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Abstract
In this position paper we suggest a possible metric approach to shape comparison that is based on a mathematical formalization
of the concept of observer, seen as a collection of suitable operators acting on a metric space of functions. These functions
represent the set of data that are accessible to the observer, while the operators describe the way the observer elaborates the
data and enclose the invariance that he/she associates with them. We expose this model and illustrate some theoretical reasons
that justify its possible use for shape comparison.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Curve, surface, solid, and object representations

1. Introduction

A famous Indian story describes a group of blind men that touch
an elephant and totally disagree about what it is like, because each
one touches a different part of the body. In literature, art and phi-
losophy the theme of multiperspectivity (i.e., the existence of many
different interpretations of the same perceptual phenomenon) is a
well-known issue [Mau11].

Beautiful examples of this fact can also be found in artworks.
The fascinating sculpture by Guido Moretti displayed in Figure 1
shows in a direct and clear way that the concept of shape cannot
be defined and treated independently from the choice of an ob-
server. Shape is in the beholder’s eyes, and phenomena such as
camouflage and optical illusions depend on this basic principle (cf.,
e.g., [Koe90, Fro09, GFSF10]).

It is indeed well-known that in many contexts the concept of
shape is not a property of objects but of the pairs (object, observer)
that are involved in perception, since changing the observer can
drastically transform the perception of reality.

In the past these observations were mostly confined to the philo-
sophical and epistemological debate, but nowadays they start to
be quite relevant also in several scientific applications involving
Information Technology [Sta07]. In particular, geometrical shape
comparison often requires approaches that take into account the
role of the observer. Trying to avoid this problem by consider-
ing shapes just as subsets, topological subspaces or submanifolds
of an Euclidean space contributes to the semantic gap between
the geometrical descriptions and their perceptual meanings (cf.
[HF07, SWS∗00]). This semantic gap cannot be closed focusing

just on the objects and disregarding the chosen observer and the
context (cf., e.g., [KSKL13, ZLDM15]).

In this position paper we intend to consider this issue and pro-
pose a possible solution, framing it in the emerging field of Topo-
logical Data Analysis [Car09].

We are interested in these questions:

• Is there a general metric model to compare data in TDA?
• What is the role of the observer in this comparison?
• How could we approximate the observer’s judgement by means

of a computable metric?

Figure 1: Different observers can perceive different shapes in the
presence of the same object. This image depicts three views of the
bronze sculpture “Impossible Ring and Parallelepipeds” by Guido
Moretti. Photo courtesy of Guido Moretti.

2. Our theoretical model

In the next two sections we will describe both the principles ac-
counting for our model and its mathematical formalization.
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2.1. An informal description of our model

The model we propose to consider is based on these general as-
sumptions:

1. No object can be studied in a direct and absolute way. Any ob-
ject is only knowable through acts of measurement made by an
observer.

2. Any act of measurement can be represented as a function de-
fined on a topological space.

3. The observer usually acquires measurement data by applying
operators to the functions describing these data. These operators
are frequently endowed with some invariances that are relevant
for the observer.

4. Only the observer is entitled to decide about shape similarity.

Assumption 1. is justified by the fact that according to the sci-
entific paradigm, we cannot refer to properties of reality that are
intrinsically impossible to detect by measurement processes.

Assumption 2. is based on the fact that when we make a mea-
surement, we usually obtain a function as a result. For example, a
color image can be considered as a function from a rectangle to R3

(or, in the discrete case, from the set of cells of a matrix to a set
of triples of integers), where each color is represented by a triple
of numbers. The result of a CT scanning can be seen as a func-
tion from S1 (or, more precisely, a helix going around a body) to
the real numbers, where S1 represents the topological space of all
directions that are orthogonal to a given axis and the real numbers
are the metric space of all possible quantities of matter encountered
by the X-ray beam in the considered direction. A weight measure-
ment is just a function from a singleton to the real numbers, taking
the only available point in the domain to the weight of the object
we are examining. We also observe that many kinds of data that
are not usually represented as functions can in fact be described
by means of functions. For example, every compact subset C of a
metric space M is equivalent to the function λC : M→ R that takes
each point of M to its distance from C. This follows by observing
that C = {p ∈ M : λC(p) = 0}. In particular, this is true for any
cloud of points in M and, if M = Rn, for the body of any finite
simplicial complex in M. The requirement that the domain of the
function be a topological space is important in applications where
we need to assume that our data are continuous. However, in the
presence of discontinuities, it is usually required that they be local-
ized at “small” subsets of the domain, so that we still need to use
a topology on it. For example, we usually assume that the color of
the points of an object changes continuously, possibly apart from a
set of null measure. The formalization of this assumption cannot be
made without the use of a topology. Obviously, we are not claiming
that the best way of representing measurement data is always given
by a function defined on a topological space, but only that this kind
of representation is quite frequent in practice. However, as we will
see in Section 2.2, the choice of working with this kind of data
allows us to use the powerful machinery of persistent homology.

Assumption 3. is supported by the fact that in most of the ex-
periments, data are not used directly, but after an elaboration that
makes easier (or simply feasible) their analysis. This elaboration is
usually done by means of suitable operators, which are sometimes
embedded in the measurement process. Building the body of a fi-
nite simplicial complex from a cloud of points or blurring an image

are examples of two such operators among many possible others.
These operators transform functions into other functions that are
usually simpler to manage.

It is important to underline that the observer cannot usually
choose the functions representing the measurement data, but can
often choose the operators that will be applied to those functions.
Moreover, the choice of the operators reflects the invariances that
are relevant for the observer. For example, suppose that an observer
is interested in comparing grayscale images represented by func-
tions from R2 to R and considers every image ϕ : R2 → R equi-
valent to the image ϕ ◦ρ : R2 → R, if ρ is an isometry of the real
plane. In this case it is advisable that we use only operators F veri-
fying the equality F(ϕ◦ρ) = F(ϕ)◦ρ, because this guarantees that
F transforms the equivalent images ϕ,ϕ◦ρ into two functions that
are equivalent to each other. Generally speaking, if G is a group of
self-homeomorphisms of a topological space X and the data repre-
sented by the functions ϕ,ϕ◦g : X→Rk are considered equivalent
to each other by the observer for every g ∈ G, then we should re-
strict ourselves to use only G-operators, i.e. operators verifying the
equality F(ϕ◦g) = F(ϕ)◦g for every g ∈ G and every function ϕ.

Assumption 4. is based on what we previously said about multi-
perspectivity.

According to this model, instead of directly focusing on the ob-
jects we are interested in, we should focus on the functions de-
scribing the measurements we make on the objects, and on the
“glasses” that we use to “observe” the functions. In our approach,
these “glasses” are invariant operators which act on the functions.
These operators represent the observer’s perspective and, in some
sense, we could say that the observer is defined by their collection
and their invariances.

Figure 2: In the proposed model, each observer can be represented
as a collection of (suitable) operators Fi, which act on the functions
that represent the measurement data and are endowed with the in-
variance that the observer has chosen.

2.2. A mathematical framework to formalize our model

The previous epistemological model has led to the mathematical
framework that will be described in this section (cf. [FJ16]).

Let us consider a compact space X and a subset Φ of the set
C0(X ,Rk) of all continuous functions from X to Rk. The space Φ

represents the space of the functions that the observer considers
as acceptable data. In our previous example about CT scanning, Φ

would be the set of all functions that we can obtain by associating
each X-ray beam with the quantity of matter it can encounter.

The observer usually takes some invariance into account. We
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suggest that this invariance could be represented by a group of
homeomorphisms. The reason is that, if measurement data are de-
scribed by functions from a topological space X to Rk, a natural
way of stating the equivalence between two functions ϕ1,ϕ2 : X→
Rk consists in saying that ϕ1 ≡ ϕ2 ◦ g for a suitable homeomor-
phism g chosen in a given group G of self-homeomorphisms of X .
The composition of ϕ2 with g to obtain ϕ1 can be seen as a kind of
alignment of data, as happens in image registration. The choice of
the group G corresponds to the selection of the alignments of data
that are judged admissible by the observer. This approach can be
formalized in the following way.

Let G be a subgroup of the group Homeo(X) of all homeomor-
phisms f : X → X . We assume that the group G acts on Φ by com-
position on the right, i.e. by taking every ϕ ∈ Φ to the function
ϕ◦g ∈Φ, for each g ∈ G.

We can define a pseudo-distance dG : Φ×Φ→ R by setting

dG(ϕ1,ϕ2) = inf
g∈G

max
x∈X
‖ϕ1(x)−ϕ2 ◦g(x)‖

where ‖ · ‖ denotes the Euclidean norm in Rk. The function dG is
called the natural pseudo-distance associated with the group G.
We recall that a pseudo-distance is just a distance d without the
property d(a,b) = 0 =⇒ a = b.

In plain words, the definition of dG is based on the attempt of
finding the best correspondence between the functions (i.e. obser-
vations) ϕ1,ϕ2 by means of homeomorphisms in G. If ϕ1 and ϕ2
are equivalent with respect to G, then dG(ϕ1,ϕ2) = 0. For example,
if Φ is the space of all normalized grayscale images, represented as
the set of all compact-supported functions from the real plane to the
interval [0,1], we can choose G to be the group of rigid motions of
the plane. In this case the equality dG(ϕ1,ϕ2) = 0 means that there
is a rigid motion taking the image ϕ1 to the image ϕ2. We stress
the fact that the group G is a variable in our framework. Its choice
is assigned to the observer, who is the only judge of similarity in
shape comparison.

The natural pseudo-distance dG represents our ground truth.
When the observer has chosen the set Φ of signals he/she can per-
ceive and the invariance group G he/she uses to define which sig-
nals are considered equivalent, dG endows Φ with a pseudo-metric
structure. Unfortunately, in many cases dG is difficult to compute.
This is also a consequence of the fact that we can easily find com-
pact subgroups G of Homeo(X) that cannot be approximated with
arbitrary precision by smaller finite subgroups of G (e.g., this hap-
pens when X = R3 and G is the group of all orientation-preserving
isometries of R3 that take the point (0,0,0) to itself). Neverthe-
less, dG can be approximated with arbitrary precision by means
of a dual approach based on persistent homology and G-invariant
non-expansive operators.

We recall that persistent homology is a theory describing the m-
dimensional holes (components, tunnels, voids, ... ) of the sublevel
sets of a topological space X endowed with a continuous function
ϕ : X → Rk. In the case k = 1, persistent homology is described by
suitable collections of points called persistence diagrams [EH10].
These diagrams can be compared by a suitable metric dmatch, called
bottleneck (or matching) distance. The simplest version of this the-
ory counts the components of the sub-level sets of ϕ [VUFF93].

The research concerning k-dimensional persistent homology is
still at an early stage of development for k > 1. Because of this
fact, in the rest of this paper we will confine ourselves to consider
the case k = 1, for which well-established results and algorithms
are available. For technical reasons, let us also assume that the to-
pological space X is finitely triangulable and has nontrivial homo-
logy in degree m, and that the set Φ contains the set of all constant
functions.

Now, let us consider the set Fall(Φ,G) of all G-invariant non-
expansive operators (GINOs) from Φ to Φ.

In other words, F ∈ Fall(Φ,G) means that F : Φ→Φ and

1. F(ϕ◦g) = F(ϕ)◦g for every ϕ ∈ Φ and every g ∈ G (i.e., F is
a G-operator);

2. ‖F(ϕ1)−F(ϕ2)‖∞ ≤ ‖ϕ1−ϕ2‖∞ for every ϕ1,ϕ2 ∈ Φ (i.e.,
F is non-expansive).

The symbol ‖ · ‖∞ denotes the sup-norm.

In the example where Φ is the space of all normalized grayscale
images and G is the group of rigid motions of the plane, a sim-
ple example of operator F ∈ Fall(Φ,G) is given by the Gaussian
blurring filter, i.e. the operator F taking each ϕ ∈Φ to the function

ψ(x) =
1

2πσ2

Z
R2

ϕ(y)e−
‖x−y‖2

2σ2 dy.

Now, let us assume that F is a subset of Fall(Φ,G). For every
ϕ1,ϕ2 ∈ Φ we can consider the supremum DFmatch(ϕ1,ϕ2) of the
bottleneck distances between the persistence diagrams (in the fixed
degree m) of the functions F(ϕ1),F(ϕ2), when F varies in F .

Since DFmatch is the supremum of a set of pseudo-metrics, it is
itself a pseudo-metric. Furthermore, for every ϕ1,ϕ2 ∈ Φ and ev-
ery g ∈ G the equalities DFmatch(ϕ1 ◦ g,ϕ2) = DFmatch(ϕ1,ϕ2 ◦ g) =
DFmatch(ϕ1,ϕ2) hold.

We remark that the pseudo-distance DFmatch and the natural
pseudo-distance dG are defined in quite different ways. In spite of
this, the following result can be proved [FJ16].

Theorem 2.1 If F = Fall(Φ,G), then the pseudo-distance DFmatch
coincides with the natural pseudo-distance dG.

This fact suggests to study DFmatch instead of dG.

We can prove that if Φ is a compact metric space with respect
to the sup-norm, then Fall(Φ,G) is a compact metric space with
respect to the distance d defined by setting

d(F1,F2) := max
ϕ∈Φ
‖F1(ϕ)−F2(ϕ)‖∞

for every F1,F2 ∈ F [FJ16].

As a consequence, we can also prove that if the metric space
Φ is compact with respect to the sup-norm and F is a subset of
Fall(Φ,G), then for every ε > 0 a finite subset F∗ of F exists,
such that ∣∣∣DF∗match(ϕ1,ϕ2)−DFmatch(ϕ1,ϕ2)

∣∣∣≤ ε

for every ϕ1,ϕ2 ∈Φ.

This statement implies that the pseudo-distance DFmatch (and
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hence also dG) can be approximated computationally, at least in the
case that Φ is compact. As we have just seen, this is done by means
of a collection F∗ of suitable operators, which takes the place of
the observer in our model. It is important to highlight that in the
framework we have described the invariance group G is a variable
of our problem, and that its choice is completely assigned to the ob-
server, according to the statement that only the observer is entitled
to decide about shape similarity.

Many interesting questions remain open. The most important is
probably the one of devising methods to build families F∗ of G-
invariant non-expansive operators that are small and simple to com-
pute, but still able to guarantee that the associated pseudo-metric
DF
∗

match is a good approximation of the natural pseudo-distance dG.

2.3. A simple case study in this model

In order to show the use of our approach, we have realized (jointly
with Grzegorz Jabłoński and Marc Ethier) a simple demonstra-
tor that illustrates how our model based on collections of group
invariant non-expansive operators (GINOs) could make available
new methods for image comparison. The demonstrator (named
GIPHOD–Group Invariant Persistent HOmology Demonstrator) is
available at the web page http://giphod.ii.uj.edu.pl/.
The program asks the user to choose an invariance group in a list
and a query image in a dataset Φ

∗ of quite simple synthetic images
obtained by adding a small number of bell-like functions. After
that, GIPHOD provides ten images that are judged to be the most
similar to the proposed query image with respect to the chosen in-
variance group. In this case study, the dataset Φ

∗ is a subset of the
set Φ of all continuous functions from the square [0,1]× [0,1] to
the interval [0,1]. Each of them represents a grayscale image on the
square [0,1]× [0,1] (1=white, 0=black).

GIPHOD works by using a collection of GINOs for each in-
variance group G. This demonstrator tries to approximate dG by
means of the previously described technique, based on the persis-
tent homology of the functions F(ϕ), for ϕ ∈ Φ and F varying in
our set of operators.

2.4. Conclusions

The model that we have proposed to study is based on the idea that,
from the mathematical point of view, a shape should not be con-
sidered as a subset or a submanifold of a Euclidean space, but as
a quotient of the space Φ of the signals that can be perceived by
the chosen observer with respect to the action of a given invariance
group G. According to this model, each observer should be repre-
sented by a collections of group invariant non-expansive operators
acting on Φ. This idea is supported by some formal results showing
how the emerging theory of persistent homology could be used to
study the approach to shape comparison that we have proposed in
this position paper. We suggest that this approach could possibly
contribute to bridge the semantic gap by means of the framework
of topological data analysis.

Developments of the proposed model are presently the object of
research. In particular, the extension of the model to the case of
operators taking measurement data belonging to a space Φ to func-
tions belonging to a different space Ψ is under study. This extension

seems promising for applications. Another present research project
concerns the study of the algebraic and topological properties of
the spaces of GINOs.

Acknowledgement

The author thanks Sergio Rajsbaum for his valuable suggestions
and advice concerning multiperspectivity. Special thanks to Guido
Moretti, Marc Ethier, Massimo Ferri and Grzegorz Jabłoński for
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