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Abstract

Canonical shape analysis is a popular method in deformable shape matching, trying to bring the shape into a
canonical form that undoes its non-rigid deformations, thus reducing the problem of non-rigid matching into a
rigid one. The canonization can be performed by measuring geodesic distances between all pairs of points on the
shape and embedding them into a Euclidean space by means of multidimensional scaling (MDS), which reduces
the intrinsic isometries of the shape into the extrinsic (Euclidean) isometries of the embedding space. A notable
drawback of MDS-based canonical forms is their sensitivity to topological noise: different shape connectivity can
affect dramatically the geodesic distances, resulting in a global distortion of the canonical form. In this paper, we
propose a different shape canonization approach based on a physical model of electrostatic repulsion. We minimize
the Coulomb energy subject to the local distance constraints between adjacent shape vertices. Our model naturally
handles topological noise, allowing to ‘tear’ the shape at points of strong repulsion. Furthermore, the problem is
computationally efficient, as it lends itself to fast multipole methods. We show experimental results in which our
method compares favorably to MDS-based canonical forms.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Curve, surface, solid, and

object representations—Physically based modeling

1. Introduction

Canonical shape analysis is a popular approach in the study
of deformable shapes and content-based retrieval. The main
idea of this class of methods is, given a shape, to apply to
it some ‘canonization’ process that allows to undo the shape
deformation. The resulting canonical representation can be
treated as a rigid shape, thus dramatically reducing the num-
ber of degrees of freedom in the problem, and effectively
reducing non-rigid shape matching to a rigid one using e.g.
iterative closest points (ICP) methods [BM92, CM92].

Several approaches for shape canonization have been
studied. Elad and Kimmel [EKO03] proposed measuring
geodesic distances between all pairs of points on the shape
and then using multidimensional scaling (MDS) to embed
these distances into a three-dimensional Euclidean space ap-
proximately isometrically. Such a process maps all intrinsic
isometries (deformations preserving the geodesic distances)
of the shape into Euclidean ones (rotations, translations, and
reflections). Given that the MDS step is computationally in-
tensive, several numerical acceleration techniques were pro-
posed, including multigrid [BBKY06] and vector extrapola-
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tion [RBBK10] methods. The complexity of MDS can also
be reduced by embedding a small set of surface points (land-
marks) and interpolating the rest [P1a05]. The recent spectral
MDS approach [AK13] follows this idea using the Laplace-
Beltrami eigenbasis for interpolation.

As opposed to MDS-based methods using global struc-
tures (geodesic distances), other dimensionality reduction
methods use only local information. For instance, Belkin and
Niyogi [BNO3] and Coifman and Lafon [CL06] proposed
to perform the embedding in a low-dimensional space using
the eigenfunctions of the Laplace-Beltrami operator. Such
an embedding approximately preserves diffusion distances,
which are isometry-invariant, similarly to geodesic dis-
tances. Though originally developed for high-dimensional
data analysis, these algorithms work well when applied to
shapes [Rus07], due to the ability of Laplace-Beltrami eigen-
functions to capture meaningful geometric properties of the
underlying manifold [Lév06, VLOS].

One major drawback of canonical forms representing in-
trinsic distances in a low-dimensional Euclidean space is
that such a process usually incurs a metric distortion (em-
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Figure 1: Shape connectivity can influence dramatically the
geodesic distances. Shown is the geodesic distance from the
white point on the index finger (hotter colors correspond to
larger distances) on two poses of the hand, where in the right
pose the fingers are glued together.

bedding error) which is data-dependent. Another drawback
of canonical forms is their sensitivity to topological noise.
Such noise results in connectivity change in the shape, which
can alter dramatically the geodesic distances (see Figure 1,
where a shortcut introduced by gluing the fingers of the
hand ‘reroutes’ the distances). As a consequence, the canon-
ical forms are globally distorted (see examples in Figure 2
and 6). It was shown that using other intrinsic distances (e.g.
diffusion distances) instead of geodesic may alleviate the
problem, but not resolve it completely [BBK*10].

In this paper, we propose a different physical model for
shape canonization referred to as coulombization, inspired
by recent works on graph drawing [Ead84, Hu06, Hos12,
GHN13]. Our approach suggests to consider the shape ver-
tices as equally charged particles which tend to repulse by
the Coulomb forces, being at the same time constrained by
the material properties of the shape. The electrostatic equi-
librium can be obtained by minimization of the Coulomb
energy subject to the distance constraints imposed for each
pair of adjacent nodes. Instead of simulating the complex
Newtonian dynamics, we use the ‘force-directed’ gradient
minimization [Hu06]. If the metric constraints are imposed
exactly (i.e. the shape material is absolutely inelastic), such a
canonical representation is isometric (without metric distor-
tion). However, since closed polyhedral surfaces are known
to be rigid, it is necessary to relax the metric constraints.

One way of doing it is to impose the metric constraints af-
ter a step of Coulomb energy minimization by projecting the
position of the vertices on the spheres defined by the adja-
cent nodes and their initial (unnormalized) distance values.

C‘\ ﬂ
Figure 2: Illustration of the effect of topological noise
on shape canonization. First row: human hand shape with
touching (center) and separated (left) fingers. Second row:
classical MDS canonical forms; third row: SMACOF MDS
canonical forms; fourth rows: Coulomb shapes. Rightmost

column: rigid alignment of the shapes shown in the first two
columns using ICP.

This approach has been previously considered in the context
of source localization [Gro59]. The principal consequence
of this approach is that the constraints are not imposed pre-
cisely, but only ‘on average’. Thus, such a relaxation allows
to overcome the rigidity of the polyhedra and let the surface
to ‘tear’ under the influence of the repulsion forces (however,
at the expense of metric distortion which stems from hav-
ing only approximate metric constraints). Another important
consequence concerns the fact that, with this approach, we
can also handle efficiently topological artifacts, ruling out
from this ‘average’ the local distance constraints that are vi-
olated the most due to repulsion forces.

From the computational standpoint, our problem has
significant advantage over MDS-based approaches. First,
Coulomb interactions are a classical case for the use of fast
multipole methods (FMM) [GR87], leading to an O(nlogn)
iteration complexity, where n is the number of vertices.
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Furthermore, since we use only local (edge) distance con-
straints, there is no need to compute and store the n X n ma-
trix of all pairwise distances.

The rest of the paper is organized as follows. In Section 2,
we formulate our problem of shape coulombization. Sec-
tion 3 shows experimental results comparing the proposed
approach to MDS-based canonical forms. Finally, Section 4
concludes the paper.

2. Shape coulombization

We model a shape as a triangulated mesh (X, E,T), where
E and T denote the edge and face structures, respectively,
and X is the n X 3 matrix representing the 3D coordinates
of the mesh vertices xp,...,X,. We assume that the shape is
connected (i.e. has no disconnected components). We denote
by d;j, (i, j) € E the edge lengths, representing the discrete
Riemannian metric of the shape. Since each vertex is con-
nected to approximately a constant number of vertices (typ-
ically 5 — 6), the number of edges is |E| = O(n).

According to our physical model, we place at each vertex
an equally-charged particle. Following Coulomb’s law, the
repulsion force between two charges at coordinates x;,X; is
inversely proportional to their Euclidean distance ||x; — X ||».
The overall ‘stress’ of a given configuration of points X can
be described by the Coulomb energy

1

i) HX, _Xj||2 .

E(X) = M

Our shape coulombization process consists of minimizing
this energy subject to metric preservation constraints,

X* = argrr%nS(X) st |[xi— x|l =dij, (i,j) €E. (2)

This problem has two forces that counterbalance each other.
On the one hand, electrostatic repulsion forces try to draw
the shape vertices apart as far as possible from each other. On
the other hand, metric constraints do not allow the shape to
stretch. The result is a canonical form that undoes the shape
deformation similarly to MDS (Figure 2).

Note that the metric constraints in (2) guarantee that the
resulting shape is isometric to the original one, hence there
is no metric distortion typical to MDS-based method. At
the same time, it is known that closed polyhedral shapes
are rigid, with the exception of a few pathological examples
such as the so-called Connelly sphere [Con79]. Therefore,
problem (2) might be over-constrained.

T More precisely, rigidity means that a polyhedron cannot be con-
tinuously bent isometrically. Some constrained optimization algo-
rithms guarantee that all the iterations performed by the optimiza-
tion are feasible, while other guarantee feasibility only of the solu-
tion. In the latter case, it is possible to obtain intermediate steps that
are not isometric.
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We see two possible remedies to this issue. First, we can
reformulate the optimization problem (2) using approximate
metric constraints allowing some elasticity, e.g.

X* = arg mXin E(X) 3)

1 ..
s.t. Edij < HX,‘—XJ'Hz < Cd,'j7 (l7j) c€E.

where ¢ > 1 is the dilation constant, controlling the allowed
amount of metric distortion. A second alternative, which we
discuss in the following, is adopting an optimization algo-
rithm that imposes the metric constraints approximately.

2.1. Numerical optimization

We propose a simple approach to solving problem (2) us-
ing a projected gradient descent, consisting of alternating the
(unconstrained) minimization of £(X) with a projection on
the metric constraints. The gradient step at iteration ¢ has the
form

x® :X(’*I)_C(f*1>vg(x<’*1))7 )

where ¢ denotes the step size that can be fixed or determined
by line search. In our experiments, we set the step size using
the following heuristic,

. max;—1,..n vxxg(X<t>) -

The energy £(X) and its gradient VE(X) can be evalu-
ated with O(nlogn) complexity using the fast multipole
method. In our experiments, we employed the code devel-
oped in [GG13, fmp].

After each gradient descent iteration, instead of enforcing
the metric constraints strictly, we minimize their violation

Y (@i llxi—x;])* 8)
(i.))€E

Groginsky [Gro59] proposed solving this problem through
the fixed point iteration

() _®
i

0, 1 0, , %N 7%
Uy Lo\ ] ©
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where v; denotes the number of vertices connected to x;,
which is assumed to be constant. Geometrically, equation (6)
is nothing but the average of the projections of the vertex x;
over the spheres of radii d;; centered in x;. For the sake of
brevity, we refer to this interpretation of (6) saying that we
satisfy the constraints ‘on average’. Moreover, under mild
technical conditions it is possible to show that (6) is a con-
vergent scheme [Gro59], [APV10]. The overall complexity
of the constraint projection step is O(n).

The optimization process alternates between Coulomb en-
ergy minimization (one or a few steps of (4)) and metric
constraint projection (one or a few steps of (6)). Varying the
number of Coulomb steps and the projection steps in this
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Figure 4: Robustness of Coulomb shapes to topological noise. First row: shapes with point-wise connectivity artifacts; second
row: the corresponding coulombization. Shown in red are vertices that violate the constraints the most, and at which the surface

is allowed to ‘tear’.

alternating schemes allows controlling the resulting metric
distortion (Figure 5). Figure 3 shows a few iterations of the
proposed coulombization process. Similarly to MDS meth-
ods, there is no theoretical guarantee of global convergence.
However, having a good initialization (the original shape
vertex coordinates), we observe good convergence behavior.

2.2. Handling topological noise

The structure of our optimization scheme allows to natu-
rally handle topological artifacts. The main idea is to down-
weight or eventually disconnect pairs of points that experi-
ence strong tension, allowing the mesh to ‘tear’ in a point-
wise manner. Due to the local nature of the topological noise,
instead of searching for coordinates x;,X ; that match with d;;
in a uniform way, we want to let violate the constraints for a
small amount of vertices. If equation (5) reminds us the ?
norm,

Y ddij—lxi—x;lll- ©)
(i,j)€EE

led to a sparsity-inducing L' norm.

As noted in [APV10], (7) could be solved replacing (6) by
a weighted projection

Q)

X; _—
(i.J)EE %" —x;"[l2

where
) (th(t)_xy)ﬂz—dij)_]
T 0 _ 0 e
Lajer(x —=x 2 —dyj)

In order to avoid division by zero, the distances are always
lower-bounded by a fixed threshold 10710, The weights
are updated in parallel as in the Jacobi method for linear
systems. Such weighting relaxes the metric constraints for
edges that tend to stretch significantly, allowing for some
elasticity at such points. Furthermore, after an initial stage
of repulsion (typically 10 — 100 iterations), we select a small
number of edges (e.g. 1% of |E|) with the largest deviations

(C)]
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Figure 5: Typical convergence behavior of the shape
coulombization algorithm. Shown is Coulomb energy (red,
left scale) and the average metric constraint violation (blue,
right scale) vs outer iteration number for different number of
projection steps (solid: 1, dashed: 10, dotted: 100).

of the Euclidean distances from their given edge lengths d;;
and completely remove them from the adjacency set. This
amounts to ‘tearing’ the surface.

3. Results

In this section, we show examples of shape coulombiza-
tion using our method, implemented as described in the pre-
vious section. For our experiments, we used shape from
the TOSCA dataset [BBKOS], sampled at approximately
3.5K vertices. Topological noise was introduced by adding
faces to connect between almost-touching vertices with large
geodesic and small Euclidean distances. As baseline, we
used canonical forms implemented with two MDS meth-
ods: classical scaling [YH38] and SMACOF [dL77] (for de-
tails on these algorithms, we refer the reader to [BGO0S5]).
Geodesic distances were computed using the fast marching
algorithm [KS98].

Figure 6 shows a sample of the TOSCA shapes [BBK0S]
and their normalizations with the coulombization and MDS
canonical forms. One can clearly see that our approach
achieves a similar effect in undoing the deformation, while
being drastically less sensitive to topological noise: in fact,
its effect on the resulting Coulomb shapes is practically un-
noticeable. On the other hand, canonical forms manifest se-
vere global distortions as the result of topological noise. This
difference is highlighted in Figure 2, where we align the re-
sulting canonical forms using ICP.

Figure 7 shows a confusion matrix of shapes from four
classes (male, female, dog, cat) with four near-isometric
deformations and one containing topological noise. These
shape classes are challenging due to similarity between the
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Canonical forms (MDS) Coulomb shapes

Figure 7: Distances between shapes computed using MDS-
based canonical forms (left) and the proposed approach
(right).
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Figure 8: Precision-recall curve of MDS-based canonical
forms and the proposed approach.

bipeds and the quadrupeds. Distances between shapes were
computed by first canonizing the shape using the proposed
approach followed by ICP; the distance between shapes is
measured as the maximum distance between corresponding
points after rigid alignment. Figure 8 shows the correspond-
ing precision-recall curve. For comparison, we show the per-
formance of MDS-based canonical forms.

3.1. Complexity

The theoretical complexity of MDS-based canonical forms
includes the computation of geodesic distances (O(nlogn)
using fast marching) and the SMACOF algorithm, which
has an O(n?) iteration complexity. On the other hand, the
computation of Coulomb shapes involves precomputation of
the edge lengths (O(n)); the iteration complexity comprises
the Coulomb energy gradient computation (O(nlogn) us-
ing fast multipole method) and projection (O(n)). Table 1
shows the typical timing (averaged over 100 runs) for MDS
and Coulomb canonical forms.
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Figure 6: Examples of shapes (top row), their MDS canonical forms (computed using SMACOF, middle row) and the proposed
coulombization (bottom row). Shapes in odd columns have different connectivity (the cat’s tail is glued to the body, the dog’s
legs are glued together, etc). These topological artifacts result in significant distortions of the MDS canonical forms, marked
with red arrows. On the other hand, the proposed approach handles the topological noise gracefully, allowing the surface to

‘tear’ at these points without introducing global distortions.

Table 1: Complexity comparison (time in sec. of the pre-
computation stage and one iteration of the optimization) of
SMACOF MDS-based canonical forms and the proposed ap-
proach (using a single Coulomb energy minimization step
and a single metric projection step) for shapes with different
number of vertices n.

MDS Coulomb
Shape n Prec. Iter.  Prec. Iter.
swissroll 561 0.14 0.03  0.003 0.01
cat 3505 10.24 1.59 0.036 0.045

michael 22738 647.6 2775 0.13 0.21

4. Conclusion

We studied the use of electrostatic model for shape canon-
ization. Compared to MDS-based canonical forms, our ap-
proach has several important advantages. First, we avoid the
computation and storage of the full distance matrix, using
only local information (edge lengths). This leads to linear
O(n) storage complexity. Second, Coulomb forces are very
well suited for the use of fast multipole methods, which al-
low to achieve iteration complexity of O(nlogn). Unlike
some other use cases of fast multi-body simulations in the
embedding literature [vdM 13,YPK13], rigorous gradient ap-
proximation estimates are available as the model is precisely

expressed with the spatially decaying Coulomb potential.
Third, the averaged spherical projections provide a simple
way to impose metric constraints, and allow to naturally han-
dle topological noise. Our experiments show that the pro-
posed method performs better than previous approaches in
the presence of such artifacts.

Though in this paper we treated shapes represented as tri-
angular meshes, in fact we do not use the triangle structures,
but only the edges. This means that our approach should also
be applicable to point clouds, which we plan to study in fu-
ture works. Another important future research direction is
how to exactly control the embedding error, which is a po-
tentially big advantage of the proposed approach.
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