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Abstract

Proteins play a vital role in biological processes, with their function being largely determined by their structure. It is important
to know what a protein binds, where it binds, how it binds, and what is its final conformation. Several methodologies have been
applied to solve this complex protein-protein docking problem, but the number of degrees of freedom renders this a very slow
and computationally heavy challenge. To handle this problem, we propose a multi-level space partition approach to describe
the three-dimensional shape of the protein. By combining two proteins in the same data structure we are able to easily detect
the shape-complementary regions. Moreover, by directly integrating bio-energetic information, we can drive the algorithm by
both parameters and provide a fast and efficient way to overcome some of the limitations of previous approaches.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry and Object

Modeling—Curve, surface, solid, and object representations

1. Introduction

Proteins are biological macromolecules represented by a sequence
of amino acid residues, which naturally folds and adopts a charac-
teristic three-dimensional conformation. Many biological mecha-
nisms are based on the interaction of two or more protein individu-
als, which are experimentally difficult to characterize at the molec-
ular and atomic detail, which is why it is very important to under-
stand, characterize, represent and reproduce these events computa-
tionally.

Molecular Mechanics and Molecular Dynamics (MD) [Lea01]
are fundamental tools in Structural Bioinformatics that aim at sim-
ulating in-silico as best as possible all the movements, interactions,
and forces that govern the biomolecular behavior at the atomic
level. However, the detail found in these methods makes them very
computationally expensive, which renders ab-initio, fully-flexible
protein docking a very complex problem.

As a consequence, rigid-body approximations have been devel-
oped [Rit08] only considering the protein shape represented by its
solvent-accessible surface area. But this too poses some challenges
due to the multiple possible rotations, translations and orientations
that the two docking partners can exhibit.

Besides, shape information is not always sufficient to determine
if two proteins bind with each other, since they can be compatible at
a shape level, but the intermolecular forces at the contact interface
make them repel or have no affinity with each other, thus invalidat-
ing their docking.
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To overcome these problems, we centered our approach in a
data structure based on a modification and extension of the oc-
tree spatial index [Mea82], a tree-shaped data structure used for
3D spatial representation, where a cube volume is recursively sub-
divided into eight smaller cubes, allowing for a straightforward
3D multi-resolution decomposition. But instead of this binary di-
vision over each axis, we consider overlapped and successively-
decreasing cubes centered at each one of the voxels of the object.

Our most relevant addition to this is the fact that we label each
tree node by both a rotation-invariant representation of shape and
by an energetic/biochemical score. This allows to improve the
docking process by efficiently guiding it by both criteria simulta-
neously.

2. Related work

The most successful tools for rigid protein docking include ap-
proaches based on a global search over the entire conformational
space using 3D FFT correlations [KKSE*92], such as ZDOCK
[CLWO03] or PIPER [KBCVO06], or geometrical hashing [WR97],
such as PatchDock [SDINWOS5]. These involve long calculations
over thousands of coefficients that need to be calculated over thou-
sands of incremental orientations and the quality of the repre-
sentations decays with the increasing size of the protein. Other
approaches, including RosettaDock [GMW*03] and AutoDock
[MHL*09], consider random initial structures over a limited region
and perform multiple Monte Carlo minimization steps. These meth-
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ods may take a long time to reach the most favorable conformation
and it is not guaranteed that it will be found in the available time
span. An alternative method, applied in HADDOCK [DBB03],
uses a priori information about interface residues and guides the
search towards conformations that satisfy those restraints. But its
success requires the availability beforehand of experimental infor-
mation about the actual proteins in contact or about similar targets,
which is not always the case.

3. Methods

We consider that the shape of each protein is delimited and iden-
tified by its solvent-accessible surface area (SAS) [LR71], i.e. the
area at the surface of the protein that is susceptible of becoming in
contact with surrounding solvent molecules or some other molecu-
lar entities.

To represent the shape of the protein, we introduce the concept of
a Multi-Level Shape Tree (MLSTree), consisting of a tree-like data
structure that basically stores voxelized representations of the pro-
tein’s shape at different levels of detail. This concept is an extension
of the one found in octrees, but with some major differences.

Octrees perform a disjoint partition of the space by following
the distribution of a 2x2x2 cube and packing each set of 8 voxels at
level / into a larger voxel at level (I + 1), resulting in the intrinsic
property that no voxel at a certain level overlaps with another voxel
of the same level. On the other hand, the MLSTree follows the dis-
tribution of a 3x3x3 cube and takes the 27 voxels centered at each
voxel at level [ to define the voxel at the following level (/ 4 1),
thus introducing overlap into voxels at the same level. This overlap
is highly desirable since a region of interest could be found cut by
the splitting planes of a regular octree in every level, and this way
we guarantee that, up from a certain level, that region is entirely
contained in at least one voxel.

Furthermore, each voxel at level (I + 1) in the MLSTree is not
represented by only its filled or empty state like in octrees, but in-
stead by a rotation-invariant representation of its 3x3x3 shape at
level /. In addition to this shape information, we also add to each
tree node information about molecular interaction energy scores
[RGO7]. This gives us a measure of the binding strength between
the two docked proteins, and takes into account several aspects such
as molecular force fields, hydrophobic regions and the frequency of
similar contact regions in previous experimental studies. This en-
ables us to later access the biological binding affinity of the pairs
of shape complementary regions of both proteins, i.e., regions at
the surface of each protein whose volumes fit together perfectly or
with only a residual amount of gaps and overlaps.

To perform the docking of two proteins, we build an unified ML-
STree for the shape of one protein and the complementary/outside
shape of the other. Matching is performed by doing a top-bottom
search, from the broader levels to the narrower levels, and follow-
ing tree nodes whose shape belongs to both proteins simultaneously
while checking if the biological function scores are compatible.

3.1. MLSTree data structure

The SAS of the protein is snapped onto a grid and voxelized. We
consider this to be the level 0 of the tree. For each voxel, we con-

sider the 26 neighborhood voxels directly surrounding it and delim-
iting a 3x3x3 cube, and use this volume to define a larger voxel at
the next level. In every voxel created this away, the center position
is always filled. A voxel at level /, from now on called an /-voxel,
at a generic position is therefore defined by:

I-voxel|x,y,z] = U
i,j,ke{—1,0,+1}

(I—1)-voxel[x+i,y+ j,z+k] (1)

This process is repeated starting at every 0-voxel and applied recur-
sively, level by level, until we end up with a single filled voxel.

Intuitively, this is equivalent to representing the protein shape by
a set of spheres of progressively increasing (by a factor of 3) radius,
centered at every point of the surface, but resorting to cubes instead
of actual spheres.

All of these /-voxels are then arranged in a tree-like structure,
sorted by decreasing level. [-voxels at the same level and sharing
the same shape are grouped in the same tree node. The tree starts
with the root node at the top, whose shape is defined by a cube con-
taining a single filled voxel at the center, and ends with the bottom
leaf nodes, whose shapes are the 1-voxels.

Figure 1 exemplifies how the shapes of the first bottom levels are
obtained in a simplified two-dimensional version of this MLSTree
data structure.

Figure 1: An example of a simple 2D shape and the MLSTree levels
0 to 3 of one of its pixels. The full MLSTree would consider this for
every pixel at the shape’s boundary (pixels in dark grey).

3.1.1. Rotational invariance

The tree nodes do not explicitly store the exact original voxel
shapes, but instead a rotation-invariant version from the enumera-
tion of all valid, normal-aligned, rotational-symmetries-free 3x3x3
shapes. Therefore, we do not consider all the possible 2?7 combina-
tions of 3x3x3 cubic shapes, but instead only a smaller subset after
taking out all redundant rotations.

To produce this “normalized” version, first the normal vector 7
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of the overall shape inside the 3x3x3 cube is calculated at its center
voxel, considering the directional contributions of all the surround-
ing voxels. This way we get the shape’s average outward direction.
Then, we rotate the shape inside the cube so that the normal vector
points upwards, aligned with the z-axis. Finally, for all the possi-
ble 8 rotations of this shape around the vertical z-axis, we calcu-
late the sum of the 3D rectilinear distances of every filled voxel to
the (1,1,1) corner of the cube, and then select the rotation with the
larger distance. This corresponds to sorting the rotations and choos-
ing the one that packs the highest density of filled voxels closely to
the (-1,-1,-1) corner of the cube. These last steps are applied in
order to eliminate the additional redundancy associated with the

|

o
R

Figure 2: All the 8 possible rotations of an example shape formed
by 4 pixels around the central pixel in a 3x3 square. After vertically
aligning all the shapes by their respective normal vectors, in red,
all the shapes are reduced to a single one (top center).

Figure 2 shows this rotational redundancy in the two-
dimensional case. In a 3x3 square, there exist at most 8 possible
rotations of a generic shape around the central pixel. In this lower
dimension case, the alignment by the normal vector is sufficient
and an additional last rotation step is not needed.

If at the same tree level we have /-voxels from different starting
positions but with the same “normalized” shape, they are combined
into the same tree node (but retaining their individual connections
to lower levels), which is crucial in order to achieve rotational-
invariance in the shape matching algorithm that will be explained
later.

3.1.2. Intermolecular energy score

In addition to shape information, we also incorporate into the
MLSTree an appropriate scoring for protein-protein interactions
[KDFBO4]. This includes a weighted combination of values about
electrostatic, van der Waals and desolvation energies, hydrogen
bonding and hydrophobicity. For further information about these
biological scores, the interested reader is referred to [MTBFR13].

(© 2016 The Author(s)
Eurographics Proceedings (©) 2016 The Eurographics Association.

On higher levels, this energetic information is determined by cal-
culating, for each component, the average of the scores present in
the volumes of the preceding lower level. By adding this additional
biochemical information to each tree node, we can guide the dock-
ing search by both shape and energetic criteria simultaneously.

3.1.3. Implementation and complexity
Each tree node stores three major elements:

1. A label consisting of a 3x3x3 cubic shape from the non-
redundant rotations-free set of valid shapes, represented by an
array of bits

2. A biochemical score including several components of the inter-
molecular energies inside the 3x3x3 volume, represented by an
array of floating point values

3. And an array of (at most 27) links/pointers to the nodes of the
tree level below. There can be several of these arrays when dis-
tinct /-voxels get collapsed into the same node.

The maximum number of levels L of the structure is given by
L = [logs(max{Nx,Ny,N;})], where N, is the dimension of axis ®
in terms of 0-voxels, i.e. the size of the ® axis over the initial vox-
elized representation of the protein shape. The space requirement
for the MLSTree is therefore O(L - n), where n is the total number
of 0-voxels.

3.2. Matching algorithm

In general, for two proteins to bind in the docking process, they
must contain at least one region where the shape of one is highly
complementary to the shape of the other. Therefore, if we consider
the “outside” shape of one of them, it will be highly similar to the
regular shape of the other in those regions where the binding oc-
curs. With this in mind, we exploited the MLSTree data structure
to devise an algorithm that is able to find these similar shared re-
gions.

We first build an MLSTree that includes the shape P; of the larger
protein and the complementary shape P of the smaller protein.
This complementarity step can be done by taking the initial vox-
elization of the protein and swapping empty and filled voxels, thus
changing convex shapes into concave shapes and vice-versa.

While building this unified MLSTree, we keep track of which
tree nodes belong to which protein. If both proteins share a com-
mon voxel shape at a certain level, this information gets collapsed
into the same tree node and we mark it as belonging to both pro-
teins. The fact that the tree nodes are labelled by a rotation-invariant
version of the voxel shapes, allows the procedure to find the match-
ing regions between both proteins independently of their initial ori-
entations.

The search procedure is executed over the MLSTree in a top-
down manner, following the nodes shared by both proteins and re-
cursively collecting scores, for both the shape similarity and the
biochemical docking affinity, from the shared nodes at the levels
bellow. The pseudo-code for this procedure is presented in Algo-
rithm 1.

Before starting the search we define both a threshold for the min-
imum shape similarity and for the minimum binding affinity. We
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Algorithm 1 Detect shape complementarity regions between two
proteins, P; and P,

1: tree < MLSTree(Py) UMLSTree(P;)
2: procedure SHAPEMATCHING(tree)
3: for level < maxLevel,... minLevel do

4 for all nodes in level do
5 if (Shared(node) and NotReported(node)) then
6: if NotVisited(node) then
7 CollectScores(node)
8 MarkNodesBellowAsVisited (node)
9: end if
10: if scores > thresholds then
11: Report(node)
12: MarkNodesBellowAsReported(node)
13: end if
14: end if

15: end for
16: end for
17: end procedure

also set a limit for the minimum level of the tree to stop the search
to prevent the algorithm from reporting shared regions with a very
small area.

The “distance” between two nodes of the same level is defined as
the number of voxels that are different between their shapes, which
is equivalent to computing their Hamming distance, but weighted
by the level that they are at, since higher levels correspond to a
larger cubic volume. Therefore, for the same number of shape dif-
ferences, distances at higher levels are larger than at lower ones

The biochemical energy scores are stored in the shared nodes
separately for each protein and are compared and combined in or-
der to address the level of biochemical binding compatibility be-
tween two already shape-complementary regions.

If the currently active node does not display a sufficient level
of complementary in either one of the predefined thresholds for
shape or for energy, the search is early interrupted and proceeds
to the following node. The procedure returns a list of all matching
cubic regions that satisfy both shape and energetic thresholds. The
original orientations and the coordinates in both proteins for these
accepted regions can be obtained by storing this information in the
shared tree nodes while building the combined tree.

3.3. Implementation aspects

The voxels at the various levels of the tree can be represented using
bit arrays that fit in even less space than that of a 32-bit computer
word. This means that shape comparisons and differences while
searching can be computed extremely fast using bit-level paral-
lelism hardware instructions (AND, XOR, POPCNT, etc) present
in all of today’s CPUs. Besides, both the construction of the data
structure and the search procedure can be easily adapted to take
advantage of multi-threading.

The space requirements of this data structure, although being
loglinear, can have a large constant factor due to the high degree

of branching. But since close points at lower levels will most likely
share the same representation on higher levels, we can take advan-
tage of some basic compression techniques to reduce its space us-
age.

When building the tree, we can also use some level of sam-
pling, e.g. take only every other O-voxel, to reduce even further
the memory usage. The tree construction can also be done in time
O(nlogs n) with the added advantage of the algorithm being easily
parallelizable.

As for the matching algorithm, in the worst-case scenario, the
search procedure will visit every node of the tree. Since the work
performed for each node is constant and the total number of nodes
is of order approximately O(nlogsn), so is the time complexity
of the algorithm. This time estimation can be somewhat improved
because we only need to visit the smaller subset of nodes that are
shared simultaneously by both proteins.

4. Conclusions and future work

We intended to efficiently tackle the problem of protein-protein
docking by developing new algorithms and data structures. We took
the concept of octrees and proposed an extended data structure
which includes not only shape information but also biochemical
scoring meta-data in a single combined structure.

The on-going practical implementation of these ideas will cul-
minate in a useful software that will solve some of the disadvan-
tages and shortcomings of previous approaches. This new support
structure will allow fast searches and easy shape matching and in-
dexing of large structures. By guiding the search through both ge-
ometric and energetic criteria simultaneously, we will be able to
early discard improbable conformations that would otherwise only
be detected in the later phases of the analysis by expensive MD
calculations.

We are currently working on obtaining experimental results, as
well as additional time and space benchmarks. The current version
is single-threaded and running on the CPU, but later on we will also
exploit the speed benefits of GPGPU programming and release a
GPU-based version which will, among other optimizations, be able
to process distinct branches of the tree in parallel.

The search phase of the algorithm can be adapted to allow sub-
optimal fitting and account for side chain flexibility. This can be
accomplished by checking not only nodes with shared identical
shapes, but also pairs of nodes whose shapes have an Hamming
distance lower than a given threshold. Backbone flexibility should
also be possible to achieve to some degree by detecting and com-
bining contiguous or close parts of rigidly docked segments, and
bending the final protein conformation accordingly.

By taking advantage of the developed data structure and inte-
grating the data of multiple (more than two) proteins into a single
search tree, we could later open the door to other practical appli-
cations involving large data sets of proteins, such as approximate
query matching against a database, multiple structural alignment,
detection of conserved regions among all the elements of a set, find-
ing elements that bind to something inside a “positive set” but that
do not bind to anything inside a “negative set”, and several other
open possibilities to explore.
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