenshot of the game Crysis using billboards for vegetation
rendering. (picture: [3])

ing billboards is that they do not require any changes or special care in the
rendering pipeline. They only use the standard methods of triangle-based ge-
ometry and textures, and can be combined with standard shading algorithms
such as different lighting models or shadow techniques. Also, billboards pose
few restrictions as to what kinds of plants can be represented, making them
a versatile technique for practical vegetation rendering. They can also be
animated by standard approaches such as vertex displacement [73, 47].

However, this approximation comes at a cost since billboards make heavy
use of transparency. In a meadow for example, the depth complexity is very
high since it cannot be decided if or which part of a billboard is visible in a
frame and the billboards need to be rendered back-to-front. This causes a
tremendous amount of overdraw and therefore limits the amount of billboards
that can be used. This problem can be somewhat diminished by depth
sorting, but usually a large amount of billboards are used, all of which need
to be sorted on a frame-by-frame basis if the camera moves over the grass.

8



2.2. STATE OF THE ART

This allows rendering grass in a front-to-back order but does not allow the
billboards to intersect.

Another drawback is that the quality of appearance is limited, especially
at viewpoints close to the grass. The fact that flat surfaces are used becomes
salient, and the lack of proper parallax and occlusion destroys the realistic
appearance. Nonetheless, a simple billboard representation can be consid-
ered the most successful basic technique and is consequently used in more
advanced methods as a level of detail.

2.2.1 Volumetric and Shell-Based Grass

Grass shares a lot of attributes with fur. Since both structures are dense,
semi-volumetric and consist of thread-like primitives, similar approaches can
be taken. To display such volumetric effects, Kajiya and Kay [51] introduced
volumetric textures, called “texels”. In this context, texels are representa-
tions of a three-dimensional material by a cubic reference volume that is
mapped onto a surface repeatedly. A texel itself is a three-dimensional array
approximating the visual properties of a micro-surface. They were created to
solve the problem of spatial aliasing when ray-tracing complex geometries.
An extension of volumetric textures and their application to natural scenes
was presented by Neyret [67]. Grass rendered with this approach can bee
seen in Figure 2.2. Unfortunately, rendering a texel involves front-to-back
compositing along a ray in a dense volumetric texture, which makes their use
in real-time graphics very limited.

Rendering The typical real-time implementation of texels uses stacks of
polygons, mapped with semi-transparent textures [10, 9, 56, 55, 63]. In shell-
based approaches, copies of the base terrain mesh are created by displacing
the vertices along the normals as seen in Figure 2.3. This is best done by
providing enough duplicate vertices and performing the displacement directly
in the vertex shader. The shells are then mapped with a semitransparent
texture where the opaque parts are at the cross sections of the grass blades.
As proposed by Bakay et al. [9], the height can be encoded in the alpha
channel and only one texture is needed to map all shells. By rendering the
shells in bottom to top order and blending the results, fur or grass can be
rendered similar to the fully volumetric approach. However, slices that are
parallel to a terrain geometry are not optimal for viewing positions typical for
walkthroughs, with objectionable artifacts at viewpoints close to the grass
and at grazing angles (see Figure 2.3). Shell-based techniques are rather
suitable for viewing from above such as in a flight simulator. Also, the
complexity of the grass that can be displayed is limited to very isotropic

9



CHAPTER 2. GRASS RENDERING

Figure 2.2: Grass ray traced through volumetric texels. (picture: [67])

and straight grass since the approach does not use any method based on
photographic textures. Features that break the isotropy such as flowers or
tufts are hard to integrate with this approach. Additionally, many shells are
required to gain the appearance of vertical structures from horizontal shells
and to suppress visual artifacts. A terrain textured with shell-based grass is
shown in Figure 2.4. However, shell-based techniques are very successful in
rendering fur where high density and isotropy is inherent.

Animation An advantage of shell-based approaches is that the grass can
be easily animated by modulating the vertices. Neyret et al. [67] for example
apply a force field to animate the vertices of the extruded shells. Care must
be taken to avoid stretching, which can be counteracted by additionally mod-
ulating the height of the extruded vertices as shown by Bakay et al. [9]. Also,
more elaborate wind models and simulations such as spring mass models can
be applied without modification [10].

2.2.2 BTF based grass

A more general method, Bidirectional Texture Functions (BTF) [23, 64], can
be applied to rendering grass. A BTF is a 6-dimensional function depending
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Figure 2.3: Shells over a terrain and the resulting grass. (pictures: [9])

Figure 2.4: Terrain with shell based grass. (picture: [10])

on planar texture coordinates as well as on view and illumination spheri-
cal angles. This function can be acquired by a set of images of a material
sample taken with different camera and light positions. Due to the high di-
mensionality of the function, several thousand images have to be created to
express high-frequency lighting changes. This also limits the practical res-
olution and compression schemes have to be applied in order to make this
approach practical for real-time graphics.

Rendering As proposed by Shah et al. [86], the BTF of a grass patch
can be created synthetically by using an offline renderer where complex light
interactions such as global illumination can be included. The BTF does not
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include any depth information since the spatial dimensions only cover the
texture coordinates. In order to render silhouettes and proper occlusion with
objects intersecting the grass, a separate function that only encodes the depth
as a function of the camera angle is used. To compress the BTF, Shah et.al
use Principal Component Analysis (PCA) and only encode the chromaticity,
since the grass is assumed to be of general uniform color. This simplification
allows using only the first five eigenvectors to sufficiently reconstruct the
original color information.

At runtime, the BTF is evaluated with the lighting transformed in lo-
cal tangent space. To produce the result for arbitrary camera and light
directions, the three closest sampled directions are used. To achieve correct
silhouette and intersection, the correct z-buffer values are also reconstructed,
which has been generated at a higher resolution than the BTF to avoid depth
aliasing. A complete terrain can be covered by simply tiling the BTF and
blending the borders to decrease tiling artifacts. A terrain shaded with this
method can be seen in Figure 2.5.

Figure 2.5: BTF based grass. (pictures: [86])

A disadvantage of this approach is that a BTF-based approach is lim-
ited by memory, which does not allow a high-resolution BTF and due to
the necessary tiling, variations in appearance are strongly limited. Also, an
expensive decompression on a per-pixel level is required, thus making this
method heavily fill-rate limited. On the other hand, a BTF with depth func-
tion is not dependent on the complexity of the represented geometry and
lighting solution without sacrificing proper intersection and silhouette ren-
dering, which makes it a good choice for very dense and short grass at a
reasonable distance.

Animation The biggest drawback of a BTF based method is that it is not
possible to animate the grass, since any spatial correlations of the geometry
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are lost. One could apply texture coordinate animation, but this would not
result in high-quality animation. Though, it may still provide satisfactory
movements of grass at far distances.

2.2.3 Level-of-Detail Methods

Up to now, only one kind of grass representation has been used to render
grass. Of course, using different representations at different distances to the
camera makes it possible to optimize the quality of grass displayed. The
two main publications using levels of detail (LOD) are by Perbet et al. [74]
and Boulanger et al. [15]. They both use a full geometry representation for
the highest LOD and a simple texture map for the lowest LOD. Where they
differ is the mid-level LOD and shading and animation methods applied. The
main problem that arises in using different LODs is to achieve consistency
in shading and animation between different LODs and their transition from
one into another, as well as in grass density and general appearance.

Rendering As the highest LOD is a full geometry representation of each
grass blade, standard rendering methods are used, though one has to use
proper blending if grass blades are textured semitransparently. On this level,
shading is important to get a realistic look and due to the high polygon count,
standard methods may be prohibitively expensive. To get dynamic lighting
and shadowing, Boulanger [15] proposes a fast approximation tailored for
grass rendering. For ground shadows, the grass vertices are projected to the
ground and rendered into a stencil buffer. To render inter-blade shadows,
a cylindrical visibility map which contains the neighboring grass blades is
preprocessed (see Figure 2.6). This shadow mask is evaluated with a ray-
cylinder intersection of the light direction at runtime.

The mid-level LOD in Perbet et al.[74] consists of the standard approach
of billboards. The consistency between full geometry and billboard repre-
sentation is maintained by precomputing the blades’ positions and control
points in the texture space of the billboard LOD. The transition is done
by rendering and blending the two LODs. Compared to this, Boulanger et
al. use a volumetric approach by rendering an axis-aligned 2D vertical grid,
mapped with a semitransparent texture as seen in Figure 2.7. Since the used
textures are created by rendering the full geometry grass slice by slice, the
appearance is consistent. To address the dynamic lighting in this LOD, a
form of low-frequency BTF is applied. Textures for both front and back sides
of a grass slice with lighting along the three principal axis, both negative and
positive directions, are precalculated and blended at runtime according to the
dynamic light direction.
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Figure 2.6: Shadow mask of a grass blade (left) and resulting shadows (right).
(pictures: [15])

Boulanger et al. also incorporate density mapping to define the density
of grass through a map. For the highest LOD, the map simply defines how
many grass blades are rendered. To modulate the mid-level LOD, each grass
slice has a density threshold map that assigns a threshold to each containing
grass slice and allows cutting out grass slices from the calculations to decrease
the number of blades displayed in a grass slice. To avoid popping while in
transition between different LODs and densities, the result of each LOD is
blended in transitional regions. The result of this approach can be seen in
Figure 2.8.

Mixing different representations of grass leads to efficient and high-quality
renderings since they can be fitted to the current requirements of the view-
point. A major drawback of a mixed approach is that one has to keep track of
all representations within the viewport and blending between them requires
using different representations for the same grass patch and therefore requires
more intricate implementations. Also, it is not trivial to achieve consistency
between LODs, especially if the grass is animated. But depending on the
quality of grass required, LOD methods deliver the highest quality for close
up views for a relative modest performance hit.

Animation Whereas Boulanger does not propose any form of animation,
Perbet [101] applies wind primitives, allowing interaction with the grass and
avoiding a full simulation which would require a prohibitive amount of re-
sources for a complete grass covered terrain. The highest LOD is animated
by precomputing postures through a physical simulation, and then blended
at runtime to create the swaying of the grass. To animate the grass in the
mid-level LOD, the vertices are animated, whereas in the transition region,
the animation of each grass blade is calculated and the previously mentioned
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Figure 2.7: Different LODs of grass. (picture: [15])

control points in texture space are used for animation to ensure consistency
of animation in transitional regions.

2.3 Ray Tracing Grass

As described, grass can be rendered well in a volumetric approach as shown
in Section 2.2.1 or the mid-level LOD of Boulanger (Section 2.2.3). In the
volumetric case, partial opacity of the used textures pose a problem since
grass is inherently a high-frequency structure and requires proper blending
to avoid severe aliasing artifacts.

Typically, a grass texture is fully transparent between the individual grass
blades and fully opaque within the blades. However, partial opacity arises
at the edges of the grass blades if the grass texture is a filtered version of
a higher resolution texture, which is the case for MIP-mapping, or if it has
been generated using an anti-aliased renderer in the first place. Therefore,
the colors and opacities of billboards overlapping in screen space need to be
correctly composited. Just as in volume rendering, this can be done either
in back-to-front or front-to-back fashion [54].

Back-to-front compositing corresponds to standard transparency alpha
blending used when rendering the billboards as geometry. But back-to-front
compositing can be very inefficient because all slices have to be traversed in
order to get a correct result. Furthermore, if the billboards intersect each
other, a consistent back-to-front order does not exist. The popular alternative
of using alpha testing instead of alpha blending leads to noticeable aliasing
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Figure 2.8: Meadow rendered with the method proposed by Boulanger [15].

artifacts especially at the edges of the grass blades, at viewpoints close to
the grass.

Front-to-back compositing, on the other hand, is typically used with ray
tracing and allows for early ray termination when the accumulated opacity
is sufficiently high. This effect can be exploited for grass rendering as well.
Instead of rendering the textured grass billboards using polygons, they can
be implicitly defined on a carrier polygon and ray traced in the fragment
shader using front-to-back compositing (also known as the “over”-operator
[77]). The billboards are arranged as a regular vertical 2D or 3D grid, de-
pending on height and quality of the grass. This approach has the advantage
to exit the ray traversal and respectively the fragment shader when the opac-
ity reaches a user-defined threshold. Since the billboards are ray traced, the
intersecting billboards are handled automatically, always giving correct com-
positing results. The illusion of grass can be maintained even when executing
a small, fixed number of iterations which allows limiting the number of in-
tersections and thus the resources needed.

Therefore, this approach combines the advantages of ray tracing volumet-
ric structures as proposed by Kajiya and Kay [51] with grass rendering, while
still being efficient enough for real-time graphics and using current hardware
to its full extent.

The setup of the ray tracing step is very similar to relief mapping [76],
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where a height map, defined in a shell carried by polygons, is ray traced in the
fragment shader. As with relief mapping, the regular grid of grass billboards
therefore seems to reside inside the carrier polygon (see Figure 2.9).

Figure 2.9: A quad patch (wireframe overlay) rendered with fully opaque
textures. The grid structure is generated in the fragment shader.

The difference is ray tracing a height field inside the fragment shader can
only be done with a search, either through a linear and following recursive
search or through other spatial search structures. Arranging the billboards
in a regular grid, on the other hand, has the advantage that the intersection
can be calculated analytically with the ray-plane intersection equation and
no search or corresponding search structure is needed.

Probably the most significant advantage of ray tracing grass in the frag-
ment shader is the ease of modeling and integration into existing rendering
systems. The grass is defined as a material rather than geometry, and no
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change to the scene definition is required. Compared to a polygon-based
approach, only the carrier polygon has to be given instead of hand-modeled
billboards or a fitted polygonal grid.

2.3.1 Grid Ray Tracer

In order to cover a complete terrain with ray traced grass, a dataset that
defines a patch of grass is defined using the tangent space (u, v, w) of the
carrier polygon. This patch is then instanced all over the terrain. A basic
grass patch consists of the ground texture and a texture containing one sub-
texture for each billboard (or slice) in the patch. Additionally, a fully opaque
grass slice needs to be provided (see Figure 2.10). As the grass textures are

Figure 2.10: A grass data set consisting of grass blades (left), a ground
texture (right) and a fully opaque grass slice (bottom).

packed in one texture, a border of at least 1 pixel needs to be incorporated
to avoid filtering artifacts. The same set of billboard textures is used for
both principal axes of a regular vertical 2D grid. Since they will be applied
in an orthogonal fashion, there is no visible repeating pattern. This is just
for convenience and consistency of appearance, the number of slices used and
how they are applied is not limited by the shown method.

The general approach is depicted in Figure 2.11. The camera view is
transformed into tangent space, and a ray is cast from the carrier polygon into
the shell. This shell is defined by the carrier polygon at the top and a virtual
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Figure 2.11: A ray is cast from the viewing point through a grid of grass
slices.

ground plane at the bottom, which is offset by a user-defined distance along
the negative tangent-space w axis at the vertices (i.e., the inverted normal
vectors). Then, the intersections with the grid are calculated up to a user
defined number of intersections. If there is some remaining transparency in
the result, the remainder is filled with the fully opaque grass slice. Because all
color blending is performed inside the fragment shader, any form of blending
is possible.

In order to save performance, the tangent space vectors are calculated in
the vertex shader and interpolated for the fragment shader. Additionally,
the view vector ~v in tangent space (interpolated from ~p− ~s at each vertex ~p
and viewpoint ~s), and the interpolated texture coordinates (which give the
ray entry point ~e, see Figure 2.11) are passed from the vertex shader.

The user also has to provide the parameters du,v for the distance between
the slices in tangent space and the depth of the ground plane h. Those values
should approximate the image ratios of the used grass slice textures to avoid
strong stretching of the textures as they are mapped to the billboards. du
and dv do not necessarily have to be the same, but the isotropy of the grass is
greatly improved by choosing them to be the same value. The billboards are
aligned to the tangent space axes, so a billboard can be simply represented
by a scalar. With these given values the shader executes the following steps:

1. Set entry point ~e with interpolated texture coordinates.

2. Calculate for both u and v a texture offset to select the initial grass
slices.
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3. Adjust this offset depending on the sign of the view vector so the same
slice is seen from both sides.

4. Calculate the positions pu,v of the first planes to be ray traced in both
u and v directions according to du,v using a floor() operator.

5. Enter the ray tracing loop.

Before entering the ray tracing loop in item 2, two parameters need to be
set for both the u and v axis. Depending on the sign of the viewing vector
in u and v, a texture offset to address different grass slices and a correction
parameter are calculated. They assure that the same grass slice is seen from
both sides and that there are no inconsistencies in the texture lookups during
the ray casting.

Following this setup, the inner ray tracing loop consists of the following
steps:

1. Calculate the intersections with the next slice in u and v direction.
Since the slices are axis aligned, the ray-plane intersection

~x = ~e+ ~v · ~np · (~p− ~e)
~np · ~v

, (2.1)

where ~np is the normal vector and ~p is an arbitrary point on the plane,
simplifies to

~x = ~e+ ~v · pu,v,w − eu,v,w
vu,v,w

, (2.2)

depending on which axis is used.

2. Choose the closer intersection point and increment (or decrement, de-
pending on the sign of v) the corresponding billboard by du,v.

3. Test intersection point against the virtual ground polygon. If the inter-
section is outside the shell, intersect the ray with the ground polygon
using equation 2.2.

4. Composit the current color ~c with the color of the slice ~ci (with as-
sociated alpha values α and αi) using the standard “over” blending
function, assuming that colors are premultiplied with their correspond-
ing opacity values:

~c = ~c+ (1− α) · ~ci
α = α + (1− α) · αi (2.3)
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After the ray tracing loop, the remaining transparency is filled with a texture
lookup from the fully opaque grass slice or the average color of the grass data
set. A single grass patch rendered with the data set of Figure 2.10 using 16
slices for both u and v axes can be seen in Figure 2.12. A very low number (4
was used in the images shown) of ray casting iterations is already sufficient
for high image quality, also limiting the number of required texture reads.
On some modern GPUs, it may prove better to exit the ray casting loop as

Figure 2.12: A quad patch rendered with the data set of Figure 2.10. The grid
structure is apparent at perpendicular angles but vanishes at more grazing
angles.

soon as a pixel is fully opaque. Depending on the hardware used and the
dataset used, an early loop exit should be considered because many pixels
are fully opaque after one or two ray tracing steps, and this may result in a
considerable speedup.

If the grid structure is too apparent, which is mostly the case if the grass is
seen primarily from a perpendicular angle and for high grass, an additional
horizontal plane at half of the shells’ depth can avoid this artifact. The
ray casting step is simply extended by this vertical analogue to the ground
plane. As can be seen in Figure 2.13, the grid structure vanishes even at
perpendicular viewing angles.
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Figure 2.13: A quad patch with the same data set as in Figure 2.12, but with
an additional horizontal plane at half the ground depth. The grid structure
is not dominant even at perpendicular angles.

Visibility Interactions Up to now, only the proper color is calculated
while the depth is calculated as the depth of the carrier polygon. If an object
is inside the grass, it will be clipped at the carrier polygon. A correct depth
value of the grass needs to be calculated in order to resolve the visibility
of objects in the grass. The clipping effect compared to correct visibility is
shown in Figure 2.14. The fully correct solution would be to render all opaque
objects first and generate an offscreen buffer with the corresponding depth
information (e.g. using multiple render targets). While rendering the grass,
the depth value at which to terminate a ray can be read from this buffer.
The drawback is that this method requires a non-trivial modification of the
rendering pipeline as multiple passes are needed. Another, simpler solution
is to generate the depth value while ray casting inside the fragment shader
and set the depth as an output value. The depth value is extracted when a
user-specified threshold of opacity has been reached during the ray casting
loop. Since the ray casting is done in tangent space, the calculated depth of
a ray has to be transformed into camera space and added to the depth of
the carrier polygon. This approach does not require any modification of the
rendering pipeline and gives correct occlusion for the fully opaque parts of the
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Figure 2.14: A grass patch with (left) and without (right) correct visibility.

grass blades. The drawback is that the semi-transparent parts of grass are
not handled exactly, but the artifacts introduced are unnoticeable in practice
due to the high frequency structure of the grass.

2.3.2 Grass Animation

As with any grass rendering technique, the overall realism of grass depends
greatly on wether it is animated or not. Even the simplest techniques such as
animating the vertices of a polygonal billboard with simple periodic functions
increase the quality considerably since the scene is not perceived as static.
Because ray traced grass is texture based, a more sophisticated approach
can be applied that is also texture based. A realistic simulation of grass
movement has to take two components into account. On the one hand, gusts
of wind cause relatively large areas of grass to bend in the same direction.
On the other hand, high-frequency wind turbulences near the ground cause
smaller, but more random movements of grass blades.

Since there are no vertices defined that could be animated, the animation
is done by distorting the texture lookups, which also allows one to increase
the applied spatial frequencies up to the size of a texel. A horizontal shear
transformation per texture lookup of the grass billboards is performed, re-
sulting in a distortion along the u or v direction, depending on the billboard’s
orientation in tangent space. This offset is looked up from a tileable noise
map that is mapped over the complete terrain. To avoid repetitive anima-
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tion, this noise map should cover several grass patches. To achieve the shear
transformation, the offset is linearly scaled with the height of the animated
texel above the virtual ground plane which can be calculated from the ray-
plane intersection. This way, the grass stays fixed on the ground and the
distortion increases linearly to the top of a billboard to mimic the complex
movements of grass in wind. To animate the grass in time, the noise map is
translated over the terrain along the wind direction.

It may seem that, because the transformation executed is a shear trans-
formation, the imposed stretching may be objectionable. Fortunately, only
small perturbations are needed to animate the grass. Also, every grass blade
performs a different shearing, which distracts from the stretching due to the
complexity of the movements. This animation method can also be used to
animate polygonal billboards and is used in a modified and extended form
by Sousa et al. [93] for example.

The advantage of texture-based animation is that any procedural or hand-
crafted texture can be used as long as the texture is tileable. For the shown
pictures, the noise texture was created by using a low-frequency and a high-
frequency Perlin noise function [75]. The low-frequency noise function with a
high amplitude emulates gusts of wind while the high-frequency function with
lower amplitudes emulates the erratic movements caused by small turbulences
of grass blades. A more sophisticated way to create the texture is to use
spectral methods as proposed by Stam [95], defining amplitudes in frequency
space and creating the texture through an inverse Fourier transform. An
extended form of this approach is also used in the animation of trees in
Chapter 4.

2.3.3 Results

The overall performance of the algorithm depends on the number of pixels
covered, as one ray is cast per pixel, and the ray-casting depth, defining the
number of intersection iterations. The shown screenshots where rendered
with an iteration depth of 4, which is already enough to avoid visible arti-
facts and to display correct visibility of intersecting geometry. The datasets
used were generated using Maya and its PaintFX feature, which can deliver
highly detailed vegetation geometry. A fully geometric representation was
generated, and slices of grass were rendered into textures.

Figure 2.15 shows a terrain covered with 8× 8 grass patches, where each
patch contains 16 billboards in u and v direction. Another dataset is shown
in Figure 2.16, consisting of patches with 32 billboards per direction. An
implementation using DirectX 9 and the OGRE [1] open source graphics
engine was tested on two different platforms. The full source code of an
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Figure 2.15: A terrain textured with animated grass with moderate grass
density and height.

HLSL implementation is shown in Appendix A. A Pentium 4 and a GeForce
7900 GT representing commodity hardware and a modern setup consisting
of a Pentium Quad Core at 2.6 GHz and a Geforce 280GTX were used to
benchmark the method. The example scene is rendered at a resolution of
1024× 768 on both systems and additionally at 1600× 1200 on the Geforce
280GTX to measure the performance under the demands of currently used
resolutions in computer games.

To compare these results with standard techniques, the grass in a similar
scene was modeled by hand-placed billboards in the same configuration and
density as the ray traced grid and standard alpha blending. Compared to
this polygonal implementation, the shown method incorporates correct alpha
blending and texture based animation. The average frames per second of ray
traced grass and the corresponding polygonal representation including the
speedup factor is shown in Table 2.1.

As can bee seen, ray tracing grass can deliver a considerable speedup of
up to a factor of 2.6 depending on the used hardware, while delivering correct
alpha blending. The speedup can be explained by the avoidance of massive
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Figure 2.16: A terrain textured with short, dense grass.

ray traced fps polygonal fps speedup
GeForce 7900GT@1024 140 90 1.5
Geforce 280GTX@1024 640 240 2.6
Geforce 280GTX@1600 290 150 1.9

Table 2.1: Average frames per second for different hardware ans resolutions.

overdraw and the fact that current hardware is fill-rate optimized.

2.3.4 Summary

Besides the considerable speedup, the biggest advantage of ray tracing grass
in the pixel shader is that it does not require additional geometry, treating
grass as a volumetric material rather than geometry. Any geometry-based
grass is limited by the number of polygons that can be used whereas in
comparison, the performance of ray traced grass is independent of the density
of the billboards, so a massive amount of billboards can be rendered without
compromising on important effects such as parallax and correct occlusion
of individual grass blades. Additionally, this approach solves the problem of
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compositing in a natural way and can be animated effortlessly. Also, this way
rendering grass is confined to a shader which is easily integrable into existing
rendering frameworks as shown with the OGRE graphics engine. Further,
any standard lighting technique such as light mapping, shadow mapping or
normal mapping can be combined with the shown method since the technique
is completely texture based. Also, irregular tiling methods such as Wang
tiling [21] can be used to map the grass onto a terrain.

However, there are also some drawbacks. If very sparse grass is to be
rendered, the iteration depth needs to be much higher than 4 and most in-
tersections do not contribute to the shading of the grass. Though on modern
hardware, a higher iteration depth can be chosen since the grass will still
render at very high frame rates, the resources are not used optimally. Also,
since the ray casting is done in tangent space, the grass can not be rendered
with correct silhouettes, which is usually not a problem with low grass, but is
a strongly visible artifact when high grass is displayed. This can be avoided
by adapting higher order surface approximations as shown by Policarpo et
al. [70] for height field-traced surfaces. As with height field-traced surfaces,
the camera can not move below the carrier polygon, which limits the height
of the grass. This can be avoided by using a full polygonal grass representa-
tion as a highest level of detail, switching to ray traced grass as the second
LOD analogue to Boulanger et al. [15].

Considering those drawbacks, ray traced grass is best applied to short
dense grass such as a football field or a mowed lawn to leverage the advantages
of the shown technique while avoiding potential artifacts.
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Autumn is a second spring
when every leaf is a flower.

Albert Camus 3
Leaf Rendering

3.1 Introduction

The rendering of leaves in commercial applications such as games and vir-
tual reality simulations is usually avoided completely by representing trees as
billboards or billboard clouds. This means that there are no separate leaves
and the textures used for the billboard are rendered with standard methods,
not taking care of special attributes of leaves. This can already produce
somewhat good results if the textures are generated so they benefit the ap-
pearance of leaves [53]. But this approach does not reproduce the behavior
of leaves in light and can therefore provide only very limited realistic results.

Leaves have a very complex interaction with light and only few assump-
tions can be made since there is a large variety of leaves. They differ not
only in shape and color, but also in surface attributes, ranging from highly
glossy surfaces due to thick wax layers to completely diffuse surfaces due to
micro hairs. Also, leaves usually show very different light interactions on the
adaxial and abaxial side. But the most defining attribute of leaves differen-
tiating them from other surfaces is their translucency, which becomes very
apparent in direct sunlight when seen from the unlit side (see Figure 3.1).

Another research area where light-leaf interaction is important is remote
sensing, which is usually done by satellite or radar. In order to derive values
such as vegetation covering of a landscape, health of plants, water contain-
ment of plants, etc., from measurements, accurate models of reflectance,
translucency and general light transport inside plants or canopies are re-
quired to extrapolate such data. Though those models are targeted to derive
biophysical and agricultural properties, they can also be applied to computer
graphics. An extensive overview of optical properties in the context of remote
sensing can be found in [96].

A realistic leaf can not be modeled using standard methods due to the
intricate light-leaf interaction, and specialized methods have to be applied
to render convincing vegetation since an important part of the appearance
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Figure 3.1: Leaves in sunlight.

is dominated by the scattering of light inside a leaf. Real-time graphics only
tries to model the appearance of objects so fully accurate models that predict
the light transport are not required and using measured data to reproduce
the appearance without an exact knowledge of the internals is sufficient to
display highly realistic results.

In Section 3.3, a novel model for leaf translucency for real-time rendering
is presented. It reproduces all important attributes on a physical basis while
the model is still able to be instanced in order to display a massive amount
of leaves efficiently.

3.2 State of the Art

Scattering of light is a wide field in computer graphics, ranging from scatter-
ing in gaseous structures such as clouds or fog to scattering in fluid and solid
material such as milk, marble, skin or leaves. In fluid and solid materials
which reside inside a non-scattering medium, usually air, the scattering can
be described with a BSSRDF 1[68]. Compared to a BSDF 2, the incident

1Bidirectional Scattering Surface Reflectance Distribution Function
2Bidirectional Scattering Distribution Function
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light can be at a different position than the exitant light, making a BSS-
RDF an 8-dimensional nonlocal function. This high dimensionality poses a
computational problem which can only be solved exactly by path tracing.
Practical methods reduce the dimensionality, compromising on the accuracy
of the solution or deriving analytical expressions for special cases.

Concerning real-time rendering, subsurface scattering is an active research
area with many results. Examples are skin subsurface scattering [32], scat-
tering in more general lighting conditions [100] or deformable models [62].
Although this field can be seen as a complete sub-area of real-time render-
ing, only a few publications propose techniques that specifically deal with
realistic leaf rendering.

Many properties of a leaf such as local thickness, optical density or in-
ternal structure have an essential impact on its appearance. These values
are usually not generated synthetically but measured, so data sets have to
be created that a model can be fitted or verified to. In the following, dif-
ferent measurement procedures are shown which are then used in different
approaches to the problem.

3.2.1 Measurements

As shown in Section 2.2.2, the very general approach to reproduce a sur-
face by measuring or creating a BTF [23, 64] is also a possibility to render
leaves. However, the structure of a leaf is not homogeneous due to the vein
structure and varying surface properties, which requires the corresponding
texture maps to be of high resolution so that a leaf BTF has to be created
in its entirety, making this approach impractical for real-time rendering due
to the massive memory and high reconstruction costs.

To capture the optical properties of leaves, spectro-photo-goniometers are
used, which directly measure the bidirectional reflectance and transmittance
[98][16]. These measurements only provide averages over a larger area of a
leaf and do not incorporate any spatial variances, but are measured spectrally
in both near infrared and optical wavelengths since remote sensing requires
accurate spectral resolution rather than spatial resolution. The results can
be used to fit standard BRDF and BSDF models in order to be useful to com-
puter graphics [16]. Of course, a BSDF is not sufficient to model a realistic
leaf since there is no spatial information which can capture the variations in
albedo or surface structures. Photographed textures can be used to modu-
late the parameters of a BSDF, but in this way, scattering is not correctly
accounted for.

To capture the optical properties spatially, Wang et al. [99] propose to
use a linear light source (LLS) [37] as seen in Figure 3.2, which enables one
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to estimate the diffuse color, specular color, specular roughness and surface
normal on a per-pixel basis. A LLS has the advantage that it can provide

Figure 3.2: A linear light source (LLS) used to measure reflectometry. (pic-
ture: [37])

high-resolution maps of all important surface parameters, and is therefore
well fit to produce the data needed for realistically rendering leaves. The
problem is that the availability of a LLS is limited, and needs to be custom
built for this purpose.

3.2.2 Radiative Transfer Models

Many researchers proposed techniques to model subsurface scattering in
leaves. One of the first publications that tackle the general problem of SSS
and also apply it to leaves is Hanrahan et al. [44]. It uses one-dimensional
linear transport theory to derive explicit formulae for reflectance and trans-
mittance. Multiple layers are incorporated and the light transport is modeled
with Monte Carlo ray tracing to evaluate the BDFs.

A brute-force approach was applied by Govaerts et al. [41], who rep-
resented the internal structure of leaf tissue and the corresponding optical
properties explicitly and solved the radiative transfer through ray tracing.
A model that is also based on ray tracing but uses available biological in-
formation was proposed by Baranoski et al. [11]. It was later extended by
precomputing the reflectance and transmittance values that are applied to a
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simplified scattering model [12]. This model is controlled by a small num-
ber of biologically meaningful parameters such as pigment concentrations,
thickness, index of refractions and oblateness of epidermis cells. It can de-
liver a good model to predict the spectral BDFs of leaves. The results of
this approach are shown in Figure 3.3. The LEAFMOD model proposed by

Figure 3.3: Front lit (left) and back lit (right) rendered with the model
proposed by Baranoski et al. [12].

Ganapol et al. [36] solves the one-dimensional radiative transfer equation in
a slab with homogeneous optical properties and generates an estimate of leaf
reflectance and transmittance.

All of these models have in common that they do not take into account the
full BSSRDF and do not account for any structures like veins or variations
on the leaf surface such as wrinkles and bulges or include the self shadowing
of those structures. Including these is imperative to the realistic and con-
vincing rendering of leaves. Also, simulating the radiance transfer through
ray tracing on a highly detailed leaf requires an extraordinary amount of cal-
culation time to arrive at a convergent solution. So even for preprocessing,
a ray tracing approach is tedious.

Radiative Transfer Models in Real-time Graphics A real-time method
to render leaves that uses the LEAFMOD model by Ganapol et al. [36] is
proposed by Wang et al. [99]. To generate the used data, as mentioned in
Section 3.2.1, a LLS measures both the BRDF and BTDF of the adaxial and
abaxial side of a leaf. The results are maps for the diffuse reflectance, spec-
ular intensity, roughness and diffuse transmittance of both sides. This data
is then fitted to the LEAFMOD model to calculate the thickness variation
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map, albedo map and average of the absorption and scattering coefficient.
These maps and values are then used to execute the fitted BDFs in real time.

This is combined with a lighting model that decomposes the lighting into
the low-frequency parts of the environment plus the indirect lighting and the
high-frequency parts caused by the sun. The low-frequency contributions are
modeled with spherical harmonics lighting [92], while the direct sunlight is
modeled using an environment map that is calculated by a convolution of
the visibility and the sun modeled as a disk. Both parts are preprocessed,
saved and evaluated on a per-vertex basis, which makes the method some-
what limited since a high number of vertices is needed to express the high
frequency parts of the lighting and requires a large amount of memory. Also,
instancing is only possible with the used BSDF parameter maps, which does
not allow rendering a large amount of leaves for the display of a full tree for
example. Results using this approach can be seen in Figure 3.4. Though

Figure 3.4: Leaves rendered with the method proposed by Wang et al. [99].

this method models the light-leaf interaction on a physical basis, only a one-
dimensional transfer is calculated and the detailed structures of a leaf are
not incorporated, making the leaves appear too smooth. Also, the ques-
tion has to be posed why the surface normal is not extracted and used to
fit the BDFs instead of using the interpolated normal from the geometry.
The most likely problem is that the lighting model used cannot deal with
with mapped normals. Since the light-leaf model is tied to the used lighting
model, standard methods such as shadow mapping can not be combined with
the proposed method, which limits its practicability in full scene or even full
plant renderings.

3.2.3 Diffusion-Based Models

For highly scattering media where multi-scattering is a dominant factor, a
radiance transfer modeled through path sampling is not completely neces-
sary. The scattering can be treated as a diffusion process as introduced by

34



3.2. STATE OF THE ART

Stam [94]. Stam solves the diffusion through a multi-grid approach to render
the multiple scattering in clouds.

An efficient simulation of subsurface scattering was proposed by Jensen
et al. [50], which uses an analytic expression based on the dipole diffusion
approximation. It is assumed that the material is homogeneous and semi-
infinitely thick. This allows formulating the BSSRDF analytically and has
been modified for faster rendering in [49]. It is fast enough to be modi-
fied for real-time rendering as shown by Mertens et al. [62] and is used in
many publications such as d’Eon et al. [26] to render scattering in different
materials.

Donner and Jensen [30] extended this to accurately and efficiently calcu-
late subsurface scattering in multi-layered thin slabs by using a multi-dipole
approximation. Since leaves are thin slabs, this extension to the original
dipole approximation is applicable to model the light-leaf interaction and is
also the basis of the real-time method shown in Section 3.3. Leaves ren-
dered with the multi-dipole approximation can be seen in Figure 3.5. The

Figure 3.5: Front and back, front lit (left pictures) and back lit (right pic-
tures). (pictures: [30])

model can produce quite realistic results, incorporating effects like different
reflectance on the different sides of a leaf. Also, the effect of nearly identical
intensities of the transmittance through the different sides is a result of the
model rather than originating from the used data, which shows its accuracy.

Franzke et al. [35] showed a simplified single scattering algorithm for
leaves based on Jensen et al. [50] by using only the single scattering to model
the transfer through a leaf. This reduces the calculation cost significantly
but does not include any multi-scattering effects (see Figure 3.6). Besides
the dipole diffusion, none of these methods can provide the speed necessary
to calculate the scattering in real time.
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Figure 3.6: Plant rendered with single scattering according to Franzke et
al. [35].

3.3 A Leaf Model for Real-Time Rendering

Though leaves are very thin, sometimes even below one millimeter, the par-
ticipating medium is optically thick and thus multiscattering is a dominant
part of light scattering in leaves. This leads to a very diffuse translucency be-
cause the directionality of any incident light is destroyed and also makes the
dipole diffusion approximation a good choice to model scattering in leaves.
The dipole approximation can be executed in real-time by undersampling and
interpolating the solution. This is a good approach for rendering subsurface
scattering of skin on characters for example where the average scattering
length is much smaller than the spatial frequencies on the character. The
scattering situation inside a leaf is somewhat different because the surface of
leaves is not smooth due to the bulges caused by veins or other mesoscopic
structures. This does not only have an impact on the reflectance of a leaf,
but also has an essential influence on the transmitted light. To achieve a
realistic leaf, the scattering needs to be calculated including every detail.
Thus, a sparse evaluation followed by an interpolation as done with skin ren-
dering [17, 45], cannot include the defining attributes of leaf translucency.
On the other hand, the scattering is very local due to the thinness of leaves
and allows reproducing the scattering through a texture based precomputed
radiance transfer approach. Based on these insights, a translucency model is
presented in the following sections that is tailored for the efficient rendering
of leaves.
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3.3.1 Overview

Before going into details of the real-time rendering of leaves, first, the under-
lying model and the associated acquisition process is described. Similar to
Wang et al. [99], the leaf is modeled as a thin slab of homogeneous material
with rough front and back surfaces. The spatially varying reflectance is en-
coded in an albedo map α(~x), and variations in leaf thickness in a thickness
map d(~x). To specify the color of the translucency calculated with the pre-
sented model, an average translucency map ρt(~x) is used. Finally, a normal
map ~n(~x) gives the possibility to accurately simulate high-frequency specu-
lar reflections and accurate translucency. All maps exist for both the adaxial
and abaxial surface of a leaf.

The light interaction in a leaf is determined by several terms:

L = LSd + LSi + LE,

i.e. the contribution of direct sunlight, indirect sunlight and environment
lighting. The contribution of direct sunlight can be further split into

LSd = Lr + Lt,

the reflective and translucent components, where only one is non-zero de-
pending on the dot product between leaf normal and light direction. The
shown technique concentrates on the translucency Lt from the direct sun-
light illumination since it is the most prominent influence and its directional-
ity causes the translucent part of a leaf to be very dependent on the direction
of the sunlight. The indirect or environment illumination LSi , LE are approx-
imated by an ambient term in the results. Usually LSi , LE already have a
low-frequency distribution in their directionality which is then further dif-
fused by the scattering, allowing this approximation by standard techniques.
These terms could be calculated following the model of Wang et al. [99] and
neglecting the full BSSRDF in those terms.

The data acquisition for the required maps is shown in Section 3.3.2, while
the calculation of the reflectance term Lr is covered in Section 3.3.3. The
translucency model for Lt, its precomputation and its real-time evaluation is
shown in detail in Section 3.3.4.

3.3.2 Data Acquisition

A much more realistic result than creating leaf appearance data algorithmi-
cally can be achieved by measuring the data, since nature contains many
small imperfections which are automatically captured. In this case, the sur-
face of a leaf is fully reproduced so all structures on its surface, including any
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bending and bulging are incorporated, resulting in a very realistic appear-
ance. The acquisition setup allows generating high-resolution maps (smaller
than 1mm) using a very simple process and off-the-shelf scanning hardware,
so even the smallest details, which have an essential impact on both the
reflectance and translucence are captured.

The devices used are a 3D scanner operating at an effective resolution
of 0.1 mm (Minolta VI-910), a digital camera (Canon EOS 20D) with fixed
exposure time, two 1,000 Watt light sources with large box diffusers, and an
easy to construct fixing frame for the leaf. The large diffusers are used to
approximate hemispherical illumination, which is required for capturing the
albedo, removing any directionality in the illumination. The fixing frame
guarantees that the leaf remains unchanged during the acquisition process,
ensuring the consistency of the acquired data. The leaf is fixed in the frame
using wire bridges with small clamps to keep the leaf in a straight but nat-
ural position. 3D scanner, camera and diffusers are arranged as shown in
Figure 3.7. The leaf is sampled by first taking a 3D scan, then the scanner

Figure 3.7: Schematics of the acquisition setup and a close up of the fixing
frame. For the 3D scan, the 3D scanner replaces the diffuser.

is replaced with a diffuser and the albedo is recorded using the camera. To
capture the translucency, the front diffuser is switched off and a picture is
taken with the back diffuser on. After carefully turning the fixing frame by
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180 degrees, the same steps are repeated to process the back side of the leaf.

For postprocessing, standard tools are applied. To process the raw scanned
data, Geomagic [2] was used to filter the geometry with a moderate smooth-
ing filter so as not to impact the high-frequency structures, but to remove
the high-frequency noise, and to align the scans of the adaxial and abax-
ial side. Maya was used to create a simplified mesh and to generate highly
detailed normal maps [20] and displacement maps for both sides. Further,
the thickness map is generated by subtracting the displacement maps, nor-
malized to a user-defined maximum thickness which can also be measured
directly on the leaf. The normal maps are not bound to a specific geometry
but can be mapped to different geometric levels of detail (see Figure 3.8).
Also, low-frequency variations can be generated by using different leaf carrier

Figure 3.8: The scanned geometry, normal-mapped simplified geometry and
the normal map on a quad patch. The highlights have been exaggerated for
visualization purposes.

geometries. Depending on the specularity of the measured leaf, the gener-
ated albedo maps may need highlight removal using standard image process-
ing techniques. By keeping the exposure fixed, the fact that the albedo on
the abaxial side is higher is automatically reproduced in the generated tex-
tures. Figure 3.9 shows a complete data set generated using this measure-
ment method. In comparison to the acquisition setup by Wang et al. [99],
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Figure 3.9: A complete data set of a leaf, consisting of albedo (left), translu-
cency (middle) and normal map (right) for both sides and a thickness map
(bottom).

the per-pixel BRDF or BTDF data is not captured, requiring a custom-built
linear light source device in order to measure both sides. Spatially varying
roughness or specular intensity according to measurements cannot be en-
coded, though hand-produced modulations of BRDF and BSDF parameters
are still possible. On the other hand, high-resolution normal maps are cre-
ated, which causes highlights to be placed more accurately according to the
high-frequency structure of the leaf. This is not the case for the method
proposed by Wang et al. [99]. This means that without normal maps, any
geometric feature needs to be modeled geometrically which is why there are
limits to the applicability of their method.
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3.3.3 Reflectance

The structure of a leaf is mostly perceived in its specular reflectance prop-
erties due to direct sunlight illumination (Lr), revealing its high-frequency
structures, which are the most prominent features in the illumination and
need to be modeled correctly to achieve a realistic leaf rendering. There is
a huge variety of leaf BRDFs, ranging from velvet-like due to micro-hairs
to highly specular caused by a thick waxy layer. In most cases, the front
of a leaf has broad specularity whereas the back of a leaf is diffuse. This is
mostly true for broad leaves, but there are also plants which have a highly
specular back side, such as Larrea tridentata. As with many parts of nature,
no general assumptions can be made due to the large variety of plants and
their leaves.

Following Bousquet et al. [16] and Wang et al. [99], the Cook-Torrance
shading model [22] is used for the front side of the leaf. A simple diffuse
model is applied to the back side of the shown leaves. This is not a gen-
eral limitation, the reflectance attributes of each measured leaf should be
examined to match them for a faithful reproduction. Other BRDFs such as
Blinn [14] or Schlick [85] are also good choices depending on the physical
accuracy required or other factors such as editability or parameter tuning.
A BSSRDF approach for reflective subsurface scattering has been consid-
ered, but the difference to a standard BRDF model is negligible because
the non-directional contribution due to subsurface scattering is included in
the albedo map from the acquisition process. This is because in contrast
to skin rendering, the subsurface scattering is calculated in a very thin and
highly absorbing medium, keeping the range of light diffusion down to a few
millimeters at maximum.

As for the parameters of the Cook-Torrance BRDF, the measured and
fitted specular coefficients of Bousquet et al. [16] are used. Their measure-
ments define a range of n = 1.2 − 1.7 for the effective refractive index and
σ = 0.078− 0.5 for the roughness, covering highly specular leaves (e.g. Lau-
rel) to nearly diffuse specular lobes (e.g. Hazel). Figure 3.10 shows leaves
with different parameter configuration.

Since high-resolution normal maps were produced, the BRDF is eval-
uated using the looked-up normals instead of the interpolated geometric
normal. The diffuse term is taken from the albedo map. The reflective
contribution from direct sunlight, which is modeled as a directional light
L(ω) = LDδ(~ω − ~ωD) with light intensity LD, light direction ~ωD, and Dirac
function δ, therefore evaluates to:

Lr(~x, ~ωo) = LD(
α(~x)

π
+ fs(~n(~x), ~ωD, ~ωo)(~n(~x) · ~ωD) (3.1)
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Figure 3.10: Quad patches shaded with highly specular (top) and almost
diffuse (bottom) reflectance, and with a directional light at steep (left) and
grazing angle (right).

where ~x is a surface point, ~ωo is the outgoing direction and fs is the specular
BRDF. The complete reflective BRDF is thus fr = α+fs. Note that to arrive
at the correct diffuse term, α(~x) would theoretically have to be reduced by
the albedo of fs, however this term is negligible at non-grazing angles.

3.3.4 Translucency

One of the main insights of the shown technique is that while subsurface
scattering has only negligible impact on the appearance of the light-facing
side of a leaf, it is the dominant factor for the opposite side. Figure 3.11
demonstrates the difference between a simple, yet state-of-the-art translu-
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cency model based on a diffuse BTDF, and the shown BSSRDF approach.
As opposed to the reflective part of the leaf, where high-frequency features

Figure 3.11: Physically based leaf translucency (top) with light at differ-
ent angles from steep (left) to grazing angles (right) in comparison to the
standard diffuse translucency model (bottom).

are conveniently modeled using a normal map, the presented method is the
only one which introduces lighting effects due to high-frequency surface vari-
ations in the translucent part compared to a simple diffuse shading model
using the geometric normal of the leaf. By including these variations, de-
pending on the incident light angle, the leaf appears either smooth at steep
angles or shows the influence of the high-frequency details from bulges and
veins at grazing light angles (see Figure 3.11).

The main features taken into account by the BSSRDF model are self shad-
owing of the leaf before the light penetrates into the leaf interior, variations
in leaf thickness, and variations of the reflectance properties over the light-
facing leaf surface. These effects lead to variations in the amount of light
entering the medium and scattering towards a specific point to be shaded on
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the opposite leaf surface. Note that the presented model is local to a leaf, and
therefore light variations due to shadows from other leaves or similar only
modify the resulting radiance, but do not enter into the subsurface scatter-
ing computations. These effects can be handled using standard real-time
shadow algorithms. However, the influence of such large-scale structures on
subsurface scattering in leaves, which happens on a much smaller scale, is
negligible.

To model the BSSRDF light transport through the leaf, the multi-dipole
approximation introduced by Donner and Jensen [30] is used. The main
concepts of this method are shown in the following section, which are then
formulated as an image convolution using the measured data. This model
is then used to precompute the exitant radiance as a function of the light
direction which is expanded into the Half Life 2 basis.

All calculations are carried out in the tangent space of the simplified
geometry, scaled to preserve all physical units. The tangent space can safely
be assumed to be locally flat in comparison to the typical length of scattering
paths, which is a prerequisite for the used BSSRDF model.

3.3.5 Light Diffusion in Leaves

To model the scattering inside a leaf, it is assumed that the leaf material is
homogeneous and characterized by its absorption coefficient σa, scattering
coefficient σs and the mean cosine of the scattering phase function g, which
defines if the scattering is isotropic or has a forward or backward trend.

The Bidirectional Scattering Surface Reflectance Distribution Function
(BSSRDF) [68] is formally defined by

S(~xi, ~ωi, ~xo, ~ωo) =
dLo( ~xo, ~ωo)

dΦ(~xi, ~ωi)
, (3.2)

where Lo is the outgoing radiance on the non-light facing side and Φ is the
incident flux on the light-facing side of the leaf. ~xi and ~ωi are the incident po-
sition and direction and ~xo, ~ωo are the exitant position and direction. Jensen
et al. [50] showed that for a semi-infinite homogeneous slab, the BSSRDF
can be approximated by a diffusion dipole, defined by 2 virtual point light
sources where a positive light source resides inside the material and a nega-
tive light source is above the surface. Both light sources are set so that the
boundary condition on the surface are met, which results in the assumption
that the material is a semi-infinite slab.

Compared to that, in a thin slab, two boundary conditions have to be
taken into account. Light that reaches either the front or the back of the
leaf exits the scattering material and never returns. In order to match both
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the boundary conditions on both surfaces, multiple dipole-pairs are required
[30]. The boundary conditions are expressed in terms of the scalar irradiance
φ, also called fluence:

φ(r)− 2AD
δφ(r)

δz
= 0 at z = 0, z = d (3.3)

where D = 1
3σ′t

with the reduced extinction coefficient σ′t = σa + (1 − g)σs.

Expression (3.3) is applied at the front surface at z = 0 and the back surface
at a depth of z = d. The term A represents the change in fluence due to
internal reflection at the surface:

A =
1 + ρd
1− ρd

. (3.4)

Since leaves have a rough reflective surface, the average diffuse reflection ρd
of the reflective BRDF fr is used, which can be evaluated using sampling,
instead of a Fresnel term.

In order to match the boundary condition at z = 0 given in (3.3), a
real positive point light is placed under ~xi at a depth of one mean free path
l = 1/σ′t [72]. By placing a negative virtual light source at (1 + 4A/3)/σ′t =
2zb + l, the net fluence at −zb = −2AD vanishes and results in a good
approximation for the first boundary condition at z = 0 [33], creating a
dipole configuration. Both the positive and negative light are treated as
being inside the participating medium since the negative light source creates
the correct boundary conditions for the fluence field. This configuration
corresponds to the dipole approximation for subsurface scattering proposed
by Jensen et al. [50].

To satisfy the second boundary condition at z = d, the existing dipole
is mirrored at the extrapolation distance of the second boundary condition
at z = d + zb, which in turn needs to be mirrored at zb again to match the
first boundary condition. This iterative process can be continued to infinity
where the limit converges to the matching of both boundary conditions.

Following this iteration, the positions zr,j and zv,j of the positive and
negative diffusion dipole poles can be expressed with

zr,j = 2j(d+ 2zb) + l

zv,j = 2j(d+ 2zb)− l − 2zb, j = −n...n. (3.5)

The resulting fluence field is then defined by

φ(r) =
n∑

j=−n

Φ

4πD

(
e−σtrdr,j

dr,j
− e−σtrdv,j

dv,j

)
(3.6)
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where dr,i = |~x0 − ~xr,j| is the distance from ~x0 to the real light sources,

dv,j = |~x0 − ~xv,j| the distance to the virtual light sources and σtr =
√

3σaσ′t
is the effective transport coefficient. Figure 3.12 shows a slice through a leaf
along the z axis of the fluence field for one incident radiance point ~xi.

The diffuse transmittance at the non-light facing surface is equal to the
gradient of the fluence (3.6), depending on the slab thickness D and the
distance r = |xo − xi| from the incident point:

T (r, d) = −D~n ·
~∇φ(~x0)

dΦ(~xi, ~ωi)
(3.7)

which evaluates to

T (r, d) =
n∑

j=−n

α′

4π

(
(d− zr,j)(1 + σtrdr,je

−σtrdr,j )

d3
r,j

−(d− zv,j)(1 + σtrdv,je
−σtrdv,j )

d3
v,j

)
, (3.8)

where α′ = σ′s/σ
′
t is the reduced albedo. Figure 3.13 shows the transmit-

tance for a fixed set of physical properties, depending on the thickness d and
distance r, revealing an exponential falloff as the thickness increases, and
a smooth, Gauss curve-like falloff as the distance increases. This falloff is
relatively strong, taking into account the fact that in a very thin slab, most
of the light exits the leaf before it can be scattered far away from the entry
point. The BSSRDF for translucency is the transmittance within the leaf
multiplied by the transmittances at the incident and exiting leaf surfaces:

S(~xi, ~ωi, ~xo, ~ωo) = ρt(~xi, ~ωi)T (r, d)ρt(~xo, ~ωo). (3.9)

Analogue to the entry point, transmittance is used instead of Fresnel terms
since the leaf surfaces are rough. To calculate ρt, it is assumed that all
light which is not reflected is transmitted into the material to be scattered.
Therefore, ρt(~x, ~ω) = 1 − ρd(~x, ~ω), where ρd(~x, ~ω) is the reflective albedo.
Note that front and back surfaces have different BRDFs and thus different
albedos.

3.3.6 Light diffusion as an image convolution process

In order to achieve a formulation of subsurface scattering that is amend-
able to process highly detailed leaf measurements, the BSSRDF evaluation
is expressed as an image convolution process that operates directly on the
maps and values measured by the data acquisition as previously described
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Figure 3.12: Fluence field defined by the multi dipole configuration. Green
are positive, red are negative values.
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Figure 3.13: Transmittance at different thickness d and distance r for a fixed
set of physical properties.

in Section 3.3.2. Reformulating equation (3.2) gives an expression for the
translucent radiance:

Lt(~xo, ~ωo) =

∫
Ω

∫
A

L(~xi, ~ωi)S(~xo, ~ωo, ~xi, ~ωi)(~n(~xi) · ~ωi)d~xid~ωi (3.10)

In this case, one directional light of unit intensity (LD = 1) in direction ωD
is assumed for the precomputation, represented by a Dirac impulse. Later,
the result is modulated with the actual light intensity to achieve interactive
lighting. Also, self-shadowing from the leaf is taken into account through a
visibility term V (~xi, ~ωi), so that the radiance arriving at ~xi is

L(~xi, ~ωi) = δ(~ωi − ~ωD)V (~xi, ~ωi). (3.11)

Substituting this and equation (3.9) into (3.10) gives

Lt(~xo, ~ωo, ~ωD) = ρt(~xo, ~ωo)

∫
A

T (r, d)E(~xi, ~ωD)d~xi (3.12)

with an irradiance transport function E(~x, ~ω), which describes the light trans-
port from direction ~ω to the point ~x just below the surface:

E(~x, ~ω) = ρt(~x, ~ω)V (~x, ~ω)(~n(~x) · ~ω). (3.13)
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Equation (3.12) describes the translucent light transport to ~xo in a thin slab
(leaf) for a given light direction ~ωD. This equation already has the form of
a continuous convolution process of the signal E(~x, ~ω) with kernel T (r, d)
(equation (3.8)).

To take the thickness variations into account, the measured thickness
d(~xi) is taken as a local approximation of the boundary conditions that lead
to the transmittance term. This makes the convolution kernel T (r, d(~xi))
non-stationary. This local approximation, which is inherent in the multi-
dipole model, matches the actual boundary conditions closely in the case
of leaves, except for vein sides, which get slightly softer. This is the same
approximation that Jensen et al. make, providing only a local approximation
of the scattering material. Taking into account arbitrary boundary conditions
accurately is still the main limitation of dipole approximations in comparison
to a full Monte Carlo simulation [30]. Donner et al. [31] proposed to use a
quadrupole configuration to model the subsurface scattering at orthogonal
edges and use a weighted interpolation to interpolate arbitrary edges.

Finally, the fact that all spatially variant variables are given in maps with
the same resolution is exploited and the continuous convolution is converted
into a discrete one by discretizing the area integral. As area element, the
constant physical area of a texel Ap in the maps according to the scaled
tangent plane is used.

Lt(~xo, ~ωo, ~ωD) = ρt(~xo, ~ωo)Ap
∑
~xi

T (r, d(~xi))E(~xi, ~ωD) (3.14)

Now the calculation of Lt can be implemented as an image convolution, using
albedo, transmission, thickness and normal maps as input. Please note that
although equation (3.14) represents an image convolution, all the variables
such as distances are still the physical lengths on the leaf, and apart from
discretization, the result is still an exact representation of (3.10). This result
is not limited to preprocessing for real-time rendering but can also be used in
a physically based ray tracer, integrating over the light direction ~ω for global
illumination.

3.3.7 Real-Time Translucency

The convolution as derived in the previous section, though fitted to the ac-
quired data, is not directly applicable in real time since every leaf rendered
would need its own high-resolution convolution. With equation (3.14), the
translucency can be calculated for a given light direction ~ωD for each pixel
~xo on the leaf surface.
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By separating this equation, one obtains the directional part that only
depends on ~ωD:

Lt(~xo, ~ωo, ~ωD) = ρt(~xo, ~ωo)L
D
t (~xo, ~ωD) (3.15)

with
LDt ( ~xo, ~ωD) = Ap

∑
~xi

T (r, d(~xi))E(~xi, ~ωD) (3.16)

For a real-time evaluation, the expensive image convolution can be pre-
computed , thus requiring new means to efficiently store and evaluate the
resulting hemispherical function LDt (~xo, ~ωD) for every pixel. In order to do
so, the Half Life 2 basis can be used as a directional basis.

Furthermore, the following important simplification for real-time render-
ing is made: in principle, the function Lt is wavelength dependent, and
therefore would have to be evaluated for several spectral bands, which could
be done by calculating Lt(~xo, ~ωD) with a trichromatic convolution, using the
measured albedo and transmission coefficients of both sides of the leaf, and
color-dependent coefficients. However, the result is far more convincing if one
uses the measured average translucency, which contains both ρt(~xo) and the
very complex spectral absorbing behavior and microstructures that appear
in a back lit leaf. Also, any form of structure such as dirt are visible in the
translucency and included in the rendering. Therefore, the directional part
LDt is only evaluated for one dominant wavelength. In the case of leaves, this
is at a wavelength of 510nm because leaves are dominantly green, basically
capturing the effects on luminance effected by subsurface scattering. If red
or colored autumn leaves are to be rendered, this wavelength needs to be
corrected for the dominant color. The full chromatic effect in the final exit-
ing transmittance ρt(~xo, ~ωo) is added by substituting this quantity with the
captured translucency ρt(~xo). Here, the view dependence is also dropped due
to the fact that it can be considered to be practically diffuse [12].

3.3.8 The Half Life 2 Basis

The Half Life 2 basis (HL2 basis) is a little documented vector basis that
was introduced in the Source engine [61] to combine light mapping and nor-
mal mapping by expressing the normal map in terms of the HL2 basis and
evaluating the light map for the HL2 basis vectors. This works for example
for radiosity, which can be interpreted as a linear function of the normal
vector. It was also used to achieve normal mapping in combination with
spherical harmonics-based precomputed radiance transfer [91], in which case
the vectors are interpreted as functions in terms of the dot product.
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The HL2 basis itself is generated by 3 orthogonal vectors, rotated relative
to the tangent coordinate system so that the angle between adjacent vectors
projected on the tangent plane is isotropic, and the angle between the tangent
plane and each vector is identical (Figure 3.14):

~H1 =
(
− 1√

6
,− 1√

2
, 1√

3

)
~H2 =

(
− 1√

6
, 1√

2
, 1√

3

)
~H3 =

(√
2
3
, 0, 1√

3

)

Figure 3.14: The 3 vectors that define the Half Life 2 basis. The colors
correspond to their coefficient channel.

These vectors define three cosine basis functions on the hemisphere (see
Figure 3.15):

Hi(~ω) =

√
3

2π
~Hi · ~ω. (3.17)

The cosine functions do not get clamped, so all basis functions contribute
over the whole hemisphere, including negative values where the dot product
is negative. This is necessary to achieve the orthogonality of these basis
functions which can be verified by their pairwise hemispherical integration:∫

Ω

Hi(~ω)Hj(~ω)d~ω = δij. (3.18)
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Figure 3.15: The Half Life 2 basis functions. Red are positive and blue are
negative values.
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Therefore, a hemispherical function f(~ω) can easily be projected into the
HL2 basis:

f(~ω) =
∑
i=1...3

hiHi(~ω) (3.19)

using the basis coefficients

hi =

∫
Ω

f(ω)Hi(~ω)d~ω. (3.20)

Even though the hemispherical function represented is always positive, one
of the coefficients hi can be negative in extreme cases.

The advantage of the HL2 basis is that it is very cheap to evaluate the
represented function in one given hemispherical direction, which is exactly
what is needed for the direct sunlight evaluation. This is in contrast to other
hemispherical bases (e.g. spherical harmonics [92] or wavelet bases [57]),
requiring the light to be transformed into the used basis, and are therefore
preferable only in situations where the illumination itself is also a hemispher-
ical function and not a single direction. Since the basis has only three terms,
only low-frequency signals on the hemisphere can be represented, but due to
the blurring properties of subsurface scattering, it is sufficient for the shown
method.

3.3.9 Projecting Translucency into the HL2 basis

For each position ~xo on the leaf, the translucency function is projected into
the HL2 basis by evaluating equation (3.20) for LDt (~xo, ~ωD). In order to eval-
uate the hemispherical integral, it is sampled with a uniform distribution of
NL light directions over the hemisphere using Shirley’s square to hemisphere
mapping [89] to map stratified random points to a hemisphere. LDt ( ~x0, ~ωm)
is extended into the HL2 basis using

hi(~xo) =
2π

NL

∑
m=1..NL

Hi(~ωm)LDt (~xo, ~ωm) (3.21)

where NL is the total number of lights used.
For each light direction ~ωm, the image convolution (3.16) is performed

using the acquired maps and the convolution kernel T (r, d(~x)). It is not
required to convolve every pixel with every pixel. To calculate a maximum
size for the kernel, equation (3.8) is evaluated at the thinnest part of the
leaf, and the radius where the transmittance falls below a small threshold
(10−6) is determined. The result of the projection is a HL2 coefficient map
(Figure 3.16).
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Figure 3.16: The normal map, height map, and the resulting HL2 coefficient
map.

It is interesting to note that the special case of perfectly isotropic diffuse
translucency LDt ( ~xo, ~ωD) = ~n · ~ωd, which corresponds to the diffuse BTDF
used in previous work, can be represented exactly using the coefficients hi =√

2π/3, since ~n = (0, 0, 1) in tangent space and therefore

∑
1..3

√
2π

3
Hi(~ωd) =

∑
1..3

√
3

3
Hi ~ωd = (

∑
1..3

√
3

3
Hi) ~ωd = ~n · ~ωd (3.22)

The coefficients can thus be said to record the deviations of the actual phys-
ically based translucency function from this special case.

Precomputing Visibility The image convolution contains an evaluation
of the visibility function V (~xi, ~ωk), which is expensive even for preprocessing
since a ray casting to every other pixel would be needed. In order to speed
up the projection into the HL2 basis, the visibility term is turned into a
lookup by precomputing it in the form of a horizon map per ~xi [60] to cap-
ture the self shadowing of veins and bulges or other structures on the leaf.
The horizon circle is divided into 16 slices and the average height for each
slice is stored. At convolution time, when evaluating (3.16) in (3.21), the
current light direction ~ωm is compared to the linearly interpolated horizon
to determine if ~ωm is above or below the local horizon of ~xi.

Rendering Translucency In order to evaluate the precomputed solution
at render time, the light vector ~ωD is transformed into tangent space. The
HL2 basis coefficients are looked up to evaluate the translucency with

Lt,rec(~xo, ~ωD) = LDρt(~xo)
∑
i=1..3

hi(~xo)

√
3

2π
~Hi · ~ωD, (3.23)

54



3.3. A LEAF MODEL FOR REAL-TIME RENDERING

resulting in only two texture lookups (ρt and hi are each stored in an RGB
texture) and 3 added and weighted dot products.

This computation is extremely simple and memory efficient, and can be
integrated into any modern rendering pipeline using pixel shaders. Since only
local interactions are considered, the data can be instanced over different
leaves while being animated. This allows a large number of leaves to be
shaded under dynamic lighting and animation on a per-pixel basis.

3.3.10 Results

To apply the shown technique, the physical parameters need to be set to
calculate the subsurface scattering via the image convolution. Measurements
from Ma et al. [59] and Woolley et al. [103] give averages, summarized in
Table 3.1, together with the parameters of the precomputation. Because LDt

Mean cosine g 0.07
Scattering coeff. σs 10.2 1/mm
Absorption coeff. σa 0.4 1/mm
Refraction index ratio η 1.33
Multi dipoles n 3
Number of light directions NL 128

Table 3.1: Parameters used for the calculation and precomputation of sub-
surface scattering.

is evaluated at a wavelength of 510 nm, all parameters are chosen for that
wavelength.

In Figure 3.11, the comparison of the presented BSSRDF translucency
method with a diffuse BTDF (also applying the acquired maps) using the
geometric interpolated normal ~ng is shown. The diffuse BTDF is calculated
with

LBTDFt (~x0, ωD) = −LDρt(~x0)(~ng · ~ωD). (3.24)

As can be seen, the variations on the surface have an essential impact on
the appearance. For example, at steep angles, the structural features are
smudged out, whereas at grazing angles the high-frequency structures of
leaves are observable. Scattering effects in the leaf due to variations in the
light-facing surface, e.g., self shadowing, thickness and reflectance variations,
are accurately modeled. In contrast, the standard model appears flat and
responds to changes in light direction only through the cosine term. Also, the
cases where a leaf is lit on both sides, e.g. when the sun is parallel to the leaf
geometry (see Figure 3.17), are rendered fully consistent in both reflectance
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and translucence since the normal map of a directly lit side is taken into
account in the translucency part on the other side. A fully rendered tree

Figure 3.17: Leaf on a tree showing fully consistent reflectance and translu-
cency at grazing light directions.

featuring physically based translucency can be seen in Figure 3.18.

Error analysis Since the scattering is precomputed and extended into the
Half Life 2 basis, an error occurs due to the frequency limitations. To compare
the evaluation of the multi-dipole model with its HL2 basis extension, the
relative signal reconstruction error Lt,rec/Lt − 1 is calculated for all texels
in the data set seen in Figure 3.9 for 3 light angles (π/2, π/4, π/8) relative
to the orientation of the leaf, measured from the geometric tangent to the
normal. The error histogram is shown in Figure 3.19. Figure 3.20 shows
a direct comparison at a light angle of π/8, the worst case of all 3 chosen
angles, and corresponding to the blue histogram in Figure 3.19. The average
reconstruction error is only 3%, which shows that the Half Life 2 basis is well
suited to represent the translucency as a function of direction of incident
light. Also, a leaf only transmits about 5-20% [66] of the incident light, an
effect accurately modeled with the shown method. This may lead to too
dark translucency if leaves are not rendered with physically plausible light
intensities and without tone mapping. Fortunately, the HL2 basis coefficients
can be scaled without introducing an error to increase the intensity of the
translucency.
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Figure 3.18: A tree featuring physically based translucency.

Implementation and Performance All results were generated on a Pen-
tium4 3.2GHz with an NVIDIA 8800 GTX graphics card running DirectX
10. Starting from the acquired datasets, the precomputation to generate the
HL2 coefficient map takes about 20s per image convolution, giving about
45 minutes for a complete leaf dataset. At runtime, the evaluation of the
translucency term involves two texture lookups into the translucency and
HL2 coefficient map, and a few arithmetic instructions. The cost of this
is significantly lower than the rest of the shading model, for example the
arithmetic required to evaluate the Cook-Torrance shading model for the
light-facing surfaces. The DirectX 10 shader compiler reports approximately
119 instruction slots for the complete shader, of which the translucency part
takes about 15 instructions. The technique uses 8 1024x1024 RGB textures:
albedo, translucency, normal map and HL2 map, both for front and back
sides of the leaf, resulting in 24MB of texture memory for a single leaf dataset
which is then instanced over all rendered leaves.

The performance was measured using an interactive application show-
ing a tree with 6,392 leaves rendered as quad patches with normal maps.
Each leaf is dynamically shaded. The light-facing leaf sides use the Cook-
Torrance shading model, whereas the opposite sides are shaded using the
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Figure 3.19: Error histogram of the relative signal reconstruction error for 3
light directions.

physically based translucency model. To account for the high dynamic range
of the scene, Reinhard’s modified tone mapping algorithm [82] is applied to-
gether with simple blooming in a post-process. Shadows are generated using
a 2048x2048 shadow map which is evaluated with a percentage closer filter
(PCF) [81] with 6 Poisson-distributed samples. Indirect lighting is produced
with per vertex multi-bounce ambient occlusion, incorporating the translu-
cency of leaves into the indirect lighting calculations. Figure 3.21 shows a
comparison of the shown technique to the standard approach. The frame rate
for a fly through of the tree varies from 66 frames per second for closeup views
where the whole screen is covered with fragments, to 116 fps for more distant
views, including all mentioned effects. The datasets for the leaf models, con-
sisting of albedo, translucency, normal, thickness and HL2 basis coefficient
maps and an example shader are available at [4].
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Figure 3.20: Leaf shaded with multi-dipole model Lt (left) and the recon-
structed translucency Lt,rec (right) at a light angle of π/8.

3.3.11 Summary

The presented method is the first physically based translucency model for
real-time rendering of plant leaves which incorporates the detailed structure
of leaves together with the full subsurface scattering. Essential effects like
self shadowing, spatially varying reflectance and thickness is accounted for
in the simulation. The data can not only significantly improve the translu-
cency, but can also improve the reflectance rendering by using the generated
normal maps. Also, the acquisition process does not require any custom built
hardware and can deliver highly detailed data. Depending on the 3D Scan-
ner used, a resolution of smaller than 1 mm can be achieved, resulting in a
highly realistic rendering of leaves. Additionally, the technique is decoupled
from the geometric representation of leaves, making it possible to use the
same data set on a quad as well as a high polygon representation as it may
be used in levels-of-detail algorithms.

Probably the biggest advantage of the shown technique is that it can be
trivially instanced to render a full tree without requiring special treatment.
Also, most of the standard techniques such as shadow mapping, light map-
ping, dynamic lights etc. can be trivially combined with this leaf rendering
model without compromising on the quality of the translucency since every
detail is correctly incorporated. Also, the integration into existing frame-
works is easy since the real-time evaluation is completely shader based and
does not require any changes to the rendering besides assigning the shader.

Though no complex lighting such as indirect influences or image-based
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Figure 3.21: A direct comparison of the standard method (left) to the shown
method (right) shows improved structure due to normal mapping, and the
physically based appearance of translucency in the leaves.

lighting is used, the most important lighting effects are modeled in detail
correctly, which is more important than the secondary influences. The shown
method can not only be applied to leaves but also to similar structures such
as grass blades or blossoms. Also, structured paper, e.g. crumbled paper or
watermarks can be modeled accordingly.

60



For in the true nature of things, if we rightly consider,
every green tree is far more glorious than if it were made
of gold and silver.

Martin Luther 4
Physically Guided Animation of

Trees

4.1 Introduction

Plants, especially trees, are an important element of many interactive appli-
cations. Almost any outdoor scene features trees or shrubs in some form.
Not only realistic rendering, as shown in Chapter 3, is important to recreate
a convincing display of vegetation, but also its realistic animation. Due to
the small scale structures of vegetation, even in scenes without perceivable
wind, there are always some small movements of leaves that are omnipresent
in a natural scene, which an observer may not be consciously aware of. Even
the most simple animation, as used in Section 2.3.2 for grass for example,
improves the perception of any form of vegetation. Though simple forms
of animation are easy to achieve, creating visually convincing animation of
trees in real time is a difficult problem due to several factors. Trees are geo-
metrically very complex, consisting of thousands of interconnected branches
and ten thousands of leaves. These numbers are optimistic, a real adult oak
tree can carry around 200 000 leaves, though the given numbers would fit
a smaller broad leaf tree. All these geometric elements are connected in a
complex dynamic system that is hard to solve and only a few methods have
been proposed that provide real-time animation of trees.

4.2 State of the Art

Generally, animating a tree involves a number of components. First, a wind
model describes the characteristics of the wind-tree interaction which is cou-
pled with a dynamic system of some form that describes the reaction of
branches and leaves to the applied wind force. Usually, the dynamic sys-
tem incorporates a structural model to define the hierarchical organization.
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Structural elements then define how the results of the dynamic system affect
the geometry of the tree, the bending of branches for example. Approaches
differ in how these components are implemented, and can be distinguished
into two main categories. Those that use heuristic approximations and are
fast to compute, and those that try to simulate the physical properties of tree
animation more or less accurately. Concerning the structural elements, they
can be distinguished into discrete or segment based solutions and approaches
that apply structural mechanics models.

4.2.1 Structural Elements

The prevalent structural element model for trees is a skinned or rigid skeletal
joint system analogous to rigid or smooth skinning of characters [6, 104, 84,
87, 105, 102]. Many interactive methods simply avoid the problem of bending
by not considering any form of deformation [84, 87]. To achieve deformation,
a skeletal structure is used to segment single branches in order to model the
smooth bending of a branch. With segmented branches, a principal problem
occurs since a high number of joints are needed to get convincing results.
Additionally, if leaves are represented separately, each leaf requires its own
joint. A detailed tree as shown in Figure 4.1 would require about 30,000
joints to achieve a detailed and convincing animation. Also, a joint-based
model has the disadvantage that it places a burden on the CPU because the
joint matrices for each segment and leaf have to be recalculated every frame
which, in the case smooth skinning is applied, have to be accumulated and
weighted on a per-vertex basis. On the other hand, an advantage is that the
segment joints can be coupled to the dynamic system by applying angular
springs for example, which allows the direct integration of the equations of
motion. The costly calculations make a joint-based approach prohibitively
expensive for high-quality real-time animation of highly detailed trees.

Another approach to model the deformation of branches is to use a struc-
tural mechanics model [95, 88, 18]. Structural mechanics is the computation
of deformations, deflections, and internal forces or stresses within structures,
either for design or for performance evaluation of existing structures. As this
is the basis of many engineering sciences, a number of different and highly
developed methods exist, though the simpler methods are sufficient to accu-
rately model a branch, as the goal is to achieve a correct appearance and thus
strong simplifications can be introduced without compromising the realistic
appearance of a deformation. The most used structural mechanics model in
context with vegetation is the Euler-Bernoulli model, which will be described
in detail in Section 4.4.1, as it is also the basis for the shown approach to
calculate the deformation of branches.
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Figure 4.1: Detailed animated tree.

4.2.2 Animation

To drive the structural model and structural elements, very different methods
can be applied, ranging from a full physical simulation to completely heuristic
approaches for both the wind model as well as the motion of branches and
leaves.

Wind models On the full simulation side, Akagi et al. [6], for example
apply a full fluid dynamics simulation, solving the Navier-Stokes equation of
an incompressible fluid to model the wind which couples to the joints that
are used as structural elements. The equations of motion for the segmented
branches are integrated explicitly and feed back to the fluid dynamics simula-
tion to model the full wind-tree interaction. This is of course very expensive
and to achieve real-time results, a boundary condition map expressing space
distribution of resistances from the tree is used to speed up the calculations.
The results of this approach can be seen in Figure 4.2.

To avoid a full fluid dynamics simulation, a stochastic approach from wind
engineering can be applied as proposed by Shinya et al. [88] which is also used
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Figure 4.2: Fully simulated tree with fluid dynamics simulated wind. (pic-
ture: [6] )

by Zhang et al. [104]. Instead of solving the Navier-Stokes equation, wind is
modeled as a velocity field with longitudinal, lateral and vertical components.
Each fluctuating component of the resulting velocity vectors is modeled by
a stationary Gaussian stochastic process. The spatial-temporal properties of
the components in the frequency domain are represented by the Cross-Power
Spectral Density Matrix to model the coherence of the fluctuations where
the FFT (Fast Fourier Transform) delivers the velocity field. Since the fluid
simulation is replaced by an FFT, this approach is much faster and still
can deliver realistic and physically based wind fields, because turbulent wind
can be modeled accurately through a stochastic process. Stam [95] applies
a similar model by filtering uncorrelated random velocity vectors for each
branch in the frequency domain to achieve a correlation of loads on nearby
branches.

Heuristic and hybrid approaches apply much simpler wind models such
as a global wind direction or noise functions [87, 93], since a full simulation
is not desired.

Dynamic models With joints as structural elements, the integration of
the equations of motion can be applied directly [6, 88, 39]. Using even the
simplest integration models such as Euler integration, this is prone to be too
expensive for a high number of branches since a tree is a highly interconnected
system. The integration can be simplified as shown by Sakaguchi et al. [84],
where it is assumed that trees are under stationary conditions which allows
one not to consider gravity in the calculations. An advantage of a direct
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integration is that collisions can be taken into account, though resolving
the collisions of thousands of branches and leaves and their influence on
the dynamic system is impractical on current hardware. Nonetheless, trees
and smaller plants that are geometrically simple such as palm trees can be
treated that way, allowing full interaction with the environment as shown by
the game Crysis [3].

A very successful approach to create vegetation animation is modal anal-
ysis. The goal of modal analysis in the context of dynamic models and struc-
tural mechanics is to determine the natural mode shapes and frequencies of
a structure during free vibration while considering the boundary conditions.
As proposed by Stam [95], the simulation is carried out in the frequency do-
main, reducing computation time by applying spectral methods and avoiding
an explicit integration completely. A flexible structure displays certain char-
acteristic shapes when subjected to a force vibrating at one of its modal
frequencies. The shape resulting from an arbitrary force can be regarded as
a superposition of the modal shapes. The gain of this method is that only a
small number of modal shapes corresponding to the smallest modal frequen-
cies contribute to the overall motion of a tree, and only those are used to
animate. Figure 4.3 shows a tree that is animated using a modal approach.
A drawback of this approach is that since only the most important modal
shapes are considered, smaller branches do not perform any independent mo-
tion, removing any high-frequency motion from the animation. On the other
hand, the modal shapes can be precomputed and and simply superimposed
on the GPU, efficiently achieving a physically correct animation without di-
rect intergation. Yung et al. [18] use similar spectral methods to model a
large range of natural phenomena. For trees, they consider a simplified,
uncoupled dynamic system based on a harmonic oscillator per branch.

A somewhat different approach is taken by Haevre et al.[102]. They
apply a technique similar to motion graphs by precalculating a set of motion
samples with a dynamic simulation and re-sequence the results at run time.
Here, the controllability and directibility and goal-based motion is the focus
of this work instead of a fully realistic animation.

Heuristic models Heuristic models do not try to solve the animation
problem by means of a simulation, but rather try to emulate the appearance
of vegetation movement as efficiently as possible [87, 93] using noise functions
to drive the animation.

This usually does not require dedicated structural elements, structural
models or elaborate calculations but still can deliver acceptable animation.
The simplest approach is to modulate the position of a vertex by a noise
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Figure 4.3: Frames of an animation of a small tree animated with precalcu-
lated modal shapes. (picture: [95])

function, disregarding any correlation to the geometric structure. Additional
weights, which define the strength and direction of the displacement, can in-
troduce user-defined constraints and a high controllability, which makes this
approach very artist friendly and can also emulate the bending of branches on
a coarse level [93]. A drawback of a purely vertex-based approach is that it is
not possible to calculate correct normals and tangents, essential for advanced
shading techniques such as normal mapping or per-pixel lighting. This re-
sults from the fact that there is no surface or structure corellation involved
and no inverse of the transformation can be calculated. A tree animated
using this approach can be seen in Figure 4.4.

Another variation is not to animate on a per-vertex basis, but to drive the
joints of a structural model and thus incorporate the structural correlation of
a tree. This can be achieved by defining the rotation of branches and leaves
with noise functions as proposed by Ota et al. [87] (see Figure 4.5).

To generate the noise functions, different approaches can be applied. The
simplest method is to superimpose trigonometric functions and evaluate them
in the vertex shader. This has the drawback that the resulting signal is
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Figure 4.4: Frames of an animation of a palm tree using a procedural per
vertex animation. (picture: [93])

Figure 4.5: Frames of an animation of a small tree using a procedural ap-
proach. (picture: [87])

periodic and a high number of functions need to be superimposed to arrive
at a sufficiently complex result. A similar but more efficient approach is
taken by Sousa [93], who uses triangle waves which are smoothed out by a
cubic interpolation. A more sophisticated generation method is used by Ota
et al. [87]. The signal is defined in the frequency domain and transformed
into the time domain, allowing to set the power spectrum of the signal.
Since the frequency distribution is the defining attribute of the movements
of vegetation, this is a very successful method to generate noise functions
intended for vegetation animation.

The approach shown in the following sections is a combination of a heuris-
tic and simulation approach, as no simulation is performed at runtime, but
the parameters and used data are physically guided to get as close to a sim-
ulation as possible without spending the resources a full simulation needs.

4.3 Hierarchical Vertex Displacement

The key element for real-time performance is to localize all computations
in a vertex shader, leading to so-called vertex displacement. This is often
used to animate simple vegetation represented as billboards (e.g., grass) or
billboard clouds (e.g. simple tree models). For full geometry models, this is
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not straight-forward.

The general approach is to expose all relevant information of the tree
structure, i.e. the hierarchy of the structural model, to every vertex. Thus,
the hierarchical deformations of all parent branches can be explicitly per-
formed inside the vertex shader and no information needs to be propagated
at runtime. This can be achieved by assigning each vertex an index into a
texture that holds all necessary information. This means that every vertex
within a branch has the same index. Additionally, as sub-branches can em-
anate at any position on its parent branch, the relations of each vertex to
all parent hierarchy levels are required. To have this data exposed to each
vertex, the normalized local coordinate x ∈ [0..1] of the vertex is precalcu-
lated as a scalar per vertex, where x is along the principal axis of a branch.
Also, the x-values at parent-branch connections are calculated and propa-
gated down the branch hierarchy (see Figure 4.6). These values are stored

Figure 4.6: ~w distribution of branches in a tree.

with each vertex in addition to its own x-value. The shown trees have 4
hierarchy levels, so each vertex has a vector ~w of 4 values associated in ad-

68



4.4. BEAM MODEL

dition to the branch index. A problem that occurs with hierarchical vertex
displacement is that the used deformation model that defines the structural
elements needs to be able to correctly transform the local coordinate axes
between hierarchy levels, so tangent and normal transformations need to be
available in order to transform local coordinate systems as well.

4.4 Beam Model

The model used for describing the geometry and physics of a branch as
a beam determines how realistic branches swaying in the wind appear to
the viewer. A common approximation for realistic animation systems is to
model the beam as an elastic cylinder (uniform beam) using structural me-
chanics, and describe the deformation due to a uniform traversal force using
a polynomial deflection function depending on the basic physical properties
of the beam. However, uniform beams are not a good approximation for tree
branches, as branches are not uniform beams but thin out (taper) at their
free end, which has an essential impact on the bending behavior. This taper
leads to the effect that tips are much more flexible than thicker parts, which
is not accounted for in a uniform beam model. Also, the length needs to be
taken care of to achieve a convincing deformation.

To incorporate all those effects, the following sections describe a beam
model that takes all basic physical properties of a branch into account. The
model still has a closed form solution, allowing for the required tangent and
normal transformations, and does not break the restrictions of hierarchical
displacement (Section 4.3).

4.4.1 Euler-Bernoulli Beam Model

The Euler-Bernoulli Beam model is a structural mechanics model for long
and thin beams with a length to thickness ratio of 15:1 and above, and is
therefore suitable for trunks and branches [97]. It is a simplification of the
linear theory of elasticity and provides the ability to calculate the deflection
characteristics of general beams.

A branch is treated as a linearly tapered circular beam as seen in Fig-
ure 4.7, defined by its length L and the radii s1, s2 at the root and free end,
thus incorporating the essential physical properties of a branch or trunk. The
deflection of a branch is described by the Euler-Bernoulli differential equation

∂2

∂x2
(EI(x)

∂2u(x)

∂x2
) = F (4.1)
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Figure 4.7: Beam model used to calculate the deflection of branches.

where u(x) is the (unknown) deflection of the beam according to the constant
transversal force F . I is the area moment of inertia, not to be confused with
the mass moment of inertia, and E is the elastic modulus, which is assumed
to be constant.

As each branch is fixed at its root, the boundary conditions are

u|x=0 = 0
∂u

∂x
|x=0 = 0. (4.2)

The boundary conditions at the free end are

∂2u

∂x2
|x=L = 0

∂3u

∂x3
|x=L = 0. (4.3)

To simplify the solution and to fit it to the hierarchical vertex displacement
data in Section 4.3, the model is normalized to unit length by scaling the
radii by L, and introduce the taper ratio α of the two radii

r1,2 =
s1,2

L
α =

r2

r1

(4.4)

and a rescaled elasticity modulus E ′ = EL. The area moment of inertia for
a circular area corresponding to the beam axis is

I =
πr4

4
(4.5)

with the radius varying linearly over the length of the beam. Here the im-
portance of the taper of a branch becomes evident as the area moment is a
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quartic function of the radius, thus significantly affecting the resulting de-
flection as the radius varies. The area moment of inertia along the beam
results in

I(x) =
πr4

1((α− 1)x+ 1)4

4
. (4.6)

Under the given boundary conditions (4.2) (4.3) and varying I(x) (4.6), the
Euler-Bernoulli Equation (4.1) has an analytical yet not trivial solution

u(x) =
E ′F

r4
1

(
x(α− 1)(6 + x(α− 1)(2x(α− 1)(3 + (α− 3)α)

+ 3(4 + (α− 2)α)))− 6(1 + x(α− 1))2 log (1 + x(α− 1))
)

·
(
3π(1 + x(α− 1))2(α− 1)4

)−1
. (4.7)

It is interesting to note that the force F affects the solution linearly, which
means that the amplitude of the deflection u(x) is proportional to F , while
the root radius influences the deflection with r−4

1 . Figure 4.8 shows the
deflection for different taper ratios normed to E ′F/r4

1 = 1. As can be seen,

Figure 4.8: Deflection for different taper ratios. With decreasing taper ratio,
the beam deflection increases due to the thinning of the branch.

the taper of a branch has a very strong influence on both the deflection
amplitude and the form of the deflection and can not be neglected in a
realistic branch model. A beam with no taper (α = 1) as commonly used
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α c2 c4 ∆xmax
0.05 0.221875 0.754029 0.0469
0.1 0.3326 0.398924 0.0024
0.2 0.374571 0.129428 0.0081
0.3 0.364816 0.024577 0.006

Table 4.1: Coefficients for equation (4.8) of different values of the taper ratio
α.

(e.g. [88]) deflects in a way that the free end is nearly linear, compared to a
very curved and stronger deflection along the beam at small taper ratios.

It is inefficient to execute equation (4.7) in a vertex shader, therefore,
in order to speed up the calculation of u(x), a linear least square fit to the
polynomial

u(x) = c2x
2 + c4x

4 (4.8)

is performed, depending on the taper ratio of each branch. Table 4.1 shows
coefficients for some normed taper ratios, along with the maximum absolute
error ∆xmax of this approximation. For taper ratios above 0.1, the fit is
virtually exact. Through the absolute fit, α, E ′ and r1 are represented by
the coefficients c2 and c4.

4.4.2 Length Correction

The Euler Bernoulli beam model works well for small deflections, but strong
deflections (amplitude > L/4) show noticeable stretching since the deflec-
tion is only applied in the transverse direction. Unfortunately, the exact
incorporation of the length requires the solution of an elliptical integral [13]
which can not be formulated explicitly. In order to length correct a deflected

x

u
1

u’
s

u/u’

dp

Figure 4.9: Geometry of the length correction. (parameter x omitted for
clarity).
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branch, the stretch introduced by the shear of (4.8) is corrected by moving
the deflected vertex along its tangent, effectively converting the shear into a
rotation. Using the stretch factor of the shear (which is also the length of
the tangent vector), s(x) =

√
1 + u′2(x), the local length difference d(x) of

the original and deflected beam is

d(x) =
u(x)

u′(x)
(s(x)− 1). (4.9)

Starting from an original point on a branch ~po = (x, y)T , the uncorrected
point would be ~pu = (x, y+ u(x))T . The final deflected point ~p can be found
by moving the originally deflected point ~pu along the tangent direction to
unstretch the beam (see Figure 4.9):

~px = x− d(x)

s(x)

~py = y + u(x)− u′(x)d(x)

s(x)
= y +

u(x)

s(x)
(4.10)

with x ∈ [0..1]. Thus, the original point is deflected using the offset vector
o(x):

~p = ~po + ~o(x), ~o(x) =
1

s(x)

(
−d(x)
u(x)

)
(4.11)

Figure 4.10 compares a strong deflection to its corrected deformation. Though

Figure 4.10: Strongly deflected and length corrected beam.

the correction is linear, the result is very close to the fully correct solution
due to the fact that the deflection is essentially a quadratic function.
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4.4.3 Branch Deformation

The previous section derived a 2D deflection operator for a unit-length beam.
In order to apply the deflection and length correction to the vertices of an
arbitrary branch, the deflection needs to be expressed in the local coordinate
system of the branch and un-normalized to the original branch length L. It
is assumed that each vertex is given in the local coordinate frame (~t, ~r, ~s) of
the branch, where ~t goes along the axis of the beam (see Figure 4.11). Let

Figure 4.11: Local coordinates for a branch.

x be the coordinate along ~t, then x = x/L, x ∈ [0..1], and the un-normalized
deflection function u(x) = u(x). By the chain rule, ∂u/∂x = 1/L∂u/∂x.

To take care of the amplitude of the deformation, the amplitude ~A, which
is proportional to the net force acting on the branch, is projected onto ~r and
~s, and the deflection is multiplied with the corresponding amplitudes Ar and
As to arrive at deflection curves in the two directions, using the normalized
coordinate x:

ur,s(x) = Ar,su(x), u′r,s(x) = Ar,s
u′(x)

L
(4.12)

Ar,s does not directly set the strength of the deflection since taper ratios and
radii vary from branch to branch. The resulting 3D position is thus

~p = ~po + ~o(x), ~o(x) =

−dr(x)/sr(x)− ds(x)/ss(x)
ur(x)/sr(x)
us(x)/ss(x).

 (4.13)
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To transform tangents and normals, the Jacobian Jp of this transformation
would have to be calculated. However, the length-corrected deformation leads
to several complex higher order terms which are difficult and expensive to
evaluate in real time. Therefore, the Jacobian Jpu of the non-length corrected
deflection evaluated at the length corrected position, is used:

Jpu =

 1 0 0
u′r(x− dr(x)/sr(x)) 1 0
u′s(x− ds(x)/sr(x)) 0 1

 (4.14)

to find the deflected (un-normalized) tangents as ~t = Jpu
~to, and the deflected

(unnormalized) normals as ~n = J−Tpu
~no, where ~to, ~no are the tangent and

normal vectors of a vertex projected into the local frame of a branch. The
error introduced is minimal (a maximum 2.4 degrees for the tip of the beam)
since the derivatives of the deflected curve and the length corrected curve
are virtually the same for the same x (see Figure 4.10).

This deformation is then applied hierarchically, including all sub-branches
in order to have them follow the movements of their parent branches correctly
as seen in Figure 4.12.

Figure 4.12: Branch including sub-branches in the undeformed (left) and a
deformed (right) state. The sub-branches follow the deformation correctly.
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4.5 Synthesizing Branch Motion

A tree interacting with wind is a highly complex dynamic system that is dif-
ficult to solve through numerical simulation while upholding the restrictions
of hierarchical vertex displacement, not allowing access to previous states.
To simplify the dynamic system, it is treated as an uncoupled system of
harmonic oscillators per branch. The basis of this simplification is that an
observer cannot judge the correctness of the response function of the highly
complex dynamical system because the wind itself is not visible. Thus, the
characteristics of the animation are mainly determined by the frequencies
and amplitudes of branches and not by their exact functional values.

To avoid explicit integration of the equations of motion, spectral methods
similar to [18] are used to synthesize branch motion to drive the branch
deformation. The principal idea is to generate noise functions that obey the
same frequency distributions as empirically observed data or results of a full
simulation.

In this section, an optimized method is shown to synthesize noise func-
tions that allow fully aperiodic motion for a whole tree using only a small
number of noise textures, making the method well suited for real-time appli-
cations. Also, a simple wind model is additionally applied in order to define
a wind direction leaves and branches react to.

4.5.1 Turbulent Wind and Motion

Trees cause the wind acting upon them to become much more turbulent
than free flowing wind. The turbulence in the wind field is dominant over
the directional contribution, making it hard to tell the wind direction from
tree motion in low or medium wind. As there is no dominant direction, it is
possible to model wind velocity using its power spectrum. A common model
has been created from empirical data [90]:

Pw(f) ∝ vm

(1 + f/vm)
5
3

(4.15)

where vm is the mean velocity of the wind.
The overall motion of a branch can be approximated using the physical

model of a damped harmonic oscillator, incorporating the dynamic properties
of a branch such as its resonance frequency fh, mass m, and damping γh
caused for example by the leaves’ resistance to wind and internal damping.
While coupling due to the branch hierarchy can be incorporated at higher
processing and memory cost [95], a reasonable assumption is that each branch
oscillates about its root independently [18]. This is mainly because due to the
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typically different branch lengths at different hierarchy levels, the resonance
frequencies are far apart and the sub-branches are dragging along at the
parents’ frequency.

The amplitude spectrum of the stationary solution of a harmonic oscilla-
tor with its resonance frequency fh and damping γh, driven by an external
force (4.15) is given by:

Vh(f) =
Vw(f)

2πm(2π(f 2
h − f 2)2 + (2πfγh)2)

1
2

(4.16)

where Vw(f) is the force spectrum of wind. A light form of coupling between
branches is introduced by calculating the mass m of each oscillator from the
branch itself and all its sub-branches, with ρw being the density of wood:

m = ρw
∑
i

πLi
3

(s2
i,1 + si,1si,2 + s2

i,2). (4.17)

Equation (4.17) is the sum over the volumes of the truncated cones of the
branch itself and all sub-branches.

4.5.2 Stochastic Motion Synthesis

To synthesize motion in the time domain, the noise itself is generated in the
frequency domain where the wind and oscillator response functions define the
power spectrum. The back transform gives the signal in the time domain,
hence the name “spectral method”. More specifically, a “noisy” wind force
spectrum is generated by modulating a random Gaussian field G(f) by the
square root of the power spectrum of wind:

P ′w(f) = G(f)
√
Pw(f). (4.18)

Similar to [18], wind force is assumed to be proportional to wind velocity:

Vw(f) ∝ P ′w(f). (4.19)

Plugging this into (4.16) and taking the inverse Fourier transform of Vh(f)
gives the motion texture in the time domain. Phase shifts do not have to
be considered since the phases of the Gaussian field as well as the resulting
velocity spectrum are both uniformly distributed. Though other noise gener-
ation approaches such as Perlin noise [75] can also be used for a non-physical
approach, the incorporation of effects such as resonance frequencies and a
physically correct wind spectrum provide the means to get much closer to
the result of a physical simulation than completely heuristic approaches.
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4.5.3 2D Motion Textures

The process described so far gives 1D noise functions in the time domain.
But realistic trees have thousands of branches, requiring a massive number
of different noise functions, all of which should be aperiodic.

To avoid the individual generation and evaluation, the presented motion
synthesis method uses 2D motion textures instead of 1D functions. The ve-
locity spectrum can be written as Vh(f) = G(f)H(f), with H(f) representing
the combined spectral response function of the harmonic oscillator and wind.
Instead of a 1D generation, a 2D random Gaussian field G(x, y) is initiated
and a 2D velocity spectrum Vh(x, y) = G(x, y)Vh(

√
x2 + y2) is calculated.

The corresponding 2D motion texture is the inverse Fourier transform of
Vh(x, y).

Trajectories. For the evaluation of a 2D motion texture, a linear trajectory
of a texture sample point can be defined, sampling the 2D-periodic (due to
the Fourier transform) motion texture with texture repeat for values outside
the unit square. Since the spectrum is radially symmetric in the frequency
domain, each such trajectory creates a 1D signal with a spectrum of Vh(f).
Furthermore, such trajectories are aperiodic as long as the trajectory does not
close on itself. To avoid this case, the irrationality of the vector component
ratio mx/my is tested and rejected if the ratio of the vector components
is very close to a rational value with a small nominator and denominator.
Figure 4.13 shows an example trajectory through a motion texture and its
result.

Usage for branches. The 2D motion textures are exploited in two dif-
ferent ways. First, all trajectories through the texture are aperiodic, thus
the tree animation will not show any periodic motion artifacts. Second, the
memory requirements for motion generation is strongly reduced. Instead of
generating separate motion functions for each branch, just one 2D motion
texture for each hierarchy level is used and each individual trajectory, defined
by unique random vectors, delivers a one dimensional signal.

The physical properties that enter the computation of a motion texture
are averaged from all branches at the corresponding hierarchy level. While
this approach ignores differences in some physical attributes of branches at
the same hierarchy level, this is a valid approximation since these branches
have roughly the same properties and attributes, such as number of sub-
branches and leaves attached.
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Figure 4.13: Example wrapped trajectory through the motion texture (left)
which results in a aperiodic signal with a defined spectrum (right).

Branch frequencies. As the signal is evaluated from a trajectory in the
time domain, there is one way to reintroduce variation within a hierarchy
level. Instead of following the trajectory with the exact speed determined
by the fh which was used to create the texture, fh is varied individually by
varying the length of the motion vector ~m for each branch. This effectively
scales the spectrum of Vh(f) in the time domain. In order to determine
an appropriate fh for each branch, empirical data from [19] is used, which
incorporates complex effects such as the dragging forces and internal damping
of a branch, giving

fh = 2.55L−0.59. (4.20)

Thus, each branch has its own resonant frequency according to its length.
Since branches in one hierarchy level have roughly similar lengths, the rescal-
ing is small and the difference to a motion texture calculated using fh in the
first place is imperceptible. This empirical result is based on broad leaf trees
and needs to be modified for leafless branches or fir tree branches which be-
have differently. According to [19], leafless branches have approximately 2.5
times the frequency calculated by equation (4.20).

Signal smoothing. The inverse Fourier Transform generates textures where
the highest frequency is 2 texels per cycle. A good reconstruction of such a
signal would require an appropriate reconstruction filter (e.g., sinc). How-
ever, graphics hardware provides only linear filtering, which would lead to
unpleasant motion artifacts. Therefore, the motion texture is prefiltered.
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Since the noise is generated in the frequency domain, this can be easily done
by applying a box filter. In practice, the function is generated with the de-
sired frequency range, and is then extended by a factor of 4, padding the
additional frequencies with 0. The resulting motion texture has a highest
frequency of 8 texels per cycle, giving a smooth result after linear interpola-
tion. Since it is the frequency range around the resonance frequency which
needs to be represented best, fmax = 2fh is set as the maximum frequency
represented in the box region. The lowest representable frequency is thus
fmin = fmax/(8res), where res is the texture resolution. Though eight sam-
ples per cycle are not enough to fully reproduce a smooth signal, the highest
represented frequency amplitudes are very small compared to the dominant
frequency (either the lowest frequency or the resonance frequency) as seen in
Figure 4.14.

Damping. Damping is one of the critical parameters in determining branch
motion. Figure 4.14 shows the spectra and parts of the resulting texture in
the under-damped (low γf ) and overdamped (high γf ) case. In the former
case, the resonance frequency is dominant and will show up in the time
domain accordingly, whereas the latter case hides the resonance frequency.
The overdamped case has a spectrum very close to a 1/fβ with β ≈ 2,
explaining why 1/fβ noise can be used to approximate the motion in some
cases (as in [87]). However, it is important to take branch physics into
account since simply using 1/fβ noise cannot account for the resonance of
branches due to the turbulent wind, which is essential in most cases.

In practice, it is hard to estimate the damping coefficient γh of branches,
as it depends on parameters such as the leaf mass, leaf distribution as well as
redistribution during movements and the viscoelastic damping of wood. All
the mentioned influences are strongly non-linear and very complex in their
impact on the behavior of a branch. Furthermore, trees targeted at real-time
graphics are modeled after their appearance and not according to the correct
dynamics and geometry of a tree, which leads to unsatisfactory results if γh
is derived from the given geometry. A comparison of empirical measurements
[65] suggests values of γh in the slightly underdamped region, whereas large
branches with a large number of sub-branches and leaves are close to the
critically damped case. The reason for this is that a tree needs to be stiff
enough to uphold itself and to be flexible enough to withstand strong winds.
A configuration that is close to the overdamped case avoids any resonance
catastrophe while the energy taken from the wind can quickly dissipate into
the deformation.
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Figure 4.14: Spectra and parts of the resulting textures for the damped (top)
and the overdamped case (bottom).

4.5.4 Wind Direction

As already mentioned, the wind direction is not essential for slight to medium
winds, which are governed by turbulence. Stronger winds, however, will
cause large branches that are orthogonal to the wind direction ~W to receive
a directional force that causes strong bending in the wind direction. To
model that behavior, for each branch the turbulent wind amplitude is offset
by the force of the strong wind component according to the orientation of
the branch, given by its local frame:

A′r = Ar + (~r · ~W ) (4.21)

A′s = As + (~s · ~W ). (4.22)
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Superimposed with the spectrally based motion generation, the resulting
movement of the branches generally follows the wind direction. Since the
local coordinate systems of every individual branch are evaluated, the be-
havior is correct through all hierarchy levels. To introduce variation, the
wind strength (length of ~W ) can be modulated with a very low frequency
noise to emulate long time variations.

4.6 Applying Beam Deformation and Branch Mo-
tion

Since several deformations need to be carried out for each vertex, the vertices
are stored in object coordinates and the deformation, i.e., the offset, tangent
and normal transformations shown in Section 4.4.3 are expressed in terms
of the branch coordinate frame vectors, thus avoiding a full matrix transfor-
mation into the local coordinate system. The positional deformation of one
level simplifies to

~pD = ~po −
~tdr(x)− ~rur(x)

sr(x)
−
~tds(x)− ~sus(x)

ss(x)
(4.23)

with the length corrected x values

xD,r,s = x− dr,s(x)

sr,s(x)
(4.24)

the tangent and normal transformation results to

~tD = ~to + (u′r(xD,r)~r + u′s(xD,s)~s)(~t · ~to) (4.25)

~nD = ~no − (u′r(xD,r)(~r · ~no) + u′s(xD,s)(~s · ~no))~t (4.26)

This deformation is executed down the tree hierarchy, starting from the trunk
until the level of the vertex is reached (i.e., as long as x = ~wi 6= 0). For
the first iteration, ~po, ~to, ~no are the original position, tangent and normal in
object space, for all further iterations they are set to ~pD, ~tD, ~nD from the
previous iteration. Analogue to the tangents, all involved child branch local
frames under the current hierarchy level need to be transformed according
to equation (4.25). Normals and tangents need to be normalized only after
all deformations have been carried out because they are always reprojected
into the current coordinate system.

As shown in Section 4.3, the vertex needs access to the branch parameters
of all its parent branches to execute these transformations. In particular, the
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Per hierarchy level motion texture

Per branch c2, c4, L,~t, ~r, ~s, ~m, motion tex. index
Per vertex ~w, branch index

Table 4.2: Data required to deform a vertex and associated normal and
tangent. The per branch data is accessed through the branch index and the
motion textures are accessed through the motion texture index.

terms dependent on x (e.g., ur,s(x)) are simple polynomials in x with param-
eters c2, c4 (equation (4.8)). Denormalization also requires the length L, and
motion is accounted for by looking up Ar,s from a motion texture (equation
(4.12)). The branch parameters and data of the whole tree are stored in a
branch data texture, which the vertex can access based on its branch index,
treating the texture as a data array accessible in the vertex shader. Each
column of this floating point texture contains all the data of a branch, fol-
lowed by the data of all parent branches. This means that some of the data is
redundant, but this configuration facilitates caching accesses and speeds up
the data retrieval considerably. Analogue to the branch index, every branch
has a motion texture index and motion vector ~m for the texture lookups
to obtain Ar,s (used in the evaluation of ur,s). Using a texture-based data
representation has the advantage that low-level per-branch parameters such
as α or L can be edited in real time by simply modifying the corresponding
texels. Table 4.2 summarizes which variables are represented on which level.

4.7 Leaves

Leaves need to be treated slightly different from branches because they do
not need complex deformation and their motion behavior is different. But a
modified version of the previously shown set of methods can be applied to
ensure full consistency of both branch and leaf animation. Also, the same
means to derive the motion from physical properties is upheld.

4.7.1 Leaf Deformation

In the shown trees, leaves are represented as flat quads, though any geometric
configuration can be chosen. Leaves are treated as part of the branch they are
attached to and therefore inherit all deformations of their parent branches.
Thus, a leaf vertex has the same data as a branch vertex of the branch it
is attached to. Apart from the inherited branch deformations, an additional
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animation is executed to perform the fluttering of leaves in the wind, modeled
with a simplified version of the branch deformation, but with additional
torsional motion.

For the local coordinate system, the tangent space (~tt, ~bt, ~nt) is used, so no
additional data is needed if the leaves need a tangent space for shading. The
UV coordinates of the vertices, denoted by ut, vt to avoid confusion, serve as
local coordinates in this space, using a corrected coordinate u′t = (1− ut)/2
along the ~tt axis, assuming a centered stipe of the leaf (see Figure 4.15). The

Figure 4.15: Additional torsional deformation preceding the transversal de-
formation for the leaves.

branch deformer from Section 4.4.3 is applied twice: for translational and
for torsional flutter. For the translational flutter, the local coordinate axes
(~t, ~r, ~s) are set to (~bt, ~nt, ~tt), so that vt is used for x. For the torsional flutter,

(~t, ~r, ~s) are set to (~tt, ~bt, ~nt), with the corrected u′t used for x. The opposing
signs of u′t ensure the counter movement of opposing vertices to model the
torsional deformation.

In both cases, equation (4.23) and (4.26)are executed to carry out the
deformation. As opposed to branches, there is no need for a fully nonlinear
deformation for leaves. As a simplification, a linear function ul(x) = Alx
is used for all evaluations of u(x), where Al determines the strength of the
deformation from motion texture lookups.

4.7.2 Leaf Animation

Since leaves are lightweight and small, they can be treated as samplers of the
turbulent wind field. To generate a wind field, motion textures that use only
the wind spectrum P ′w(f) as input (see Section 4.5.3) are calculated.
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The spatial relation of leaves in gusts of wind causes leaves to behave
in a coherent way if they are close together, i.e., nearby leaves should have
similar amplitudes and frequencies, but not necessarily directions. This could
be accounted for by creating a 3D turbulence field for each flutter direction
and moving this field along the wind direction ~W . However, 3D textures of
sufficient resolution to transport high frequencies and to avoid periodicity
would be too memory intensive.

Instead, there is a solution using three independent 2D motion textures.
Each leaf vertex is projected onto the three different planes x, y, z = 0 in
object space and noise values Apxy,xz,yz are fetched from the three motion

textures after offsetting the vertex position by − ~W (t) where t represents
time to effectively move the wind field through the tree. Since the vertex
moves through the wind field directly as opposed to the motion vector ~m of
the branches, the three values are spatially correlated as desired. However,
their frequency spectra are scaled by the projection of the wind vector on the
coordinate planes. To avoid too strong distortions of the power spectrum,
the 3 values are linearly blended in a way that the textures whose frequency
is best preserved receives the largest weight:

Al = Apxy(1−
|Wz|
| ~W |

) + Apyz(1−
|Wx|
| ~W |

) + Apxz(1−
|Wy|
| ~W |

). (4.27)

While linear trajectories in the resulting 3D turbulence field do not have the
exact wind spectra, they are still consistent and spatially correlated. The
same measures against periodicity should be taken for the wind vector as
in Section 4.5.2. Figure 4.16 shows a visualization of the lookups for one
leaf vertex. The three noise textures for the three axes of leaf deformation
(Section 4.7.1) are stored in the 3 channels of an RGB texture. The texture
resolution is chosen so that the minimum wavelength represented in the leaf
motion textures is 4 times the maximum leaf size. This avoids too high spatial
frequencies which could cause vertices of a single leaf to behave inconsistently.
Nonetheless, each vertex of a leaf performs a slightly different movement,
so the leaf itself does not stay flat. This adds complexity to the overall
appearance by mimicking the complex behavior of leaves in wind compared
to the rigid rotation of flat quads [87]. This becomes especially apparent if
a specular shading model is used for the leaves.

4.8 Results

To validate the shown set of methods and to evaluate the performance, trees
with about 75k vertices, resulting in 1,500 branches and around 10,000 leaves
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Figure 4.16: 3D turbulence field through averaged lookups of 3 motion tex-
tures.

divided into 4 hierarchy levels have been used. As input, the full branch
hierarchy including the local coordinate systems and beam radii and lengths
are needed. For the shown trees, this has been done with an extraction
routine that analyzes the geometry of a given tree. In this way, for example
Xfrog [28] trees can be animated without manual intervention. For trees with
continuous geometry at the branch connection, one simply needs to determine
~w through the relative position to the local branch coordinate systems.

The implementation and performance measurements were done using Di-
rectX 10 and a NVIDIA 8800 GTS graphics card with 512 MB RAM on a
Pentium 4 (3.2 GHz). Since it is difficult to measure times separately due to
the unified shader architecture and interleaving of texture lookups and ALU
calculations of current graphics hardware, the results are compared to the
non-animated tree, both shaded and unshaded. The shaded scene is rendered
with a full HDR pipeline and dynamic filtered shadow maps and advanced
shading algorithms, thus using the same resources as a modern computer
game.

For the shaded and simplified case, the animation is executed two times
due to the shadow mapping pass which is corrected for in the frame rate
comparison in Table 4.3. In the shaded case, the animation time is longer

86



4.9. SUMMARY

static(fps) animated(fps) time(ms)
unshaded 299 290 0.104
shaded 56 48 1.49
simplified 56 52 0.68
4 trees 49 32 5.4

Table 4.3: Framerate comparison and animation-only time in the unshaded,
shaded and full simplification and multiple trees case.

since fewer ALU units are available due to load balancing. It can be seen that
the cost of animation (last column) of a full geometry tree is negligible com-
pared to shading the tree, allowing the animation of several highly detailed
trees with a cost that scales linearly with the number of trees. The proposed
technique can be adapted to the animation and shading requirements of a
scene. To further marginalize the performance impact, the length correction
described in Section (4.4.2) can be omitted for small deflections in light wind.
Additionally, by calculating only the positional animation and shading the
tree in its undeformed state, the performance impact can be minimized (see
Table 4.3) without loosing the overall appearance of the animation.

Though values for all parameters are derived from physical properties
and measurements, these parameters can be tuned to match different needs
or artists’ visions and allow high-level as well as low-level controllability over
the animation. A screenshot of the tuning setup can be seen in Figure 4.17.
Every single parameter can be set or overridden in real time on a per-level,
per-branch and per-vertex basis since previous states of the animation are
never accessed.

4.9 Summary

The presented method allows efficiently animating highly detailed trees with
a massive amount of branches and leaves in high quality. With the stochastic
approach, there are no considerable costs and enough resources remain free
for other calculations such as shading the tree or other parts of a natural
scene. The novel beam and deformation model can calculate the bending
of branches according to the basic physical properties of a tree accurately
without the need to segment branches.

The shown set of methods are confined to a vertex shader using hier-
archical vertex displacement, leveraging the performance of GPUs and also
making it easy to integrate into existing frameworks.

The novelty about the deformation model is that it does not assume
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Figure 4.17: Prototypical user interface to tune animation parameters.

a uniform beam but correctly takes the taper into account, which has an
essential impact on the deflection behavior. Also, the length correction pro-
vides the means to counteract the stretching of the deflection without the
need to precompute additional data. Additionally, due to the closed form
of the deformation, normal and tangent transformations, essential for ad-
vanced shading techniques, are derived, which is usually not done for vertex
displacement-based methods.

An advantage of the 2D motion textures is that an arbitrary number
of aperiodic noise functions with a defined power spectrum can be gener-
ated, allowing memory reduction and a performance increase because only
a texture lookup is needed to access the functions. Of course, as with ev-
ery non-simulation method, trees cannot interact with the scene, though the
animation could be overridden on any level by an explicit integration of the
equations of motion.

In summary, the presented methods provide a simple and efficient way
for high quality animation. There are no elaborate precomputations required
and all parameters can be changed interactively, both on a high level such as
the damping coefficient of a level, and on a very low level such as the physical
properties of an individual branch.
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Artists can color the sky red because they know it’s blue.
Those of us who aren’t artists must color things the way
they really are or people might think we’re stupid.

Jules Feiffer 5
Skylight Models for SH-Lighting

5.1 Introduction

Achieving dynamic global illumination in real-time graphics is a long stand-
ing problem and is a complete research area in itself in computer graphics.
Many approaches have been proposed, though most of them are impracti-
cal in a real-world application due to high memory resources or very high
computation costs. Many techniques that are in a practical range use a
precomputation step. Unlike light mapping techniques, the light transfer is
precomputed instead of the light itself. To do that, the transfer operator is
projected into a basis that enables one to evaluate the transfer in real time.
The first and up to now most used basis are the spherical harmonics (SH)
basis functions. Performing a precomputed radiance transfer (PRT) using
spherical harmonics for static scenes under low-frequency dynamic lighting
environments was first proposed by Sloan et al. [92]. There is a plethora of
publications that also use the SH basis to calculate more advanced effects
such as specular reflections [52, 83] or dynamic diffuse interreflections [34]
and shadows [83].

To reduce the dimensionality of the incident light, those techniques use
environment maps instead of a fully three-dimensional representation. The
environment lighting is projected into the SH basis to generate the infor-
mation needed to calculate the resulting radiance transfer. By doing so, the
only variance in lighting that can be achieved is through rotating the SH rep-
resentation of the original environment lighting, because calculating the SH
basis coefficients on the fly is very time consuming and introduces objection-
able errors if undersampled. To avoid these problems, an accurate but still
compact method to calculate the lighting SH coefficients for a parameter-
ized lighting environment such as a skylight model is presented, which allows
changing all parameters on a frame-by-frame basis, including the number of
spherical harmonics bands.

The shown method is not limited to a particular skylight model, though
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all data presented uses the Preetham skylight model, since the model can
be displayed efficiently in real time [46] and is the most used model in real-
time graphics. Using the presented method, full consistency and physical
plausibility of the displayed sky and the used SH lighting coefficients can be
achieved. The Preetham skylight model also delivers both realistic colors
and dynamic range, capturing lighting influences of the sun halo, sky color
and their intensity distribution. All of these effects can be captured when
lighting a scene using spherical harmonics (see Figure 5.1).

Figure 5.1: Scene lit with daylight configuration.

5.2 Related Work

The first use of harmonics in the context of skylight models was proposed by
Dobashi et al. [29]. He uses a discrete cosine basis to speed up the evaluation
of a skylight model by determining the optimal number of basis functions and
evaluating the tabulated weights to reconstruct the hemispherical function.
This method is only tangentially related to the shown method since a discrete
cosine basis is used to display the sky in contrast to a full SH representation
that is evaluated in SH PRT.
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A similar but much simpler approach compared to the shown method is to
use analytically defined light sources such as directional lights or disk lights
and to derive an explicit formula for their SH coefficients [42]. Of course,
only functions that can be represented in this way are applicable, limiting
the lighting to simple functions.

5.2.1 Spherical Harmonics Lighting

In spherical harmonics lighting, the radiance transfer from an environment
to a surface or volume is precomputed as the weights cl,m of spherical har-
monics basis functions. Taking advantage of their orthogonality, the radiance
transfer is evaluated at runtime using the inner product of the spherical har-
monics weights calculated from dynamic lighting environment weights and
the precomputed weights on the surface or volume in real time. A detailed
description of this approach is given in [92, 25] and a practical presentation
of the method can be found in [42].

The shown method is concerned with the efficient reconstruction of a
parameterized environment in its spherical harmonics representation in order
to be able to change all parameters in real time.

5.2.2 Preetham Skylight Model

The Preetham skylight model [78] approximates the full spectrum daylight
for various atmospheric conditions. It uses spectral calculations and the re-
sults are generated through fitted simulation data from Nishita et al. [69]
as well as Perez et al. [80], is verified against standard literature from at-
mospheric science and therefore delivers realistic colors and dynamic range.
The parameters for this model are the sun’s angle to the zenith θS, azimuthal
angle φ and angle from the zenith of the viewing direction θ and turbidity τ ,
which represents the cloudiness and haziness of the atmosphere. To simplify
the solution, the angle γ between the solar and view direction is used (see
Figure 5.2).

The parameter range of the turbidity is reduced to [2.5..6] since, as shown
by Zotti et al. [107], values below 2.5 produce too high intensities at the
horizon and the model is not usable for lighting below this parameter value.
Since the skylight model is used for lighting through PRT rather than actually
displaying a sky, its SH representation is considered as the ground truth. This
is because the maximum frequency that can be represented is not limited by
the Preetham skylight model or the shown method, but by the number of
bands that are used to dynamically light a scene.
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Figure 5.2: Coordinates used in the Preetham model: θS solar angle from
zenith,φ θ angles of view direction, γ angle between solar and view direction.
(picture: [106])

5.3 Dynamic Skylight

The goal is to represent the spherical harmonic weights as functions of the
skylight’s model parameters: cl,m(θS, φ, τ). A naive solution is a full tabula-
tion in all three parameters. However, this would needlessly waste memory
as this three-dimensional function would need a high resolution to avoid in-
terpolation artifacts. Also, memory can be an important issue on hardware
platforms such as consoles or mobile devices. Furthermore, it is difficult
to maintain a low error over a large dynamic range, which is important
since postprocessing operators such as tone mapping and multi-bounce PRT
strongly modulate intensity values, so no assumptions about the needed ac-
curacy can be made.

The azimuthal angle φ can be eliminated from the preprocessing calcula-
tions by exploiting the fact that it represents a z-rotation around the zenith
of the hemispherical function. Since a rotation is a linear transformation in
spherical harmonics, the evaluation of φ can be deferred to the very end of
the calculations, effectively reducing the needed parameter space of the pre-
process to the two dimensions (θS, τ) without introducing an error. For these
remaining two parameters, the key observation is that all SH weights show a
largely polynomial behavior in (θ, τ). Therefore the SH-weights can be well
compressed by performing a two-dimensional polynomial least squares fit in
θ and τ , making a very fast real-time reconstruction possible. Other bases
such as a discrete Fourier basis can also be used but showed higher errors
with the same number of coefficients. The reason for that is that no basis

92



5.3. DYNAMIC SKYLIGHT

function correlations such as orthogonality or analytic convolution equations
are needed and a direct fit of a polynome delivers the smallest error for a
fixed set of coefficients.

5.3.1 Polynomial Fitting and Reconstruction

Each SH weight, treating the three color channels separately, is represented
as a polynome of degree (di, dj) with coefficients (pl,m)i,j:

cl,m(θS, τ) = Pl,m(θS, τ) =
∑
i,j

(pl,m)i,jθ
i
Sτ

j, i = 0..di, j = 0..dj (5.1)

To determine the coefficients, all SH weights cl,m are calculated on a dense
grid in (θS, τ). To avoid any errors and because the calculation time for
the preprocess is not important, a grid with 500 samples in both θS and
τ was chosen. The convolution of each SH basis function with the skylight
function at every grid point in parameter space is generated by sampling until
the result converges. This way no error is introduced in the preprocessing.
This approach effectively treats the skylight model as a black box, so any
parameterizable signal can be used. This data is then used for a polynomial
least squares fit in (θS, τ), resulting in the polynomial coefficient matrix [8]
(pl,m)i,j for each SH weight cl,m. As the skylight model is sampled densely
in the complete reduced parameter space and projected into the SH basis,
this preprocess requires several hours (about 2.3 hours on a P4 3.2 GHz),
but has to be done only once for each skylight model because all possible
configurations of the model are used.

To reconstruct the SH weights cl,m in real time, the fact that the poly-
nomial parameter matrix (θiSτ

j)i,j for a given set of parameters (θS, τ) is the
same for all SH weights, is exploited. Therefore, for each SH weight, this
matrix is multiplied and summed component wise with (pl,m)i,j to evaluate
equation (5.1) and obtain crecl,m(θ, τ) = Pl,m(θ, τ). The reconstruction is re-
quired only once per frame and can therefore be easily carried out on the
CPU.

After the reconstruction, the SH weights are rotated around the zenith
to take the azimuthal angle φ into account. Fortunately, a z-rotation of a
function represented in the SH basis is relatively simple and the rotation
matrix does not need to be fully constructed since

cl,m(φ) = cl,m cos (‖m‖φ)− sgn(m)cl,−m sin (‖m‖φ),m 6= 0 (5.2)

implicitly rotates the weights [52], only correlating cl,m with its counterpart
cl,−m. The zonal harmonics (m = 0) weights are excluded because they are
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symmetric along the z-axis and do not need to be modified. Since the rotation
is analytic, no error is introduced through the φ-rotation.

5.3.2 Error Measurement

To measure the resulting error of the reconstruction, it has to be taken into
account that the reconstructed signal is used in an inner product with the
vector of surface SH weights, thus adding up the error contributions of each
SH weight crecl,m. Usually 4 to 5 bands are used for SH PRT, therefore allowing
only very small individual errors in the reconstruction of each crecl,m.

Since the surface weights are not known and vary over their complete
intensity domain in a standard scene, the ∆L∞ and ∆L2 norms related to
the minimum intensity Lmin of the original data give a relative upper bound
of the maximum (∆L∞) and mean (∆L2) error for each parameter set:

Eu
max(θ, τ) =

1

Lmin

∑
l,m

‖crecl,m − cl,m‖ (5.3)

and respectively

Eu
mean(θ, τ) =

1

Lmin

√∑
l,m

(crecl,m − cl,m)2 . (5.4)

Considering normalized surface SH weights, equations (5.3) and (5.4) are
overestimates since a surface point never sees the whole environment. The
error estimates are correct only for an unoccluded volume point which only
occurs in the most simple scenes.

The maximum number of SH bands to be considered in the error mea-
surements was chosen to be Nmax = 7, which lies well above the number of
bands commonly used. By fitting a polynomial with degree di = 13 in θS
and degree dj = 7 in τ , the highest mean error drops below 1.5% for 7 bands,
introducing virtually no error (Eu

mean < 0.005%) up to 5 bands, ensuring an
accurate reconstruction over the complete parameter range. A comparison
of the overall worst case reconstruction can be seen in Figure 5.3. Figure 5.4
shows the highest upper bound error of the complete parameter range de-
pendent on the number of bands used. In the unlikely case that higher band
numbers are required, simply using a polynomial of higher degree decreases
the error.

5.3.3 Gibbs Phenomenon Suppression

Skylight models are only defined on a hemisphere, whereas spherical harmon-
ics are defined on the complete unit sphere. Since there is no information
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Figure 5.3: Worst case reconstruction (N = 7, θ = π/2, τ = 6) with the
correct signal (top), the reconstructed signal (center) and the difference (bot-
tom).

given below the horizon, a jump discontinuity occurs because the lower hemi-
sphere is not defined by the model. As in every finite frequency extension of a
discontinuity, the Gibbs phenomenon [40] appears and causes severe ringing
in the lower hemisphere. There are ways to reconstruct a spherical harmonics
signal without ringing [38], but another basis change into Gegenbauer poly-
nomials is required, which is infeasible for spherical harmonics lighting. The
signal is used in an inner product and not to reconstruct the spatial signal
as would be needed to display the sky.

In this special case, a domain specific solution can be applied since the
discontinuity is not dependent on φ and is therefore separated in θ, only
affecting the zonal harmonics (m = 0). Therefore, to suppress the ringing
artifacts from the horizon, only the zonal harmonics are filtered with

c′l,0 = cl,0sinc(
πl

N
), (5.5)

which is equivalent to a one-dimensional box filter in θ [7]. This causes a
slight smoothing in θ but does not change the general appearance. Also, the
weights are filtered only where necessary, keeping all vertical frequencies in
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Figure 5.4: Highest upper bound mean and maximal relative error dependent
on the number of bands N used of all color channels.

their original configuration. The ringing artifacts in the lower hemisphere
are strongly reduced without introducing significant smoothing, leaving only
slight artifacts from non-zonal harmonic contributions as seen in Figure 5.5.

Usually, the number of bands N used for PRT is fixed, allowing to pre-
scale the zonal harmonics polynomial coefficient matrices (pl,0)i,j since equa-
tion (5.5) only depends on N , thus further reducing the required calculation
at evaluation time.

5.4 Results

The resulting memory footprint for the matrix arrays is very small. 131
kByte are needed for N = 7 bands, while a more realistic number of bands
of N = 4 reduces this to 28 kByte with trichromatic representation of the
signal. So even for a relatively high number of bands, the required memory
is small enough to completely fit into the L2 or even L1 cache of any modern
processor, facilitating a considerable speedup through cache accesses. The
maximum computation time for 7 bands on a P4, 3.2 GHz was measured
at about 80 microseconds. Both computation time and memory resources
needed are negligible compared to any other part of a graphics pipeline be-
cause the computation has to be done only once per frame for a fully dynamic
skylight.
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Figure 5.5: Original (left) and filtered (right) spherical harmonic reconstruc-
tion. The ringing artifacts from the horizon are strongly reduced.

As the full skylight model in its SH representation is calculated in the
preprocess, the resulting data for the Preetham skylight model is published
at [5] as C-arrays in conjunction with a full implementation of the recon-
struction. The code is ready to be used in any spherical harmonics setup.
A scene lit with SH PRT using N = 5 with different parameter sets can be
seen in Figure 5.6.

Figure 5.6: Scene lit with SH PRT and the Preetham skylight at morning,
midday and sunset.

5.5 Summary

The shown technique allows efficiently creating the lighting conditions for
SH PRT while being negligible in both memory usage and calculation time.
The error introduced through the polynomial fitting is insignificantly small
and not perceivable even in the worst case. The method provides an easy to
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implement way to generate physically correct SH lighting coefficients for any
outdoor scene. The communication with the evaluation of SH PRT is only
through the lighting weights, making it trivial to integrate skylights in any
application that uses SH PRT.

Since the sun is a strong directional light that is not included in the
skylight and can also not be properly integrated into SH PRT due to its in-
herently high frequencies in the directional lighting, SH PRT with a skylight
naturally combines with standard shadow mapping. In the shown implemen-
tation, a Poisson filtered shadow map with 12 samples is overlayed with the
SH PRT lighting to achieve fully dynamic outdoor lighting. To increase the
realism, the directional lighting incorporates normal maps on all surfaces.
Also, the color and intensity of the sun is modulated by the Preetham sky-
light model evaluated in the sun direction to guarantee a full consistency with
the skylight. As the skylight model does not only produce correct colors but
also a correct dynamic range, a Reinhard tone mapper [82] compresses the
high dynamic range. This combination can provide a physically based and
therefore realistic approach to light a natural scene dynamically. Figures 5.1
and 5.7 show a scene lit at different times of day with the given combination.

Figure 5.7: Scene lit at sunset. SH PRT using the Preetham model is com-
bined with a directional light and Poisson filtered shadow mapping.
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An essential advantage is that only high level parameters such as sun
direction or turbidity need to be controlled to achieve any daylight configu-
ration without the need to set colors or intensities directly. Since SH basis
functions are orthonormal, one can also overlay the reconstructed skylight
weights with other lighting weights generated from a lower-hemisphere signal,
either from an environment map of the lit scene or an isotropically colored
lower hemisphere for example. This is not necessary for a scene with a ter-
rain that occludes the lower hemisphere where the complete light transport
is encoded correctly in the surface weights, but proved to be an easy way to
generate a fully spherical lighting signal to light scenes which contain only
one or a few objects.
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Basic research is what I am doing
when I don’t know what I am doing.

Wernher von Braun 6
Summary and Conclusions

Real-time rendering and animation remains a challenging area of research,
but significant progress has been made especially in the recent years. Though
the fast paced development of more capable hardware allows increasingly
more complex geometry and shading models to be rendered, the inherent
complexity of vegetation still requires specialized techniques in order to
achieve a convincing result. Most current applications and games that display
vegetation still compromise strongly on the realistic appearance of vegeta-
tion as trees and grass are always part of a scene and enough resources need
to be available for other entities. Although the presented work significantly
improves on some problems one encounters while rendering or animating veg-
etation, a fully photo realistic tree or grass displayed interactively is still not
achieved. A high-quality rendering of plants requires a considerable amount
of resources as a plethora of effects such as the subsurface light transport
through a leaf or the complex bending behavior of a branch combine to de-
fine the overall look of a plant.

As the technology advances, new possibilities will be available which will
allow solving the problems with rendering and animating vegetation in a
much more adaptive way, though the same paradigms as in the presented
work still apply.

6.1 Key Contributions

Recent developments in GPU architecture allow performing a massive amount
of calculations per frame. As of 2008, the TeraFLOP barrier has been
breached and the graphics pipeline can handle arbitrary sequences of cal-
culations. To make use of these capabilities, methods need to be able to be
calculated fully on the GPU with the CPU involvement minimized. This
approach has been taken in all the presented methods to fully leverage this
advantage in both animating and rendering of vegetation.
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Also, the fact that a combination of techniques such as shadow mapping
or dynamic lighting are usually used to display a scene has been taken into
account. This requires the specialized vegetation rendering and animation
methods to be able to be integrated with the more general techniques. In
this thesis, the following contributions are made to these areas:

Grass Rendering. Grass, due to the massive amount of grass blades even
in small patches of grass, make a naive geometric approach impractical for
real-time rendering. A number of very different approaches have been pro-
posed, depending on the grass properties as well as the viewers position. Due
to the structure of grass, any polygon based approach results in a very high
depth complexity. This problem has been remedied with the explicit ray
tracing approach without compromising on the important perceptual effects
such as parallax and correct occlusion, while delivering an easy yet effective
way to animate the grass. Also, the rendering method is confined to a single
fragment shader, treating grass as a volumetric material rather than geome-
try, which makes it easy to integrate into existing frameworks and to apply
to a scene.

Leaf Rendering. Leaves exhibit a complex light transport, where the
translucent part is dominated by subsurface scattering within a highly struc-
tured medium. The shown method to model translucency is the first physi-
cally based model for real-time rendering that includes essential effects such
as self shadowing, spatially varying reflectance and thickness. The data ac-
quisition does not require specialized hardware and can improve on the re-
flectance model of a leaf as well due to the high-resultion normal maps.

A big advantage is that the data can be trivially instanced to render
a massive amount of leaves and can be combined with different geometric
representations of leaves, which also facilitates the integration into existing
applications.

Tree Animation. Animating highly detailed trees poses a number of chal-
lenges as the number of branches is in the thousands and the number of leaves
in the ten thousands. The used branch deformation model takes all essential
physical properties into account by using a structural mechanics model which
also incorporates the taper of a branch. Also, the length correction provides
the means to counteract the stretching of the deflection without the need to
precompute additional data.
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The spectral approach together with the 2D motion textures allows cre-
ating an arbitrary number of defined noise functions efficiently to get close
to the results of a simulation without integrating the equations of motion or
requiring elaborate precomputations.

Skylight Models for Spherical Harmonics Lighting. Traditional gen-
eration of lighting conditions for SH PRT are confined to using simple ana-
lytic functions or environment maps. The presented approach provides a way
to efficiently generate the spherical harmonics lighting coefficients of a sky-
light model while keeping the memory foot-print and calculation resources at
a minimum. The error introduced through the used polygonal fitting is in-
significantly small and not perceivable even in the worst reconstruction case.
As the Preetham skylight model is the most used in real-time graphics, the
method has been validated using this model. Through defining the skylight
model parameters such as sun direction and turbidity, any daylight configu-
ration can be easily achieved in a spherical harmonics lighting context.

6.2 Research Outlook

The future of real-time vegetation rendering and animation lies in the new
capabilities that future hardware can provide. Although current hardware
(as of 2008) already has the possibility to create geometry on hardware, it is
not yet usable for a full scene generation of grass and trees on the fly due to
the complexity of the generation process. By generating only representations
that are fully adapted to the current viewpoint, both rendering and animation
can be adapted to the viewpoint as well.

Though being a more general problem, real-time global illumination within
plants is a hard problem as many assumptions and simplifications do not work
in the context of vegetation due to the fractal structure and non-coherent sur-
faces within plants. Considering a forest for example, most of the light is
reflected or transmitted by leaves, so an accurate modeling of this lighting
condition requires indirect illumination methods.

Recently developed techniques such as patch based ambient occlusion [48]
or screen space ambient occlusion [58] are very successful for standard ge-
ometric objects but prove to be quite inefficient for vegetation due to the
inherent depth complexity and incoherent surfaces. Also, a light-leaf inter-
action model that can be incorporated with global illumination algorithms is
needed for a fully correct solution. As shown, it is important to include the
full structure of a leaf to achieve convincing results.
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Concerning animation, hybrid approaches may be the most successful
approach to incorporate interaction of vegetation with other parts of of the
scene. As shown, it is not necessary to fully simulate the wind-vegetation
interaction. By superimposing a stochastic approach with a simulation where
necessary, the resources of a full simulation are not needed while partial
interaction could be modeled. For example, while the animation of a tree is
driven by a spectral model, a few branches that are interacting with objects in
a scene could be explicitly integrated to model the correct response, blending
back to the stochastic approach after the interaction is finished.

6.3 Conclusion

It seems that natural scenes, be it a tropical island, the jungle or ancient
forests on alien planets, have a strong appeal as a setting for games. Only few
games avoid vegetation completely, others are fully based in a natural setting
with an abundance of vegetation. Plants will always be a part of almost every
real-world scene and therefore form an essential part of computer graphics.
As the technology progresses, new possibilities will be available to increase
the quality of all aspects, but specialized techniques still will be necessary to
optimize the calculations.

Significant advances have been made, but a fully photo-realistic real-time
display of plants down to the last detail is still far ahead. Nonetheless,
state-of-the-art methods as presented in this thesis can provide the visual
complexity in both appearance and animation needed to render many forms
of vegetation in a convincing and faithful way.
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Appendix A

HLSL implementation of the grass rendering method shown in Chapter 2.

void Bil lboardGrass VP (

f l o a t 4 po s i t i o n : POSITION,
f l o a t 3 normal : NORMAL,
f l o a t 2 texCoord : TEXCOORD0,
f l o a t 2 texCoord2 : TEXCOORD1,
f l o a t 3 tangent : TEXCOORD2,
f l o a t 4 ver tCo lor : COLOR,

out f l o a t 4 oVertColor : COLOR,
out f l o a t 2 otexCoord : TEXCOORD0,
out f l o a t 2 otexCoord2 : TEXCOORD1,
out f l o a t 4 oPos i t i on : POSITION,
out f l o a t 3 oEyeDirTex : TEXCOORD2,
out f l o a t 4 oPosit ionView : TEXCOORD3,

uniform f l o a t 4x4 worldViewProj ,
uniform f l o a t 3 eyePosit ionO ,
uniform f l o a t time

)
{

oPos i t i on = mul ( worldViewProj , p o s i t i o n ) ;
oPosit ionView = oPos i t i on ;
otexCoord = texCoord ;
otexCoord2 = f l o a t 2 ( ( texCoord2 . x+time ∗0 . 2 )/2 , ( texCoord2 . y+time ∗ 0 . 2 ) / 2 ) ;
oVertColor = vertCo lor ;

f l o a t 3 eyeDirO = −(eyePosit ionO−po s i t i o n ) ; // eye v e c t o r o b j e c t space
f l o a t 3 binormal = c ro s s ( tangent , normal ) ;
f l o a t 3x3 TBNMatrix = f l o a t 3x3 ( normal ize ( tangent ) ,

normal ize ( binormal ) ,
normal ize ( normal ) ) ;

oEyeDirTex = normal ize (mul (TBNMatrix , eyeDirO ) ) ;
}

#de f i n e MAXRAYDEPTH 5
#de f i n e PLANE NUM 16.0 // Def ines the d en s i t y o f t he g r i d per UV patch .
#de f i n e PLANE NUM INV (1 . 0/PLANE NUM)
#de f i n e PLANE NUM INV DIV2 (PLANE NUM INV/2)
#de f i n e GRASS SLICE NUM 8
#de f i n e GRASS SLICE NUM INV (1 . 0/GRASS SLICE NUM)
// De f ines the number o f g r a s s b i l l b o a r d s / s l i c e s i n s i d e the g ra s s t e x t u r e ,
// i s used f o r modding/ c o r r e c t i n g the t e x t u r e l ookups
// to adre s s a l l t h e g ra s s s l i c e s .
#de f i n e GRASSDEPTH GRASS SLICE NUM INV
#de f i n e GRASS SLICE NUM INV DIV2 (GRASS SLICE NUM INV/2)
// Grassdepth can be s e t independen t l y , here i t i s d e r i v e d from the number
// o f s l i c e s to avo id t e x t u r e s t r e t c h i n g , p rov ided the uv
// coo rd i na t e s do not s t r e t c h the t e xu r e .
#de f i n e PREMULT (GRASS SLICE NUM INV∗PLANE NUM)

void Bil lboardGrass PS (

in f l o a t 4 ver tCo lor : COLOR,
in f l o a t 2 texCoord : TEXCOORD0,
in f l o a t 2 texCoord2 : TEXCOORD1,
in f l o a t 3 eyeDirTex : TEXCOORD2,
in f l o a t 4 pos i t ionView : TEXCOORD3,

out f l o a t 4 c o l o r : COLOR,
out f l o a t depth :DEPTH,

uniform f l o a t 4x4 worldViewProj ,
uniform sampler2D gras sb lades ,
uniform sampler2D ground ,
uniform sampler2D windnoise

)
{

f l o a t 2 p l a n e o f f s e t = f l o a t 2 ( 0 . 0 , 0 . 0 ) ;
c o l o r = f l o a t 4 ( 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ) ;

i n t hi tcount ;
f l o a t 3 rayEntry = f l o a t 3 ( texCoord . xy , 0 . 0 ) ;
// e v e r y t h i n g t h a t i s not dependent on the i f ca s e s i s precomputed
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f l o a t 2 s i gn = f l o a t 2 ( s i gn ( eyeDirTex . x ) , s i gn ( eyeDirTex . y ) ) ;
f l o a t 2 p l an e c o r r e c t = f l o a t 2 ( ( s i gn . x+1)∗GRASS SLICE NUM INV DIV2 ,

( s i gn . y+1)∗GRASS SLICE NUM INV DIV2 ) ;
// p l a n e c o r r e c t i s used to make sure t h a t t he same g ra s s i s seen from both s i d e s .
f l o a t 2 planemod = f l o a t 2 ( f l o o r ( rayEntry . x∗PLANE NUM)/PLANE NUM,

f l o o r ( rayEntry . y∗PLANE NUM)/PLANE NUM) ;
f l o a t 2 p r e d i r c o r r e c t = f l o a t 2 ( ( s i gn . x+1)∗PLANE NUM INV DIV2 ,

( s i gn . y+1)∗PLANE NUM INV DIV2 ) ;

//This i s used to e x t r a c t a z va l u e from the c a l c u l a t i o n s .
f l o a t zO f f s e t = 0 . 0 ;
bool z f l a g = 1 ;

f o r ( h i tcount =0; h i tcount < MAXRAYDEPTH % (MAXRAYDEPTH+1); h i tcount++)
{

f l o a t 2 d i r c o r r e c t = f l o a t 2 ( s i gn . x∗ p l a n e o f f s e t . x+p r e d i r c o r r e c t . x ,
s i gn . y∗ p l a n e o f f s e t . y+p r e d i r c o r r e c t . y ) ;

f l o a t 2 d i s t ance = f l o a t 2 ( ( planemod . x + d i r c o r r e c t . x − rayEntry . x )/( eyeDirTex . x ) ,
( planemod . y + d i r c o r r e c t . y − rayEntry . y )/( eyeDirTex . y ) ) ;

f l o a t 3 rayHitpointX = rayEntry + eyeDirTex ∗ d i s tance . x ;
f l o a t 3 rayHitpointY = rayEntry + eyeDirTex ∗ d i s tance . y ;

//Check i f we h i t t he ground
i f ( ( rayHitpointX . z <= −GRASSDEPTH)&& ( rayHitpointY . z <= −GRASSDEPTH))
{

f l o a t dis tanceZ = (−GRASSDEPTH)/ eyeDirTex . z ; // rayEntry . z i s 0 .0 anyway
f l o a t 3 rayHitpointZ = rayEntry + eyeDirTex ∗dis tanceZ ;
f l o a t 2 orthoLookupZ = f l o a t 2 ( rayHitpointZ . x , rayHitpointZ . y ) ;

c o l o r = ( c o l o r )+ ((1.0− c o l o r .w) ∗ tex2D ( ground , orthoLookupZ ) ) ;
i f ( z f l a g ==1) zO f f s e t = distanceZ ;
z f l a g = 0 ; // Set f l a g to 0 so we know t h a t we have a c o r r e c t z va l u e

}
e l s e
{

f l o a t 2 orthoLookup ;
i f ( d i s t ance . x <= di s tance . y )
{

f l o a t 4 windX = ( tex2D ( windnoise , texCoord2+rayHitpointX . xy /8)−0.5)/2;
// The /8 maps the t e x coord lookup to wor ld c oo rd i na t e s

//The c o r r e c t g r a s s t e x t u r e lookup i s c a l c u l a t e d
f l o a t lookupX =
−(rayHitpointX . z+(planemod . x+s ign . x∗ p l a n e o f f s e t . x )∗PREMULT)−p l an e c o r r e c t . x ;
orthoLookup =
f l o a t 2 ( rayHitpointX . y+windX . x∗(GRASSDEPTH+rayHitpointX . z ) , lookupX ) ;

p l a n e o f f s e t . x += PLANE NUM INV;
i f ( z f l a g ==1) zO f f s e t = d i s t ance . x ;

}
e l s e {

f l o a t 4 windY = ( tex2D ( windnoise , texCoord2+rayHitpointY . xy /8)−0.5)/2;
f l o a t lookupY =
−(rayHitpointY . z+(planemod . y+s ign . y∗ p l a n e o f f s e t . y )∗PREMULT)−p l an e c o r r e c t . y ;
orthoLookup =
f l o a t 2 ( rayHitpointY . x+windY . y∗(GRASSDEPTH+rayHitpointY . z ) , lookupY ) ;
p l a n e o f f s e t . y += PLANE NUM INV;
i f ( z f l a g ==1) zO f f s e t = d i s t ance . y ;

}
c o l o r += (1.0− c o l o r .w)∗ tex2D ( gras sb lades , orthoLookup ) ;
// I f t he a lpha i s g r e a t e r than 0 .49 , we take the cur r en t va l u e as z
i f ( c o l o r .w >= 0.49){ z f l a g = 0;}
}

}
//Blend in a background co l o r i r t h e r e i s some t ransparency l e f t .
c o l o r += (1.0− c o l o r .w)∗ f l o a t 4 ( 0 . 3 2156 , 0 . 5 13725 , 0 . 0 941176 , 1 . 0 ) ;
c o l o r . xyz ∗= ( vertCo lor . xyz ) ;
pos i t ionView += mul ( worldViewProj , eyeDirTex . xzy∗ zO f f s e t ) ;
depth = pos i t ionView . z/ pos i t ionView .w;

}
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