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Kurzfassung

Illustrationen spielen eine wichtige Rolle in der Kommunika-
tion komplexer Sachverhalte. Ihre Herstellung ist jedoch schwie-
rig und teuer. Dreidimensionale bildgebende Verfahren haben
sich in den letzten Jahren als unverzichtbares Werkzeug in Dis-
ziplinen wie der medizinischen Diagnose und Behandlungspla-
nung, im technischen Bereich (z.B. Materialprüfung), der Biologie,
und der Archäologie etabliert. Modalitäten wie Röntgencomputer-
tomographie (CT) oder Magnetresonanztomographie (MRT) ge-
nerieren täglich hochauflösende volumetrische Scans. Es leuchtet
nicht ein, dass trotz dieses Datenreichtums die Produktion einer
Illustration noch immer ein aufwendiger und zum Großteil manu-
eller Prozess ist.

Diese Dissertation beschäftigt sich mit der computerunter-
stützten Erstellung von Illustrationen direkt auf Basis solcher Vo-
lumendaten. Zu diesem Zweck wird das Konzept eines direkten
Volumenillustrationssystems eingeführt. Dieses System erlaubt
die Gestaltung einer Illustration direkt anhand von gemessenen
Daten, ohne dass ein zusätzlicher Modellierungsschritt notwendig
wäre. Abstraktion, ein wichtiger Bestandteil traditioneller Illustra-
tionen, wird verwendet um visuelle Überladung zu vermeiden,
wichtige Strukturen hervorzuheben und versteckte Details sicht-
bar zu machen. Abstraktionstechniken beschäftigen sich einer-
seits mit der Erscheinung von Objekten und erlauben die flexi-
ble künstlerische Schattierung von Strukturen in volumetrischen
Datensätzen. Andererseits kontrollieren diese Techniken welche
Objekte sichtbar sein sollen. Neue Methoden zur Generierung von
Transparenz- und Explosionsdarstellungen werden hierfür vor-
gestellt. Die präsentierten Visualisierungstechniken verwenden
die Fähigkeiten moderner Graphikhardware um eine interaktive
Darstellung zu ermöglichen.

Das resultierende System erlaubt die Erstellung von expressi-
ven Illustrationen direkt anhand von volumetrischen Daten und
hat eine Vielzahl von Anwendungen wie etwa die medizinische
Ausbildung, Patientenaufklärung und wissenschaftliche Kommu-
nikation.





Abstract

Illustrations are essential for the effective communication of
complex subjects. Their production, however, is a difficult and
expensive task. In recent years, three-dimensional imaging has
become a vital tool not only in medical diagnosis and treatment
planning, but also in many technical disciplines (e.g., material
inspection), biology, and archeology. Modalities such as X-Ray
Computed Tomography (CT) and Magnetic Resonance Imaging
(MRI) produce high-resolution volumetric scans on a daily basis.
It seems counter-intuitive that even though such a wealth of data
is available, the production of an illustration should still require a
mainly manual and time-consuming process.

This thesis is devoted to the computer-assisted generation of
illustrations directly from volumetric data using advanced visu-
alization techniques. The concept of a direct volume illustration
system is introduced for this purpose. Instead of requiring an
additional modeling step, this system allows the designer of an
illustration to work directly on the measured data. Abstraction,
a key component of traditional illustrations, is used in order to
reduce visual clutter, emphasize important structures, and reveal
hidden detail. Low-level abstraction techniques are concerned
with the appearance of objects and allow flexible artistic shading
of structures in volumetric data sets. High-level abstraction tech-
niques control which objects are visible. For this purpose, novel
methods for the generation of ghosted and exploded views are
introduced.

The visualization techniques presented in this thesis employ
the features of current graphics hardware to achieve interactive
performance. The resulting system allows the generation of expres-
sive illustrations directly from volumetric data with applications in
medical training, patient education, and scientific communication.





Books have the same enemies as peo-
ple: fire, humidity, animals, weather,
and their own content.

— Paul Valéry
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A classic is something that everybody
wants to have read and nobody wants
to read.

— Mark Twain
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Gröller. I want to thank him and my past and present colleagues including
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Malik, Maurice Termeer, Erald Vuçini, Daniel Patel, Raphael Fuchs, Martin
Haidacher, and all the others for creating a friendly and stimulating working
environment. Every single one of them contributed in making this time a
particularly educational, creative, and enjoyable period of my life. I especially
want to thank my girlfriend Petra, to whom I dedicate this thesis, for her
patience and support during stressful times – without her this would not have
been possible.

The work presented in this thesis was carried out as part of the exvisation
project1 supported by the Austrian Science Fund (FWF) grant no. P18322.
The data sets used are courtesy of AFGA HealthCare, the OsiriX Foundation,
the United States National Library of Medicine, Lawrence Berkeley National
Laboratory, and General Electric.

Vienna, Austria, March 2008 Stefan Bruckner

1http://www.cg.tuwien.ac.at/research/vis/exvisation

xi

http://www.cg.tuwien.ac.at/research/vis/exvisation


Figure 1.1 – Illustration from Andreas Vesalius’ De Humani Corporis Fabrica (1543).



In the beginning the Universe was cre-
ated. This has made a lot of people
very angry and has been widely re-
garded as a bad move.

— Douglas Adams

CHAPTER

1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Introduction

Illustrations play a major role in the education process. Whether used
to teach a surgical or radiological procedure, to illustrate normal or
aberrant anatomy, or to explain the functioning of a technical device,
illustration significantly impacts learning. This chapter reviews the history
of illustration and introduces the notion of direct volume illustration, i.e.,
the computer-assisted generation of illustrations based on volumetric
data.

1.1 Traditional Illustration

EVER since the dawn of man, humans have sought out ways of communi-
cating acquired knowledge to contemporaries and future generations
alike. The human visual channel is – due to its high bandwidth – a

very effective means for this purpose. Images, unlike written descriptions,
require little previous knowledge and can therefore be intuitively understood
by a broad audience. The artist’s ability to create a tangible image of an idea,
concept, or discovery has been indispensable in communicating that idea to
other individuals [21].

1.1.1 Prehistory

The beginning of illustration long predates written records. Initial pictorial
iconography, which took the form of rock paintings and petroglyphs (engrav-
ings carved into a stone surface), first appeared in the Upper Palaeolithic
period, as early as 30,000 B.C. These ancient artists were hunters whose very
survival depended upon their knowledge of the living machinery. Thus, some
of these depictions are suspected to have had the same basic purpose as mod-
ern illustrations – to preserve and pass on information. Figure 1.2 shows an
early ”X-ray style” rock painting discovered in Australia.

1.1.2 Antiquity

The scribes, painters, and stone cutters of ancient Egypt were probably among
the first commercial artists. Their visual and written language, hieroglyphics,

1



2 Interactive Illustrative Volume Visualization

Figure 1.2 – Aboriginal ”X-ray style” rock painting at Kakadu National Park, Australia
(ca. 6,000 B.C).

depicted religious practices, political propaganda, scientific data, and daily
life. Though possessing some sound fundamentals in science and art, their
drawings and pictographs failed to combine height, width, and depth into
one view of an object.

The ancient Greeks, led by their intense interest in the beauty and structure
of the human body, were the first to conduct serious investigations into physi-
ology and anatomy. Hippocrates (460-375 B.C), Father of Medicine, and his
contemporaries were responsible for the foundation of science and medicine
as empirical disciplines. Aristotle (384-322 B.C) was among the first to dissect
and study animal anatomy. He established an anatomical nomenclature and
is also credited with one of the first anatomical illustrations. The Ptolemaic
Medical School of Alexandria became a center of medical study. It was here
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where the first true medical illustrations were produced. The great age of
discovery ended when Alexandria was systematically destroyed in the early
part of the Christian era. A period of similar intellectual and artistic freedom
was not seen again until the advent of the Renaissance.

1.1.3 Renaissance

During the Renaissance period, major advancements in painting and illustra-
tion took place through the work of individuals such as Leon Battista Alberti
(1404-1472), Leonardo da Vinci (1452-1519), and Andreas Vesalius (1514-1564).
Artist and architect Leon Battista Alberti’s treatise Della Pictura (On Paint-
ing) of 1436 was the first modern manual for painters containing one of the
early treatments of perspective drawing. Leonardo da Vinci’s artistic ability
combined with his scientific curiosity provided the means and impetus for a
merging of visual art with science and invention. He took interest in anatomy,
dissecting more than thirty cadavers and making hundreds of drawings (see
Figure 1.3). Andreas Vesalius produced the first true atlas of human anatomy.
His work, De Humani Corporis Fabrica (On the Fabric of the Human Body),
appeared in 1543. It was realized that if certain artistic holdings should be
skillfully abandoned, greater scientific value could be achieved in the illustra-
tions through the cooperation of practitioners of medicine and art. A specialty
had been established combining the ability to draw beautifully, and the inge-
nuity to set forth scientific facts in an understandable fashion [67]. Figure 1.1
shows an example of Vesalius’ work.

1.1.4 Modern Illustration

The industrial revolution further refined the field of illustration. The inven-
tion of lithography helped in spreading the use of high-quality illustrations.
Mass production and outsourcing created the need to adopt conventions and
standards in illustration that were universally understood. The use of now
established principles of perspective allowed illustrators an objective record-
ing of one’s visual experience. Additionally, during this period illustrators
began to increasingly use variant line weights to emphasize mass, proximity,
and scale which helped to make a complex line drawing more understandable
to the layperson. Cross hatching, stippling, and other basic techniques gave
greater depth and dimension to the subject matter.

The Johns Hopkins School of Medicine began training illustrators in 1911
through the School of Medicine’s Department of Art as Applied to Medicine.
It was the first medical illustration department in the world, and for decades,
the majority of credited medical illustrators were taught at Hopkins. The
department was headed by Max Brödel (1870-1941) whom many consider to
be the father of modern medical illustration. Brödel perfected his half-tone
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Figure 1.3 – Drawing of a woman’s torso by Leonardo da Vinci, from his anatomical
notebooks (ca. 1510).
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Figure 1.4 – Illustration of a hypophysectomy procedure by Max Brödel.

renderings to have the authenticity of a photograph while still abstracting
away unnecessary detail (see Figure 1.4).

Over the course of the 20th century, illustration established itself as a
distinct field at the intersection point between art and science through the likes
of Frank Netter (1906-1991) whose work is still featured in many text books
today. Illustrators not only needed artistic skills but also required in-depth
knowledge of the subject matter. With the advent of personal computers in the
1980s, illustrators increasingly began to employ modern desktop publishing
software in their workflow. While still essentially a manual process, image
processing software enabled the flexible combination of multiple drawing
layers as well as digital storage as shown in Figure 1.5. As three-dimensional
graphics finally became feasible on desktop computers during the 1990s,
illustrators started to combine traditional techniques and computer-assisted
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(a) (b)

Figure 1.5 – Modern medical illustration by Mike de la Flor [21]. (a) Initial hand-drawn
sketch. (b) Final illustration generated using Adobe Photoshop.

modeling and rendering. While this use of modern technology undoubtedly
helped illustration to become more efficient, it still remains a time consuming
process which requires careful and detailed modeling of the specimen to be
depicted as well as profound knowledge of the subject matter.

1.2 Illustrative Visualization

In 1895, Wilhelm Conrad Röntgen (1845-1923) was studying the phenomena
accompanying the passage of electric current through gas of extremely low
pressure. He found that invisible rays were emitted from the discharge tube.
While working in a darkened room he observed that a paper plate covered
on one side with barium platinocyanide became fluorescent when placed
in the path of the rays. The discharge tube was enclosed in a sealed black
carton to exclude all light. The illuminance only depended on the thickness of
interposed objects. Soon after, Roentgen finished his first scientific work on
this research including the first radiograph taken from the hand of his wife
(see Figure 1.6).

In 1917, the Austrian mathematician Johann Radon (1887-1956) proved
that any function is well defined by all line integrals of the function. This
purely theoretical approach provided the mathematical foundations for fur-
ther research towards computed tomography – the process of reconstructing
spatial information from a series of projections. Nearly half a century later
Allan Cormack (1924-1998) did first experiments with X-ray absorption on
phantoms made of material like wood or aluminum. He published his work on
calculating the radiation absorption distribution in the human body based on
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Figure 1.6 – The first X-ray image showing the hand Wilhelm Conrad Röntgen’s wife
(1895).
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transmission measurements in 1963. In 1968, Godfrey Hounsfield (1919-2004)
successfully implemented a prototype of a computed tomography device. For
their contributions, Cormack and Hounsfield shared the 1979 Nobel Prize for
Physiology or Medicine.

Computed Tomography (CT) is the general process of creating cross-
sectional images from projections of the object at multiple angles. If un-
modified, the term CT conventionally implies images made by measuring the
transmission of X-rays. In X-ray CT, the function imaged is the distribution of
linear attenuation coefficients since, for monochromatic X-rays, the logarithm
of the transmitted intensity is proportional to the integral of the attenuation
coefficient along the path. Other tomographic imaging modalities such as
Magnetic Resonance Imaging (MRI), which is based on the spin relaxation
properties of excited hydrogen nuclei in water and lipids, have since been
developed. The key advantage of tomographic imaging modalities is that they
capture volumetric information, i.e., the property measured by the scanner can
be reconstructed – at least theoretically – at every point in space. In practice,
samples are reconstructed on a regular grid at a pre-determined resolution. A
tomographic scan therefore allows the inspection of a specimen’s interior in a
non-destructive manner.

Initially, volume data sets were analyzed by viewing consecutive slices of
the data. However, soon first attempts were made to extract three-dimensional
structures from such data sets [49]. While early research on the visualization
of volume data focused on reconstructing high-quality surfaces [68], the intro-
duction of direct volume rendering by Drebin et al. [31] and Levoy [66] first
demonstrated the advantages of directly rendering from the volumetric repre-
sentation. Since then, a vast amount of research has been devoted to the area
of direct volume visualization. At first, many volume rendering approaches
were based on an approximation of a realistic physical model. However, the
need to improve the visualization of relevant features in complex volumetric
data sets, lead to an increased interest in methods used by illustrators, giving
rise to the area of illustrative visualization [33, 86].

1.3 Scope of this Thesis

In recent years, three-dimensional imaging has become a vital tool not only
in medical diagnosis and treatment planning, but also in many technical
disciplines (e.g., material inspection), biology, and archeology. Modalities
such as X-Ray Computed Tomography (CT) and Magnetic Resonance Imaging
(MRI) produce high-resolution volumetric scans on a daily basis. Furthermore,
initiatives such as the Visible Human Project by the Unites States’ National
Library of Medicine have succeeded in generating highly detailed reference
data sets [100]. It seems counter-intuitive that even though such a wealth
of data is available, the production of an illustration should still require
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tedious and time-consuming geometric modeling of the specimen from scratch.
Instead, the design of the illustration could be performed directly based on the
volumetric representation. Volume data, as opposed to surface representations,
captures physical properties of a specimen at every point in space and can
thus be used as a basis for a wide variety of different illustrations.

In this thesis, we present the concept of an interactive direct volume illus-
tration system, which allows the generation of scientific visualizations with
the aesthetic quality and information content of traditional illustrations but is
based on volumetric data. Direct volume illustration means that instead of
going through an elaborate modeling process, the volumetric representation
is used directly as a basis for the design and presentation of an illustration.
In addition to the technical challenges involved in rendering volumetric data
at interactive frame rates, this work presents the extension of common con-
cepts used in illustration to an interactive illustration system. In particular,
visual abstraction, a fundamental cornerstone for the effective presentation of
information, is the main focus of this work.



(a)

(b)

Figure 2.1 – Annotated direct volume illustrations of a carp. (a) The swim bladder is
highlighted using a cutaway. (b) The swim bladder is displayed enlarged.



Art is making something out of noth-
ing and selling it.

— Frank Zappa

CHAPTER

2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A Direct Volume Illustration
System

Although many specimens are readily available as volumetric data sets,
illustrations are commonly produced in a time-consuming manual pro-
cess. Our goal is to create a fully dynamic three-dimensional illustration
environment which directly operates on volume data acquired by tomo-
graphic imaging modalities. Single images have the aesthetic appeal
of traditional illustrations, but can be interactively altered and explored.
This chapter describes the basic concepts used in the development of an
interactive system for the generation of illustrations based on volumetric
data [4].

2.1 Introduction

CONSIDERABLE effort has been devoted to developing, improving and
examining direct volume rendering algorithms for visualization of
scientific data. It has been shown that volume rendering can be

successfully used to explore and analyze volumetric data sets in medicine,
biology, engineering, and many other fields. In recent years, non-photorealistic
or illustrative methods employed to enhance and emphasize specific features
have gained popularity. Although the presented work is based on a large
body of research in this area, its focus is somewhat different. Instead of using
these techniques to improve the visualization of volume data for common
applications such as diagnosis, we want to combine existing and new methods
to directly generate illustrations, such as those found in medical textbooks,
from volumetric data.

Illustrations are an essential tool in communicating complex relationships
and procedures in science and technology. However, the time and effort
needed to complete an illustration is considerable and varies widely depend-
ing on the experience and speed of the illustrator and the complexity of the
content. The more complicated the subject matter, the longer it will take the
illustrator to research and solve a complex visual problem. Different illus-
tration methods and styles can also have a significant impact on the time
involved in the creation of an illustration. Therefore, illustrators are increas-
ingly using computer technology to solve some of these problems. This,

11
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however, is mostly restricted to combining several manually created parts of
an illustration using image processing software.

Volume rendering has gained some attention in the illustration community.
For example, Corl et al. [16] describe the use of volume rendering to produce
images as reference material for the manual generation of medical illustrations.
We aim to take this development one step further. Our goal is to create a fully
dynamic three-dimensional volume-based illustration environment where
static images have the aesthetic appeal of traditional illustrations. The advan-
tages of such a system are manifold: Firstly, the whole process of creating an
illustration is accelerated. Different illustration methods and techniques can
be explored interactively, as demonstrated in Figure 2.1. It is easy to change
the rendering style of a whole illustration – a process that would otherwise
require a complete redrawing. Moreover, the research process is greatly sim-
plified. Provided that the object to be depicted is available as a volumetric data
set, it can be displayed with high accuracy. Based on this data, the illustrator
can select which features he wants to emphasize or present in a less detailed
way. Illustration templates can be stored and reapplied to other data sets. This
allows for the fast generation of customized illustrations which depict, for
instance, specific pathologies. Finally, the illustration becomes more than a
mere image. Interactive illustrations can be designed where a user can select
different objects of interest and change the viewpoint. This chapter gives an
overview of our approach to the design of such a system.

2.2 Related Work

Several systems for the generation of illustrations using computer graphics
have been developed. Dooley and Cohen [29, 30] present a system for the au-
tomatic generation of semi-transparent line and surface illustrations from 3D
models. Pioneering work by Seligman and Feiner [35, 92, 93] first treated the
topic of visibility constraints. Their work on geometrically modeled objects
employs cutaways and ghosting to resolve visibility conflicts. Preim et al. [85]
present Zoom Illustrator, a semi-interactive tool for illustrating anatomic mod-
els. Their approach focuses on the integration of three-dimensional graphics
and textual representations. Höhne et al. [52] use segmented volume data to
generate an anatomic atlas which allows text-based browsing and interactive
cutting operations. Owada et al. [81, 82] present a system for modeling and
illustrating volumetric objects. They semi-automatically generate artificial
cutting textures based on surface models. Svakhine et al. [104] discuss a vol-
ume visualization system which employs illustration motifs to control the
appearance of objects at varying degrees of complexity.
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2.3 Overview

Illustrations are produced to enable a viewer to extract information. They
are images with a communicative intent. For this purpose, they do not just
contain straightforward depictions of the data – the presentation is dedicated
to a thematic focus. Thus, portions of the data may be represented in more
detail or more prominently while others may be simplified, shrunken, or even
left out. This distortion of the visualization with respect to the underlying
model is referred to as abstraction. The data from which an image is generated
can be viewed as a complex information space. The term abstraction denotes
the process through which an extract of this information space is refined in
order to reflect the importance of the features of the underlying model for the
visualization goal at hand [103].

Abstraction is a key component of many traditional illustrations. As there
is often not enough space available to display all information in sufficient
detail, the general idea is to emphasize regions of particular interest while
reducing other information. Portions of the data which are not critical but
still important for orientation are retained and depicted in a more stylized
manner. These kind of focus+context visualizations are not only motivated by
space limitations but also by human visual perception. Humans are capable
of simultaneously perceiving both local detail and global structure [94]. Ab-
straction makes it possible to show more detailed or targeted information in
those regions where it is most needed for the intent of the illustration.

VolumeShop1, our direct volume illustration framework, is different from
many previous approaches in that it not only provides an environment for the
presentation of a finished illustration, but also attempts to supply interactive
tools for the generation of the illustration itself. It is therefore based on
incomplete information about the nature of the illustration. This information
is supplied by the illustrator through interaction with the system. While the
human is kept in the loop to decide which specific abstraction techniques are
most suited for the communicative intent of the illustration, the abstraction
process itself is performed by the system. Figure 2.2 depicts a conceptual
overview of this workflow.

For example, the decision which parts of the data are more important in
the context of the illustration ultimately has to be taken by the user through in-
teraction with the system. In order to enable selective abstraction, VolumeShop
discriminates between two basic types of volumes: data volumes and selection
volumes. A data volume stores the measured data, for example acquired by
a CT scanner, which forms the basis of the illustration. A selection volume
specifies a particular structure of interest in a corresponding data volume.
It stores real values in the range [0,1] where zero means ”not selected” and
one means ”fully selected”. Such a degree-of-interest function allows for a

1http://www.volumeshop.org

http://www.volumeshop.org
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abstraction
techniques

user
interaction

illustration systemdata source �nal illustration

Figure 2.2 – Conceptual overview of VolumeShop, our direct volume illustration
environment.

more fine-grained control over the level of abstraction compared to a binary
classification. Selection volumes can be generated using a wide variety of
algorithms collectively known as approaches for volume segmentation. Seg-
mentation, i.e., the identification of individual objects in volumetric data sets,
is an area of extensive research, especially in the context of medical applica-
tions. Approaches range from very general methods to algorithms specifically
developed for particular types of data. In contrast to diagnostic requirements,
however, voxel-exact classification of features is not necessarily of primary
concern for illustration. Rather, it is important that the illustrator can quickly
and easily add and remove structures of interest to and from the selection.
Furthermore, as illustrations commonly use smooth transitions between dif-
ferent degrees of abstraction, this fuzzyness should be also supported by the
selection definition method. For this reason, one option is to use a three-
dimensional volumetric painting approach to define the selection. When the
user clicks on the image, a ray is cast from the corresponding position on the
image plane into the data volume. At the first non-transparent voxel that is
intersected by the ray, a volumetric brush (e.g., a three-dimensional Gaussian)
is ”drawn” into the selection volume for each non-transparent voxel within
the bounding box of the brush. Different composition methods can be chosen,
for example addition (i.e., actual painting) or subtraction (i.e., erasing). Such



Chapter 2 A Direct Volume Illustration System 15

an approach has the advantage of providing an interaction metaphor which is
familiar to illustrators.

2.3.1 System Architecture

VolumeShop is based on an easily extensible architecture. Various plug-ins for
tasks such as data import and export, interaction, rendering, and compositing
can be flexibly combined for different illustration tasks and new plug-ins can
be created in order to extend the existing functionality. All plug-ins expose
their parameters as properties which can be linked together in order to com-
bine their capabilities. Additionally, editor plug-ins can be created on top of
this property system to provide high-level user interfaces targeted for specific
applications. The system was designed to enable rapid-prototyping on the
developer side while still providing the ability to hide complexities from the
end-user. Components such as editor plug-ins allow complete customization
of the user-interface. Parameterized project setups including plug-in con-
figurations can be serialized to XML files which enables the generation of
illustration templates.

Data such as images and volumes are encapsulated as resources. Re-
sources provide a high-level programming interface in the form of iterators
and manipulators which hides the underlying representation from the plug-in
developer. Volumes are stored in a bricked memory layout using reference
counting, i.e., they are subdivided into small cubes which are accessed using
an index data structure. Redundant information is not duplicated, thus, if
two bricks contain the same data, they are stored in memory only once. The
copy-on-write idiom is used for handling modifications. This is most useful
for the selection volumes due to their sparse nature. Furthermore, several
pieces of meta data (e.g., octrees, coordinate systems, bounding boxes, etc.)
are stored for each volume and transparently updated on modification.

This foundation serves as a technological basis for the techniques discussed
in this thesis. While the presented concepts and algorithms are general and
could be implemented in a different environment, VolumeShop was specifically
designed to support the requirements of illustrative visualization exploiting
the capabilities of current graphics hardware.

2.3.2 Object Model

While both data and selection volumes are treated identical for low-level tasks
such as data import and export, the visualization components of the system
assign semantics to them. When illustrating a volumetric data set, we want
to enable interactive selection and emphasis of specific features. The user
should be able to specify a region of interest which can be highlighted and
transformed, similar to common image editing applications [65]. We also
want to permit arbitrary intersections between objects and control how the in-
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tersection regions are visualized. In the following, a conceptual framework for
the visualization of multiple volumetric objects in a direct volume illustration
framework is described.

The approach identifies three different objects for the interaction with
a volumetric data set: a selection is a user-defined focus region, the ghost
corresponds to the selection at its original location, and the background is
the remaining volumetric object. A transformation T can be applied to the
selection, e.g., the user can move, rotate, or scale this object. While the concept
of background and selection is used in nearly every graphical user interface,
ghosts normally exist, if at all, only implicitly. In the context of illustration,
however, such an explicit definition of a ghost object can be advantageous.

We assume a scalar-valued volumetric function fV and a selection function
fS , which are defined for every point p in space. The selection function fS has
values in [0, 1] which indicate the degree of selection. Based on this degree of
selection we define three fuzzy selection sets SS , SG, and SB (see Figure 2.3,
first row) with their respective membership functions µS , µG, and µB :

µSS (p) = fS(T (p))
µSG(p) = fS(p)
µSB (p) = 1− fS(p)

(2.1)

where T is the transformation that has been applied to the selection.
To control the appearance of our three objects, i.e., selection, ghost, and

background, we define color and opacity transfer functions which we denote
cS , αS , cG, αG, and, cB , αB . We use the opacity transfer functions to define
the membership functions of three volume sets, VS , VG, and VB (see Figure 2.3,
second row):

µVS (p) = αS(T (p))
µVG(p) = αG(p)
µVB (p) = αB(p)

(2.2)

For each of our three objects we can now define an object set as the inter-
section between the corresponding selection and volume set (see Figure 2.3,
third row):

S = SS ∩ VS
G = SG ∩ VG
B = SB ∩ VB

(2.3)

These sets correspond to our basic objects selection, ghost, and background.
Thus, in the following we will use these terms to refer to the respective object
sets and vice versa. For volume rendering, we now need a way to deter-
mine the color and opacity at a point p in space depending on its grade of
membership in these sets. We assume n sets X1, X2, . . . , Xn and their corre-
sponding color transfer functions c1, c2, . . . , cn. We can then define the color
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Figure 2.3 – Overview of the basic multi-object combination process for background,
ghost, and selection: the intersection between selection sets and volume sets results
in object sets which are then combined.
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at a point p as a weighted sum using the respective membership functions
µX1 , µX2 , . . . , µXn as weights:

c(p) =

n∑
i=1

ci(p)·µXi (p)
n∑
i=1

µXi (p)
(2.4)

As the membership functions of our sets are based on the opacity and the
degree of selection, we define the opacity at p as the grade of membership in
the union of all sets:

α(p) = µX1∪X1∪...∪Xn(p) (2.5)

Using Equations 2.4 and 2.5 for our three sets S, G, and B and the color
transfer functions cS , cG, and cB leads to a meaningful combination of colors
and opacities when used in direct volume rendering. However, we want to
provide the user with additional control over the appearance of regions of
intersection [10, 42, 113]. Frequently, for example, illustrators emphasize inter-
penetrating objects when they are important for the intent of the illustration.

To achieve this we first need to identify potential regions of intersection.
According to our definitions B ∩ G = ∅, i.e., background and ghost never
intersect. The selection, however, can intersect either the background, the
ghost, or both. Thus, we direct our attention to the sets GS = G ∩ S and
BS = B ∩ S . For every point which is a member of one of these sets, we
want to be able to specify its appearance using special intersection transfer
functions cGS , cBS for color and αGS , αBS for opacity. Thus, we define two
new sets VGS and VBS with the following membership functions:

µVGS (p) = αGS(fV (p), fV (T (p))
µVBS (p) = αBS(fV (p), fV (T (p))

(2.6)

The intersection transfer functions are two-dimensional. Their arguments
correspond to the value of volumetric function fV at point p and at T (p),
the value of the function at p transformed by the selection transformation T .
Based on these two sets, we now define two alternative sets ĜS and B̂S for
the regions of intersection:

µ
ĜS

(p) =

{
0 µGS(p) = 0
µSG∩SS∩VGS (p) otherwise

µ
B̂S

(p) =

{
0 µBS(p) = 0
µSB∩SS∩VBS (p) otherwise

(2.7)

To evaluate the combined color and opacity at a point p in space, we use
Equation 2.4 and 2.5 with the sets S − (ĜS ∪ B̂S), G− ĜS, B − B̂S, ĜS, and
B̂S and the respective color transfer functions cS , cG, cB , cGS , and cBS . We use
the standard definitions for fuzzy set operators where the minimum operator
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Figure 2.4 – Using intersection transfer functions to illustrate implant placement in the
maxilla. As the selection (green) is moved into the ghost (faint red), the intersection
transfer function causes it to be displayed in blue.

is used for the intersection and the maximum operator is used for the union
of two fuzzy sets [116].

The intersection transfer functions are used to control the appearance in
the region of intersection between two objects. The concrete implementation
of these intersection transfer functions is dependent on the employed abstrac-
tion techniques. It can be derived automatically from the appearance of the
respective objects, but it is also possible to allow full user control, for instance,
by allowing the user to paint on the two-dimensional function to highlight
specific scalar ranges. Figure 2.4 shows an example where the ghost/selection
intersection transfer function is used to illustrate the placement of an implant
in the maxilla. This kind of emphasis is not only useful for the final illustration,
but can act as a kind of implicit visual collision detection during its design.

2.3.3 Abstraction Techniques

Abstraction techniques are the means by which the effect of the abstraction
process is achieved. Since there are usually several abstraction techniques
which produce similar effects, the designer of an illustration has to select
one or a combination of several abstraction techniques. To provide visual
access to a structure of interest, for example, the objects occluding it may be
removed or relocated, a cutaway view can be used, or a rotation of the object
can be employed. This choice is constrained by parameters of the output
medium chosen and of human perception. To meet the restrictions of human
perception it is essential to establish an equilibrium between the level of detail
of the objects of interest and the objects depicting their context so that the
user can easily understand the image. On the one hand, it is crucial to reduce
the cognitive load for the interpretation of an illustration. On the other hand,
enough contextual information must be provided to understand an image.
Abstraction techniques can be classified as low- or high-level techniques,
based on the kind of modifications they perform [46].
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Figure 2.5 – Importance-driven cutaway with varying sparseness of the occluding
region.

Low-Level Abstraction Techniques

Low-level abstraction techniques deal with how objects should be presented.
Stylized depictions, such as line drawings, are frequently used to depict
context information, while more visually prominent rendering styles are
employed in the presentation of important structures. While the area of
non-photorealistic rendering has produced many algorithms capable of sim-
ulating artistic techniques, an important task in the context of an interactive
illustration system is the integration of different rendering styles using a uni-
fied representation. In Chapter 3, which is devoted to low-level abstraction
techniques, we discuss methods for accomplishing this.

High-Level Abstraction Techniques

High-level abstraction techniques are concerned with what should be visible
and recognizable. Many of these techniques specifically deal with the problem
of occlusion, as spatial relations frequently conflict with the importance of
objects. Viola et. al. [107, 108] introduced the concept of importance-driven
volume rendering, which generates cutaway views based on an importance
specification. If a less important object occludes a more important object, the
visual representation of the occluding region becomes more sparse (see Fig-
ure 2.5). Further high-level abstraction techniques are presented in Chapter 4.

Annotations

In addition to the abstraction of the data itself, it is often useful to clearly point
out which parts of the object have been abstracted. Annotations are used for
this purpose. Illustrators commonly employ certain visual conventions to
indicate the type of abstraction technique that has been applied. Arrows, for
instance, normally suggest that an object actually has been moved during
the illustrated process (e.g., in the context of a surgical procedure) or that an
object needs to be inserted at a certain location (e.g., in assembly instructions).
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(a) (b)

Figure 2.6 – Using different artistic visual conventions. (a) Illustration of a tumor
resection procedure. (b) Detailed depiction of a hand bone using a blow-up.

Similarly, enlarged or alternative depictions of certain structures are frequently
indicated by a a connected pair of shapes, such as rectangles or circles. These
annotations can be generated by collecting data about the abstraction pro-
cess itself and using an appropriate visualization technique to display them.
Figure 2.6 shows two examples for the use of annotations in our system.

Furthermore, hand-made illustrations in scientific and technical textbooks
commonly use labels or legends to establish a co-referential relation between
pictorial elements and textual expressions. As we allow multiple selections to
be defined, labels can be employed to display additional information such as
a natural language description of the corresponding objects. They not only
recreate the appearance of static illustrations but are also useful for simplifying
orientation in our interactive environment. Ali et al. [1] give a comprehensive
description of label layout styles. A simple algorithm for visually pleasing
label layout can be derived from the following guidelines:

• Labels must not overlap.

• Connecting lines between labels and anchor points must not cross.

• Labels should not occlude any other structures.

• A label should be placed as close as possible to its anchor point.

In many textbook illustrations, labels are placed along the silhouette of
an object to prevent occlusions. We can approximate this by extracting the
convex hull of the projections of the bounding volumes of all visible objects.
The resulting polygon is radially parameterized. Based on its location in
parametric space, a label is always placed in such a way that it remains
outside the convex hull. All labels are initially placed at the position along the
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Figure 2.7 – Annotated illustration of a human foot - the current selection is high-
lighted.

silhouette polygon which is closest to their respective anchor point. We then
use a simple iterative algorithm which consists of the following steps:

1. If the connection lines of any two labels intersect, exchange their posi-
tions.

2. If exchanging the positions of two labels brings both closer to their
anchor points, exchange their positions.

3. If a label overlaps its predecessor, move it by a small delta.

These three steps are executed until either all intersections and overlaps are
resolved or the maximum number of iterations has been reached. Remaining
intersections and overlaps can be handled by disabling labels based on priority,
which can be defined by the screen-space depth of the anchor point, i.e., labels
whose reference structures are farther away will be disabled first. While
this basic algorithm does not result in an optimal placement, it is very fast
for a practical number of labels and generally leads to a visually pleasing
layout. Due to the initialization of label locations at positions on the silhouette
closest to the anchor points, the labels generally move smoothly in animated
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views. Discontinuities only occur when intersections and overlaps need to be
resolved. Figure 2.7 shows a labeled illustration of a human foot highlighting
the current selection.

2.4 Summary

In this chapter, we introduced the general concept of a direct volume illus-
tration environment. VolumeShop, an interactive system for the generation
of high-quality illustrations, employs an intuitive object model for interac-
tion with volumetric data. This model is used by low-level and high-level
abstraction techniques to create interactive illustrations based on the user’s
communicative intent. Information about the abstraction process itself can
be conveyed using annotations. The following chapters will give a detailed
overview of different abstraction techniques based on a volumetric represen-
tation.



Figure 3.1 – Rendering of segmented volume data using a multi-dimensional style
transfer function based on data value and object membership.



There is no abstract art. You must
always start with something. After-
wards you can remove all traces of
reality.

— Pablo Picasso
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Low-Level Abstraction
Techniques

Stylization can be an effective tool in guiding a viewer’s attention to
certain features. Illustrations commonly modulate properties such as
shading, contours, or shadows to put subtle emphasis on important
structures or to reduce the prominence of contextual objects. In order
to allow the same kind of flexibility in a direct volume illustration system,
methods have to be developed which are able to generate these effects
using a sample-based representation. This chapter presents common
low-level abstraction techniques adapted to volumetric data [4, 6, 7].

3.1 Introduction

LOW-LEVEL abstraction techniques attempt to adjust the appearance of
objects in order to highlight important structures or to de-emphasize
less relevant information. Historically, most volume rendering tech-

niques are based on an approximation of a realistic physical model. It was
noticed, however, that traditional depictions of the same types of data – as
found in medical textbooks, for example – deliberately use non-realistic tech-
niques in order to focus the viewer’s attention to important aspects [33, 86].
The illustration community has century-long experience in adapting their
techniques to human perceptual needs in order to generate an effective depic-
tion which conveys the desired message. Thus, their methods can provide us
with important insights into visualization problems.

In this chapter we discuss two techniques frequently found in traditional
illustrations and how they can be integrated in an illustration system based on
volume data. First, we focus on the aspect of shading. Illustrations commonly
employ different shading styles ranging from realistic depictions of material
properties to highly stylized representations. While many algorithms that
simulate particular artistic techniques have been developed, many of these
methods require tedious tuning of various parameters to achieve the desired
result. We aim to circumvent this issue by presenting the user with a gallery
of styles extracted from actual illustrations.

The second low-level abstraction technique presented in this chapter is
based on the fact that volumetric data commonly has high depth complexity

25
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which makes it difficult to judge spatial relationships accurately. Artists
and illustrators frequently employ halos to visually detach an object from
its background. In this technique, regions surrounding the edges of certain
structures are darkened or brightened which makes it easier to judge occlusion.
Based on this idea, a flexible method for enhancing and highlighting structures
is presented which can achieve effects such as soft shadowing and glow.

3.2 Related Work

In computer graphics, many techniques have been developed to capture
lighting effects in order to plausibly embed objects in photographs or video
or to create new scenes under the same environmental conditions [22, 23,
91]. For non-photorealistic rendering, approaches have been presented to
reproduce numerous artistic techniques, such as tone shading [39], pencil
drawing [98], hatching [84], or ink drawing [99]. While these are specialized
algorithms which aim to accurately simulate a particular technique, Sloan et
al. [97] employ a simple method to approximately capture non-photorealistic
shading from existing artwork. Their approach forms one building block of
our approach for stylized shading.

In the context of volume visualization, the combination of different ren-
dering styles is of particular interest, as it allows to put emphasis on features
of interest. Lu et al. [71, 72] developed a volume rendering system that simu-
lates traditional stipple drawing. Nagy et al. [77] combine line drawings and
direct volume rendering techniques. Yuan and Chen [115] enhance surfaces
in volume rendered images with silhouettes, ridge and valleys lines, and
hatching strokes. Tietjen et al. [106] use a combination of illustrative surface
and volume rendering for visualization in surgery education and planning.
Salah et al. [90] employ point-based rendering for non-photorealistic depiction
of segmented volume data. Techniques by Lu and Ebert [70] as well as Dong
and Clapworthy [28] employ texture synthesis to apply different styles to
volume data. Their approaches, however, do not deal with shading.

Multi-dimensional transfer functions have been proposed to extend the
classification space and to allow better selection of features. Kniss et al. [58, 59]
use a two-dimensional transfer function based on scalar value and gradient
magnitude to effectively extract specific material boundaries and convey sub-
tle surface properties. Hladůvka et al. [50] propose the concept of curvature-
based transfer functions. Kindlmann et al. [57] employ curvature information
to achieve illustrative effects, such as ridge and valley enhancement. Lum and
Ma [74] assign colors and opacities as well as parameters of the illumination
model through a transfer function lookup. They apply a two-dimensional
transfer function to emphasize material boundaries using illumination.

One way to add depth cues to volume rendered images is to use a more
realistic illumination model. Yagel et al. [114] employ recursive ray-tracing
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which allows for effects such as specular reflection and shadows. Behrens
and Ratering [3] add shadows to texture-based volume rendering. The model
presented by Kniss et al. [60] captures volumetric light attenuation effects
including volumetric shadows, phase functions, forward scattering, and chro-
matic attenuation. Max [75] gives a comprehensive overview of different
optical models for volume rendering. The problem of increasing the physical
realism is, however, that these models often lack control over the specific ap-
pearance of certain structures of interest. As they are based on actual physical
laws, it is difficult to control individual visualization properties separately.
Some approaches therefore use inconsistent illumination. Stewart [101] in-
troduces vicinity shading, a view-independent model to enhance perception
of volume data based on occlusions in the local vicinity of a sample point
resulting in shadows in depressions and crevices. Lee at al. [64] present a
system for automatically generating inconsistent lighting based on the object
geometry. Kersten et al. [55] study the effect of different depth cues on the
perception of translucent volumes.

Halos and similar techniques have been used by numerous researchers
to enhance depth perception. As an early example, Appel et al. [2] proposed
an algorithm for generating haloed lines in 1979. Interrante and Grosch [53]
employ halos to improve the visualization of 3D flow. Their approach uses line
integral convolution of a texture of slightly enlarged noise spots to compute a
halo volume which is then used during ray casting. Wenger et al. [112] use
similar techniques for volume rendering of thin thread structures. Rheingans
and Ebert [86] present feature halos for scalar volume visualization. Their
approach computes an additional halo volume based on properties of the
original data values. Svakhine and Ebert [105] extend this method for GPU-
based volume rendering by computing the halo volume on the graphics
hardware. Loviscach [69] presents a GPU-based implementation of halos
for polygonal models. Ritter et al. [87] encode spatial distance in halo-like
non-photorealistic shadows for the visualization of vascular structures. The
approach of Luft et al. [73] is capable of enhancing surface-based images using
halos by performing an unsharp masking operation on the depth buffer.

3.3 Stylized Shading

The goal of stylized shading is to visually enhance important features or to de-
emphasize unwanted details by using non-photorealistic shading techniques.
However, it is difficult to integrate multiple non-photorealistic rendering
approaches into a single framework due to great differences in the individual
methods and their parameters. In this section, we discuss techniques to
integrate illustrative rendering styles into a direct volume illustration system
using the concept of style transfer functions. This approach enables flexible
data-driven illumination which goes beyond using the transfer function to just
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assign colors and opacities. An image-based lighting model uses sphere maps
to represent non-photorealistic rendering styles which can be extracted from
existing artwork. Style transfer functions allow us to combine a multitude of
different shading styles in a single rendering. The basic concept is extended
with a technique for curvature-controlled style contours and an illustrative
transparency model. The presented method allows interactive generation of
high-quality volumetric illustrations.

3.3.1 Style Representations

Most illumination models use information about the angle between normal n,
light vector l and view vector v to determine the lighting intensity. In volume
rendering, the directional derivative of the volumetric function, the gradient,
is commonly used to approximate the surface normal. Additionally, the
gradient magnitude is used to characterize the ”surfaceness” of a point; high
gradient magnitudes correspond to surface-like structures while low gradient
magnitudes identify rather homogeneous regions. Many distinct approaches
have been presented that use these quantities in different combinations to
achieve a wide variety of effects.

As a sufficiently flexible illumination model requires numerous parame-
ters, a common problem in the integration of multiple rendering styles into
a single framework is the selection of a style representation. A good style
representation should be compact, i.e., it should capture the essence of an
object’s shading in a self-contained and intuitive manner. Additionally, it
should be easy to transfer, for instance, through extraction from an existing
piece of artwork. Finally, such a representation should also allow efficient
rendering on current graphics hardware in order to permit interactivity.

Lighting Maps

A straight-forward candidate for a visual style representation is a simple two-
dimensional function we will refer to as lighting map. The arguments of this
function are the dot product between the normal n and the light vector l and
the dot product between the normal n and the half-way vector h, where h is
the normalized sum of l and the view vector v. A two-dimensional lookup
table stores the ambient, diffuse, and specular lighting contributions for every
n · l and n · h pair.

It is straight-forward to use this kind of lighting map for common Blinn-
Phong lighting. However, many other models can also be specified in this
way and evaluated at constant costs. We use the terms ”ambient”, ”diffuse”,
and ”specular” to illustrate the simple correspondence in case of Blinn-Phong
lighting. However, the semantics of these components are defined by the
model used for generation of the lighting map. Essentially, ”ambient” means
a contribution in environment color, ”specular” specifies the contribution in
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light color, and ”diffuse” corresponds to the contribution in object color. Thus,
a lighting map might use these terms to achieve effects completely unrelated
to ambient, diffuse, and specular lighting.

For example, contour lines are commonly generated by using a dark color
where the dot product between normal and view vector n · v approaches zero,
i.e., these two vectors are nearly orthogonal. If we have n · l and n · h with
h = 1

2(l+v), then n ·v = 2(n ·h)−n ·l. We can thus create a lighting map where
we set ambient, diffuse and specular components to zero where n · l ≈ 2(n · h).
One advantage of this approach is that artifacts normally introduced by using
a threshold to identify contour lines can be remedied by smoothing them in
the lighting map with no additional costs during rendering. Other methods,
such as cartoon shading [15] or metal shading [39] can be realized straight-
forwardly and combined with effects like contour enhancement. Figure 3.2
shows an image rendered using four different lighting maps.

While this approach captures some important characteristics of common
illumination models, its flexibility is limited due to the fact that it is still based
on the traditional notions of light vector and view vector. Furthermore, color
variations can only be introduced through predefined parameters such as
object color and light color. This not only means that more complex color
transitions are not possible, but it also requires the specification of these extra
parameters in addition to the lighting map, i.e., it is not a self-contained
representation.

Lit Sphere Shading

The deficiencies of lighting maps suggest that artistic rendering styles fre-
quently do not clearly differentiate between luminance and chromaticity, an
observation employed in the tone-shading approach of Gooch et al. [39]. Sloan
et al. [97] presented a simple yet effective method for representing artistic
shading which incorporates color information. They describe an approach
for capturing artistic lighting by using an image of a sphere shaded in the
desired style. The basic idea is to capture color variations of an object as a
function of normal direction. As a sphere provides coverage of the complete
set of unit normals, an image of a sphere under orthographic projection will
capture all such variations on one hemisphere (see Figure 3.3). This image is
then used as a sphere map indexed by the eye space normals to shade another
object. Essentially, the sphere acts as a proxy object for the illumination. In
their work, Sloan et al. also describe a method for extracting lit sphere maps
from non-spherical regions in a piece of artwork. They present an interactive
tool which allows rapid extraction of shading styles from existing images.

The lit sphere map itself is a square texture where texels outside an in-
scribed disk are never accessed. Normal vectors parallel to the viewing
direction map to the center of the disk and normal vectors orthogonal to the
viewing direction map to the circumference of the disk. The lit sphere map is
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Figure 3.2 – The same data set rendered with four different lighting maps. The rgb-
encoded lighting map for each image is displayed in the lower left corner. (a) Standard
Blinn-Phong lighting. (b) Blinn-Phong lighting with contour enhancement. (c) Cartoon
shading with contour enhancement. (d) Metal shading with contour enhancement.
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Figure 3.3 – Lit sphere shading. The shading of an object is represented as a function
of eye space normal orientation.

indexed by simply converting the nx and ny components of the eye space nor-
mal n = (nx, ny, nz) which are in the range [−1..1] to texture coordinate range
(usually [0..1]). As the nz component is ignored, lighting does not distinguish
between front and back faces. This is desired as the gradient direction in the
volume which serves as the normal might be flipped depending on the data
values at a material boundary.

While lit sphere shading fails to capture complex aspects of realistic illu-
mination, it is well-suited to represent the general shading style of an object.
Images of an illuminated sphere are relatively easy to obtain as illustrators,
for example, frequently perform lighting studies on spheres. Additionally, the
extraction process described by Sloan et al. allows to build up a large database
of styles with little effort. Another advantage is the view-dependency of this
technique. All lighting effects will appear as if the light source was a headlight,
i.e., as if it were rotating with the camera. Generally, this is the desired setup in
volume visualization. For these reasons, lit sphere maps are a good choice as
a basic style representation. Figure 3.4 depicts an example which uses spheres
in an existing painting to shade other objects.

3.3.2 Style Transfer Functions

A basic style representation, such as lit sphere maps, allows us to shade
objects in a specified manner. In volume visualization, however, discrete
object information is rarely available. Instead, reconstructed properties of
the volumetric function are used to define the visual appearance of a sample
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(a)

(b)

Figure 3.4 – Using lit sphere maps from existing artwork. (a) Three Spheres II (1946)
by Dutch artist M. C. Escher. (b) Direct volume renderings of a human skull using the
respective spheres as style, Escher’s painting is used as background.
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point. Therefore, in order to be useful for the visualization of volumetric data,
we need a continuous parametrization of our style space.

We assume a continuous volumetric scalar field f(p) and its vector of first
partial derivatives, the gradient, g(p) = ∇f(p). For simplicity of notation, if
the position in question is unambiguous, f and g will be used to denote sam-
ples of the respective function at the current sample position. For the purpose
of shading, the normalized gradient vector g

|g| serves as the normal n. Unless
specified otherwise, n will refer to the eye space normal, i.e., it has been trans-
formed from object space to eye space. Conventionally, a transfer function
assigns color and opacity to each scalar value. There are approaches that use
multi-dimensional transfer functions which employ derivatives of the volu-
metric function, such as the gradient magnitude or the curvature magnitudes.
For simplicity we will restrict our discussion to one-dimensional transfer
functions at this point. Our technique equally applies to multi-dimensional
transfer functions (see Section 3.3.5 for a discussion of this matter).

During rendering, at each sample point the data value and the gradient are
reconstructed. The transfer function defines the color and opacity contribution
of this sample, while the gradient is used to compute the illumination. The
illumination model and its parameters are usually fixed, i.e., they are not
dependent on the transfer function. Lum et al. [74] presented an approach
were the parameters of the Phong illumination model are specified by an
additional lighting transfer function. We extend this idea of data-dependent
lighting to enable a wide variety of non-photorealistic shading styles. In
our approach, we integrate color and shading information in a combined
style transfer function. Mathematically, this is equivalent to extending the
transfer function domain by including normal direction. A one-dimensional
transfer function based on the scalar value becomes three-dimensional, a
two-dimensional transfer function becomes four-dimensional, etc.

Transfer functions are usually implemented as lookup tables. The memory
requirements for storing a complete style transfer function lookup table would
be prohibitively high due to the increase in dimensionality. However, as there
is only a discrete number of styles it is not necessary to store the whole
function. We can store the set of styles separately. The transfer function
lookup table now contains references to these styles instead of colors. The
only restriction necessary is that when interpolating between two styles, the
interpolation is performed uniformly for all normal directions, i.e., transitions
only occur between whole styles. If a non-uniform transition is desired, this
can easily be accomplished by adding one or multiple intermediate styles.
Conceptually, this can be illustrated by replacing the single color of a transfer
function entry by a lit sphere map (see Figure 3.5). When performing a style
transfer function lookup, styles are first interpolated according to the specified
transfer function. Using this interpolated style, the eye space normal direction
then determines the final sample color.
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Figure 3.5 – Basic concept of style transfer functions. (a) Regular transfer function.
(b) Style transfer function.

From a user’s point of view, the transfer function now not only specifies
the color over the range of data values, but also the shading as a function of
eye space normal direction. The complexity of specifying a transfer function,
however, is not increased. Instead of assigning a single color to a certain value
range, a pre-defined shading style represented by a lit sphere map is chosen.
In this context, one advantage of sphere maps as opposed to other mappings
is that they can be directly presented to the user as an intuitive preview image
for the style.

Style transfer functions allow for a flexible combination of different shad-
ing styles in a single transfer function. Unshaded volume rendering (a con-
stant color sphere), tone shading, cartoon shading, metallic shading, painterly
rendering, and many other styles can be used in the same rendering. Style
transfer functions also enable inconsistent lighting of different structures in
a single data set as a means of accentuating features [63]. Figure 3.6 shows
examples of different styles applied to a data set.

3.3.3 Style Contours

Illustrators frequently employ contours to enhance the depiction of objects.
Contours help to clearly delineate object shape and resolve ambiguities due
to occlusion by emphasizing the transition between front-facing and back-
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Figure 3.6 – Engine block rendered using different style transfer functions. The lit
sphere maps used in the transfer function are depicted in the bottom right corner of
each image.

facing surface locations [89]. In volume rendering, contours are generally
produced using the dot product between the view vector v and the normal n.
The sample color is darkened if v is approximately orthogonal to n, i.e., v · n
is close to zero. The drawback of this method is an uncontrolled variation
in the apparent contour thickness. Where the surface is nearly flat, a large
region of surface normals is nearly perpendicular to the view vector, making
the contours too thick. Conversely, in fine structures, where the emphasis
provided by contours could be especially helpful, they appear to be too thin.
These deficiencies are illustrated in Figure 3.7 (a).

To remedy this problem, Kindlmann et al. [57] proposed to regulate con-
tours based on κv, the normal curvature along the view direction. A sample is
defined to be on a contour if the following condition is true:

|n · v| ≤
√
Tκv(2− Tκv) (3.1)

where T is a user-defined thickness value. While this method is effective in
depicting contours of constant thickness, it requires the expensive reconstruc-
tion of second-order derivatives of the volumetric function. Specifically, the
curvature measure κv is based on the geometry tensor. The geometry tensor
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(a) (b) (c) (d)

Figure 3.7 – Style contours. (a) Contours without curvature-controlled thickness. (b)
Curvature-controlled contours with constant color. (c) Curvature-controlled contours
with varying colors. (d) Our curvature measure (darker regions correspond to higher
curvature).

is constructed from the Hessian matrix. Computing the geometry tensor in
a fragment program is very expensive and would not allow for interactive
performance. On the other hand, pre-computation would require two addi-
tional 3D textures (the geometry tensor is symmetric and can be stored in six
values per voxel). Hadwiger et al. [45] circumvent this problem by restricting
themselves to iso-surfaces, but for direct volume rendering no viable solution
has been presented so far.

We propose a simple approximation of κv which can be computed effi-
ciently and therefore allows for interactive performance. We are interested
in the rate of change in normal direction of the iso-surface corresponding
to the current sample value along the viewing direction. When performing
volume ray casting, we step along the ray direction and evaluate the normal at
every sample point. The angle between two subsequent normals along the ray
taken at a sufficiently small distance gives us information about the curvature
along the viewing direction (see Figure 3.8). When performing ray casting,
we can therefore use the angle between the normal at the current sample
point and the previous normal divided by the step size as an estimate for κv.
This is of course not accurate, as we are not stepping along the iso-surface.
However, due to the finite resolution of the volume this coarse approximation
has proven to be sufficient for our purposes. The advantage of this approach
is that it introduces almost no additional costs as the normal is evaluated at
every sample point anyway.

Since we now have a measure for the curvature along the viewing direction,
we can employ the criterion proposed by Kindlmann et al. [57] to determine
whether a sample is located on a contour (Equation 3.1). Using a fixed contour
color, however, would be potentially inconsistent with the selected styles.
Instead, the contour color should be determined by the style transfer function.
For this reason we adjust the coordinates for the lit sphere map lookup based
on our curvature measure: if a sample falls below the contour threshold,
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Figure 3.8 – Using the angle between the normals of two subsequent points along a
viewing ray as an approximate measure for the curvature along the view direction κv.

we simply push the coordinates outwards along the radius of the sphere in
the following way: If r = |nx,y|, i.e., the length of the eye space normal n
projected onto the lit sphere map, we adjust the length of nx,y to r′ = min(1, rδ )

with δ = 1 − min(1,
√
Tκv(2−Tκv)−|n·v|√

Tκv(2−Tκv)
). This not only allows for varying

contour appearance between different styles, but also for a variation based
on the normal direction. Contours in a highlight region, for example, may be
brighter than in a dark region. Figure 3.7 (b) uses a style with constant contour
color while Figure 3.7 (c) employs varying contour colors. Our curvature
measure is depicted in Figure 3.7 (d).

3.3.4 Illustrative Transparency

In volume visualization transparency is frequently used in order to depict
complex three-dimensional structures. Our approach provides two basic ways
to control opacity:

Uniform opacity αu. The opacity value in the transfer function controls the
overall opacity of a sample independent of normal direction.

Directional opacity αd. Each entry in a lit sphere map is an (r, g, b, α) tuple.
This allows for varying opacity based on the normal direction.

While αu allows to control opacity independent of style, αd is a function
of the style. For the overall opacity we want to apply the following two
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(c) (d)

(a) (b)

Figure 3.9 – Illustrative volume rendering using a style transfer function. Images
(a)-(d) depict different opacity settings.

constraints in order to maintain the semantics of opacity control in the transfer
function:

• If the value of αu is one, the opacity of a sample should be solely deter-
mined by αd.

• If the value of αu is zero, the sample should be completely transparent.

Transparency in illustrations frequently employs the 100-percent-rule
where transparency falls off close to the edges of transparent objects and
increases with the distance to edges [25]. Since this technique non-uniformly
decreases the opacity of an object, it results in a clearer depiction of transpar-
ent structures while still enabling the viewer to see through them. In order
to achieve an effect similar to the 100-percent-rule, we employ a modulation
of αu with the curvature measure proposed in the previous section and the
gradient magnitude to compute the overall opacity α of a sample:

α = αd · α
0.5+max(0,|n·v|−

√
Tκv(2−Tκv))·(1−|g|)

u (3.2)

If the exponent is lower than one, the opacity of a sample is enhanced,
if it is greater than one the opacity is reduced. The term max(0, |n · v| −√
Tκv(2− Tκv)) is zero when the sample point is on the contour, and in-

creases as points are farther away from the contour. The term 1− |g| ranges
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from zero to one and is included to prevent enhancement of nearly homo-
geneous regions, where noise causes the gradient direction to vary rapidly.
When decreasing αu from one to zero, flat and homogeneous regions become
more transparent first. As αu drops further, the remaining contour regions also
begin to become more transparent. The constant of 0.5 restricts the maximum
opacity enhancement. This value was empirically determined and has proven
to be effective for all our test data sets. The overall effect is weighted by αd.
An example for our transparency model is shown in Figure 3.9.

3.3.5 Implementation

In this section we describe our implementation of style transfer functions for
a GPU-based ray casting approach. Our renderer makes use of conditional
loops and dynamic branching available in Shader Model 3.0 GPUs. It was
implemented in C++ and OpenGL/GLSL. The presented techniques can be
integrated into an existing renderer using regular transfer functions with little
effort.

Style Transfer Function Lookup

A transfer function is usually implemented as a lookup table which corre-
sponds to a 1D texture on the GPU. For conventional transfer functions, this
texture stores an (r, g, b, α) tuple for every data value. At each sample point,
the interpolated data value is used to perform a texture lookup into this 1D
texture to retrieve the color and opacity of the sample. Within the transfer
function texture, linear interpolation is performed. A naive implementation of
a style transfer function would simply replace the 1D texture by a 3D texture
which stores an (r, g, b, α) tuple for every data value and normal direction.
This approach requires only one texture lookup and exploits native trilinear
interpolation. As discussed in Section 3.3.2 this is not practical due to high
storage requirements. Thus, we use an alternative approach which does not
suffer from this problem. Our implementation uses three different textures:

Transfer function texture tft. This 1D texture stores the uniform opacities αu
and index values i for each data value. The index values in the transfer
function texture range from zero to N − 1, where N is the number of
styles specified in the style transfer function. For example, an index
value of one corresponds to the second style, two corresponds to the
third style, etc. Fractional values indicate that an interpolation between
two styles has to be performed.

Index function texture ift. As one style might be used multiple times for
different value ranges, we define M as the number of distinct styles in
the style transfer function. The one-dimensional index function texture
maps the index values i (ranging from zero to N − 1) retrieved from



40 Interactive Illustrative Volume Visualization

1

2

0

3

0

0 0

2.25 0.5

1.95 0.38

4 0.8

3.5 0.6

2 0.4

3.75 0.7

4.05 0.8

7 1

. . .

. . .

2

0

1

2

1 4

3

transfer function
texture (tft)

style function
texture (sft)

index function
texture (ift)

i
i0

i1

j0

j1

f n

i αu

data value normal

Figure 3.10 – Style transfer function lookup for data value f and normal n.

the transfer function texture to locations j in the style function texture
(ranging from zero to M − 1). As this mapping is discrete, no interpola-
tion is performed for index function texture lookups. If no style is used
multiple times, the index function texture lookup can be skipped.

Style function texture sft. This texture contains the discrete set of M dis-
tinct styles specified in the current style transfer function. As each
style is a two-dimensional image, an intuitive representation for this
function would be a 3D texture. Since this can lead to problems with
mip-mapping, an alternative way of storage may be more appropriate.

Using these three textures, the complete lookup proceeds as follows (see
Figure 3.10):

1. Using the data value f , retrieve the index value i and the uniform opacity
αu from the transfer function texture tft: (i, αu) = tft(f).

2. Compute the indices to be used in the index function texture lookup
i0 = bic, i1 = i0 + 1 and the interpolation weight w = i− i0.

3. Retrieve the style indices j0 and j1 using two lookups into the index
function texture ift: j0 = ift(i0), j1 = ift(i1). If no style occurs multiple
times in the style transfer function, these lookups can be skipped.
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4. Using the nx and ny components of the eye space normal and the style
indices j0 and j1, perform two lookups into the style function texture
sft and linearly interpolate between them: (r, g, b, αd) = sft(nx, ny, j0) ·
(1− w) + sft(nx, ny, j1) · w.

Multi-dimensional Style Transfer Functions

So far, we have restricted our discussion to extending one-dimensional transfer
functions based on the data value to style transfer functions. However, the
presented techniques also apply to multi-dimensional domains. To illustrate
the generality of our approach, we briefly describe the changes necessary to
employ two-dimensional transfer functions:

The transfer function texture becomes a 2D texture and stores two in-
dices ix and iy instead of i. The first index ix increases along the horizontal
axis and the second index iy increases along the vertical axis. The index
function texture also becomes two-dimensional. Its width is now the maxi-
mum number of horizontal style nodes in the two-dimensional transfer func-
tion, its height is the maximum number of vertical nodes. Analogous to the
one-dimensional case, the indices for the index function texture lookup are:
ix0 = bixc, iy0 = biyc, ix1 = ix0 + 1, iy1 = iy0 + 1. The two interpolation
weights are also computed accordingly: wx = ix− ix0, wy = iy − iy0. Four
lookups into the index function texture ift are performed to retrieve the four
style indices: j00 = ift(ix0, iy0), j10 = ift(ix1, iy0), j01 = ift(ix0, iy1), and
j11 = ift(ix1, iy1). Finally, these four style indices and the nx and ny com-
ponents of the eye space normal are used to perform four lookups into the
style function texture sft. The final color is computed by bilinear interpo-
lation: (r, g, b, αd) = (sft(nx, ny, j00) · (1− wx) + sft(nx, ny, j10) · wx) · (1 −
wy) + (sft(nx, ny, j01) · (1− wx) + sft(nx, ny, j11) · wx) · wy.

This procedure is independent of the actual quantities mapped to each
axis. While data value and gradient magnitude are common choices [58, 59],
many other attributes are useful in the context of specific applications. Ren-
dering of segmented data, for example, is frequently realized through a two-
dimensional lookup using the data value and an object identifier [44]. Fig-
ure 3.1 shows an example of such a multi-dimensional style transfer function.
In this way other measures such as distance [117], saliency [56], or impor-
tance [108], either predefined or computed on-the-fly, can be mapped to visual
styles easily.

Mip-Mapping for Style Transfer Functions

Current graphics hardware uses mip-mapping to avoid aliasing in texture
mapping. To take advantage of the GPU’s mip-mapping capabilities for style
lookups, certain considerations have to be made. First, for 3D textures, each
dimension is halved for every subsequent mip-map level. If styles are stored
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Figure Regular TF Style TF
Figure 3.9 (a) 11.7 fps 11.9 fps
Figure 3.9 (b) 10.5 fps 9.6 fps
Figure 3.9 (c) 10.1 fps 8.1 fps
Figure 3.9 (d) 12.5 fps 12.8 fps

Table 3.1 – Performance comparison of style transfer functions and regular transfer
functions measured on a system equipped with an AMD Athlon 64 X2 Dual 4600+
CPU and an NVidia GeForce 7900 GTX GPU. Performance numbers are given in
frames per second. Data dimensions: 256 × 256 × 230. Viewport size: 512 × 512.
Object sample distance: 0.5.

as slices of a 3D texture, undesired mixing between styles occurs at higher
mip-map levels. Thus, if the style function texture is implemented as a 3D
texture, mip-mapping has to be disabled. One solution to this problem is
the EXT texture array OpenGL extension. A texture array is a collection
of two-dimensional images arranged in layers. Mip-mapping is performed
separately for each layer. This extension is currently only available on GeForce
8 series graphics hardware. Another possibility is to arrange the styles in
a single 2D texture. Although it slightly complicates indexing, this variant
is supported on a wider range of hardware. In this case, perform custom
mip-map generation has to be performed to avoid mixing between styles
at their borders. Conventionally, when performing a texture lookup the
appropriate mip-map level is determined by the hardware using the screen-
space derivatives of the texture coordinates. These derivatives are undefined
when the texture fetch takes place within conditionals or loops. Thus, as
our algorithm uses raycasting, we cannot exploit the standard mechanism.
We therefore manually compute the size of a projected voxel at each sample
point to determine the mip-map level. In areas of high curvature, the gradient
direction varies more quickly, which can lead to artifacts. Additionally, when
its magnitude approaches zero, the gradient vector becomes a less reliable
predictor for the normal direction. We therefore also bias the determined
mip-map level using a function of curvature and gradient magnitude.

3.3.6 Results

In comparison to a regular one-dimensional transfer function, a style transfer
function lookup requires a maximum of four additional texture fetches (two
for the index function texture and two for the style function texture). The index
function texture does not require filtering and is rather small. It therefore
heavily benefits from texture caching. On GeForce 8 series hardware it could
also be implemented as a buffer texture using the EXT texture buffer object
OpenGL extension for additional performance gains. Although the additional
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texture fetches incur an overhead, the cost for evaluating the illumination
model is saved when using style transfer functions.

To evaluate the performance of our approach, we compared the use
of a style transfer function for classification and shading to a regular one-
dimensional transfer function with simple Phong shading. The same opacities
were used for both transfer functions. Both implementations use empty-space
skipping and early-ray termination. The viewport size was 512 × 512 and
the object sample distance was set to 0.5. We used the data set depicted in
Figure 3.9 (dimensions: 256× 256× 230). Our test system was equipped with
an AMD Athlon 64 X2 Dual 4600+ CPU and an NVidia GeForce 7900 GTX
GPU. The results of this comparison are shown in Table 3.1. If only one style
is visible, the performance is approximately equal (style transfer functions
are even slightly faster) as all lighting computations are replaced by texture
fetches which benefit from coherent access. If multiple styles are visible, the
style transfer function performs slightly worse due to texture caching effects.
In total, however, the overhead of employing a style transfer function is only
minor but greatly increases the flexibility.

3.3.7 Discussion

In our experiments, style transfer functions have proven to be a simple method
for generating images and animations in a wide variety of different appear-
ances. Lit sphere maps are particularly effective in representing the styles
typically used in medical illustrations. Our approach is well-suited for this
application, as illustrations frequently rely on certain shading conventions.
This means that a database of styles can potentially be reused for a large
number of data sets. Figures 3.1 and 3.9, for example, use styles obtained from
medical illustrations. Another advantage is that the theme of an image can be
changed quickly by simply replacing one set of styles with another one. This
is illustrated in Figure 3.11, where two very different results are achieved by a
simple exchange of styles.

While the representation of styles as lit sphere maps has proven to be
effective and efficient, it has drawbacks. One problem already discussed by
Sloan et al. [97] occurs when the sphere contains prominent texture features.
When the camera is rotated, they will appear to follow the eye leading to an
undesired metallic impression. To solve this problem, texture and lighting
information have to be separated. The texture information could then be
aligned to the object, for example based on curvature directions. This might
be an interesting direction for future research.

3.4 Volumetric Halos

Resolving the spatial arrangement of complex three-dimensional structures
in an image can be a difficult task. Particularly renderings of volume data



44 Interactive Illustrative Volume Visualization

Figure 3.11 – Changing the theme of an image by replacing styles. Top: Drawing of
a staghorn beetle by A. E. Brinev. Middle: Volume rendering of a staghorn beetle
using a similar style. Bottom: Staghorn beetle rendered using a more realistic style.
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Figure 3.12 – Examples of the different uses of halos in medical illustration for
emphasis and accentuation from the Medical Illustration Source Book1.

acquired by imaging modalities such as CT or MRI often suffer from this
problem. As such data frequently contain many fine, overlapping structures,
the resulting images often look confusing and are difficult to interpret without
additional cues. For this reason artists and illustrators have long exploited
the fact that the human visual system is especially sensitive to local variations
in contrast by drawing halos around objects. Near the boundary of objects
that are located in front of other structures the tone is locally altered: the
background or partly occluded objects are slightly darkened to create the
impression of depth. Similarly, bright halos are frequently placed around
objects to visually detach them from the background. In the simplest case,
a halo is just a gap around the edges of an object. In photography and film
halos, achieved by careful placement of lights and camera, are commonly used
to accentuate objects. While this technique is motivated by natural lighting
phenomena such as shadows and atmospheric effects, halos in illustrations are
typically overemphasized and localized to enhance occlusion cues. Halos are
used in a wide variety of different styles as illustrated in Figure 3.12. Manifes-
tations of the effect range from thick opaque outlines to soft darkening of the
background almost undistinguishable from realistic shadows under diffuse
illumination. Frequently, halos are used as a subtle way to put emphasis on
certain objects. Our goal is to enable the same kind of flexibility for computer-
generated halos in direct volume rendering. As it is often dependent on the
context of the visualization which kind of halo provides the most effective
cues, we present an approach which allows interactive adjustment of their
appearance.

3.4.1 Halo Pipeline

Previous halo generation approaches for volume rendering have frequently
relied on a pre-processing step which generates a volume of halo contribu-
tions [53, 86]. This halo volume is then used during the rendering process
to identify halo regions. The problem of this approach is that it does not

1http://www.medillsb.com

http://www.medillsb.com
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Figure 3.13 – Overview of the halo pipeline. The volume is processed in view-aligned
slices. Halo seeding classifies halo-emitting structures, halo generation distributes the
seed intensities, and halo mapping assigns colors and opacities to these distributed
seed intensities. Compositing combines the mapped halo intensities with the actual
volume rendering.

allow for easy modifications of many parameters. In order to remedy this,
our approach determines halo contributions during volume rendering. The
algorithm operates on view-aligned slices through the volume in front-to-back
order. In addition to regular sampling, classification, shading, and composit-
ing, a halo generation pipeline is executed for every slice to process its halo
contributions. The pipeline consists of three basic stages and an additional
compositing step for blending the halo with the regular volume rendering.
Figure 3.13 illustrates this process. First, regions to emit a halo are identified.
We will refer to this step as halo seeding (see Section 3.4.2). Next, a field of halo
intensity values is generated from the seeds by applying a filtering process
(see Section 3.4.3). Finally, the halo intensities are mapped to the actual color
and opacity contributions of the halo and combined with the regular volume
rendering (see Section 3.4.4). For simplicity, the following description is only
concerned with one halo. Our approach allows multiple halos to be defined,
each with its own set of parameters.
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3.4.2 Halo Seeding

For generating volumetric halos we need to classify which structures should
emit halos – we call this process halo seeding. During halo seeding, a seed
intensity value is generated for all samples on a view-aligned slice through
our volumetric function f . Every point with nonzero halo seed intensity is
a seed point. These seed intensity values are used in the subsequent step to
derive the halo intensity values for other locations.

As halos are only drawn around the contours of objects, we need to limit
our seeds to these regions. In volume rendering, contours can be characterized
by the angle between the view vector v and the normal n. If these vectors
are nearly orthogonal, the sample point is on a contour. Furthermore, the
magnitude of the gradient vector |g| can be used for preventing noise in nearly
homogeneous regions to produce erroneous halo seeds. Using these two
attributes, we can generate effective halo seeds for a given volumetric data
set [86].

However, since we also want to generate localized halos which are only
emitted by certain structures, we introduce a halo transfer function h(p) to
specify the halo contributions at the sample position p. The halo transfer
function consists of several separable scalar-valued functions in the range
[0..1]. Our approach currently supports three different components, but this
could be easily extended to include, for instance, segmentation information, if
available:

Value influence function hv(p). This function is based on the data value at
the sample point. It is useful, for example, for generating localized halos
by limiting their influence to a certain value range.

Directional influence function hd(p). This function is based on the direction
of the eye space normal, i.e., the angle between the projected gradient
vector and the positive vertical axis of the image plane. It allows for
directionally varying halos.

Positional influence function hp(p). This function is based on the distance of
the sample point to a user-defined focus point to allow easy generation
of localized halos for regions which cannot be identified solely using the
data value.

The halo transfer function is then simply defined as the product of these
components [59]:

h(p) = hv(p) hd(p) hp(p) (3.3)

The halo transfer function defines a basic seed intensity at a sample posi-
tion p. This value is then combined with the gradient magnitude |g| and the
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dot product between view vector v and the normal n to form the final seed
intensity s(p):

s(p) = h(p) |g|α (1− n · v)β (3.4)

where α and β are used to control the influence of the gradient magnitude
and the dot product, respectively. For halos these values are usually fixed
and do not require adjustment. We use values of α = 32 and β = 0.125 for all
result images. The values of s are clamped to the range [0..1]. The result of
applying s to all pixels of the view-aligned slice is the halo seed image S.

This definition can lead to unevenly distributed halo seeds as contours
identified by the dot product between view vector and normal can vary in
thickness. To avoid this, we could additionally employ a modulation based on
the normal curvature along the viewing direction as proposed by Kindlmann
et al. [57] analogously to the method described in Section 3.3.3. However, as
our halo generation approach (see Section 3.4.3) takes special care to equalize
halo contributions, we found that this is generally not necessary.

3.4.3 Halo Generation

Per definition halos are located outside of objects, while the halo seeds lie
within other structures. Therefore, during halo generation the seed intensities
are spread out to form a halo field image H . Each point within the halo field
is defined by having nonzero halo intensity.

One important aspect of halo generation is the fact that halo contributions
from smaller structures should not be lost during the spreading process. A
naive approach would be a simple convolution of the halo seeds with a low-
pass filter. This method, however, results in a reduction of halo contributions
from smaller regions. The halo seeds of small structures are essentially blurred
out of existence if the filter kernel is too large, although exactly those features
could particularly benefit from the emphasis provided by a halo. If the kernel
size is too small, on the other hand, the seed intensities are not distributed
enough to generate a visible halo. This effect is illustrated in Figure 3.14. In
Figure 3.14 (a) an artificial halo seed image featuring regions of multiple scale
is shown. When a low-pass filter is applied to it, as shown in Figure 3.14 (b),
the seed values are spread out, but contributions from smaller areas are lost.
Other approaches such as the unsharp masking technique used by Luft et
al. [73] also suffer from this problem. Thus, while acceptable from an aesthetic
point of view, these methods are not suitable for our purpose.

A different approach to generating the halo field would be to perform a
distance transform on the seed image. As this is computationally expensive
and not well-defined on non-binary images, we employ a spreading approach
which preserves the halos of small features while still generating a smooth
halo field. The algorithm executes in N passes. During each pass i ∈ [1..N ]
two input images are used: H0, the initial image, and Hi−1, the result of the
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(a) (b) (c)

(d) (e) (f)

Figure 3.14 – Comparison of halo generation strategies on a test image. (a) Original
halo seed image. (b) Low-pass filtered halo seed image. (c) Spreading process
applied to halo seed image. (d) Gradient of halo seed image. (e) Low-pass filtered
gradient image. (f) Spreading process applied to gradient image.

previous pass. For the first pass, the two input images are identical. For each
output pixel (x, y), the algorithm first performs a convolution with a low-pass
filter over the pixels of Hi−1. Then it combines the result of this operation
with the corresponding pixel from H0:

Hi(x, y) = δFi(x, y) + (1− δFi(x, y))H0(x, y) (3.5)

with

Fi(x, y) =
∑
u,v

w(u, v)Hi−1(x+ ku, y + kv) (3.6)

where w is the weight function of the filter, u, v ∈ {−1, 0, 1}, k = 2N−i,
and δ is a user-specified parameter in the range [0..1] which controls the
amount of spreading. If δ is zero the unfiltered seed image will be passed
through. Increasing δ causes an increased contribution from previous passes
and therefore results in a smoother, more spread-out halo while still preserving
higher frequency components. Small features are preserved due to the fact
that spread out values are filled up in every pass.
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This algorithm is effective in distributing the halo seed values to neighbor-
ing pixels without removing high frequencies. This is visible by comparing
Figure 3.14 (b), which uses normal low-pass filtering, to Figure 3.14 (c), which
depicts the result obtained with our approach.

However, there is still a problem as larger regions now generate a signifi-
cantly larger halo. In order to remedy this, we apply the spreading algorithm
to the gradient of the halo seed image instead of the original which equalizes
the contributions, as illustrated in the bottom row of Figure 3.14. Figure 3.14 (d)
depicts the gradient of the seed image. Figure 3.14 (e) shows that only ap-
plying a low-pass filter to the gradient image is not effective. The presented
process applied to the gradient of the halo seed image, however, results in a
smooth halo field with equalized contributions from structures of multiple
scale, as depicted in Figure 3.14 (f).

If some reduction of high frequencies is desired, a median filtering could
be applied to the seed image before the spreading process. However, in our ex-
periments we found that this is not necessary in general. We use a filter kernel
size of 3× 3 with Gaussian weights. The number of iterations N determines
the maximum amount of spreading that can occur – for all our purposes a
value of N = 4 has shown to be sufficient. This algorithm is conceptually
similar to the jump flooding paradigm for parallel computing [88]. Figure 3.15
shows results of the spreading processes for different values of δ.

3.4.4 Halo Mapping and Compositing

After generating the halo field image H it has to be mapped to visual con-
tributions in the image. For this purpose we employ a halo profile function:
this function maps all nonzero halo intensity values to colors and opacities.
Halo intensities of zero are always transparent. While the spreading parame-
ter δ only controls the distribution of intensities in the halo field, the profile
function allows further adjustment of the halo appearance.

In the simplest case, the halo profile function just maps halo intensities
directly to opacities using a constant color. Other possibilities include, for
instance, a halo profile with constant opacity which results in a sharp border.
Figure 3.16 shows a few examples. In the last row of this figure, the use
of directionally varying halos is also demonstrated. Finally, the mapped
halo has to be combined with the volume’s contribution. Based on how this
combination is performed, we can distinguish between two different kinds of
halos:

Emissive halos. Similar to scattering of light by small particles such as fog,
this type of halo causes a visible contribution by itself. From the point of
view of compositing, the halo behaves as if it were part of the volume.
Thus, for emissive halos the halo intensity value is first mapped using
the halo profile function and then blended after the actual volume con-
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(a) (b)

(c) (d)

Figure 3.15 – Results of the halo spreading algorithm using N = 4 iterations with (a)
δ = 0.70, (b) δ = 0.80, (c) δ = 0.90, (d) δ = 0.95.
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Figure 3.16 – Different halo profile functions applied to a simple data set. The
corresponding halo profile function is shown for each image.
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tributions using the front-to-back formulation of the over-operator. The
halo therefore (partially) occludes everything located behind it including
the background.

Occlusive halos. In addition to emissive halos, illustrators sometimes employ
another kind of halo: the halo only contributes to the image if it occludes
other structures – the halo by itself has no emissive contribution. Al-
though similar to a shadow, this type of halo is usually drawn in the
same style irrespective of the distance between the two objects and not
necessarily consistent with the overall lighting conditions to strengthen
the occlusion cues. This type of halo can be useful as it might be less
intrusive and only highlights occlusions. For generating occlusive ha-
los, contributions of the halo field image H need to be accumulated
to be able to influence samples located behind them – this is similar
to a shadow buffer [60]. For this purpose, we introduce an additional
halo occlusion image O. The current halo field image H is combined
with O in every pass using maximum blending. Halo mapping is then
performed based on the halo occlusion image. The resulting mapped
halo color is mixed with the volume sample color using the mapped
halo contribution’s opacity as an interpolation weight. The opacity of
the volume sample remains unchanged. Thus, if no sample is occluded
by the halo, it has no contribution to the image.

Both halo types are useful for different purposes. While emissive halos can
be used to emphasize particular features by giving them an outline or a glow,
occlusive halos provide a means for accentuating occlusions by enhancing
the contrast in areas where one object crosses another. For instance, occlusive
halos are frequently used in depictions of vascular structures. Figure 3.17
shows a comparison of these two styles. Figure 3.17 (a) depicts a volume ren-
dering without halos. In Figure 3.17 (b) an emissive halo is used for bones and
vessels while Figure 3.17 (c) employs an occlusive halo. The emissive halo also
generates a dark border around objects which do not occlude other structures.
Figure 3.17 (c) and (d) also demonstrate the use of the directional component
of the halo transfer function. In Figure 3.17 (c) a one-sided halo was generated
using the directional component of the halo transfer function. Figure 3.17 (d)
shows an omnidirectional halo for comparison. The advantage of directional
halos approach over realistic shadows lies in the fact that they can be easily
adjusted without influencing the global appearance while providing emphasis
in the targeted areas. Illustrators generally do not draw physically correct
shadows, but they exploit the fact that the human visual system interprets this
cue as an indicator for occlusion. Emissive halos are also useful for putting
emphasis on particular features by generating a glowing effect, as shown in
Figure 3.18.
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(a) (b)

(c) (d)

Figure 3.17 – Emissive and occlusive halos. (a) Volume rendering without halos. (b) A
directional emissive halo is emitted by bones and vessels. (c) A directional occlusive
halo is emitted by bones and vessels – it is only visible where it occludes other
structures. (d) The occlusive halo emitted by bones and vessels is omnidirectional.
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(a) (b)

Figure 3.18 – Using emissive halos to highlight features. (a) Volume rendering
without halos. (b) A tumor is emphasized using an emissive halo and a soft occlusive
halo is used to increase contrast.

3.4.5 Implementation

Our GPU-based volume renderer with halo support was implemented in C++
using OpenGL/GLSL. As already outlined in Section 3.4.1 our approach for
integrating halos with direct volume rendering is based on an interleaving
of the halo generation pipeline with conventional view-aligned slicing of the
volume. In the following, we discuss further details of our implementation.

Initially, six off-screen buffers are generated: I0 and I1 are used for com-
positing in a ping-pong approach. In our description, we use Ip to denote the
accumulated image from the previous iteration, and Ic for the image written
in the current iteration – they are swapped after each iteration. The buffer S
stores the halo seed image, and H0, H1, and H2 are used for halo generation.
We use H to denote the buffer which contains the current halo field image,
which can be eitherH1 orH2. For occlusive halos, an additional halo occlusion
image O is required. We use the OpenGL ARB framebuffer object extension
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to render to and read from these buffers. The renderer slices the volume in
viewing direction and has two basic phases:

Rendering. Although described separately in Section 3.4.1, as they are con-
ceptually different stages, it is advantageous to combine halo seeding
and halo mapping with regular sampling, classification, shading, and
compositing in a single rendering pass. Since all these steps require
the data value and gradient at the same sample location, this avoids
redundant texture reads and computations and eliminates the need for
an explicit mapped halo image. We take advantage of OpenGL’s capabil-
ities to write to multiple render targets in one rendering pass. The two
images written to are Ic, the current accumulated image, and S, the halo
seed image. First, conventional sampling, classification and shading is
performed. Next, halo mapping is performed on the halo intensities
read from the current halo field image H for emissive halos. For occlu-
sive halos, the halo occlusion image O is used instead. For emissive
halos, the shaded color of the volume sample is first composited with
the previously accumulated color read from Ip and then written into
Ic. Then the mapped halo contribution is composited. In the case of
an occlusive halo the shaded sample color is mixed with the mapped
halo contribution and then composited with the previously accumulated
color. Finally, halo seeding is performed and the result is written to S.

Generation. This phase performs halo generation as described in Section 3.4.3.
First, the gradient magnitude of the halo seed image is computed and
written into H0. Next, several iterations of the spreading algorithm
are executed on H0 by ping-ponging between buffers H1 and H2. The
final halo field image is then located in buffer H1 or H2, depending
on the number of iterations. The current halo field image H is set
to this buffer. If occlusive halos are used, this image is additionally
blended with the halo occlusion image O. Halo generation is the most
expensive part of the rendering procedure. However, it is not necessary
to perform this step for every iteration. We can use OpenGL’s blending
functionality to accumulate the halo seeds of several slices and then
perform halo generation on this image only every M -th slice. As the
seed contributions are accumulated, no features will be missed. Only
if M is chosen too high, some depth accuracy is sacrificed. In practice,
a value of M = 4 has proven to result in no visible artifacts – all result
images were generated using this setting.

As the GPU operates on vectors rather than scalars we can support four
distinct halos, each with its own set of parameters, without additional costs.
Each halo is assigned a color channel and all operations, including halo
generation, are simply performed on four halo channels instead of one.
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M frames/second % of reference
1 4.65 15.85
2 7.72 26.31
4 10.26 34.97
8 12.59 42.91

Table 3.2 – Performance of halo rendering measured on an AMD Athlon 64 X2 Dual
4600+ CPU equipped with an NVidia GeForce 8800 GTX GPU. The volume size
was 256× 256× 256 with a viewport size of 512× 512 and an object sample distance
of 0.5. The reference renderer without halos achieved 29.34 frames/second in this
benchmark.

3.4.6 Results

To evaluate the performance of our implementation we compared a standard
volume renderer to our algorithm. We used the UNC head test dataset (di-
mensions: 256×256×256) and an object sample distance of 0.5. The viewport
size was 512 × 512. No high-level optimizations such as empty-space skip-
ping were used. Our test system was an AMD Athlon 64 X2 Dual 4600+ CPU
equipped with an NVidia GeForce 8800 GTX GPU. We performed a 360 degree
rotation along each axis and averaged the frame rates. The reference renderer
without halos achieved 29.34 frames/second in this benchmark. The frame
rates of our halo renderer for different values of M are shown in Table 3.2.
Compared to the reference renderer, our approach achieves approximately
one third of the frame rate for the typical setting of M = 4. Halo seeding and
mapping alone, due to the increased number of texture fetches and operations
per sample, result in a slowdown of about 50 percent. Although halo process-
ing incurs an overhead, interactive frame rates are still achieved. Moreover,
as our implementation is not heavily optimized, there is potential room for
improvement.

Halos provide a simple additional option for the generation of volumet-
ric illustrations. They do not require any pre-processing and can be easily
integrated into existing volume visualization tools. Similar to layer effects in
image editing software such as Adobe Photoshop, they can be applied to en-
hance or highlight specific regions with great stylistic flexibility ranging from
opaque contour-like lines to smooth object shadows. These techniques are
ubiquitous in traditional illustrations and so it makes sense that volume visu-
alization can benefit from them. In our experiments, we found that volumetric
halos can be an effective and versatile tool for enhancing the visualization
of volume data with little additional effort. A wide variety of data sets can
benefit from halos. We present a small selection of visualization results and
compare them with unenhanced depictions.

Halos are effective for the visualization of transparent objects. Illustrators
frequently employ this technique in line drawings: The background object
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(a)

(b) (c)

Figure 3.19 – Improving visualization of transparent structures using halos. (a)
Volume rendering without halos. (b) Depth is added to the bone by using a dark
smooth halo, contours of the the transparent skin are enhanced using a white opaque
halo. (c) A different halo profile function is used for the skin (fade from white to yellow).
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is rendered in full detail and disappears as it approaches the boundaries of
the overlapping translucent structure [51]. Figure 3.19 demonstrates this ap-
proach: an opaque halo is used to enhance the contours of the transparent
skin. Additionally, a smooth dark halo is assigned to the bone to add depth to
the image. Figure 3.20 demonstrates the use of the positional component of
the halo transfer function. A focus point is placed in the pelvic region and a
bright halo is used to indicate occlusions. Through these simple means the
viewer’s attention is directed to the aorta. Figure 3.21 shows the combination
of different halos for the same data value range. A smooth dark halo and
a thin bright halo are assigned to the outer part of the engine block. The
darkening of the white contour halo helps in indicating occlusion relation-
ships. The inner structures additionally have a slight cyan glow. Halos may
also serve as a complete replacement for normal gradient-based illumination
similar to the approach described by Desgranges et al. [24]. Depending on
the appearance of the halo, this results in an additional degree of stylization
which is useful to depict contextual objects. In Figure 3.22 we demonstrate
this effect. Figure 3.22 (b) and Figure 3.22 (c) depict different combinations of
halos using shading, while Figure 3.22 (d) uses no additional shading. The
stylized cartoon-like effect in Figure 3.22 (d) is achieved through a smooth
background-colored halo in combination with a black contour halo.

3.4.7 Discussion

As demonstrated, halos can be used to generate easily controllable incon-
sistent lighting, which is not physically plausible but aesthetically pleasing.
Localized shadow-like halos help to emphasize spatial relationships in an
non-intrusive way as they do not change the global lighting situation. As
shown by Ostrovsky et al. [80], humans are largely insensitive to such incon-
sistencies. Artists and illustrators therefore use inconsistent lighting to guide
the viewer’s attention and to enhance comprehensibility. Cavanagh [13] has
suggested that our brain perceives the shape-from-shading cues only locally.
This might be the reason why local cues which are inconsistent with global
lighting are so effective. With volumetric halos we can generate this kind
of illumination in an interactive result-oriented manner. In general, halos
perform best for volumetric data which contain clearly defined features such
as tomographic scans. For rather amorphous data, their benefit is limited due
to the absence of distinct boundaries.

Currently, we provide a simple interactive user-interface for changing all
halo parameters. The value influence function of the halo transfer function
is specified using a conventional transfer function widget. The user has
the option to link this function with the normal transfer function, i.e., halos
can be connected to the corresponding visible structures. For the directional
influence function, we provide a simple angular brushing widget which allows
the specification of a range of directions on a radial layout. The positional
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(a) (b)

Figure 3.20 – Using halos to add occlusion cues. (a) Volume rendering without halos.
(b) A white opaque halo is specified in the pelvic region using a focus point in order to
accentuate the aorta.



Chapter 3 Low-Level Abstraction Techniques 61

(a) (b)

Figure 3.21 – Combining multiple halo effects. (a) Volume rendering without halos.
(b) The semi-transparent part of the engine block uses a dark smooth halo and a
white opaque halo. The inner structures have an additional cyan glow.

influence function is defined by clicking on a point in the image. A viewing
ray is cast from this position and records the first intersection with visible
structures. The focus point is set to this position. By dragging the mouse, the
inner radius and transition of the spherical focus region can be modified. The
halo profile function is defined using a gradient widget. Other parameters,
such as the spreading parameter δ and an additional opacity scale of the
profile function can also be edited using a click-and-drag interface. While
these tools are very basic, they have proven to be surprisingly effective in
quickly improving the appearance of volume renderings. However, there are
some enhancements that could be easily accomplished. Extending the focus
point to a user-drawn polyline, for example, would be a useful extension.
The resulting geometry could then be sliced in parallel to the volume and
serve as an input to halo seeding. This approach would allow for even better
localization of halos without the need for explicit segmentation. Other such
sketch-based interaction metaphors open an interesting direction for further
research.

While our interactive approach allows for quick adjustment of halo param-
eters, an unsolved question is which settings perform best for which types
of data. A study of perceptual performance could lead to valuable insights
and the resulting data could be used to derive halo templates for different
scenarios.
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(a) (b)

(c) (d)

Figure 3.22 – Combining global and regional halos. (a) Volume rendering without
halos. (b) A smooth shadow-like halo is used to improve depth perception. (c) An
additional bright semi-transparent halo is placed around the colon. (d) Rendering
without shading – a smooth white halo and a black contour halo are used to indicate
the three-dimensional structure resulting in a stylized cartoon-like image.
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3.5 Summary

This chapter discussed techniques for the low-level abstraction of volumetric
data based on common methods used in traditional illustration. Style transfer
functions allow an efficient parametrization of object appearance. An intuitive
and compact representation of rendering styles which enables their extraction
from existing artwork allows for a flexible combination of different visual rep-
resentations, ranging from highly stylized to realistic depictions. Advanced
illumination effects, such as localized soft shadowing and glowing structures
can be achieved using volumetric halos. This method enables subtle enhance-
ment of small-scale structures through a detail-preserving halo generation
procedure. Both techniques can take advantage of current GPUs and provide
interactive performance.



Figure 4.1 – Interactive exploded-view illustration of a human head with increasing
degrees-of-explosion. Two hinge joints are used to constrain part movement.



Abstraction is real, probably more real
than nature.

— Josef Albers
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High-Level Abstraction
Techniques

Occlusion is a common problem in the visualization of volumetric data.
Frequently, important features are obscured by other structures. How-
ever, completely removing these structures also eliminates the additional
context information they provide. In order to solve this dilemma, illus-
trators employ high-level abstraction techniques, such as ghosted and
exploded views, which provide human perception with sufficient cues to
reconstruct a mental model of the data. This chapter presents interactive
volume visualization methods based on these concepts [5, 8, 9].

4.1 Introduction

HIGH-LEVEL abstraction techniques are methods which attempt to mod-
ify object visibility according to the illustration’s communicative
intent. In contrast to low-level abstraction techniques, which focus

on the appearance of objects, high-level techniques deal with what should be
visible and recognizable in the resulting image. Visualization of volume data,
in particular, suffers from the problem of occlusion as a three-dimensional
data set is projected onto a two-dimensional image. Frequently, it is desired to
simultaneously depict interior and exterior structures.

In this chapter, two techniques to solve this problem are discussed. The
first method is based on ghosted views, an approach commonly employed
by illustrators to visualize nested structures. In this technique, opacity is
selectively reduced in areas where the information content tends to be low.
A new method to identify these regions is introduced which represents an
alternative to conventional clipping techniques, shares their easy and intu-
itive user control, but does not suffer from the drawback of missing context
information. This context-preserving volume rendering model uses a function
of shading intensity, gradient magnitude, distance to the eye point, and previ-
ously accumulated opacity to selectively reduce the opacity in less important
data regions.

The second technique presented in this chapter is based on the concept
of exploded views. Exploded views are an illustration technique where an
object is partitioned into several segments which are displaced to reveal

65
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otherwise hidden structures. While transparency or cutaways can be used to
reveal a focus object, these techniques remove parts of the context information.
Exploded views, on the other hand, do not suffer from this drawback. The
discussed method employs a force-based model: the volume is divided into
a part configuration controlled by a number of forces and constraints. The
focus object exerts an explosion force causing the parts to arrange according
to the given constraints. This approach automatically generates part layouts
which can change dynamically based on occlusions induced by a change of
the viewpoint.

4.2 Related Work

The inherent complexity of volumetric data has lead to the development of
several techniques which attempt to reduce clutter and emphasize particu-
lar features. A common method is gradient-magnitude opacity-modulation.
Levoy [66] proposes to modulate the opacity at a sample position using the
magnitude of the local gradient. This is an effective way to enhance surfaces
in volume rendering, as homogeneous regions are suppressed. Based on
this idea, Ebert and Rheingans [33, 86] present several illustrative techniques
which enhance features and add depth and orientation cues. They also pro-
pose to locally apply these methods for regional enhancement. Csébfalvi et
al. [20] visualize object contours based on the magnitude of local gradients
as well as on the angle between viewing direction and gradient vector us-
ing depth-shaded maximum intensity projection. The concept of two-level
volume rendering, proposed by Hauser et al. [47, 48], allows focus+context
visualization of volume data. Different rendering methods, such as direct
volume rendering and maximum intensity projection, are used to emphasize
objects of interest while still displaying the remaining data as context.

The concept of cutting away parts of the volume to reveal internal struc-
tures is quite common in volume visualization. Nearly every volume renderer
features simple clipping operations. The basic problem of clipping planes is,
however, that context information is unselectively removed when inspecting
the interior of an object. There are approaches which try to remedy this defi-
ciency by using more complex clipping geometry. Wang and Kaufman [109]
introduce volume sculpting as a flexible approach for exploring volume data.
The work of Weiskopf et al. [110, 111] focuses on interactive clipping op-
erations using arbitrary geometry to overcome the limitations of common
clipping planes. Konrad-Verse et al. [61] use a deformable cutting plane for
virtual resection. The work of Dietrich et al. [26] consists of clipping tools for
the examination of medical volume data. Zhou et al. [117] propose the use
of distance to emphasize and de-emphasize different regions. They use the
distance from a focal point to directly modulate the opacity at each sample po-
sition. Thus, their approach can be seen as a generalization of binary clipping.
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An automated way of performing view-dependent clipping operations has
been presented by Viola et al. [107, 108]. Inspired by cutaway views, which
are commonly used in technical illustrations, they apply different compositing
strategies to prevent an object from being occluded by a less important object.
Krüger et al. [62] use interactive magic lenses based on traditional illustration
techniques for focus+context visualization of iso-surfaces.

Chen et al. [14] introduce the concept of spatial transfer functions as a
theoretical foundation for modeling deformations in volumetric data sets.
Islam et al. [54] extend this work by using discontinuities (i.e., splitting of
the volume). Some approaches employ a curve-skeleton [17] to partition
volumetric structures into several segments. The curve-skeleton is a reduced
representation of a volumetric object which can be generated using techniques
such as volume thinning [37]. Gagvani and Silver [38] animate volume data
sets using a skeleton-based approach. The interactive system presented by
Singh et al. [96] allows manual editing of volume deformations based on a
skeleton. They extend this work by introducing selective rendering of compo-
nents for improved visualization [95]. Correa and Silver [18] use traversal of
the skeleton tree to illustrate properties such as blood flow. They also present
an interactive technique for volume deformation [19].

Exploded views have been investigated in the context of architectural
visualization by Niedauer et al. [78]. Finally, McGuffin et al. [76] were the first
to thoroughly investigate the use of exploded views for volume visualization.
Their approach features several widgets for the interactive browsing of volume
data partitioned into several layers using simple cuberille rendering [49].

4.3 Ghosted Views

In direct volume rendering, conceptually every single sample contributes to
the final image allowing simultaneous visualization of surfaces and internal
structures. However, in practice it is rather difficult and time-demanding to
specify an appropriate transfer function. Due to the exponential attenuation,
objects occluded by other semi-transparent objects are difficult to recognize.
Furthermore, reducing opacities also results in reduced shading contributions
per sample which causes a loss of shape cues, as shown in Figure 4.2 (a). One
approach to overcome this difficulty is to use steep transfer functions, i.e.,
those with rapidly increasing opacities at particular value ranges of interest.
This strengthens depth cues by creating the appearance of surfaces within
the volume, but it does so by hiding all information in some regions of the
volume, sacrificing a key advantage of volume rendering. Figure 4.2 (b) shows
an example.

Volume clipping usually plays a decisive role in understanding volumetric
data sets. It allows us to cut away selected parts of the volume, based on
the position of voxels in the data set. Very often, clipping is the only way to
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(a) (b)

    

(c) (d)

Figure 4.2 – Four different visualizations of a contrast-enhanced CT angiography
data set. The illustration below each image depicts the basic opacity specification
strategy. (a) Gradient-magnitude opacity-modulation. (b) Direct volume rendering. (c)
Direct volume rendering with cutting plane. (d) Context-preserving volume rendering.
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Image courtesy of Kevin Hulsey Illustration
Copyright c©2004 Kevin Hulsey Illustration, Inc. All rights reserved.

http://www.khulsey.com

Figure 4.3 – Technical illustration using ghosting to display interior structures.

uncover important, otherwise hidden, details of a data set. These clipping
operations are generally not data-aware and do not take into account features
of the volume. Consequently, clipping can also remove important context
information leading to confusing and partly misleading result images as
displayed in Figure 4.2 (c).

In order to resolve these issues, we propose to only suppress regions which
do not contain strong features when browsing through the volume. Our idea
is based on the observation that large highly lit regions usually correspond to
rather homogenous areas which do not contain characteristic features. While
the position and shape of specular highlights, for example, provide good cues
for perceiving the curvature of a surface, the area inside the highlight could
also be used to display other information. Thus, we propose to make this area
transparent allowing the user to see the interior of the volume.

In illustrations artists use ghosting to visualize important internal as well
as external structures. Less significant items are just faintly indicated through
outlines or transparency. For example, rather flat surfaces are faded from
opaque to transparent to reveal the interior of an object. Detailed structures
are still displayed with high opacity. An example is shown in the technical
illustration in Figure 4.3: while the door is almost fully transparent, small fea-
tures such as the door knob are depicted opaque. The goal of this illustration
technique is to provide enough hints to enable viewers to mentally complete
the partly removed structures. Unlike cutaways, which completely remove
occluding objects, ghosting is less invasive in the sense that important features
remain visible even when they occlude structures of primary interest.

http://www.khulsey.com
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Using our idea of lighting-driven feature classification, we can easily
mimic this artistic concept in an illustrative volume rendering model. Our ap-
proach allows context-preserving and smooth clipping by adjusting the model
parameters. The approach of clipping planes is extended to allow feature-
aware clipping. Figure 4.2 (d) shows a result achieved with out method – the
blood vessels inside the head are revealed while preserving context informa-
tion. Our main contribution is a new illustrative volume rendering model
which incorporates the functionality of clipping planes in a feature-aware
manner. It includes concepts from artistic illustration to enhance the infor-
mation content of the image. Cumbersome transfer function specification is
simplified and no segmentation is required as features are classified implicitly.
Our approach is especially well-suited for interactive exploration.

4.3.1 Context-Preserving Volume Rendering

Diepstraten et al. [25] cite a list of guidelines for using transparency in il-
lustrations. For example, in many cases an illustrator chooses to reduce
transparency close to the edges of transparent objects and to increase it with
increasing distance to edges. Additionally, the number of overlapping trans-
parent objects should be kept low. These rules cannot be mapped directly to
the visualization of unsegmented volume data, as there is no explicit object
specification. Therefore our approach relies on available quantities which are
combined to achieve a similar effect.

Volume rendering algorithms usually compute a discrete approximation
of the volume rendering integral along a viewing ray using the front-to-back
formulation of the over operator [83] to compute opacity αi and color ci at
each step along the ray:

αi = αi−1 + α(p) · (1− αi−1)
ci = ci−1 + c(p) · α(p) · (1− αi−1)

(4.1)

where α(p) and c(p) are the opacity and color contributions at position p,
αi−1 and ci−1 are the previously accumulated values for opacity and color.
For conventional direct volume rendering using shading, α(p) and c(p) are
defined as follows:

α(p) = αtf (f)
c(p) = ctf (f) · s(p) (4.2)

where αtf and ctf are the opacity and color transfer functions. They assign
opacity and color to a sample based on the data value f at the sample point.
s(p) is the value of the shading intensity at the sample position. For the
two-sided Blinn-Phong model using one directional light source, s(p) is:

s(p) = (n · l) cd + (n · h)ce cs + ca (4.3)
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where cd, cs, and ca are the diffuse, specular, and ambient lighting coeffi-
cients, respectively, ce is the specular exponent, l is the light vector, and h is
the half-way vector.

Lighting plays a decisive role in illustrating surfaces. In particular, lighting
variations provide visual cues regarding surface orientation. Large regions of
highly illuminated material normally correspond to rather flat surfaces that
are oriented towards the light source. Our idea is to reduce the opacity in
these regions. Regions, on the other hand, which receive less lighting, for
example light silhouettes, will remain visible. Our model uses the result of
the shading intensity function for opacity modulation. Furthermore, to mimic
– to a certain extent – the look and feel of a clipping plane, we also take the
distance to the eye point into account. For viewing rays which have already
accumulated a lot of opacity, we reduce subsequent opacity attenuation by
our model since too many overlapping transparent objects make perception
more difficult. As the gradient magnitude is an indicator for homogeneity of
the data, it makes sense to also take this quantity into account.

Combining the available quantities in order to achieve the desired effects
leads us to the following equation for the opacity at each sample position p:

α(p) = αtf (f) ·m(p) (4.4)

with

m(p) = |g|(κt·s(p)·(1−|p−e|)·(1−αi−1))κs (4.5)

where |g| is the gradient magnitude normalized to the range [0..1] (zero
corresponds to the lowest and one to the hight gradient magnitude in the
data set) and s(p) is the shading intensity at the current sample position p.
A high value of s(p) indicates a highlight region and decreases opacity. The
term |p− e| is the distance of the current sample position p to the eye point e,
normalized to the range [0..1]. Zero corresponds to the sample position closest
to the eye point and one corresponds to the sample position farthest from the
eye point. Thus, the effect of our model will decrease as distance increases.
Due to the term 1− αi−1 structures located behind semi-transparent regions
will appear more opaque.

Figure 4.4 illustrates the effect of these different quantities: regions with
low gradient magnitude (left, top) and high shading intensity (left, center)
are more likely to be suppressed. Due to the inclusion of the eye distance
(left, bottom) this suppression will be strongest for regions close to the viewer.
Additionally, this effect is dependent on the previously accumulated opacity
(right, center). For viewing rays that already have accumulated high opacity,
further opacity modulation will be reduced effectively making any further
samples more opaque.

The model is controlled by the two user-specified parameters κt and κs.
Through modification of these parameters the user can interactively uncover
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Figure 4.4 – Overview of the context-preserving volume rendering model. Gradient
magnitude, shading intensity, and eye distance are combined to modulate sample
opacity. Additionally, the effect is weighted by the previously accumulated opacity.

occluded regions. The parameter κt roughly corresponds – due to the position-
dependent term 1−|p− e| – to the depth of a clipping plane, i.e., higher values
reveal more of the interior of the volume. The effect of modifying κs is less
pronounced; it basically controls the sharpness in transition between clipped
and visible regions. Higher values will result in very sharp cuts, while lower
values produce smoother transitions.

Figure 4.5 shows results for different settings of κt and κs. As κt increases
more of the interior of the head is revealed - structures on the outside are
more and more reduced to the most prominent features. An increase in
κs causes a sharper transition between attenuated and visible regions. An
interesting property of this model is that it is a unifying extension of both
direct volume rendering and gradient-magnitude opacity-modulation. If
κt is set to zero, the opacity remains unmodified and normal direct volume
rendering is performed. Likewise, when κs is set to zero, the opacity is directly
modulated by the gradient magnitude.

There are several reasons for choosing an exponential mapping in Equa-
tion 4.5. By placing the gradient magnitude in the mantissa and the modifying
terms in the exponent, the highest gradient magnitudes in the data will always
be preserved, as they are close to one, while lower gradient magnitudes will
be more affected by the modulation. This ensures that the central role of
the gradient magnitude in defining features in a data set of unknown nature
is accounted for. In the exponent the term (κt(· · · ))κs is chosen as it allows
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κt = 1.5 κt = 3.0 κt = 4.5 κt = 6.0

κs = 0.4

κs = 0.6

κs = 0.8

Figure 4.5 – Context-preserving volume rendering of a contrast-enhanced CT an-
giography data set using different values for κt and κs. Columns have the same κt

value and rows have the same κs value.

fine-grained control over the shape of the function similar to Phong’s specular
term. While κt controls the basic slope, κs allows to adjust the curvature of
this function.

4.3.2 Multiple Light Sources

While useful results can be achieved with the basic model featuring only one
light source, an obvious extension is the inclusion of multiple light sources. For
N light sources we assume a set of shading intensity functions s0, s1, ..., sN−1

and the parameters κs0 , κs1 , ..., κsN−1 and κt0 , κt1 , ..., κtN−1 . Any of these light
sources can either exhibit context-preserving opacity-modulation or act as a
conventional light source. The indices of all context-preserving light sources
are members of the index set L.

We redefine Equation 4.5 to take into account all context-preserving light
sources:
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Figure 4.6 – Context-preserving volume rendering using two light sources. The
context-preserving light source is placed in front of the face. A conventional light
source illuminates the head from the left.

m(p) =
∏
j∈L
|g|(κtj ·sj(p)·(1−|p−e|)·(1−αi−1))κsj (4.6)

Furthermore, we need to take the illumination contributions of all light
sources into account for the final color c(p) at the sample point p:

c(p) = ctf (f) ·
N−1∑
j=0

sj(p) (4.7)

Apart from these minor modifications no other changes to the basic model
are required. The advantage of using multiple light sources is that the ex-
ploration is not influenced by basic lighting settings. A typical setup might
employ one conventional light source for normal illumination and one context-
preserving light source used for examining the data, as shown in Figure 4.6.
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4.3.3 Data-Dependent Parameters

The two parameters of our model κt and κs allow intuitive control of the
visualization: κt is used to interactively browse through the volume, similar
to the variation of the depth of a clipping plane; κs normally remains fixed
during this process and is only later adjusted to achieve a visually pleasing
result.

While we have found that these parameters provide sufficient control in
most cases, a possible extension is to make them data dependent, i.e., they
are defined by specifying a transfer function. This increases the flexibility
of the method, but also raises the burden on the user, as transfer function
specification is a complex task. Thus, we propose a hybrid solution between
both approaches. We keep the global constants κt and κs, but their values
are modulated by rather simple data-dependent functions. In Equation 4.5,
κt is replaced by κt · λt(p) and κs is replaced by κs · λs(p). Both λt and λs are
real-valued functions in the range [0..1]. For example, the user can specify
zero for λt to make some regions impenetrable. Likewise, setting λs to zero for
certain values ensures pure gradient-magnitude opacity-modulation. If one
of these functions has a value of one everywhere, the corresponding global
parameter remains unchanged. These modulation functions can be based on
the scalar value, segmentation information (selection membership), or similar
properties.

Figure 4.7 (a) shows the visible human male CT data set rendered using
just the global parameters, while in Figure 4.7 (b) bone is made impenetrable
by setting λt to zero for the corresponding values.

4.3.4 Implementation

The implementation of the context-preserving volume rendering model is
straight-forward, as it only requires a simple extension of the compositing
routine of an existing volume rendering algorithm. The model uses only
quantities which are commonly available in every volume renderer, such as
gradient direction and magnitude and the depth along a viewing ray. It is
well suited for implementation on current GPUs. We have also integrated
this method into a high-quality software volume ray casting system for large
data [41, 43].

4.3.5 Results

We experimented with the presented model using a wide variety of volumetric
data sets. We have found that our approach makes transfer function speci-
fication much easier, as there is no need to pay special attention to opacity.
Normally, tedious tuning is required to set the appropriate opacity in order
to provide good visibility for all structures of interest. Using the context-
preserving volume rendering model, we just assign colors to the structures
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(a) (b)

Figure 4.7 – Context-preserving volume rendering of the visible human male CT data
set. (a) Only global parameter settings are used. (b) Bone is made impenetrable by
using data-dependent parameters.
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(a) (b) (c)

Figure 4.8 – CT scan of a tooth rendered with three different techniques. (a) Gradient-
magnitude opacity-modulation. (b) Direct volume rendering with one clipping plane.
(c) Context-preserving volume rendering.

and use the parameters κt and κs to achieve an insightful rendering. Opacity
in the transfer function is just used to suppress certain regions, such as back-
ground. This contrasts the usual direct volume rendering approach, where
opacity specification is vital in order to achieve the desired visual result. In
many cases, however, good results are difficult and laborious to achieve with
conventional methods. For example, for structures sharing the same value
range, as it is often the case with contrast-enhanced CT scans, it is impossible
to assign different opacities using a one-dimensional transfer function. If one
object is occluding the other, setting a high opacity will cause the occluded
object to be completely hidden. Using high transparency, on the other hand,
will make both objects hardly recognizable. Our method inherently solves
this issue, as it bases opacity not only on data values, but also includes a
location-dependent term. In the following, we present some results achieved
with our model in combination with a one-dimensional color transfer function.
No segmentation was applied.

Figure 4.8 shows a human tooth data set rendered with gradient-magnitude
opacity-modulation, direct volume rendering using a clipping plane, and the
context-preserving volume rendering model using the same transfer function.
Gradient-magnitude opacity-modulation shows the whole data set but the
overlapping transparent structures make the interpretation of the image a
difficult task. On the other hand, it is very difficult to place a clipping plane in
a way that it does not remove features of interest. Using context-preserving
volume rendering, the clipping depth adapts to features characterized by
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(a)

Image courtesy of Nucleus Medical Art
Copyright c©2004 Nucleus Medical Art, Inc. All rights reserved.

http://www.nucleusinc.com

(b)

Figure 4.9 – Comparing context-preserving volume rendering to illustration. (a)
Context-preserving volume rendering of a hand data set. (b) Medical illustration using
ghosting.

http://www.nucleusinc.com
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Figure 4.10 – Context-preserving volume rendering of a CT scan of a stag beetle.

varying lighting intensity or high gradient magnitude. Figure 4.9 (a) shows a
CT scan of a human hand rendered using our model. The resulting image has
a strong resemblance to medical illustrations using the ghosting technique,
as can be seen by comparing Figure 4.9 (a) and (b). By preserving certain
characteristic features, such as creases on the skin, and gradually fading from
opaque to transparent, the human mind is able to reconstruct the whole object
from just a few hints while inspecting the detailed internal structures. This
fact is commonly exploited by illustrators for static images. For interactive ex-
ploration the effect becomes even more pronounced and causes a very strong
impression of depth.

In Figure 4.10, a context-preserving volume rendering of a CT scan of
a stag beetle is depicted. Highly detailed internal structures can be clearly
identified while the translucent exterior provides the necessary context. The
shading-dependent term in our model causes reduced transparency near the
edges which serves as a cue for the relative depth of different structures.

In Figure 4.11, context-preserving volume rendering is applied to a contrast-
enhanced CT scan of a human body. Two light sources are used: a conventional
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Figure 4.11 – Context-preserving volume rendering of a full-body CT angiography
scan.
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light source is illuminating the body from the front and a context-preserving
light source is used to reveal the interior from the side. Our method allows
to create a highly detailed ghosted view of the human body without any
segmentation.

A typical application of traditional clipping planes is volume rendering of
stacks of histological cross-sections. For such data sets it is not easily possible
to assign different opacities to particular structures using transfer functions.
Often it is only possible to separate the actual object from its background.
Without prior segmentation, a common strategy is to display the entire volume
employing clipping planes to explore its interior. As the context-preserving
volume rendering model uses relative local quantities to compute the opacity
of a sample, it does not suffer from the same problems as global transfer
functions which assign opacities based on absolute values. The scalar gradient
is replaced by an appropriate metric for photographic data, such as the color
distance gradient proposed by Ebert at al. [34].

Figure 4.12 shows that our model allows exploration of color volumes
without prior segmentation. Different structures are accentuated as the model
parameters are modified. This approach might not completely alleviate the
need for segmentation in some applications, but it can act as a tool for explor-
ing and previewing complex spatial relationships as part of a segmentation
pipeline.

One usage scenario for the presented visualization technique is an interac-
tive segmentation application for photographic data. The unsegmented data
can be visualized three-dimensionally as the segmentation is in progress. This
supports the labeling of complex structures which is often difficult based on
the original slices. Already segmented features can be made impenetrable (see
Section 4.3.3), while the rest of the data is displayed using context-preserving
volume rendering. An example is shown in Figure 4.13. With our method,
effective volume visualizations of partly segmented data can be generated
easily. Visual properties of already segmented objects can be controlled as
usual, while visibility of the remaining data is determined through the context-
preserving rendering model.

4.3.6 Discussion

Context-preserving volume rendering presents an alternative to conventional
clipping techniques. It provides a simple interface for examining the interior
of volumetric data sets. In particular, it is well-suited for medical data which
commonly have a layered structure. Our method provides a mechanism to
investigate structures of interest that are located inside a larger object with
similar value ranges, as it is often the case with contrast-enhanced CT data.
Landmark features of the data set are preserved. Our approach does not
require any form of pre-processing, such as segmentation. One key feature of
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(a)

(b)

Figure 4.12 – Using context-preserving volume rendering for exploring photographic
data. (a) A low value of κt reveals superficial blood vessels. (b) A higher value of κt

displays muscle and brain tissue.
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(a) (b)

Figure 4.13 – Context-preserving volume rendering of the Whole Frog Project [79]
photographic data set. (a) Context-preserving volume rendering of the unsegmented
data. (b) Nerves have been segmented, are made impenetrable, and are artificially
colored.

this model is that it effectively simplifies opacity definition during the transfer
function specification.

Context-preserving volume rendering does not pose any restrictions on the
type of transfer function used. The model could be applied without changes
to modulate the opacity retrieved from a multi-dimensional transfer function.
Likewise, the modulation functions λt and λs could be multi-dimensional.
For reasons of simplicity, we have only considered simple one-dimensional
transfer functions in the description.

Further degrees of freedom of the method are provided by its close connec-
tion to the illumination model. By changing the direction of a directional light
source, for example, features can be interactively highlighted or suppressed,
based on their orientation. Modifying the diffuse and specular factors will
result in a variation of directional dependency, while adjusting the ambient
component has a global influence. As means of changing these illumination
properties are included in every volume visualization system, this additional
flexibility will not increase the complexity of the user interface.

4.4 Exploded Views

Occlusion is an important problem when rendering truly three-dimensional
information in scientific visualization, such as, for example, medical data
acquired using CT or MRI. Because of occlusion, normally not all of the data
can be shown concurrently. Frequently, the user wants to examine an object
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of interest within the volumetric data set. In many cases depicting this focus
object on its own is not sufficient – the user is interested in exploring it within
the context of the whole data set. To solve the problem of occlusion the
context can be assigned a different - more sparse - visual representation, for
example by reducing its opacity. This adjustment can even be performed
locally, so the representation only changes for those parts of the context
which actually occlude the focus [8, 102, 108]. In illustrations, cutaways and
ghosting techniques are used for this purpose. However, the drawback of
these approaches is that parts of the context information are still removed or
suppressed. If it is instructive to retain the context even when it occludes the
focus structure, illustrators often employ exploded views.

Basically, in an exploded view the object is decomposed into several parts
which are displaced so that internal details are visible (see Figure 4.14). This
does not only give an unobstructed view on the focus but also potentially
reveals other interesting information, such as cross-sections of the split object.
The advantage of exploded views is that they simultaneously convey the
global structure of the depicted object, the details of individual components,
and the local relationships among them.

Our contribution is a new technique for generating exploded views based
on a three-dimensional force-directed layout. We present an approach that
is capable of producing high quality exploded depictions of volume data at
interactive frame rates. One application of our method is the generation of
highly detailed anatomic illustrations from scanned data (see Figure 4.1 and
Figure 4.15).

4.4.1 Exploded View Generation

We present an approach for the automated generation of exploded views
from volume data which does not rely on extensive object information. The
technique distinguishes between focus and context using a fuzzy degree-
of-interest function. Rather than manually specifying a transformation for
each part of the context, an automatic technique which produces a three-
dimensional layout of the parts is discussed. Our approach is also capable
of re-arranging the parts dynamically based on the viewpoint. We further
employ a simple interaction metaphor for specifying part geometry.

Our approach distinguishes between two basic objects derived from the
volumetric data set. The selection (see Figure 4.16 (a)) is the current focus object
specified by a selection volume. The selection volume defines a real-valued
degree-of-interest function [27]. A sample of the selection volume at a specific
position indicates the degree-of-interest for the corresponding data sample,
where one means most interesting and zero means least interesting. The
selection object comprises all data samples with non-zero degree-of-interest.
The advantage of this definition is that it allows a smooth transition between
focus and context.
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Figure 4.14 – The Babe in the Womb (1511) by Leonardo da Vinci is an early example
for the use of exploded views – note the smaller depictions which show the use of
different explosion setups.
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(a) (b)

Figure 4.15 – (a) Plastinated anatomic model in Gunther von Hagens’ Body-
worlds1exhibition. (b) Interactive exploded-view illustration generated with our ap-
proach.

Everything that is not selected is part of the background (see Figure 4.16 (b))
which represents the context. Segments of the background object undergo a
transformation while the selection remains static. We divide the space covered
by the background into an arbitrary number of non-intersecting parts Pi (see
Figure 4.16 (c)). Each part is defined by its geometry and its transformation.
For simplicity, we introduce the restriction that each part is convex – concave
objects can be formed by grouping together several convex parts. In general,
the geometry of a part does not correspond to the shape of the actual object
contained in the part (which is determined by the selection volume, the data
volume, and the specified transfer function). It merely bounds the space that
can be occupied by this object. It is therefore sufficient to represent the part
geometry by a bounding polygonal mesh. Using this setup we can generate
exploded views where the parts are moved away to reveal the selection.
However, it can be very tedious and time-consuming to manually specify
the transformation for each part. We want a simple global mechanism to
specify how ”exploded” a view should be. Therefore, we introduce a degree-
of-explosion parameter. When the degree-of-explosion is zero all parts remain
untransformed. By increasing the degree-of-explosion, the user can control
how much of the selection is revealed.

While it would be possible to use an ad-hoc method for displacing parts
according to the degree-of-explosion, we choose to employ a force-based
approach. In graph drawing, force-directed layout techniques model connec-
tivity information through physical forces which can be simulated [32, 36].
Because of the underlying analogy to a physical system, force-directed layout
methods tend to meet various aesthetic standards, such as efficient space
filling, uniform edge lengths, and symmetry. They also have the advantage of

1http://www.bodyworlds.com

http://www.bodyworlds.com
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(a) (b) (c)

Figure 4.16 – Object setup for exploded views. (a) selection object. (b) background
object. (c) background object decomposed into parts.

enabling the visualization of the layout process with smooth animations. For
these reasons, we control our explosion using a rigid-body physics engine2.
Our goal is not to simulate physical reality, which would require a far more
sophisticated model including tissue properties, non-linear deformation, and
many other aspects. We rather want to supply the user with a simple and intu-
itive interface to interactively generate exploded visualizations of volumetric
data sets. New types of explosions can be generated just by adding additional
forces and constraints. Furthermore, the laws of Newtonian physics are gener-
ally well understood by humans which aids comprehension of the resulting
motions.

4.4.2 Part Geometry

An important step in generating an exploded view is specifying the part
geometry. We provide a simple interface for rapid interactive decomposition
of a volumetric data set. Our approach is based on the splitting metaphor: the
user starts out with a single part which corresponds to the bounding box of
the background object. By interactive splitting of this part along arbitrary
planes as well as grouping and hiding parts the user can define complex part
geometries with immediate feedback. Our interface provides three simple
tools to split parts:

Axis splitter. By clicking on a point on the screen, the user splits the first part
that is intersected by the corresponding viewing ray. The part is split
along a plane which passes through the intersection point. Its normal is

2http://www.newtondynamics.com

http://www.newtondynamics.com
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the cross product between the viewing direction and the horizontal or
vertical axis of the projection plane.

Depth splitter. The user clicks on a point. A viewing ray is cast which records
the first intersection with the background object. The corresponding
part is then split along a plane at the depth of the intersection point. The
plane is parallel to the projection plane.

Line splitter. The user can draw a line segment. For each part it is determined
if the projection of the part intersects the line segment. All parts which
intersect the line segment are split along a plane which projects to the
line.

As exploded views frequently employ splits based on object symmetry,
these tools provide an intuitive way of specifying and refining part geometry.
Despite the small set of operations, the concept is quite powerful as it operates
in a view-dependent manner. The user can interactively rotate the volume
and partition it in a natural way. In addition to this interface, our approach
could straight-forwardly employ automatically defined part geometries, for
example by using a pre-computed curve-skeleton.

4.4.3 Force Configuration

Force-directed layout approaches arrange elements such as the nodes of a
graph by translating the layout requirements into physical forces. A simple
setup uses repulsive forces between all nodes and attractive forces between
nodes which are connected by an edge. A simulation is performed until the
system reaches a state of minimal energy. The corresponding node positions
constitute the layout. Our problem is similar. We want to arrange three-
dimensional objects in such a way that they do not occlude another object,
but with as little displacement as possible. Like in an atomic nucleus or a
planetary system we want to achieve a steady state where the attractive forces
and the repulsive forces are in equilibrium. For this reason we define the
following forces based on our requirements:

Explosion force. We want to generate a force that drives the specified parts
away from our selection object. The idea is to generate a force field
which describes the characteristics of the selection object. Each point
of the selection exerts a distance-based force on every part. As there is
no analytic description of the selection, we use sampling to generate a
discrete number of points which generate the force field. We will refer
to these points as explosion points. In order to keep the number of
explosion points low, we use an octree-based approach: We generate
two min-max octrees; one for the data volume and one for the selec-
tion volume. Each node stores the minimum and maximum data and
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backgroundselection part bounding geometry explosion points force direction

(a) (b)

(c) (d)

Figure 4.17 – The four different forces for our force-directed layout. (a) Explosion
force. (b) Viewing force. (c) Spacing force. (d) Return force.

selection values, respectively, of the represented region. We traverse the
two octrees simultaneously and generate an explosion point for each
homogeneous octree node that contains both visible data values under
the current transfer function and nonzero selection values. We add a
small random bias to the position to prevent artifacts due to the regular
structure of the octree. The explosion point is also weighted according to
the size of the region corresponding to the octree node. Each explosion
point exerts a force Fe on every part Pi:

Fe =
ce

e|r|
· r
|r|

(4.8)

where r is the vector from the explosion point to the closest point of the
part geometry of Pi and ce is a scaling factor. The force is applied to
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(a) (b)

Figure 4.18 – View-dependent exploded views. (a) Exploded view without viewing
force – a part occludes the selection (dark blue). (b) Exploded view with viewing force
– the occlusion is resolved.

the closest point of the part geometry and can therefore also generate a
torque. The exponential fall-off is chosen to limit the force’s influence
to a region nearby the explosion point. The total explosion force is
normalized by dividing it by the number of explosion points. The
explosion force is illustrated in Figure 4.17 (a).

Viewing force. So far we have only considered view-independent explosions,
i.e., the movement of parts does not take into account the current view-
point. In traditional illustration this problem typically does not occur as
the viewpoint is fixed and the exploded view is specifically generated to
be most appropriate for this single viewpoint. In an interactive system,
however, we must consider that the user can rotate the camera arbitrarily.
For this reason we introduce a view-dependent force which attempts to
arrange parts so that they do not occlude the selection for the current
viewing transformation. We follow the work of Carpendale et al. [11, 12]
who use similar techniques for the layout of three-dimensional graphs.

We project each of the explosion points to the image plane. For a part Pi,
we cast a ray from the eye point to each explosion point and determine
the point along the ray which is closest to the center of Pi. The force Fv
is then:

Fv =
cv
|r|
· r
|r|

(4.9)

where r is the vector from the closest point along the viewing ray to
the center of the part and cv is a scaling factor. The total force for a
part is normalized by dividing it by the number of explosion points.
Figure 4.17 (b) illustrates the viewing force.
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Figure 4.18 shows an example for the influence of the viewing force. In
Figure 4.18 (a) the explosion force displaces the parts but disregards the
viewpoint. The occlusion is resolved in Figure 4.18 (b) by adding the
viewing force.

Spacing force. In order to prevent clustering of parts, we also add a repulsive
force Fs. For a part Pi, the spacing force exerted by another part Pj is:

Fs =
cs

|r|2
· r
|r|

(4.10)

where r is the vector from the center of Pj to the center of Pi and cs is a
constant scaling factor. The total spacing force for a part is normalized
by dividing it by the number of parts. The spacing force is illustrated in
Figure 4.17 (c).

Return force. This attractive force tries to move the parts towards their origi-
nal location. It counteracts all the other forces, which generally displace
a part form its initial position. Each vertex of the part geometry is con-
nected with its original (i.e., untransformed) position. The force Fr is
realized as a logarithmic spring:

Fr = cr ln(|r|) · r
|r|

(4.11)

where r is the vector from the vertex’s current position to its original
location and cr is a constant factor. The logarithmic relationship of the
force’s magnitude to the distance tends to produce less oscillation than
the linear relationship of Hooke’s law. The total return force for a part
is normalized by dividing it by the number of vertices. Figure 4.17 (d)
illustrates the return force.

The scaling factors of explosion force, viewing force, and spacing force, ce,
cv, and cs, are scaled with the global degree-of-explosion parameter, while cr
remains constant:

c{e,v,s} = doe · δ{e,v,s} (4.12)

where doe is the degree-of-explosion and δ{e,v,s} ∈ [0..1] specifies the
relative contribution of the corresponding force. This allows the user to modify
the influence of the individual forces, e.g. to reduce view dependency or to
increase spacing. The algorithm is insensitive to changes in δ{e,v,s}. In our tests,
a setting of δe = 1

2 , δv = 1
3 , and δs = 1

6 has proven to be a universally good
choice. The user mostly interacts with the degree-of-explosion. Figure 4.19
shows a simple part configuration for different degrees-of-explosion.
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Figure 4.19 – Exploded view of a turtle with increasing degree-of-explosion from top
to bottom. The body of the turtle is selected and the shell is divided into four parts.
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Figure 4.20 – Exploded view using constraints to limit part movement. The skull is
selected. The left part of the face is static, the remaining parts are connected by a
slider joint which limits their movement to a translation along one axis.

In addition to the basic forces discussed in this section, specific applications
may employ further forces. For example, if available, connectivity information
between certain parts could be modeled by additional spring forces.

4.4.4 Constraint Specification

While the force configuration discussed in the previous section can be used to
generate expressive exploded view visualizations, it is sometimes useful to
constrain the movement of parts. Therefore, our approach allows the interac-
tive addition of joints which restrict the relative movement of parts. Available
joints include sliders, hinges, ball joints, and universal joints. Additionally, the
user can provide an importance for individual parts by modifying their mass.
Parts with higher masses will be less affected by the individual forces and,
thus, by the explosion. The user can restrict a part from being displaced by as-
signing an infinite mass. This is particularly useful to easily create break-away
illustrations where typically only one section of the object is moved away.

An example for the use of constraints is shown in Figure 4.1 where two
hinges are used. In Figure 4.20, the left part of the face has been assigned
infinite mass. The right portion of the face is divided into several parts which
are connected by a slider joint. As the degree-of-explosion is increased, these
parts move along the free axis to reveal the skull.
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Figure 4.21 – Interaction between constraints and viewing force. All parts except the
two upper portions of the leg are static. These two parts are connected by hinges
similar to a swing door. As the camera rotates the viewing force causes the parts to
orient themselves towards the viewer.
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Figure 4.22 – Modulating transparency by the viewing force. As the two lower parts
move away, their transparency reduces since the viewing force gets weaker. The
upper part remains transparent because it is static – therefore the viewing force stays
constant.

By specifying constraints the user can effectively add structural informa-
tion that is missing from the raw data set. It is easily possible to generate
interactive illustrations which allow exploration within the constraints speci-
fied by the designer. An interesting component in this context is the viewing
force. Although the movement of a part is constrained, it is still affected by
the viewing force and therefore moves within the given limits to reveal the
selection. An example is shown in Figure 4.21 where two parts are connected
by a hinge joint. As the camera rotates, the effect of the viewing force causes
the parts to orient themselves towards the viewer.

Constraining part movements may result in arrangements with partial
occlusions of the selection object. Different visual representations can be
employed to resolve these conflicts. Based on the viewing force that acts
on a part we can modify the sparseness of the representation, for example
by modifying its transparency. An example of this behavior is shown in
Figure 4.22.

4.4.5 Implementation

For rendering an exploded view we need to be able to render a volumetric
data set consisting of a background and a selection object. The background
object is decomposed into several non-intersecting convex parts which can
have arbitrary affine transformations assigned to them. The geometry which
defines these parts will be referred to as part bounding geometry. The selection
object also has its assigned transformation and can intersect any part.

To enable empty space skipping, we further assume that we have geometry
enclosing the visible volume under the current transfer function for both
background and selection object (object bounding geometry). The use of this
kind of bounding structures for empty space skipping is very common in
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(a) – perform visibility sorting of the parts;
(b) – generate initial entry and exit points;
(c) – perform initial ray casting;
forall parts Pi in front-to-back order do

(d) – generate entry and exit points for Pi;
(e) – perform ray casting for Pi;

end

Figure 4.23 – Basic rendering algorithm for exploded views.

volume rendering. They are frequently based on hierarchical data structures.
In our implementation, we use min-max octrees for both data volume and
selection volume to enable fast updates whenever to transfer function changes.

Our GPU-based ray casting algorithm makes use of conditional loops and
dynamic branching available in Shader Model 3.0 GPUs. It was implemented
in C++ and OpenGL/GLSL. A basic overview is given in Figure 4.23. We
start by performing a visibility sort of the parts (Figure 4.23 (a)). Next, we
generate the entry and exit points for the segments of the selection located in
front of any part (Figure 4.23 (b)) and perform the ray casting step for these
regions (Figure 4.23 (c)). These two steps are actually simplified cases of the
general iteration steps (Figure 4.23 (d) and (e)). We then iterate through the
parts in front-to-back order. For each part Pi, we first establish the entry and
exit points of the viewing rays for both background and selection object (Fig-
ure 4.23 (d)). Then we use this information for performing ray casting of the
part (Figure 4.23 (e)). Figure 4.24 illustrates the algorithm.

Entry and Exit Point Generation

Generally, the background entry and exit buffers always contain the entry
and exit points of the viewing rays for the intersection between background
object bounding geometry and the part geometry. Essentially, we are using
the depth buffer to perform a CSG intersection between these objects which
can be simplified since the part geometry is always convex. As portions of
the selection can be located in regions which are not contained in any part,
the entry and exit buffers for the selection need to be generated in a slightly
different way.

At startup, we generate four off-screen buffers which can be bound to a
texture. For this purpose, we use the framebuffer object OpenGL extension. In
these buffers we store the ray entry and exit points for both background and
selection. A fragment program is bound which writes out the volume texture
coordinates under the current object transformation to the red, green, and
blue components and the fragment depth in viewing coordinates to the alpha
component. The volume texture coordinates are later used for computing the
ray direction while the depth is used in order to optimize compositing. We
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Figure 4.24 – Example of our exploded-view ray casting approach. The parts are
processed in front-to-back order. Empty space skipping is performed based on object
and part bounding geometries. The potential sample positions (not taking into account
early ray termination) are shown for each part.
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then perform the following operations to set up the entry and exit buffers for
selection and background:

Background. For the exit points, the depth buffer is cleared to one and the
alpha component of the color buffer is cleared to zero. Color writes are
disabled. The depth test is set to ALWAYS and the front faces of the part
geometry are rendered. Then color writes are enabled again, the depth
test is set to GREATER, and the back faces of the background object
bounding geometry are rendered. Finally, the depth test is set to LESS
and the part geometry’s back faces are rendered.

For the entry points, we clear the depth buffer to zero and the alpha
component of the color buffer to one, disable color writes, and set the
depth test to ALWAYS. Then the back faces of the part geometry are
rendered. Next, color writes are enabled again, the depth test is set to
LESS and the front faces of the background object bounding geometry
are rendered. Finally, the depth test is set to GREATER and the front
faces of the part geometry are rendered.

Selection. For the exit points the depth buffer is cleared to zero. Then the
back faces of the selection object bounding geometry are rendered with
the depth test set to GREATER. As it is possible that portions of the
selection are not included in any part, we then set the depth test to
LESS and render the front faces of all part geometries located behind the
current part.

For the entry points the depth buffer is cleared to one. The depth test is
set to LESS and the front faces of the selection object bounding geometry
are rendered. Then the depth test is set to GREATER and the front faces
of the part bounding geometry are rendered.

We also need to handle the case when portions of the selection are located
in front of all parts, which is the reason why steps (b) and (c) are required in
Figure 4.23. For the generation of initial entry and exit points (Figure 4.23 (b)),
this is done analogously to the general iteration step (Figure 4.23 (d)) with the
only difference that the background does not have to be taken into account.
Thus, the selection entry points do not need to be clipped. The selection exit
points are clipped against all part geometries.

Multi-Object Ray Casting

The ray casting pass uses the entry and exits points for rendering the volumet-
ric object contained in the current part. The volume texture coordinates stored
in the red, green, and blue components of the entry and exit point buffers
are used to compute the ray direction. The depth value stored in the alpha
component determines which objects need to be composited. If the intervals of
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background and selection do not overlap, they can be composited sequentially.
If they overlap, however, multi-object compositing must be performed in the
intersection region, i.e., two rays have to be traversed simultaneously. The
contributions of both objects at a sample point can be combined using fusion
functions [10], intersection transfer functions [4], or alternating sampling [42].

The pseudocode given in Figure 4.25 shows the determination of the inter-
vals from the entry and exit points. The functions CompositeBackground
and CompositeSelection perform single volume ray casting for back-
ground and selection, respectively. CompositeBackgroundSelection per-
forms multi-volume compositing. The functions BackgroundToSelection
and SelectionToBackground transform between the background and the
selection coordinate systems. This is necessary as the background and selec-
tion entry and exit points are given for the respective object transformation.

For the initial ray casting step (Figure 4.23 (c)), this procedure is not
necessary as only the selection has to be rendered. To perform the ray casting
for a part Pi (Figure 4.23 (e)), we bind a fragment program which implements
the algorithm shown in Figure 4.25 and render the front faces of the part
geometry. The result is blended into a framebuffer object for subsequent
display.

4.4.6 Results

As the parts are non-intersecting, visibility sorting can be performed at object
level rather than at primitive level. Since the number of parts will be relatively
low, this step introduces practically no overhead. We use a GPU-based visibil-
ity sorting approach which employs occlusion queries [40]. For fast rendering
of the object and part bounding geometry, we employ vertex buffer objects,
i.e., the geometry is uploaded to GPU memory whenever it is modified (e.g.,
transfer function change) and can be subsequently rendered at very high
frame rates.

Our ray casting shader contains dynamic branching and conditional loops
which could have a significant overhead. In our benchmarks, however, we
have noticed that the impact of these operations is comparably low. This
might be due to the fact that there is high coherence in the branches taken
between fragments and the approach therefore benefits from branch predic-
tion. To verify this, we have compared our exploded-view renderer with a
reference implementation of a conventional single-pass GPU ray caster. Both
implementations use identical compositing and shading routines, but the
standard ray caster ignores part transformations and the selection object. The
selection object is placed inside the background object (see Figure 4.16 (a))
and the transfer function is set to a steep ramp (see Figure 4.16 (b)). For
increasing numbers of parts we measured the performance for an unexploded
view (i.e., the generated image is equivalent to the reference ray caster) and
a fully exploded view. The results of this comparison are given in Table 4.1.
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if bB .depth < fB .depth ∧ bS .depth < fS .depth then
if bS .depth < fS .depth then

CompositeBackground (fB , bB);
else if bB .depth < fB .depth then

CompositeSelection (fS , bS);
else

if fB .depth < fS .depth then
if bB .depth < fS .depth then

CompositeBackground (fB , bB);
CompositeSelection (fS , bS);

else
f ′S = SelectionToBackground (fS);
CompositeBackground (fB , f ′S);
if bB .depth < bS .depth then

b′B = BackgroundToSelection (bB);
CompositeBackgroundSelection (f ′S , bB , fS , b′B);
CompositeSelection (b′B , bS);

else
b′S = SelectionToBackground (bS);
CompositeBackgroundSelection (f ′S , b′S , fS , bS);
CompositeBackground (b′S , bB);

end
end

else
if bS .depth < fB .depth then

CompositeSelection (fS , bS);
CompositeBackground (fB , bB);

else
f ′B = BackgroundToSelection (fB);
CompositeSelection (fS , f ′B);
if bB .depth < bS .depth then

b′B = BackgroundToSelection (bB);
CompositeBackgroundSelection (fB , bB , f ′B , b′B);
CompositeSelection (b′B , bS);

else
b′S = SelectionToBackground (bS);
CompositeBackgroundSelection (fB , b′S , f ′B , bS);
CompositeBackground (b′S , bB);

end
end

end
end

end

Figure 4.25 – Multi-object ray casting algorithm: fB and bB are the ray’s entry
and exit points for the background object, fS and bS for the selection object
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parts
frames/second

unexploded exploded
1 8.47 (94.4%) 7.56 (84.3%)
2 7.48 (83.4%) 7.52 (83.8%)
4 6.73 (75.0%) 6.61 (73.7%)
8 6.06 (67.6%) 5.26 (58.6%)

16 5.05 (56.3%) 4.67 (52.1%)
32 4.07 (45.4%) 3.93 (43.8%)
64 2.67 (29.8%) 2.53 (28.2%)

Table 4.1 – This table gives the frame rates for unexploded and exploded view
rendering for different part counts. Numbers in brackets denote the performance
as compared to the reference ray caster which achieved 8.97 frames/second. The
viewport size is 512 × 512 with an object sample distance of 1.0. The data set
dimensions are 256× 256× 166. Transfer function and selection are specified as in
Figure 4.16. Test system: Intel Pentium 4, 3.4 GHz CPU, NVidia GeForce 6800 GT
GPU.

We see that our approach scales well – the frame rate drops sublinearly with
the number of parts and the performance for a single part is almost identical.
Considering the greatly increased flexibility of our rendering approach, we
believe that these results are quite promising.

4.4.7 Discussion

Exploded views are a powerful concept for illustrating complex structures.
We have presented a novel approach for generating exploded views from
volumetric data sets. Our method attempts to make as little assumptions as
possible while still automating laborious tasks. Instead of manually displac-
ing parts, the user defines constraints which control the part arrangement.
View-dependent explosions result in a dynamic part arrangement within the
specified constraints while the user explores the object. Coupled with fast
high-quality rendering, our approach for exploded-view volume-visualization
features an intuitive direct manipulation interface. Possible future work in-
cludes the integration of our interactive approach with methods for automated
skeleton extraction. One could imagine a system where the user can design
illustration templates including joints and other constraints. This structure
could then be matched with the skeleton extracted from another data set. Ap-
proaches for automatically extracting view-dependent part geometry based
on concepts such as viewpoint entropy are another interesting direction for
further research.
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4.5 Summary

In this chapter, high-level abstraction techniques for volumetric data were
discussed. High-level abstraction techniques alter object visibility according
to the communicative intent of the illustration. Their aim is to provide unob-
structed views of important structures while still retaining as much context as
possible. The context-preserving volume rendering model is one such tech-
nique which was inspired by the common use of ghosted views in illustrations.
The interior of highly lit regions is made transparent to illustrate structures
behind while preserving important details. The second technique presented
featured a novel approach for generating exploded views from volume data.
The method attempts to make as little assumptions as possible while still
automating laborious tasks. Instead of manually displacing parts, the user
defines constraints which control the part arrangement. View-dependent ex-
plosions result in a dynamic part arrangement within the specified constraints
while the user explores the object.



Confidence in nonsense is a require-
ment for the creative process.

— Maurits Cornelis Escher
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Summary and Conclusions

FOR centuries, the quality of an illustration heavily depended on the
illustrator’s ability to create a mental model of the subject. However,
the complexity of many specimens makes this an elaborate and time-

consuming process. This thesis proposed the use of measured data acquired
by three-dimensional imaging modalities as a basis for generating illustrations.
The concept of a direct volume illustration system which aims to produce
results with the aesthetic quality of traditional illustrations while allowing for
fully dynamic three-dimensional interaction was introduced. The aim of the
presented work was to demonstrate, through the development of state-of-the-
art volume visualization techniques, that it is possible and feasible to create
expressive illustrations directly from volumetric data.

Abstraction, an important tool for illustrators in communicating the the-
matic focus to the viewer, plays a major role in the illustration process. Low-
level abstraction techniques control how objects are represented. Depending
on the communicative intent of an illustration, they can be used to put sub-
tle emphasis on important structures. Two novel interactive techniques for
low-level abstraction of volumetric data were introduced:

Stylized shading using style transfer functions, a new concept to parameter-
ize visual appearance using a compact image-based representation of
rendering styles, allows flexible control over the rendering of volume
data sets.

Volumetric halos permit the generation of advanced illumination effects such
as soft shadowing and glow in a localized manner. This technique
provides an effective way of enhancing complex three-dimensional
structures.

High-level abstraction techniques focus on which structures should be visi-
ble and recognizable. They are essential for the depiction of three-dimensional
data as they allow to resolve conflicts between importance and visibility. Two
new high-level abstraction techniques were presented:
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Ghosted views simultaneously depict focus and contextual information. A
context-preserving volume rendering model selectively reduces the
opacity of regions with low information content to make important
structures more visible.

Exploded views decompose a volume data set into several portions. These
parts are automatically arranged in a three-dimensional layout that
provides an unoccluded view on a focus object while retaining context
information.

It was shown that abstraction techniques based on a volumetric represen-
tation integrated into a direct volume illustration framework can not only
recreate the appearance of traditional illustrations, but also allow for three-
dimensional interaction by exploiting the flexibility and performance of cur-
rent graphics hardware. The proposed system has a wide variety of potential
applications such as the production of high-quality scientific education mate-
rial based on measured data and the increasingly important area of patient
education. Detailed illustrations based on real patient data could be used to
explain pathologies or surgical interventions to laymen.

While this thesis presented substantial progress towards these goals, sev-
eral areas require further research. For instance, the investigation of alternative
input technologies such as touch screens and pen interfaces might lead to
more effective user interaction, particularly for novices. New metaphors are
needed to integrate these input devices effectively. Furthermore, multi-user
support could enable the collaborative design of illustrations.



The multitude of books is making us
ignorant.

— Voltaire
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[20] B. Csébfalvi, L. Mroz, H. Hauser, A. König, and M. E. Gröller. Fast
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A life spent making mistakes is not
only more honorable, but more useful
than a life spent doing nothing.

— George Bernard Shaw
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S. Bruckner and M. E. Gröller. Enhancing depth-perception with flexible
volumetric halos. IEEE Transactions on Visualization and Computer Graphics, 13
(6):1344–1351, 2007.


	Title
	Abstract
	Contents
	Preface
	Introduction
	Traditional Illustration
	Prehistory
	Antiquity
	Renaissance
	Modern Illustration

	Illustrative Visualization
	Scope of this Thesis

	A Direct Volume Illustration System
	Introduction
	Related Work
	Overview
	System Architecture
	Object Model
	Abstraction Techniques

	Summary

	Low-Level Abstraction Techniques
	Introduction
	Related Work
	Stylized Shading
	Style Representations
	Style Transfer Functions
	Style Contours
	Illustrative Transparency
	Implementation
	Results
	Discussion

	Volumetric Halos
	Halo Pipeline
	Halo Seeding
	Halo Generation
	Halo Mapping and Compositing
	Implementation
	Results
	Discussion

	Summary

	High-Level Abstraction Techniques
	Introduction
	Related Work
	Ghosted Views
	Context-Preserving Volume Rendering
	Multiple Light Sources
	Data-Dependent Parameters
	Implementation
	Results
	Discussion

	Exploded Views
	Exploded View Generation
	Part Geometry
	Force Configuration
	Constraint Specification
	Implementation
	Results
	Discussion

	Summary

	Summary and Conclusions
	Bibliography
	Curriculum Vitae

