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Abstract

Compressed Manifold Modes (CMM) were recently introduced as a solution to one of the drawbacks of spectral analysis on
triangular meshes. The eigenfunctions of the Laplace-Beltrami operator on a mesh depend on the whole shape which makes
them sensitive to local aspects. CMM are solutions of an extended problem that have a compact rather than global support
and are thus suitable for a wider range of applications. In order to use CMM in real applications, an extensive test has
been performed to better understand the limits of their computation (convergence and speed) according to the compactness
parameter, the mesh resolution and the number of requested modes. The contribution of this paper is to propose a robust choice
of parameters, the automated computation of an adequate number of modes (or eigenfunctions), stability with mutltiresolution
and isometric meshes, and an example application with high potential for shape indexation.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image Generation—Line and

curve generation

1. Introduction

Spectral analysis of meshes relies on the study of the eigenvec-
tors of specifically defined mesh operators. It is used to solve a
wide variety of problems such as mesh compression, segmentation,
smoothing, watermarking or correspondence. The Laplacian oper-
ator is the well-known operator that is defined on a function f as

Af = div(grad(/)) and specifically in B as Af = &f + 21, The
Laplace-Beltrami operator (LBO) is its extension on a manifolds,
which, in our case, is a smooth surface inside R3. The eigenfunc-
tions of the Laplacian operator on R? (i.e. the solutions of equation
Af = Af where A is a real number) form the basis for the spectral
analysis of functions that are defined on R?. The eigenfunctions of
the LBO have the same role for functions that are defined on the

surface.

The LBO discrete counterpart is thus used to perform spectral
analysis on a 3D triangle mesh [Tau95]. The eigenfunctions of the
discrete LBO are usually referred to as the Manifold Harmonic Ba-
sis (MHB) of the considered mesh [Lev06], [VL08] and [RBG*09].
So, the surface decomposition over the MHB can be seen as the
Fourier spectrum of the mesh and as such allow its spectral analy-
sis. It is independent of the extrinsic shape properties and invariant
under natural shape deformation [Rus07]. They have already been
studied for a wide range of applications such as building shape de-
scriptors [RWP06], point descriptors and shape signature [SOG09],
shape matching [OMMG10] or shape segmentation [SOCG10].
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The Compressed Manifold Modes (CMM) were introduced by
Neumann et al. in order to overcome some limitations of global
spectral analysis [NVT*14]. This paper presents a framework
based on the CMM tool and demonstrates how local spectral anal-
ysis can be used in many applications.

Our contributions are: a set of tool parameters and mesh prop-
erties that demonstrate robustness and are thus suitable for appli-
cations; a simple algorithm to automatically compute an adequate
number of CMM functions for a given shape; and we demonstrate
our algorithm stability for varying resolutions of the same shape
and isometric deformations.

As example application, we propose a coarse matrix comparison
that shows very promising results in shape matching.

2. Background, previous and related work

MHB eigenfunctions present a major drawback: they are global and
depend on the whole shape. It is thus difficult to interpret them.
Moreover, they are sensitive to local modifications of the mesh such
as holes and noise that appear in scanned meshes. That global as-
pect also hampers partial shape recognition. In order to overcome
these limitations, T. Neumann et al. introduced the Compressed
Manifold Basis (CMB) and its components are called the Com-
pressed Manifold Modes (CMM). The MHB functions are the so-
lutions @y of the equation

AQy = _}"k(kak € NJ"k €ER
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with A representing the LBO. Usually, a set of K eigenfunctions
corresponding to the smallest eigenvalues A; is considered. The
CMM are the solutions of the generalized eigenvalues problem
that induces sparsity by introducing the ¢;-norm and a parameter
u€R":

K
min ) (@] AQ;) + % lloxll; such that (@x|@;) = &;
Pr =1

where &y is the Kronecker delta that enforces orthogonality of the
CMM or eigenfunctions, and N is the number of vertices of the
mesh. These functions have a compact support whose relative size
is controlled with parameter 4. When u = 0, we have the original
problem the solution of which is the MHB; larger u values yield
more compact solutions.

3. CMM computation speed and convergence
3.1. Available implementations and test

The CMM computation algorithm proposed by Neumann et al. is
based on reformulating the original problem and solving it with the
alternating direction method of multipliers (ADMM) as described
in [BPC*11]. They claim that, even though the minimization prob-
lem is not convex due to the orthogonality constraints, local minima
are reached and sufficient for practical applications. Python code
has been made available to reproduce some of their results. An
accelerated version of the algorithm was later designed by Hous-
ton [Houl5]. He claims this new algorithm is about 47% faster
than the original one on average, and provides Matlab code to test
it. Finally, a new paradigm regarding the ¢1-norm discretization has
lately been promoted by Bronstein et al. [BCKS16]. The minimiza-
tion problem is modified into a sequence of eigendecomposition
ones, which avoids non-convex optimization and thus achieves a
drastic speedup in runtime. We tested the original algorithm and its
accelerated counterpart in a python environment. Our goal was to
identify the tool limitations and check its applicability.

3.2. Impact of parameters on convergence

We evaluated both the original algorithm and its accelerated version
using various shapes. For some typical cases, we also changed the
mesh resolution. Each mesh was then tested using different com-
binations of the compactness parameter u and the number K of re-
quested eigenfunctions. The conditions of our test case are given
below:

22 meshes ranging from 453 to 74764 vertices.

10 values for the compactness parameter ranging from 1 to 1000.
The number of requested eigenfunctions ranged from 5 to 40.
Every mesh has been tested with every possible combination of
K\u parameters.

Computation was performed on a PC with an Intel i7-4710HQ
CPU @ 2.5GHz with 8Go RAM.

Table 1 shows the number of converging cases for the original al-
gorithm. Results for the accelerated algorithm are very similar. The
convergence criterion is fully described in [NVT*14]. Non conver-
gence happens when the 15000 iterations limit is reached. The algo-
rithm converged in less than 50% of the test cases and it clearly ap-
pears that non convergence happens when the number of requested

Knu| 1 2 5 10 20 50 100 200 500 1000
5 11 15 20 22 21 22 22 21 19 16
10 0O 0 4 11 12 20 21 19 18 16
20 o 0 0 O 0 9 11 16 14 16
40 o 0 0 0O 0 0 O 5 10 13

Total number of converging meshes among 22 for the K\u

combination.

Table 1: Convergence with the original CMM algorithm

eigenfunctions is large and the support is not compact enough. This
is very probably due to the orthogonality constraint that is easier
to fulfill while the eigenfunctions can have approximately sepa-
rate supports. Speed was acceptable (less than 1 minute to get the
CMM) in most converging cases when the number of requested
eigenfunctions was 20 or less.

4. Finding an adequate number of eigenfunctions

An important objective of our work was to design an algorithm that
automatically determines the number of eigenfunctions that best
fit the application needs. Indeed, automation is essential for a tool
in practical applications: it is not acceptable to rely on the user
to fine tune various parameters in order to achieve its goal every
time the tool is called. The choices that we present below are based
on an extensive set of experiments on usual indexation databases:
SHREC15 [LZC*15], SCAPE [ASK*05], FAUST [BRLB14], the
Bunny [TL94], Armadillo and Bimba models. The algorithm stop-
ping criterion was designed with a shape matching application in
mind.

4.1. Method

The same compactness parameter is used for all meshes (u = 20).
It is the control key to the number of eigenfunctions. The higher
it is, the more eigenfunctions one gets for a given shape. Its fine
tuning should be done once according to the targeted type of appli-
cation. It must be remembered that higher compactness parameter
values yield more eigenfunctions and might increase drastically the
computation time.

Let us then define vertex coverage: a vertex from the mesh is
said covered by the CMM when at least one eigenfunction exceeds
a preset percentage ThV of its absolute maximum value on that
vertex. Next, we consider the mesh is covered when at least a given
percentage ThM of the vertices are covered.

The algorithm starts computing 1 eigenfunction and increases
this number until the mesh is covered. Every step is initialized
with the previously found eigenfunctions and one additional con-
stant function; the resulting eigenfunctions are then tested against
the stopping criterion. The process starts over until the criterion
is reached. Both thresholds can be adjusted according to the type
of desired application. For the application that we present at the
end of this paper, the values that gave overall the best results were
ThV =0.1 and ThM = 0.95.
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Figure 1: Algorithm progression
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Figure 2: Effect of compactness parameter changes

4.2. Results

On average, for all our test cases, we get about 8 eigenfunc-
tions with the selected compactness parameter. On the SHREC15
dataset, the minimum is 3 eigenfunctions and the maximum is 19.
More than 90% of the meshes yield between 4 and 12 eigenfunc-
tions. Two examples in the Figure 1 show the algorithm progres-
sion. A vertex is colored when it is covered. When different eigen-
functions overlap, the color of the vertex corresponds to the one
with the highest value. These examples present an interesting ex-
traction of the intrinsic global shape aspect. Changing either ThV
or ThM threshold only modifies the number of steps of the algo-
rithm that keeps adding new eigenfunctions until stopped. On the
other hand, for a given mesh, compactness parameter changes have
an impact on the eigenfunctions themselves as can be seen in the
Figure 2. The compactness parameter can be adapted to the de-
sired application type. However, it must be kept coherent with the
mesh resolution (the greater compactness, the finer details are cap-
tured which requires higher resolution) and fit the application exact
needs.

In all the tests we made so far with our choice of parameters, the
eigenfunction supports have always proved to be connex when the
meshes do not have too many holes.

5. Stability over two mesh transformations

The process stability has been tested when a mesh is subsampled
with the idea of speeding up the process for a given shape by chang-
ing its resolution. In order to address moving shapes, stability was
also tested on isometrically deformed shapes.

5.1. Effects of subsampling

We tested subsampling on the Armadillo and the Bimba models
using Alliez and Desbrun algorithm [ADO1]. For the Bimba, we
started with the original mesh that comprises 75000 vertices and
subsampled it successively to 30000, 9000, 4000 and 1200 vertices.

(© 2017 The Author(s)
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Figure 3: Stability with multiresolution shapes

For the Armadillo, the 61400 vertices original model was subsam-
pled to 25500, 8400, 3400 and 900 vertices. As can be seen on the
Figure 3, subsampling keeps the shape general aspect while remov-
ing details; these modifications did not change the output of the al-
gorithm that shows robustness with respect to the mesh density and
level of details. For large meshes, this very interesting result effec-
tively promotes the idea of subsampling to overcome the compu-
tation time limitation. When the compactness parameter is u = 20,
1000 vertices is a good target provided that this level of subsam-
pling is coherent with the shape itself. With a non-optimized python
algorithm on a PC with an Intel i7-4710HQ CPU @ 2.5GHz with
8Go RAM, computation on the original Armadillo took 245.7 sec.
whereas it was only 1.44 s for the 900 vertices subsampled mesh.
From unacceptable computation delays in many applications, we
drop to perfectly reasonable speed.

5.2. Isometric deformation
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Figure 4: Stability with isometric deformation

We evaluated our method on mesh databases that comprise dif-
ferent poses of the same shape. This was done with the SHREC15
and SCAPE datasets. For example, the SCAPE dataset contains 70
different positions of the same human subject, and our algorithm
found very similar solutions: 66% showed one configuration (with
the same number of eigenfunctions identically located on the shape
and found in the same order), and two other close configurations
were found for 17% and 10% of the remaining meshes (they in-
clude one additional eigenfunction). The other results were minor
variants of the 3 main configurations (e.g. the eigenfunctions are
located in a different order from the original configuration). Some
examples are given in the Figure 4. These very promising results
show the stability of the method regarding isometric deformations.
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6. Application
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Figure 5: Two sample groups from the SHREC15 database

We present here a simple method based on the eigenfunction
coverage found by our previous algorithm, and propose coarse
shape matching results based on it.

Our method first normalizes the eigenfunctions that have been
previously found (their values are thus comprised between -1 and
1, their maximum being always 1). Then, we associate every ver-
tex of the mesh with the function whose value is highest at it. The
regions that we obtain have always proved to be connected and
we order them according to their eigenfunction discovery rank. We
then build a symmetrical boolean matrix that describes the region
contiguity.

A coarse matrix comparison was run on the SHREC15 dataset:
we grouped together meshes with the same matrix. Two clusters
of meshes that were obtained with this comparison are shown in
Figure 5. Although these results do not compare yet with state-of-
the-art algorithms, the intrinsic simplicity of the tool makes it an
encouraging new research direction for shape matching and index-
ation.

7. Conclusion and future work

The Compressed Manifold Modes that have been recently intro-
duced by Neumann et al. seem an interesting tool that addresses
one of the major drawbacks of spectral analysis in shape match-
ing, segmentation and other typical applications. We performed an
advanced study of that tool and found a robust set of parameters
that demonstrate algorithmic convergence at an acceptable speed.
From these results, we proposed an algorithm that automatically
computes an adequate number of CMM eigenfunctions that prop-
erly cover a given shape. We also showed that this method is stable
and yields the same eigenfunctions regardless of the resolution and
isometric deformation of the mesh, and gave a simple application
with promising outcomes. There are several directions for our fu-
ture work on the subject:

o try the very recent proposition from Bronstein et al. and evaluate
the performance gain for our method;

e apply our method to movements and study its applicability to
analyze moving shapes.
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