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Abstract: In realistic appearance modeling, rough surfaces that have micro-
scopic details are described using so-called microfacet models. These include
analytical models that statistically define a physically-based microsurface. Such
models are extensively used in practice because they are inexpensive to compute
and offer considerable flexibility in terms of appearance control. Also, small but
visible surface features can easily be added to them through the use of a normal
map. However, there are still areas in which this general type of model can be
improved: important features like anisotropy control sometimes lack analytic so-
lutions, and the efficient rendering of normal maps requires accurate and general
filtering algorithms.

We advance the state of the art with regard to such models in these areas: we
derive analytic anisotropic models, reformulate the filtering problem and propose
an efficient filtering algorithm based on a novel filtering data structure.

Specifically, we derive a general result in microfacet theory: given an arbitrary
microsurface defined via standard microfacet statistics, we show how to con-
struct the statistics of its linearly transformed counterparts. This leads to a
simple closed-form expression for anisotropic variations of a given surface that
generalizes previous work by supporting all microfacet distributions and all in-
vertible tangential linear transformations. As a consequence, our approach allows
transferring macrosurface deformations to the microsurface, so as to render its
corresponding complex anisotropic appearance.

Furthermore, we analyze the filtering of the combined effect of a microfacet BRDF
and a normal map. We show that the filtering problem can be expressed as an
Integral Histogram (IH) evaluation. Due to the high memory usage of IHs, we
develop the Inverse Bin Map (IBM): a form of an IH that is very compact and
fast to build. Based on the IBM, we present a highly memory-efficient technique
for filtering normal maps that is targeted at the accurate rendering of glints, but
in contrast with previous approaches also offers roughness control.

Keywords: computer graphics, realistic rendering, appearance modeling, micro-
facet theory, anisotropy, glints, normal map filtering
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Chapter 1

Introduction

In the mid-18th century, Lambert [1760] published his book Photometria in which
he measured the optical properties of materials and computed illumination based
on a complete system of principles and quantities. Among others, this included
the fundamental Lambert’s cosine law [Wikipedia, 2023b] – stating that the in-
tensity observed from an ideally diffuse surface is proportional to the cosine of
the angle between the observer and the surface normal. This principle defines
a perfectly matte surface known as Lambertian surface, and also serves as the
basis for other shading models – these are mathematical models that describe the
interaction of light and matter [Pharr et al., 2016].

In the same year, Bouguer’s Optical Treatise on the Gradation of Light [1760]
was published. In this work, Bouguer reasoned that the glossy reflection off a
rough surface can be conceptualized as a reflection from a continuous surface,
composed of microscopic flat facets (so-called microfacets) that have random
orientations, and behave like mirrors [Trowbridge and Reitz, 1975].

Today, these same ideas are extensively used in practice and form the founda-
tion of microfacet theory, which continues to be an active research area. Therefore,
we can regard the year 1760 as the birth of this theory. See the front covers of
these two foundational books in Figure 1.1.

Although the first concepts from microfacet theory were introduced in the
18th century, the main theory took shape in the optics community during the
20th century [Berry, 1923, Pokrowski, 1924, 1926, Barkas, 1939, Middleton and
Mungall, 1952, Christie, 1953, Beckmann and Spizzichino, 1963, Torrance and
Sparrow, 1967]. During the 19th century, however, wave optics theory was de-
veloped. Fresnel’s model [1823] of light as a transverse elastic wave was backed
by experiments and convinced the scientific community to adopt it [Wikipedia,
2023c]. Microfacet theory, like many light transport algorithms [Veach, 1998,
Pharr et al., 2016], is grounded in geometric optics, and therefore wave optical
phenomena like diffraction, interference and dispersion are excluded. This re-
duces both the conceptual and computational complexity of the models while at
the same time being able to explain the vast majority of light interaction phe-
nomena that we encounter daily. Yet, the specular reflection which is governed
by Fresnel equations is an essential part of microfacet models [Walter et al., 2007,
Pharr et al., 2016].
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Figure 1.1: Foundations of microfacet theory. Front covers of J. H. Lam-
bert’s Photometria [1760] and P. Bouguer’s Optical Treatise on the Gradation of
Light [1760], both published in the same year.

1.1 Microfacet shading models
Since the advent of computers, the quest for photorealistic computer-generated
images has had researchers focus on physically-based models of reflectance. Early
on, microfacet theory was introduced to computer graphics [Blinn, 1977, Cook
and Torrance, 1982]. Gradually, it was adopted as a standard instrument, to
the point where virtually all rendering systems use it to describe rough surfaces,
including educational [Pharr et al., 2016], research [Jakob, 2010, Bitterli, 2014,
Nimier-David et al., 2019] and production [Burley, 2012, Hill et al., 2017].

At an abstract level, microfacet models are represented by a microsurface
that is aligned with a macrosurface. The microsurface is composed of infinitesi-
mal flat reflective facets that approximate the rough surface. The macrosurface
is the shaded geometric object to which the microfacet model is applied. Micro-
surface features are assumed to be much smaller in comparison with the object’s
curvature so that the macrosurface is assumed locally flat, see Figure 1.2. On
the other hand, it is assumed that the microfacets are sufficiently larger than
the wavelength of light so that the model’s geometric-optical approximation is
reasonably accurate.

The resulting purely homogeneous surface appearance only matches our visual
experience when viewing objects from a sufficient distance, Figure 1.3 a)-c).
For the close-up and mid-range views, which are much more common in our
everyday experience, the effect of light interacting with larger details of the surface
structure can often be resolved by the naked eye, Figure 1.3 d)-e).
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mirror glossy

macrosurface

microsurface

Figure 1.2: Microfacet model. At a macroscopic level (top) the surface on the
left reflects light like a mirror while the reflection from the surface on the right
is glossy. At a microscopic level (bottom) both surfaces reflect light specularly,
however, the surface on the left is smooth while the surface on the right is rough.

Independently of microfacet approaches, Blinn [1978] presented bump map-
ping, a technique that adds visible surface detail by perturbing the surface normal
according to a heightfield that is provided via a texture. When the tangent space
normal is directly stored in the texture, this technique is referred to as normal
mapping.

Rendering the combined appearance of a smooth microfacet model modulated
by a normal map was investigated from the perspective of microfacet theory by
Schüssler et al. [2017]. This is a problem of high practical relevance — virtually
all rendering systems support normal mapping and the user can additionally
control the roughness of the underlying surface. For example, metal surfaces with
different roughness can be represented by a microfacet model while scratches can
be added through the use of a normal map, see Figure 1.3 d).

A large number of material appearances can be accomplished using this gen-
eral type of microfacet model: rough metals and plastics, leather [Cook and
Torrance, 1982, Yan et al., 2014, 2016], velvet and cloth’s sheen [Ashikmin et al.,
2000, Estevez and Kulla, 2017], along with compound, layered materials [Wei-
dlich and Wilkie, 2007, Belcour, 2018]. Furthermore, microfacet models were ex-
tended successfully to rough refractive interfaces, e.g. frosted glass [Walter et al.,
2007], hair scattering [Huang et al., 2022] and diffraction effects [Holzschuch and
Pacanowski, 2017, Yan et al., 2018]. The problem of multiple scattering in micro-
facet surfaces has been addressed using stochastic techniques [Heitz et al., 2016b,
Wang et al., 2022, Bitterli and d’Eon, 2022], however, due to their computational
overhead, we restrict our models to the first scattering event.

In Appendix A, we provide microscope photographs of several materials that
have a rough microstructure, separated into two categories — conductors, i.e.,
metals and dielectrics. It is common to classify materials by their ability to
conduct electricity, because this property affects their appearance, as determined
by Fresnel equations. Semiconductors are the third type of materials that are

6



Figure 1.3: Rendered aluminum microsurfaces. From left to right: a) Mir-
ror: The microsurface coincides with the macrosurface resulting in a perfectly
flat interface (see Figure 1.2, left); b) Blurry: The microsurface facets follow a
smooth statistical distribution resulting in a blurred, so-called glossy reflection;
c) Anisotropic: The microsurface is smoother horizontally and rougher verti-
cally, creating strong anisotropic reflection; d) Scratched: The rough surface
from b), modulated by a scratch normal map; e) Metallic paint: Aluminum
flakes suspended in a green medium. The flakes are modeled via a normal map.
(The scene is lit by an environment map provided by Rhys Dippie.)

not usually introduced in rendering systems, due to being absent from common
macroscopic objects.

1.2 Motivation
In this thesis, we focus on two reflective phenomena.

1.2.1 Anisotropic appearance
Surfaces with anisotropic properties that are smoother in one direction and
rougher in another direction exhibit a distinguishable reflective appearance.
Brushed metals [Wikipedia, 2023a] are probably the most common example,
see Figure 1.4. They are extensively used in modern architecture: stainless
steel finishes are often used in interiors and exteriors alike. From facades and
monuments to interior panels, and elevator doors and cabins. Brushed metals
are also used in the automotive and product industries, for example in electrical
appliances, also in kitchen and bathroom accessories. Components manufactured
using a lathe machine also have a distinctive anisotropic look.

While objects with a strong anisotropic appearance are usually metals, there
are examples of anisotropic dielectric objects. For example, gramophone records
are inscribed with a spiral groove that creates a strong anisotropic reflection,
similar to the bottom of the pot in Figure 1.4. Also, wood has a complex texture,
and its top layer or coating can show anisotropy, like the weak anisotropy of the
bamboo wireless charger in Figure A.2. The top layer of deforming human skin
also reflects light anisotropically, and this effect is crucial to the natural look
of rendered skin [Nagano et al., 2015]. Finally, many elastic objects manifest
dynamic anisotropic reflection, for example, the rubber balloon in Figure 1.5 and
Figure A.2.

We develop a framework to render the appearance of anisotropic surfaces,
including such driven by dynamic deformations.
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Figure 1.4: Photographs of highly anisotropic brushed metals. From
left to right: a door handle with a similar appearance to the rendered ball in
Figure 1.3 c); an interior column covered with linearly brushed metal; a side
panel of a truck with anisotropic circles; anisotropic pots and lids.

1.2.2 Glinty appearance
Rough surfaces with microscopic features that reflect light (nearly) specu-
larly, especially under high-frequency illumination, produce spatially varying,
illumination- and view-dependent micro-highlights referred to as glints, glitter,
sparkles, coherent scratches, etc. These include natural phenomena like sand,
snow and the ocean surface, but also manufactured materials like matte plastics,
rough and scratched metals and metallic paints, see Figure 1.6.

The perception of color and texture of metallic car paint glitter has been
investigated in the color science literature due to its importance to the automotive
industry [McCamy, 1996, 1998, Dekker et al., 2011, Kirchner et al., 2007].

In computer graphics, these effects are often modeled using specular normal
maps, however, they prove very difficult to converge using the standard stochastic
sampling of Monte Carlo ray tracers, and to tackle this problem filtering algo-
rithms need to be employed [Yan et al., 2014, 2016]. This is because a large
number of glints could be contained in a single pixel, but only a fraction of them
reflects light toward the observer. For example, metallic car paint can be mod-
eled using a flake normal map [Günther et al., 2005]. While the flakes are often
modeled as specular, empirical measurements support that the roughness of the
individual flakes has an important contribution to the overall appearance [Sung
et al., 2002].

We design a filtering algorithm for a glinty appearance that provides rough-
ness control and demonstrates that a small change in the roughness affects the
appearance significantly.

1.3 List of original contributions
In this thesis, we describe two novel microfacet models and list their contributions.

1.3.1 Linearly Transformed Microsurface
The first model [Atanasov et al., 2022] is described in Chapter 4. It consti-
tutes an addition to microfacet theory that facilitates anisotropic modifications
to surfaces. Given an arbitrary microsurface described by standard microfacet
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C = 56cm C = 67cm C = 77cm

Figure 1.5: Photographs of a rubber balloon in different stages of infla-
tion. From left to right the balloon has circumferences C = (56cm, 67cm, 77cm).
The rubber is a rough surface that is getting smoother with inflation. This causes
the highlight to become sharper (the photographs are scaled to have highlights of
the same size). Note that the surface is stretched out unevenly, thus the resulting
reflection is anisotropic.

Figure 1.6: Photographs of glinty appearance. The back of a computer
monitor, made from rough plastic (top left); a laptop frame, made from rough
aluminum (top right); a door handle of a car, painted with metallic paint (bottom
left); a bike frame, painted with metallic paint with large flakes (bottom right).
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statistics, it defines the statistics of its linearly transformed counterparts, creat-
ing an infinite family of new appearances. We list its main contributions and
practical implications.

Valid microsurface transformations. Of all the possible 3×3 linear trans-
formation matrices we show that the 2D invertible tangential matrices (the upper
xy part) lead to new valid microsurfaces, while both rotations outside the xy plane
and shearing parallel to the xy plane break the microsurface. Furthermore, we
show that the scaling of the microsurface’s height results in a valid microsurface,
but a microsurface with the same statistics can also be obtained by applying
inverse scaling to the xy plane. Thus, we show that all valid microsurfaces ob-
tainable as a result of linearly transformed microsurfaces can be expressed by a
2D tangential transformation matrix.

Closed-form statistics. We derive a full set of simple closed-form equations
that provide physically-based microsurface configurations and efficient sampling:

• We introduce the family of Linearly Transformed Microfacet Distributions
(LTMD), which is an infinite family of normalized microfacet distributions,
parametrized by all valid microsurface transformations. To this end, we
compute the Jacobian determinant of the nonlinear transformation that
multiplies a vector with a linear transformation and normalizes the result
on the sphere.

• We generalize the masking probability invariance property [Heitz, 2014] to
all valid microsurface transformations, beyond just stretching. This prop-
erty states that when a microsurface-direction configuration is stretched,
the proportion of the shadowed-unshadowed area with respect to the
stretched direction is preserved. Consequently, we can re-parametrize the
1-dimensional shadowing-masking function to apply accurate shadowing to
all transformed surfaces.

• We show how the sampling equations for (visible) microfacet normals of the
original non-transformed microsurface can be employed to sample (visible)
microfacet normals on the transformed microsurface.

Stretch anisotropy. We show that our model for linearly transformed micro-
surfaces can be used to create anisotropic variations of microfacet-based surfaces,
regardless of the underlying microfacet distribution, by stretching/compressing
them along the axes. We also show that our method is a generalization of the
elliptical anisotropy — the standard method based on specifying different rough-
ness values along the two axes. It has been shown that elliptical anisotropy is
guaranteed to have a closed-form solution for the special class of shape-invariant
microfacet distributions [Heitz, 2014], while it is often the case that all other
(shape-variant) distributions cannot be integrated analytically (e.g. the GTR
microfacet distribution [Burley, 2012]). For all shape-invariant distributions, we
prove that our method produces the same result as the elliptical anisotropy, while
our closed-form solution is valid in the entire space of microfacet distributions.

Nonlinear transformations. Another practical application of our model
is simulating the appearance of light reflected from a deformed surface. To this
end, we track the tangential deformations of the rendered mesh using per-face
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linear transformations. Due to our model being parametrized in the space of the
microsurface normals, we can directly feed these linear transformations into our
model. Alternatively, we demonstrate that for an analytic nonlinear transforma-
tion we can directly provide its Jacobian matrix to our model, and render the
corresponding appearance.

1.3.2 Multiscale Microfacet Model
The second model [Atanasov et al., 2021] is presented in Chapter 5. It is a normal
map filtering approach that can resolve an accurate glinty appearance as well as
a glossy appearance by offering roughness control on top of the normal map.
Follows the list of contributions.

Integral histogram normal map filtering. We formulate the general
problem of filtering the combined effect of a microfacet BRDF and a normal
map, and by discretizing the normal distribution function into directional bins,
we reduce the problem to an evaluation of an integral histogram (IH) [Porikli,
2005]. The integral histogram is a data structure, which has a variety of filtering
applications [Ballester-Ripoll and Pajarola, 2019]. Our formulation can serve as
the basis for developing normal map filtering algorithms.

Inverse Bin Maps. While classical integral histograms are attractive due
to their constant-time queries in axis-aligned regions, they require a full data-size
Summed-area table (SAT) [Crow, 1984] for each sparse data bin. This redundancy
is tolerable for problems that require a moderate number of data bins, but when a
large number of data bins is needed, memory usage becomes impractically large.
To tackle this issue, we have designed the Inverse Bin Map (IBM) data structure
which is a compact integral histogram. It is fast to build and extremely memory
efficient. This is achieved at the cost of reducing the query speed from constant
to logarithmic. Another advantage of IBMs is that they support arbitrary-shaped
query regions.

Practical normal map filtering. We propose an accurate normal map
filtering technique based on our integral histogram formulation and the IBM
data structure. In contrast to previous work, the technique features a brief pre-
computation, modest memory requirements and importantly filters the accurate
appearance at all scales. While concurrent accurate approaches are specialized at
filtering specular normal maps, our method exposes Beckmann roughness control
and filters both specular and glossy normal maps. A key to the efficiency of
this algorithm is the variable bin resolution which is a function of the Beckmann
flake roughness: we assign a higher number of bins to normal maps combined
with lower-roughness materials (approaching specular normal maps), while we
give a lower number of bins to those combined with higher-roughness materials.
We derive such a relation that for each evaluation we query a fixed number
of IBM bins regardless of the Beckmann roughness. This promotes an efficient
implementation and increases the accuracy of the more challenging low-roughness
normal maps.
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Eurographics 2021

• Efficient Multiscale Rendering of Specular Microstructure
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Asen Atanasov, Vladimir Koylazov
ACM SIGGRAPH 2016 Talks

This dissertation is based on the two journal articles at the top of the list.
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Chapter 2

Measuring Reflection

In this chapter, we introduce central concepts from computer graphics that are
related to shading models. We start with the main radiometric quantities that
allow us to take measurements of reflected light. Radiometry is the branch of
physics that deals with the measurement of electromagnetic radiation. Of pri-
mary interest is the definition of the BRDF (Bidirectional Reflectance Distribu-
tion Function) — the main tool that assists the integration of reflective materials
in rendering systems. The BTDF (Bidirectional Transmission Distribution Func-
tion) [Walter et al., 2007] is beyond the scope of this work. Then we formulate
two basic BRDFs: the Lambert BRDF, which represents perfect diffuse reflection,
and the specular BRDF, which represents a perfect mirror reflection, modulated
by Fresnel equations.

The main notation for this chapter is summarized in Table 2.1. In the following
chapters, we will append more specific notation. Notice that all directions on the
unit hemisphere are in the tangent space of the surface normal n, meaning that
n is always pointing up towards the zenith. For a brief exposition on spherical
coordinates and integration on the hemisphere refer to Appendix B.

2.1 Radiometry
In order to perform computations with light, we need to take a rigorous quanti-
tative approach. Light is electromagnetic radiation which consists of tiny bits of
energy, i.e., photons. Each photon is characterized by its wavelength λ, and has
energy

Q = hc

λ
, (2.1)

where h is Planck’s constant and c is the speed of light. The energy is measured
in joules [J ]. The highest energy photons in the visible spectrum compound the
violet light, which reaches energy of up to 5.32 × 10−19J for a single photon.

Theoretically, we can trace and count individual photons, but this is com-
putationally infeasible1 — even a single candle (assuming 5W of visible light)
emits more than 1019 photons per second in the visible spectrum. Consisting of

1This statement should not be confused with particle tracing techniques like photon map-
ping [Jensen, 2001], where the so-called photons carry much larger portions of energy than
physical photons.
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H2 Unit hemisphere
D Unit disk
x Point on the shaded surface
n Surface normal (0, 0, 1)T

v Direction on the unit hemisphere with Cartesian coordinates
(vx, vy, vz) and spherical coordinates (θv, ϕv)

i Incoming light direction
o Outgoing light direction
h Half vector (i + o)/∥i + o∥
r Direction of perfect specular reflection 2(i · n)n − i
L(x, i) Incident radiance at the point x along i
L(x, o) Reflected radiance from the point x along o
ρ Diffuse albedo in [0, 1]
η, k Index of refraction and absorption coefficient
F Fresnel term for conductors or dielectrics
δo, δh Hemispherical Dirac delta distributions associated with

differential solid angles do and dh, respectively
fx The BRDF at the point x
f 0 Specular BRDF

Table 2.1: Basic notation related to shading models.

such a large number of photons in common everyday scenarios, despite its dis-
crete nature, the radiant energy Q is modeled as a continuous quantity. Such
an approach to describe a very large number of very small objects using con-
tinuous quantities is common in mathematical modeling, and in this thesis, we
shall encounter another instance of it — although real-world microfacets are a
finite number and are of finite area, analytic microfacet models assume an infinite
number of infinitesimal microfacets. While continuous radiant energy makes light
transport simulation viable [Veach, 1998], continuous distribution of microfacets
makes microfacet models efficient.

2.1.1 Radiometric quantities
Here we list the related radiometric quantities:

• Flux. The flux, also known as radiant power, measures energy per unit
time, or watts [W = J · s−1], and it is defined as

Φ(t) = dQ(t)
dt

. (2.2)

For example, the flux of a light bulb is the energy, hence the spectrum of
photons that is emitted per second.

• Irradiance. The irradiance is measured as the flux per unit area [W ·m−2].
At a point x on a surface, the irradiance is defined as

E(x) = dΦ(x)
dA(x) , (2.3)
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where dA(x) is a differential surface area around x.

• Radiance. The radiance is the flux per unit projected area per unit solid
angle [W · m−2 · sr−1]

L(x, v) = d2Φ(x, v)
(v · n)dA(x)dv

, (2.4)

where n is the surface normal at the point x. Therefore, the radiance
measures the flux that arrives from a solid angle around the direction v at
the differential area around the point x that is projected along v.

For an extended discussion on radiometric quantities, we refer the reader to
the book by Pharr et al. [2016] or the dissertation of Veach [1998].

2.1.2 BRDF
We introduce the BRDF (Bidirectional Reflectance Distribution Function) — a
mathematical description of surface reflection at a point. It was proposed as a
representation of surface reflective properties, which is capable of emulating a
wide variety of materials [Nicodemus et al., 1977].

Intuitively, the BRDF answers the question “What portion of the light that
arrives at the point x along the incoming light direction i is reflected towards the
outgoing light direction o?”, see Figure 2.1. Formally, it is defined as the differ-

Figure 2.1: Bidirectional Reflectance Distribution Function (BRDF).
The BRDF defines the surface reflection properties at a point x with a surface
normal n. The BRDF value is the portion of the light coming from the light
source along the incoming light direction i that is reflected towards the sensor
(e.g. eye or camera) along the outgoing light direction o. The angles θo and θi
between the surface normal and the directions o and i are known as angles of
incidence.

ential radiance reflected towards the outgoing light direction o, due to differential
irradiance arriving from direction i

fx(i, o, n) = dL(x, o)
dE(x, i) = dL(x, o)

L(x, i)(i · n)di
. (2.5)

At the point x with normal n, the BRDF is a 4-dimensional function,
parametrized with the spherical coordinates of the incoming and outgoing
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light directions (θi, ϕi, θo, ϕo). In cases when the BRDF does not depend on the
surface position x, we drop the subscript x. From Equation (2.5), we can see
that the BRDF is measured in inverse steradians [sr−1].

Physical properties impose the following constraints on BRDFs:

• Non-negativity. Reflecting a negative amount of light has no physical
meaning, and therefore the BRDF must be greater or equal to zero for all
input directions

fx(i, o, n) ≥ 0. (2.6)

• Helmholtz reciprocity. If the directions i and o are exchanged, i.e, the
direction of light flow is reversed, then the reflected amount must not change

fx(i, o, n) = fx(o, i, n). (2.7)

• Energy conservation. The total reflected light from the point x must
never exceed the incident light at x∫︂

H2
fx(i, o, n)(o · n)do ≤ 1, ∀i ∈ H2. (2.8)

These three properties are necessary but not sufficient to describe a physically-
based BRDF. In microfacet theory, physically-based BRDFs are those that cor-
respond to a correct geometrical configuration of the microsurface [Heitz, 2014].

2.1.3 Reflection equation
The BRDF at the point x on a surface of interest is used to compute the reflected
light from this point. We want to compute the reflected radiance L(x, o) along a
given outgoing direction o. Incident radiance L(x, i) coming from all directions
i ∈ H2, for which the BRDF is positive fx(i, o, n) > 0, contribute to the reflected
radiance in direction o, and we need to sum up all contributions L(x, i)fx(i, o, n).

By definition, the incident radiance L(x, i) from an incoming light direction i
is the flux per unit solid angle around i, per unit projected area along i. In order
to convert the projected areas along directions i into the same surface area at x,
we need to multiply by cos θi = i · n, see Equation (2.4). This is needed, because
the radiance that is coming along larger incident angles θi is spread over larger
surface areas, and therefore it is weaker per unit area, compared to the same
radiance coming along small incident angles, i.e., Lambert’s law. Consequently,
the reflected radiance is computed using the reflection equation

L(x, o) =
∫︂

H2
L(x, i)fx(i, o, n)(i · n)di, (2.9)

which is illustrated in Figure 2.2. Notice that for a specified outgoing direction o,
the 4-dimensional BRDF is reduced to a 2-dimensional function in (θi, ϕi), which
is integrated on the hemisphere.

The reflection equation has analytic solutions only in very simple scenarios,
thus it is mainly solved numerically. In light transport algorithms, it is commonly
solved using Monte Carlo methods which introduce high variance, manifested
in the form of noise. Therefore, rendering systems employ variance reduction
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Figure 2.2: The reflection equation. To compute the outgoing radiance
L(x, o), the reflection equation integrates the product of the BRDF and the
cosine-weighted incoming radiance L(x, i)(i · n). The light that is reflected along
o could have arrived at the point x from any direction on the upper hemisphere,
depending on the surface properties. For a fixed direction o, the BRDF is a
function on the hemisphere (dark gray), centered at x. Two light beams of light
with the same cross-section (gray dashed lines) illuminate different areas around
x, depending on their inclinations. The light that is coming from directions with
larger incident angles spread over larger areas, and therefore its power per unit
area is reduced. This is compensated by the cosine factor (i · n) = cos θi, see
Equation (2.9).

techniques, with importance sampling being the most widely used due to its
efficiency [Pharr et al., 2016].

Importance sampling is aiming at generating more samples in the important
regions, where the integrand value is high. Ideally, the density of the samples
must be proportional to the integrand. Due to this, successful utilization of im-
portance sampling requires well-suited sampling routines. In particular, general
importance sampling strategies for the reflection equation do not exist due to
the complex geometric nature of the problem — the BRDF, potentially being
fairly complex by itself, is a property of the surface, while the incident radiance
is coming from various light sources, which could be (partially) occluded.

Therefore, a very practical and robust technique that is used in rendering
systems is to combine sampling strategies that are targeting different factors
of the integrand using multiple importance sampling (MIS) [Veach and Guibas,
1995]. To this end, specialized sampling techniques are developed to sample the
light sources and the BRDF, respectively. In Figure 2.3, we sketch light sampling
and BRDF sampling.

Hence, practical implementations of BRDFs must have the following features:

• Evaluation. Efficient formula or algorithm to compute the BRDF value
fx(i, o, n).

• Sampling. Efficient BRDF sampling strategy: this is sampling directions
with a density that is similar to the BRDF shape. Ideally, this is a sampling
procedure with density proportional to the product fx(i, o, n)(i·n), although
such sampling equations are rarely available.
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Figure 2.3: Illustration of sampling strategies for the reflection equa-
tion. For a fixed outgoing light direction (blue) the BRDF is visualized as a
function on the hemisphere (dark gray).
Left column: Sampling the light source: this is usually done by choosing ran-
dom points on the light source or sampling random directions in the solid angle
that the light source subtends on the unit hemisphere at the point x. Right col-
umn: Sampling the BRDF: sampling directions that are at best proportional to
the product of the BRDF lobe and the cosine term, or at least are generated with
higher probability in the regions where the value of this product is high. Top
row: A diffuse-like BRDF with a broad lobe that reflects light in all directions.
The light sampling strategy usually performs well in such cases since all generated
light directions that connect the light source with the point x, contribute to the
reflected light. On the other hand, the BRDF sampling could be very inefficient,
especially for small light sources — samples are distributed in all directions, with
a low probability of hitting the light source. Bottom row: A glossy BRDF
with an elongated directional lobe that reflects light around a single direction.
For such BRDFs, the light sampling strategy could be inefficient, especially for
large light sources, because from all generated directions few reflect light towards
the outgoing direction. On the other hand, sampling the BRDF in this case could
hit the large light source. In practical scenarios with many lights of different in-
tensities and sizes, and different BRDF shapes, it is not easy to pick the right
strategy. Therefore, both strategies are computed, and their contributions are
weighed depending on their probabilities using MIS [Veach and Guibas, 1995].
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• Probability. Efficient routine to compute the probability density function
(PDF) of the BRDF sampling.

2.2 Diffuse and specular reflection
As illustrated in Figure 2.3, the BRDF shapes vary from broad diffuse-like lobes
to directional glossy lobes. The two extremes in terms of directionality are the
perfect diffuse BRDF, known as Lambertian BRDF, and the perfect specular
BRDF, which reflects all incident light in a single direction. These are important
BRDFs that can be used directly or serve as building blocks in more complex
BRDFs, e.g. microfacet models.

2.2.1 Lambert BRDF
A surface that scatters light uniformly in all directions on H2 is referred to as a
Lambertian surface. This is an idealized model for perfect matte reflection which
could be a reasonable approximation for unfinished wood, paper or wall paint.
Spectralon is a manufactured material that is designed to exhibit nearly perfect
Lambertian reflection [Georgiev and Butler, 2007].

The only parameter of Lambertian materials is their albedo ρ ∈ [0, 1] which
defines what portion of the incoming light is reflected, while the rest 1 − ρ is
absorbed. Therefore, the Lambert BRDF is proportional to its albedo κρ, where
κ is the proportionality constant. In order to find κ we use the energy conservation
property, Equation (2.8)

∫︂
H2

κρ(o · n)do = κρ
∫︂ 2π

0

∫︂ π
2

0
cos θo sin θodθodϕo = (2.10)

κρ
∫︂ 2π

0

∫︂ π
2

0
sin θod sin θodϕo = κρ

∫︂ 2π

0

(︄
sin2 θo

2

⃓⃓⃓⃓π
2

0

)︄
dϕo = κρ

2

∫︂ 2π

0
dϕo = (2.11)

κρπ ≤ 1. (2.12)

Since the albedo could be at most ρ = 1 in the case when all the energy is
reflected, then the constant κ must be equal to 1

π
, thus the Lambert BRDF is

f(i, o, n) = ρ

π
. (2.13)

2.2.2 Fresnel reflectance
A common assumption in microfacet models for reflection from rough surfaces is
that the microfacets are perfect mirrors. In order to formulate these models one
must understand the perfect specular reflection — this is the reflection from an
ideally smooth surface. When light reaches such a surface, a portion of the light
is reflected while the rest of the light is transmitted and/or absorbed, depending
on the physical material of the surface. The amount of reflected light depends on
the angle of incidence θi, and it is described by Fresnel equations — these are a
solution to Maxwell’s equations for the reflection of an electromagnetic wave at
the flat boundary between two different homogeneous media.
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Each medium is characterized by its index of refraction (IOR) (denoted η),
which indicates how much the light slows down in the medium, compared to the
speed of light in a vacuum (with η = 1). These include homogeneous dielectric
media like air (η ≈ 1.00029), water (η ≈ 1.33), glass (η ≈ 1.5) and diamond
(η = 2.42). Another important class of materials is conductors, which include
all metals. Metals are opaque, thus they do not transmit light but absorb it.
In addition to the IOR η, they are characterized by an absorption coefficient k,
which by definition is zero for dielectric materials.

For the purposes of this work, we formulate the Fresnel equations for the
vacuum-material interface, since the vacuum has a similar IOR with air, and the
material is given by the pair (η, k). The plane that contains the incoming and
the reflected ray is named the plane of incidence. Since light is a transversal
wave, each photon wave has an orientation along its propagation direction, i.e.,
polarization. Fresnel equations express the reflectivities for two orthogonal con-
figurations — Rs for waves that are perpendicular to the plane of incidence, and
Rp for waves that are parallel to the plane of incidence:

Rs = a2 + b2 − 2a cos θi + cos2 θi

a2 + b2 + 2a cos θi + cos2 θi
(2.14)

and

Rp = Rs
(a2 + b2) cos2 θi − 2a cos θi(1 − cos2 θi) + (1 − cos2 θi)2

(a2 + b2) cos2 θi + 2a cos θi(1 − cos2 θi) + (1 − cos2 θi)2 , (2.15)

where
a2 = 1

2

(︃√︂
c2 + 4η2k2 + c

)︃
, (2.16)

b2 = 1
2

(︃√︂
c2 + 4η2k2 − c

)︃
(2.17)

and
c = η2 − k2 + cos2 θi − 1. (2.18)

It is noteworthy that these equations can be simplified for dielectrics because
they do not have an absorption coefficient (k = 0), and therefore it is a common
practice in rendering systems to keep separate implementations for conductors
and dielectrics [Pharr et al., 2016].

Furthermore, the IOR and the absorption coefficient are both wavelength-
dependent properties. Due to this, light with different wavelengths is refracted
along different angles, leading to the well-known decomposition of light into its
spectrum — a phenomenon known as dispersion. In the case of metals, this
wavelength dependence is the cause of their colors.

A common assumption in graphics is that the light is unpolarized — meaning
that photons have random polarizations. In this case, the Fresnel reflectance is

F (i · n) = F (cos θi) = 1
2
(︂
R2

s + R2
p

)︂
. (2.19)

2.2.3 Specular BRDF
Specular reflection occurs at perfectly smooth interfaces. The incoming light
along the direction i = (θi, ϕi) is reflected in direction r = (θi, ϕi + π). The
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directions i and r, together with the surface normal n are contained in the plane
of incidence. The reflection direction is computed as

r = 2(i · n)n − i. (2.20)

To derive the specular BRDF we need a tool to express that all the reflected
energy is concentrated in a single direction. To this end, we employ a hemispher-
ical Dirac delta distribution, defined for a differential solid angle do containing
the outgoing direction:

δo(v) =
⎧⎨⎩∞, v = o

0, otherwise
, v ∈ H2, (2.21)

which has the property ∫︂
H2

δo(v)dv = 1. (2.22)

As a consequence, this property allows the evaluation of integrands containing
the delta function: ∫︂

H2
δo(v)f(v)dv = f(o). (2.23)

The specular BRDF takes the form

f 0(i, o, n) = κδo(r)F (i · n), (2.24)

where κ is a normalization constant. This BRDF is non-zero (and proportional
to the Fresnel term) only when the outgoing light direction o coincides with the
direction of perfect reflection r. To calculate the constant κ we use that the total
reflected light must be equal to the Fresnel term∫︂

H2
f 0(i, o, n)(o · n)do = F (i · n) (2.25)∫︂

H2
κδo(r)F (i · n)(o · n)do = F (i · n) (2.26)

κF (i · n)(r · n) = F (i · n) (2.27)

κ = 1
r · n

. (2.28)

Notice that by definition θr = θi, thus

r · n = i · n. (2.29)

Therefore, the normalized specular BRDF is

f 0(i, o, n) = δo(r)F (i · n)
i · n

. (2.30)

Another formulation of the specular BRDF is useful when the integration
changes from light directions to half vectors

h = i + o
∥i + o∥

. (2.31)
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This formulation is convenient when working with microfacet BRDFs, as we will
see in the next chapter. A similar identity to Equation (2.29) holds for the half
vector:

i · h = o · h. (2.32)
A specular reflection occurs when the light directions i and o are such that the
half vector h = n. Therefore, we can use another delta function δh, that is
associated with a differential solid angle around the half vector dh. To account
for the change of measure we must calculate the Jacobian of the transformation
from directions (vectors) to half vectors

δodo = δhdh (2.33)

δo = dh
do

δh (2.34)

δo = Jhδh (2.35)

This Jacobian was derived algebraically by Stam [2001] and geometrically by
Walter et al. [2007], and it is

Jh = 1
4(i · n) . (2.36)

Finally, the specular BRDF associated with the half vector measure is

f 0(i, o, n) = δh(n)JhF (i · n)
i · n

= δh(n)F (i · n)
4(i · n)2 . (2.37)
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Chapter 3

Microfacet Theory

In this chapter, we introduce the relevant concepts from microfacet theory. We
begin with the standard microfacet statistics: the pair of microfacet distribution
and shadowing-masking function that defines a geometrically valid microsurface.
Follow the notion of shape invariance and its relation to the standard approach
to extend microfacet distributions to anisotropy. Then we give the main defi-
nitions upon which we build our microfacet models in the following chapters —
the microfacet BRDF and the combined BRDF, which is a microfacet BRDF
modulated by a normal map.

The main notation related to microfacet theory is collected in Table 3.1. In
Appendix C, we provide three analytic models for microsurfaces that are used in
our work.

3.1 Microsurface statistics
In microfacet theory, the microsurface is defined statistically. This approach
offers both computational efficiency and flexibility in terms of intuitive control
parameters.

As mentioned earlier, from the standpoint of the microsurface, the macrosur-
face is assumed flat. In our exposition, all vectors are in the local frame of the
macrosurface, and we assume its local normal as n = (0, 0, 1)T . A differential
area dA on the macrosurface is projected along a direction v ∈ H2 to differential
area (v · n)dA, Figure 3.1.

Each microsurface is associated with a profile that describes how its mi-
crostructure is organized. In this thesis, we adopt the state-of-the-art Smith
[1967] microsurface profile, which assumes that the heights and the orientations
of neighboring microfacets are not correlated since this profile is more realistic
than the alternatives [Heitz, 2014].

3.1.1 Microfacet distribution
The microsurface is statistically determined by its profile and microfacet distri-
bution function [Walter et al., 2007, Heitz, 2014]

0 ≤ D(m) ≤ ∞. (3.1)
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Microsurface-related symbols
m Microsurface normal (micro-normal)
D Microfacet distribution function
Dv Distribution of visible normals from direction v
P22 Slope distribution of the microsurface
S Average visibility function
G1 Monodirectional shadowing function
G Shadowing-masking function
α Roughness of the microfacet distribution
αx, αy Roughness values along x and y for anisotropy
fm General Microfacet BRDF
fµ Micro-BRDF aligned with each microfacet
fa Microfacet BRDF with specular microfacets

Normal map-related symbols
tk Normal of k-th texel
Tk Texture space region corresponding to k-th texel
N Total number of normal map texels
|X| Surface area of the region X
IX Indicator function of the region X
Dx Normal distribution function (NDF) of the normal map
Gx Shadowing-masking function of the normal map
C Texel contribution function
fa

x Combined BRDF: microfacet BRDF modulated by a normal map

Table 3.1: Notation for microfacet BRDFs.
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a) Constraint on D, Equation (3.4)

b) Constraint on G1, Equation (3.9)

Figure 3.1: The microfacet distribution and its shadowing function. A
differential area dA on the macrosurface with normal n. The projection of this
area along direction v ∈ H2 is (n · v)dA. The microsurface (green) is continuous
and it is composed of microfacets with micro-normals m. Microsurface statistics
are subject to constraints. a) Microfacet distribution D: The projected areas
along v of all forward-facing microfacets (blue) minus the projected areas of all
backward-facing microfacets must be equal to the projected area of the macro-
surface (n · v)dA. b) Shadowing function G1: When the total projected area
along v of forward-facing microfacets (blue) is greater than the projected area of
the macrosurface (n · v)dA, the shadowing factor G1 must diminish it to com-
pensate for the shadowed regions (red).
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Figure 3.2: Normalized microfacet distributions. The projections of all
microfacets onto the macrosurface fully cover the macrosurface and do not overlap
with each other, see Equation (3.5).

Note that this definition includes delta distributions. For a given micro-normal
m ∈ H2, D(m) evaluates to the differential area of the microsurface oriented
with m. That is why in some older writings the microfacets are referred to as
microareas, and the microfacet distribution — microarea distribution [Trowbridge
and Reitz, 1975]. Rigorously, for a macrosurface differential area dA and a differ-
ential solid angle around the micro-normal dm, the total differential area of the
microsurface whose micro-normals are contained in dm is D(m)dmdA [Walter
et al., 2007].

In a valid configuration, the differential area of a non-flat microsurface is never
less than the differential macrosurface area∫︂

H2
D(m)dmdA ≥ dA (3.2)

and the equality is reached when the microsurface is flat, thus coinciding with
the macrosurface. This means that the total microsurface area is never less than
the total macrosurface area, which leads to a weak constraint on the distribution∫︂

H2
D(m)dm ≥ 1. (3.3)

Notice that the integration is over differential solid angles, and therefore the
microfacet distribution is measured in inverse steradians [sr−1].

Furthermore, the signed projected area of the microsurface must be equal to
the projected area of the macrosurface along an arbitrary direction v ∈ H2 [Walter
et al., 2007], Figure 3.1 a). This property enforces a normalization constraint on
the microfacet distribution:∫︂

H2
D(m)(v · m)dm = (v · n). (3.4)

It is sufficient to ensure that the projected microfacets along the macrosurface nor-
mal do not overlap and perfectly cover the macrosurface, see Figure 3.2. Hence,
Equation (3.4) is substituted with v := n:∫︂

H2
D(m)(n · m)dm = 1. (3.5)
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This simplified constraint can be used to find normalization factors for micro-
facet distributions. In Chapter 4, we use it to validate our linearly transformed
microfacet distributions.

Finally, any microfacet distribution can be converted to a distribution of slopes

P22

(︃
−mx

mz

, −my

mz

)︃
= D(m) cos4 θm, (3.6)

where −mx

mz
and −my

mz
are the slopes of a microfacet with micro-normal m =

(mx, my, mz)T . The factor cos3 θm is for the change of measure from solid angle
to slopes and the factor cos θm is for the projection of the microfacets onto the
macrosurface [Walter et al., 2007, Heitz, 2014].

3.1.2 Microsurface self-shadowing
Not all microfacets are visible from all directions. In fact, all microfacets are
guaranteed to be visible only along the macrosurface normal n, see Figure 3.2. To
conduct reflectance measurements, the self-shadowing of the microsurface needs
to be taken into account. This is facilitated by a geometric factor derived from
D(m) — the monodirectional shadowing

0 ≤ G1(v, m) ≤ 1 (3.7)

yields the fraction of the microfacets with normals m ∈ H2 that are visible from
a specified direction v ∈ H2, Figure 3.1 b). For microsurfaces with Smith profile
the shadowing function G1 is represented by the average visibility function S(µ):

G1(v, m) =
⎧⎨⎩S(µ), v · m > 0

0, otherwise
, (3.8)

where µ = cot θv and S is the fraction of the microsurface that is visible from di-
rection v [Walter et al., 2007]. G1 is subject to a normalization constraint [Smith,
1967, Ashikmin et al., 2000, Heitz, 2014]:∫︂

H2
D(m)G1(v, m)(v · m)dm = (v · n). (3.9)

Notice the similarity between the two constraints: the negative projected area
from the back-facing microfacets in Equation (3.4) (v · m) ≤ 0 is clamped in
Equation (3.9) because G1 = 0, and instead the shadowing for the forward-facing
microfacets is compensated by the S term, see Equation (3.8). This resemblance
is illustrated with the two diagrams in Figure 3.1. In Chapter 4, we use Equa-
tion (3.9) to validate the shadowing functions of our linearly transformed micro-
surfaces.

The monodirectional shadowing G1 is also used in the definition of the distri-
bution of visible normals [Heitz, 2014, Heitz and D’Eon, 2014]

Dv(m) = D(m)G1(v, m)(v · m)
v · n

. (3.10)
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This is a view-dependent distribution: for a given direction v it is the distribu-
tion of all microfacets that are visible from v, i.e. v · m > 0. Dv is based on
Equation (3.9) and its normalization is a direct consequence of this equation∫︂

H2
Dv(m)dm = 1

v · n

∫︂
H2

D(m)G1(v, m)(v · m)dm = v · n
v · n

= 1. (3.11)

At the end of this chapter, we will see that Dv is important for the efficient
sampling of microfacet BRDFs.

Sometimes, the microfacet distribution is abbreviated NDF (Normal Distribu-
tion Function) and the distribution of visible normals — VNDF (Visible Normal
Distribution Function).

Microfacet BRDFs require a tool to evaluate what portion of microfacets with
normal m are seen from both the incoming and outgoing light directions i and o.
This is achieved by the shadowing-masking function

0 ≤ G(o, i, m) ≤ 1 (3.12)

which can be approximated using the shadowing G1. The simplest variant is the
separable shadowing-masking function [Walter et al., 2007]

G(o, i, m) = G1(o, m)G1(i, m). (3.13)

A more accurate and nearly as efficient variant is the height-correlated shadowing-
masking function [Ross et al., 2005, Heitz, 2014]

G(o, i, m) = G1(o, m)G1(i, m)
G1(o, m) + G1(i, m) − G1(o, m)G1(i, m) . (3.14)

For a detailed derivation of shadowing-masking functions for microfacet surfaces
we refer the reader to the excellent material by Heitz [2014].

3.1.3 Elliptical anisotropy
The classical anisotropy approach and the shape invariance property presented
here are based on Heitz’s article [2014].

Commonly, microfacet distributions D(m) have a roughness parameter to
control the spread of the distribution, which is denoted by α. Traditionally,
isotropic distributions are extended to anisotropy by varying the roughness in
the xy tangential plane. This is done by specifying roughness αx along x axis
and αy along y axis and replacing the isotropic argument 1

α2 with the ellipse

cos2 ϕm

α2
x

+ sin2 ϕm

α2
y

. (3.15)

This leads to a distribution that is not properly normalized. A normalization
factor can be computed if Equation (3.5) can be integrated into a closed-form
expression. This is not always possible — for example, the GTR distribution
does not have a closed-form normalization except for the special case of the GGX
distribution [Burley, 2012].
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3.1.4 Shape invariance
Shape-invariant isotropic distributions have the property that their shape does
not change when the roughness changes. They are an important sub-class of
distributions: for all roughness values, the distribution curves are scaled copies
of each other. Such distributions take the form:

D(m) = 1
(m · n)4

1
α2 f

(︄
tan θm

α

)︄
, (3.16)

where the function f is a 1D distribution. The anisotropic version based on
Equation (3.15) is

D(m) = 1
(m · n)4

1
αxαy

f

⎛⎝tan θm

⌜⃓⃓⎷cos2 ϕm

α2
x

+ sin2 ϕm

α2
y

⎞⎠ . (3.17)

To complete the anisotropic microsurface configuration, the shadowing function
G1(v, m) must be evaluated for the projected roughness onto the direction v:

αv =
√︂

cos2 ϕvα2
x + sin2 ϕvα2

y. (3.18)

3.2 Microfacet BRDFs
We define the BRDF that corresponds to the microsurface, which is based on the
statistics from the previous section. In its general form, the microfacet BRDF is

fm(i, o, n) =
∫︂

H2

(i · m)(o · m)
(i · n)(o · n) fµ(i, o, m)D(m)G(i, o, m)dm, (3.19)

where fµ is the micro-BRDF — a BRDF associated with each microfacet, aligned
with its micro-normal m. A derivation is provided by Heitz [2014], however,
in contrast to his formulation, our formulation in Equation (3.19) assumes the
upper hemisphere of the normal n. Additionally, the cases in which one or the
two light directions are in the opposite hemisphere of the microfacet normal m,
i.e. (i · m) < 0 and/or (o · m) < 0, are implicitly zeroed out by the shadowing
term G, see Equations (3.14) and (3.8).

When all microfacets are aligned with the macrosurface normal n, then the
microfacet distribution D(m) is the delta distribution δn(m), and all microfacets
are visible from all directions, i.e. G(i, o, m) = 1, thus

fm(i, o, n) =
∫︂

H2

(i · m)(o · m)
(i · n)(o · n) fµ(i, o, m)δn(m)dm = fµ(i, o, n). (3.20)

In this special case, the microfacet BRDF is reduced to the micro-BRDF.
The two most common choices for the micro-BRDF fµ are the Lambert BRDF

and the specular BRDF from Equations (2.13) and (2.37), respectively. In the
case of Lambertian microfacets, Equation (3.19) cannot be integrated into a
closed-form expression. Oren and Nayar [1994] demonstrated that the Lamber-
tian BRDF is a poor representation for materials like clay, plaster, sand and cloth
because these materials tend to reflect more light as the outgoing light direction o
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approaches the incoming light direction i. They proposed a fit for Equation (3.19)
with Lambertian microfacets and Gaussian microfacet distribution that is more
adequate at approximating such materials. Heitz and Dupuy [2015] proposed a
stochastic evaluation technique for Equation (3.19) with Lambert micro-BRDF
and demonstrated it for anisotropic microsurfaces.

3.2.1 Specular microfacets
The most widely used microfacet model is the one with specular microfacets.
It is capable of representing a large range of appearances, and it does have a
closed-form formula. It is derived by substituting the specular BRDF from Equa-
tion (2.37) in Equation (3.19):

fm(i, o, n) =
∫︂

H2

(i · m)(o · m)
(i · n)(o · n) f 0(i, o, m)D(m)G(i, o, m)dm (3.21)

=
∫︂

H2

(i · m)(o · m)
(i · n)(o · n)

δh(m)F (i · m)
4(i · m)2 D(m)G(i, o, m)dm (3.22)

= (i · h)(o · h)F (i · h)D(h)G(i, o, h)
(i · n)(o · n)4(i · h)2 . (3.23)

This result can further be simplified since (i · h) = (o · h), thus we reach the
classical formulation of the microfacet BRDF with specular microfacets

fα(i, o, n) = F (i · h)Dα(h, n)Gα(i, o, h, n)
4(i · n)(o · n) . (3.24)

Commonly, the microfacet distribution D and the shadowing-masking function
G depend implicitly on the macrosurface normal n and the roughness parameter
α — note that all angles are defined with respect to the normal n. For clarity of
our derivation, we make both dependencies explicit.

Importantly, the microfacet BRDF from Equation (3.24) approaches the spec-
ular BRDF as the roughness diminishes

lim
α→0

fα = F (i · h)Dα(h, n)Gα(i, o, h, n)
4(i · n)(o · n) = F (i, h)δh(n)

4(i · h)2 = f 0. (3.25)

This is a direct consequence from Equation (3.20) — as the roughness is ap-
proaching zero, the microfacet distribution becomes a Dirac delta distribution,
and the expression is non-zero only when h = n. This observation motivates the
notation for fα and f 0.

3.2.2 Normal mapping
The normal map is a collection of N texels, each occupying an equal rectangular
region Tk of unit texture space, and it is associated with a normal in tangent
space tk ∈ H2. Alternatively, the normals can be defined as points on the unit
disk D, see Appendix B.

The normal distribution function (NDF) based on the normal map is

Dx(m) =
N∑︂

k=1
δtk

(m)ITk
(x), (3.26)
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which is dependent on the texture space position x and ITk
is the indicator func-

tion of the texel region Tk. Our definition is equivalent to the one in Han et
al. [Han et al., 2007], however, we do not divide explicitly by N , because in our
definition the texel area is |Tk| = 1

N
.

The NDF Dx is a well-defined microfacet distribution, and its corresponding
microsurface has a shadowing-masking function Gx. In theory, Gx depends on
the normal map, however, precise expressions are not available. In related work,
commonly a Smith shadowing-masking function corresponding to a smooth mi-
crofacet distribution is used [Yan et al., 2014, Jakob et al., 2014, Yan et al.,
2016].

3.2.3 Combined BRDF
To use microfacet BRDFs and normal maps together in a way that is in agreement
with assumptions of microfacet theory we follow a derivation similar to Schüssler
et al. [2017]. In essence, the normal map provides the visible features of the
surface, where its texels are the larger microfacets. On the other hand, each of
these facets could be a rough surface in its own right, which is described by a
microfacet BRDF with specular microfacets. Formally, in Equation (3.19) we
substitute the normal map (Dx, Gx) for the microsurface and fα for the micro-
BRDF fµ

fα
x (i, o, n) =

∫︂
H2

(i · m)(o · m)
(i · n)(o · n) fα(i, o, m)Dx(m)Gx(i, o, m)dm

=
N∑︂

k=1

(i · tk)(o · tk)
(i · n)(o · n) fα(i, o, tk)Gx(i, o, tk)ITk

(x),
(3.27)

where n is the surface normal at position x. The delta function in the definition
of Dx breaks the integral into a sum over all texel normals tk. Furthermore,
there is only one term for which ITk

(x) is non-zero — this is the term for which
x ∈ Tk. When we expand fα in this term we reach the desired combined BRDF
of a normal map and a microfacet BRDF

fα
x (i, o, n) = (i · tk)(o · tk)

(i · n)(o · n)
F (i, h)Dα(h, tk)Gα(i, o, h, tk)

4(i · tk)(o · tk) Gx(i, o, tk)

= F (i, h)Dα(h, tk)Gα(i, o, h, tk)
4(i · n)(o · n) Gx(i, o, tk)

= F (i, h)C(i, o, tk, n),

(3.28)

where
C(i, o, tk, n) = Dα(h, tk)Gα(i, o, h, tk)Gx(i, o, tk)

4(i · n)(o · n) (3.29)

is the texel contribution.
An illustration of the microsurfaces defined by Equation (3.28) is given in

Figure 3.3. When the combined BRDF has roughness zero, i.e. f 0
x , this BRDF is

referred to as a specular normal map.
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Figure 3.3: Microsurfaces corresponding to the combined BRDF fα
x .

The normal map texels (green) define the coarse visible detail of the microsurface
while the microfacet distribution associated with each texel (red) represents the
roughness of each texel. Top row: The normal map texels have higher roughness
α, thus the microfacet distribution Dα is wider. Bottom row: The microsurface
is defined using the same normal map as the one in the top row, however, the
roughness of individual texels is lower.

3.2.4 Sampling microfacet BRDFs
The perfect sampling strategy for the microfacet BRDF fm (Equation (3.19))
would sample directions that are proportional to the product fm(i, o, n)(i·n). For
more details refer to the discussion about the reflection equation in Section 2.1.3.

Furthermore, analytic sampling equations are preferred due to them being
compact, accurate and fast. Usually, they are derived using the inversion
method [Pharr et al., 2016]: first, the CDF (cumulative density function) is
computed from the PDF (probability density function), and then it is inverted.
Uniform random variables that are transformed using the inverse CDF are
distributed according to the PDF. Note that this derivation is possible when
the inverse CDF can be expressed in closed form. One alternative to analytic
sampling is building CDF tables. This is cumbersome because their dimen-
sion depends on the number of parameters that parametrize the microfacet
distribution, and also requires binary searching for inverting the CDF. It is
noteworthy that analytic sampling techniques are not restricted to the inversion
method [Heitz, 2020], although it is the most straightforward and common
approach.

Unfortunately, analytic sampling equations are available neither for the cosine
weighted general microfacet BRDF fm(i, o, n)(i · n) nor just for the special case
of fα(i, o, n) from Equation (3.24), even for the simplest microfacet distributions.
Therefore, the standard approach is to sample a microsurface normal m′ and then
to sample the micro-BRDF fµ that is centered at m′. In the most common case
of specular microfacets (Equation (3.24)), the sampled direction r′ is computed
by reflecting the outgoing light direction o from the sampled microfacet m′, see
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Equation (2.20).
Since all analytic microfacet distributions require that the projected microsur-

face area D(m)(m · n) is normalized, see Equation (3.5), their CDF is available.
Additionally, for all common distributions, the CDF can be inverted and thus
equations for the sampling of micro-normals, proportional to the projected mi-
crosurface area

m′ ∝ D(m)(m · n) (3.30)
are available [Walter et al., 2007, Burley, 2012, Ribardière et al., 2017].

The sampling strategy that employs Equation (3.30) is far from ideal. It has
the following issues:

• Low input directions (o) could often be below the sampled micro-normal
m′ (o · m′ < 0) and therefore the sample must be rejected.

• When high input directions (o) are reflected from tail microfacets (m′ ·n ≪
1), they often end up in the negative hemisphere. The sample is rejected.

• Reflected directions r′ with large incident angles (r′ · n ≪ 1) have much
smaller contribution due to the shadowing G1(r′, m′), but they are not
sampled with the corresponding lower probability.

• The Fresnel term is not taken into account.

Sampling from the distribution of normals that are visible from direction o
— Do (Equation (3.10)) solves only the first issue, but it is already a significant
improvement [Heitz and D’Eon, 2014]. Unfortunately, equations for sampling
Do are available only for Beckmann and GGX distributions [Jakob, 2014, Heitz,
2018].

33



Chapter 4

Linearly Transformed
Microsurface

4.1 Introduction
Microfacet models that can be extended to anisotropy are valuable in practical
applications, as this functionality adds substantial additional control over the
appearance of the shaded object, besides the basic parameters of the microfacet
distribution function. Many real-world objects exhibit anisotropic reflections [Ka-
jiya, 1985], so models that are capable of describing their appearance are needed.

The current state of the art for creating analytic anisotropic distributions
from existing analytic isotropic ones is based on varying the roughness of the
isotropic distribution in an ellipse. This idea can be traced back at least to the
elliptical Gaussian model of Ward [1992]. It was later adapted to microfacet
models [Ashikmin et al., 2000, Kurt et al., 2010] and has been used since then in
modern rendering systems [Nimier-David et al., 2019, Pharr et al., 2016, Burley,
2012]. Heitz [2014] defined the class of shape-invariant isotropic distributions for
which this construction is always possible. Specifically, this class of distributions
has considerable practical advantages:

• Derivation of normalized anisotropic distributions by applying different
roughness values along x and y axes. For shape-invariant distributions,
this is equivalent to a non-uniform linear scaling of the distribution.

• Extension of the 1D isotropic shadowing function to anisotropic without
increasing its dimension.

• Extension of the isotropic sampling equations (including distribution of vis-
ible normals, if available) to anisotropy.

Our work generalizes all of these advantages to all microfacet distributions and
all 2D invertible transformations, beyond simple scaling. We investigate how the
microfacet distribution and the shadowing function of an existing microsurface
change when the microsurface is linearly transformed in the tangent plane.

The related previous work is presented in the next section. Our method is
derived in Section 4.3: we first investigate which linear transformations of the
microsurface result in valid microsurfaces, then we show how to construct the
statistics of the transformed microsurfaces and finally we make the connection
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of our technique with the classical anisotropy for shape-invariant distributions.
In Section 4.4, we demonstrate our technique by constructing anisotropic modi-
fications of shape-variant distributions. To enable the visualization of deforming
objects, we show how to track the local deformation of an object using a tension
texture.

4.2 Previous work
Kajiya [1985] derived anisotropic reflection models from the equations of elec-
tromagnetism. He pointed out that statistical models are desirable, but the
anisotropic integrals are “extremely complex”. Poulin and Fournier [1990] pro-
posed an anisotropic model based on sampling microscopic cylinders layered onto
the surface. Ashikmin et al. [2000] introduced various anisotropic models to mi-
crofacet theory and developed matching shadowing equations.

Nagano et al. [2015] studied the complex appearance of human skin under
deformation. In addition to the mesostructure detail represented by scanned
normal maps, they showed that microstructure dynamics play a vital role in the
overall appearance. Measurement of skin samples indicated that stretched skin
appears shinier while compressed skin has a rougher look. They incorporated
this measurement data into their shader by blurring the stretched portions of the
surface and sharpening the compressed ones. From an appearance point of view,
this aspect is similar to our work, although we present a mathematical framework
for microfacet surfaces that is not based on measurements.

Dupuy et al. [2013] presented a filtering technique for displaced surfaces based
on non-centered anisotropic Beckmann distributions. It is a multi-scale represen-
tation for mapped surfaces that, similarly to our work, can predict scaled surface
appearance. However, our work is focused on microsurface-related behavior for
all distributions while their work is targeted at filtering Beckmann surfaces. Non-
centered distributions can be used to modulate an arbitrary microsurface by a
normal or displacement map, and they can be applied to our model as well. The
shifted distribution remains normalized and only the shadowing function requires
alteration [Heitz, 2014].

There are several approaches for filtering reflectance from microstruc-
tures [Han et al., 2007, Wu et al., 2011, Jakob et al., 2014, Wu et al., 2019],
including a large amount of work for rendering glints following the framework of
Yan et al. [2014]. A model capable of a broad spectrum of appearances based
on tabulated piecewise linear distributions was presented by Ribardière et al.
[2019]. Our work is targeted at modifying existing distributions and as such is
orthogonal to these methods.

GGX is probably the microfacet distribution that is currently most widely
used in practice, as it has been consistently verified to be a better all-around
match for acquired data [Trowbridge and Reitz, 1975, Blinn, 1977, Walter et al.,
2007, Dupuy et al., 2015] than the Beckmann distribution: the main reason for
this seems to be the long tails of the distribution. However, many real ma-
terials have even longer tails, and therefore Disney developed the Generalized
Trowbridge-Reitz (GTR) distribution as a natural extension to the GGX distri-
bution [Burley, 2012]: this exposes an exponent γ that provides additional con-
trol of the tail. This is especially attractive for exponents less than two, which
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correspond to heavier tails than those of GGX. For example, a GTR exponent
γ = 3

2 results in the Henyey-Greenstein distribution [1941] evaluated at half-
angles, while the exponent of γ = 1 corresponds to the Berry distribution [1923]
which is employed in the coating layer of Disney’s material [Burley, 2012]. We
are not aware of other tail-controllable distributions that are used in the industry.
Interestingly, the GTR distribution is shape-variant for all tail exponents γ ̸= 2,
and the elliptical anisotropic formulation cannot be integrated analytically in
this case [Burley, 2012]. This makes it a practical use case to demonstrate our
technique.

Löw et al. [2012] introduce isotropic models suited for glossy reflections that
allow control of the tail of the distribution. Work has been done to develop shape-
invariant distributions that admit tail control. The STD [Ribardière et al., 2017]
was proposed to span Beckmann and GGX distributions although the heavier
than GGX tail control was limited. The Hyper-Cauchy distribution was uti-
lized in the optics literature [Wellems et al., 2006] and was later used for BRDF
fitting [Butler and Marciniak, 2014].

Ribardière et al. [2019] presented a hierarchical classification of analytic dis-
tributions that generalize Beckmann and GGX distributions until they reach the
most general Skewed Generalized T-Distribution (SGTD). They note that only
the distributions in the lower levels of this hierarchy are shape-invariant, and
therefore are guaranteed to have an anisotropic form. With our framework, an
anisotropic version of any SGTD can easily be constructed. Notably, the GTR
distribution is not part of this classification.

Recently, Barla et al. [2018] presented a technique that combines two BRDFs
to provide more control on the tails of the distribution. Similarly, our technique
modifies existing BRDFs and can be employed on top of their technique, if their
input BRDFs are microfacet-based.

It has been shown that genetic programming could be used to find new ana-
lytic BRDFs, including microfacet ones that provide better fits to acquired data
compared to existing microfacet BRDFs [Brady et al., 2014]. All of their micro-
facet distributions are isotropic, and it is unlikely for their technique to gener-
ate shape-invariant distributions. Our framework can directly extend them to
anisotropy.

Heitz et al. [2016a] introduced Linearly Transformed Spherical Distributions
(LTSD) and derived a closed-form formula for them. However, their formula does
not lead to normalized microfacet distributions, while our framework for linearly
transformed microsurfaces ensures this. In Section 4.3, we derive the Jacobian
that ensures the normalization of the transformed microfacet distributions, and
then we discuss the differences to the LTSD formulation.

Finally, there are examples of shape-variant distributions used in the industry,
like Phong [Walter et al., 2007], Sheen [Estevez and Kulla, 2017], discrete GGX
and Beckmann [Atanasov and Koylazov, 2016], and GTR [Burley, 2012].

4.3 Our framework
We take a different approach to altering microfacet distributions. By investigat-
ing how linear transformations of the microsurface affect its statistics we arrive
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at a simple and general framework for applying modifications to all valid micro-
surfaces. Table 4.1 shows the respective notation.

M Microsurface transformation matrix
DM Microfacet distribution of the transformed surface
DvM Visible normals distribution for the transformed surface
G1M Shadowing function of the transformed surface
P22M Slope distribution of the transformed surface
u Transformed and normalized micro-normal
N Applies linear transformation and normalizes the result
JN The Jacobian matrix of the nonlinear transformation N
m′ Sampled micro-normal
m′

v Sampled micro-normal, visible from direction v
T Local tension matrix of a deformed mesh
s Stretch anisotropy parameter
Ms Stretch anisotropy matrix
γ Tail exponent of the GTR distribution

Table 4.1: Notation for linearly transformed microsurfaces.

4.3.1 Transforming the microsurface
Although the microfacets are infinitely small, we can still think of the micro-
surface as a 3D object which is aligned with the macrosurface. For instance,
Heitz et al. [2016b] validated their multiple scattering model by ray-tracing a
pre-generated Beckmann surface. So it stands to reason that the microsurface
can be transformed by a 3 × 3 matrix, just like regular geometry. We consider all
such transformations that lead to a valid microsurface, which are all invertible
matrices of the form

M =

⎛⎜⎝a c 0
b d 0
0 0 1

⎞⎟⎠ . (4.1)

This is the case since:

• M applies an arbitrary linear transformation to the microsurface in the
tangential plane, parallel to the macrosurface, Figure 4.1 b).

• The first two column vectors of M are restricted to the tangential plane
because the microsurface must remain aligned with the macrosurface, Fig-
ure 4.1 c).

• The first two row vectors of M are also contained in the tangential plane
because vertical shear could break the microsurface configuration. Micro-
facet normals m could turn to the negative hemisphere, which is below the
shaded macrosurface, Figure 4.1 d).

• Scaling the height of the microsurface h times results in the same microsur-
face statistics as if we scale the xy plane by a factor of 1

h
. This is observed
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in the slopes of the transformed surface −amx+bmy

mz
and − cmx+dmy

mz
where

the scaling of the height hmz is identical to modifying M using ( a
h
, b

h
, c

h
, d

h
).

Therefore, we always set the last entry of M to 1.

Figure 4.1: Valid (top row) and broken (bottom row) microsurface con-
figurations. Compression: a)→ b): Linear transformations parallel to the
macrosurface lead to new valid microsurfaces. Misalignment: a)→ c): Linear
transformations outside the tangential plane break the micro-macrosurface align-
ment, as some microfacets sink below the macrosurface (red). Shear: b)→ d):
Vertical shear parallel to the xy plane moves some microfacets into the negative
hemisphere (red).

A basic fact in computer graphics is that when an object is transformed using a
matrix M , the normal vectors to the surface must be transformed by the inverse
transpose of that matrix (M−1)T . This transformation is derived by enforcing
the transformed tangents to be orthogonal to the transformed normals, as they
should be by definition [Pharr et al., 2016]. Indeed this is directly verified

((M−1)T m)T (Mt) = mT (M−1M)t = mT t = 0, (4.2)

where t is a tangent to a microfacet with normal m.
Figure 4.2 demonstrates our method with non-uniform scaling and skew trans-

forms for shape-variant GTR. Note that the effect of stretching in Figure 4.2
(top right) is observed using the elliptical anisotropic formula for shape-invariant
distributions, however, in this shape-variant case, the linear stretching of the mi-
crosurface does not result in linear scaling in the roughness parameter. The effect
of a general 2D linear transform in Figure 4.2 (bottom left), beyond stretching,
has not been shown so far even for the simpler case of shape-invariant distribu-
tions. Furthermore, in Figure 4.2 (bottom right) we demonstrate our method for
a nonlinear 2D transformation. The Jacobian matrix of this transformation is a
local linear approximation that we use within our framework.
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Figure 4.2: Reflection from deformed microsurfaces. A demonstration of
how different 2D transformations (top right insets) of the microsurface affect the
reflection off a rough silver plate. Top left: The original unmodified surface with
shape-variant GTR distribution with tail γ = 1.7 and roughness α = 0.0121. A
10×10 grid covers the unit texture space to serve as a reference. Top right: The
microsurface is stretched 5 times horizontally. This makes the surface smoother in
that direction, so the highlight is compressed accordingly. Bottom left: A skew
transform M with (a, b, c, d) = (1, 0, 2, 1), see Equation (4.1). Bottom right:
An example of a nonlinear transformation: T (u, v) = (u, v + 2u5). The Jacobian
matrix JT (top right inset) is a local linear approximation of T and we apply it as
a local tangential transform in Equation (4.1). Notice that the prolonged shape
of the highlight to the right is due to more surface compression in that region.

4.3.2 Statistics of the transformed microsurface
To compute the statistics of the transformed microsurface we transform the argu-
ments of the initial valid microsurface statistics. All arguments are unit vectors
so normalization is required after the arguments are transformed.

Shadowing function G1M(v, m): When the vector v is transformed along
with the microsurface, the shadowing configuration does not change. Note that
the micro-normal m must be transformed with the inverse transpose of M

G1M

(︄
Mv

∥Mv∥
,

(M−1)T m
∥(M−1)T m∥

)︄
= G1(v, m), (4.3)

and therefore we can express the shadowing of the transformed microsurface G1M

in terms of G1 by inverting the matrices before the arguments and normalizing

G1M(v, m) = G1

(︄
M−1v

∥M−1v∥
,

MT m
∥MT m∥

)︄
. (4.4)

This is a generalization of the masking probability invariance [Heitz, 2014]. In-
deed, if an object is lit by a directional light and some parts of it are self-shadowed,
then a linear transformation applied both to the object and the light direction
will preserve the shadowed portions. This is because the linear transformations
preserve the projection along the transformed light direction.
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Microfacet distribution DM(m): The input normal m is transformed sim-
ilarly, but the resulting distribution is not normalized in general. To find the
proper normalization we investigate the nonlinear transformation N : H2 → H2

that applies a linear transformation to a normal and normalizes the result

u = N(m) = MT m
∥MT m∥

. (4.5)

N is a bijection because MT is invertible. The product of MT and the micro-
normal m = (mx, my, mz)T is MT m = (amx + bmy, cmx + dmy, mz)T and has
length

∥MT m∥ =
√︂

(amx + bmy)2 + (cmx + dmy)2 + m2
z. (4.6)

Note that the microfacet distribution is two-dimensional: the micro-normal m
can be represented by its first two components mx and my. The z component is
projected on the hemisphere mz =

√︂
1 − m2

x − m2
y.

To find a new distribution DM by transforming the argument of D with N we
need to normalize by the absolute value of the Jacobian determinant of N [Pharr
et al., 2016]

DM(m) = | det JN |D(u), (4.7)
where

det JN =
⃓⃓⃓⃓
⃓⃓ ∂ux

∂mx

∂ux

∂my
∂uy

∂mx

∂uy

∂my

⃓⃓⃓⃓
⃓⃓ = ∂ux

∂mx

∂uy

∂my

− ∂ux

∂my

∂uy

∂mx

. (4.8)

We proceed to compute the partial derivatives

∂ux

∂mx

=
m2

y(ad2 − bcd − a) + mxmy(acd + b − bc2) + a

∥MT m∥3 (4.9)

∂ux

∂my

= m2
x(bc2 − acd − b) + mxmy(bcd + a − ad2) + b

∥MT m∥3 (4.10)

∂uy

∂mx

=
m2

y(cb2 − abd − c) + mxmy(abc + d − da2) + c

∥MT m∥3 (4.11)

∂uy

∂my

= m2
x(da2 − abc − d) + mxmy(abd + c − cb2) + d

∥MT m∥3 . (4.12)

After simplification of Equation (4.8) we arrive at a concise result

det JN = ad − bc

∥MT m∥4 = det M

∥MT m∥4 . (4.13)

We use this result in Equation (4.7) to obtain the microfacet distribution of the
transformed microsurface

DM(m) = | det M |
∥MT m∥4 D(u). (4.14)

Additionally, we provide a Mathematica notebook with the derivation of
det JN in Appendix D.2, which can be evaluated and downloaded from Wolfram
Foundation’s Notebook Archive [Atanasov, 2022].
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Figure 4.3: Change of projected area. Illustration of the microsurface
projection onto the xy plane. Left: A square patch (black) on the macrosurface,
which has a differential area dA. The portion of the microsurface that is inside
this patch is colored green while the rest is colored red. Right: When this
microsurface is transformed using the matrix M , the portion of the microsurface
which was previously in dA is transformed accordingly (gray dashed region). The
transform M changes the area by a factor of | det M | = | det MT |.

We provide geometrical intuition behind Equation (4.14). The matrix M
transforms the xy plane and changes the projected microsurface area by a factor
of | det M | = | det MT |. The microfacet distribution measures the microsurface
differential area relative to the macrosurface differential area, see Figure 4.3.
Therefore, this factor compensates for the change in the projected area.

Furthermore, we observe in Figure 4.4 that

∥MT m∥ = cos θm

cos θu
. (4.15)

Therefore, in Equation (4.14) the factor 1
∥MT m∥4 serves the purpose to change

the Jacobian 1
cos3 θu

and the inverse projection 1
cos θu

in Equation (3.6), both with
respect to the transformed micro-normal u, to the Jacobian 1

cos3 θm
and the inverse

projection 1
cos θm

with respect to the original micro-normal m.
Equation (4.14) is similar to the Linearly Transformed Spherical Distributions

(LTSD) [Heitz et al., 2016a], however, their formula does not include the inverse
projections. Hence, our formulation that is given in Equations (4.14) and (4.1)
defines a different family of distributions which we name by analogy Linearly
Transformed Microfacet Distributions (LTMD).

Finally, we express the slope distribution of the transformed microsurface P22M

from the original slope distribution P22 by using, in that order, Equations (3.6),
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Figure 4.4: Geometry of micro-normal transformation. Let m (green)
be a micro-normal from the original microsurface. The transformed vector MT m
(blue, dashed) has the same z-component as the original vector m because the
transformation MT acts only on the xy plane. This vector is normalized and
labeled u = MT m

∥MT m∥ . From the two similar right triangles with hypotenuses MT m
and u we find that ∥MT m∥ = cos θm

cos θu
.

(4.14) and (4.15)

P22M

(︃
−mx

mz

, −my

mz

)︃
= DM(m) cos4 θm

= | det M |
∥MT m∥4 D(u) cos4 θm

= | det M | cos4 θu

cos4 θm
D(u) cos4 θm

= | det M |D(u) cos4 θu

= | det M |P22

(︃
−ux

uz

, −uy

uz

)︃
.

(4.16)

Consequently, Equation (4.14) can be also derived from the slope distribution.
Sampling micro-normals: to implement practical microfacet materials we

need sampling equations for the microfacet distribution. In our work, we assume
that the original microsurface before the transformation has sampling equations
at least for D(m)(n · m). Based on these, a micro-normal u′ is sampled

u′ ∝ D(m)(n · m). (4.17)
Then it is transformed to the modified microsurface using the inverse transpose
of M

m′ = (M−1)T u′

∥(M−1)T u′∥
∝ DM(m)(n · m). (4.18)

If the original microfacet distribution has sampling equations for the distri-
bution of visible normals, see Equation (3.10), then we can use them to sample
the distribution of visible normals of the transformed surface

DvM(m) = DM(m)G1M(v, m)(v · m)
v · n

. (4.19)

To do that for a given direction v we first transform it to the space of the original
surface

w = M−1v
∥M−1v∥

, (4.20)
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generate a visible normal u′
w using the available equations and then transform it

to the modified surface using the inverse transpose

m′
v = (M−1)T u′

w
∥(M−1)T u′

w∥
. (4.21)

Sampling micro-normals and visible micro-normals is illustrated in Figure 4.5.

4.3.3 Numerical validation
In addition to the proof presented in this section, we also validated our technique
numerically. Specifically, we applied random transformations M on a large variety
of microsurfaces with random parameters and verified that:

• The normalization constraint in Equation (3.5) is fulfilled for all trans-
formed microfacet distributions DM .

• The shadowing constraint in Equation (3.9) with random directions v ∈ H2

is fulfilled for all transformed shadowing functions G1M .

The list of tested distributions include GTR [Burley, 2012], anisotropic Beckmann
and GGX [Heitz, 2014], STD [Ribardière et al., 2017], Phong [Walter et al., 2007],
Sheen [Estevez and Kulla, 2017], Discrete GGX distribution [Jakob et al., 2014,
Atanasov and Koylazov, 2016]. The source code for this numerical validation is
available on the project page (see Attachments).

4.3.4 Equivalence with classical anisotropy for shape-
invariant distributions

Suppose that we have a shape-invariant isotropic distribution D(m) with rough-
ness α, defined by Equation (3.16). To construct the traditional anisotropic form
we replace α with two roughness values αx and αy and use Equation (3.17). In
our framework, this is equivalent to applying the diagonal transformation matrix

M =

⎛⎜⎝
α

αx
0 0

0 α
αy

0
0 0 1

⎞⎟⎠ . (4.22)

Then substituting Equation (3.16) in Equation (4.14)

DM(m) = | det M |
∥MT m∥4

1
cos4 θu

1
α2 f

(︄
tan θu

α

)︄

=
α2

αxαy

cos4 θm
cos4 θu

1
cos4 θu

1
α2 f

⎛⎝ 1
α

⌜⃓⃓⎷u2
x + u2

y

u2
z

⎞⎠
= 1

cos4 θmαxαy

f

⎛⎝ 1
α

⌜⃓⃓⎷α2m2
x

α2
xm2

z

+
α2m2

y

α2
ym2

z

⎞⎠
= 1

cos4 θmαxαy

f

⎛⎝ sin θm

cos θm

⌜⃓⃓⎷cos2 ϕm

α2
x

+ sin2 ϕm

α2
y

⎞⎠

(4.23)
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a) Sampling micro-normals

b) Sampling visible micro-normals

Figure 4.5: Sampling the transformed NDF and VNDF. An illustration
of how to sample micro-normals on the transformed surface using the sampling
equations of the original surface. The original surface is transformed using the
matrix M . a) Sampling micro-normals: Sample a micro-normal u′ on the
original surface and move it to the transformed surface using the inverse transpose
of M . b) Sampling visible micro-normals: We want to sample a micro-
normal on the transformed surface which is visible from direction v. First, we
transform the direction v to the original surface using the inverse of M . Then
we take the resulting direction w, along which we sample a visible micro-normal
u′

w. Finally, we move this micro-normal to the original surface using the inverse
transpose of M . The result m′

v is visible from direction v and it is distributed
according to the distribution of visible normals of the transformed surface DvM

from Equation (4.19).

44



we get to Equation (3.17) when we first convert tan θu to cartesian coordinates,
express u in terms of m from Equation (4.5) and convert back to spherical coor-
dinates, see Appendix B.

An important point is that for shape-variant distributions the scaling of the
microsurface is not equivalent to the scaling of the roughness parameter. However,
within our framework, scaling operations can always be applied to the microsur-
face, while formulas for scaling the roughness parameter do not always exist.

4.3.5 Discussion
In summary, for a given microsurface (D, G1) and a linear transformation M given
in Equation (4.1), our technique defines the transformed microsurface (DM , G1M)
using Equations (4.14) and (4.4). It is noteworthy that in our derivation we do
not make any assumptions on the input microsurface. Therefore, the input dis-
tribution can be both shape-invariant and shape-variant, as well as isotropic or
anisotropic. This means that it can be used as a black box - it can be implemented
in a base class and can be applied regardless of the underlying microfacet distri-
bution, including stochastic [Jakob et al., 2014] or data-driven [Ashikmin et al.,
2000, Yan et al., 2014, Ribardière et al., 2019] approaches. Furthermore, the so-
lution is in closed form and its performance depends mainly on the expressions
for D and G1.

4.4 Results
We demonstrate our technique using the standard microfacet BRDF for specu-
lar microfacets (Equation (3.24)) with an appropriate Fresnel term for dielectrics
and conductors. All materials use the GTR distribution with different tail ex-
ponents. Additionally, we provide a video demonstration of our technique (see
Attachments).

Dimov [2015] derived an accurate Smith shadowing term for GTR tails γ ∈
[0, 4] that is exact at the integers, which we provide in Appendix C.3.

Due to the lack of a formula for sampling the distribution of visible GTR nor-
mals, the sampling efficiency deteriorates with roughness because of the increased
shadowing. We propose a sampling strategy to improve the sampling of rough
GTR materials in Appendix C.4.

4.4.1 Deforming objects
In Figure 4.6, we apply our framework in a scene with deforming objects. We
track the deformations using a tension texture, based on which we derive the
local linear transformations and render the corresponding anisotropic microsur-
face. The purpose of the tension texture is to compute a 2D tension matrix that
contains the local surface transformation relative to a predefined “rest” state. To
compute this, we need a stable local space for each shading point that is consis-
tent between the rest state and the current deformed state of the mesh. Then,
at each shading point, we transform the edges of the currently shaded triangle
to this local space both for the deformed mesh and for the “rest” mesh. Finally,
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Figure 4.6: Reflection from deforming objects — comparison between
baseline isotropic model vs. our model. Decorative objects made from an
elastic dielectric material with microfacet BRDFs. All birds and all dogs have
materials with shape-variant GTR distributions with roughness values α = 0.25
and α = 0.16, and tail exponents γ = 2.2 and γ = 1.4, respectively. We demon-
strate how the object’s reflections change due to deformation. When the object
is stretched, the microsurface becomes smoother, and therefore the reflection
highlight becomes sharper. When the microsurface is compressed its reflection
spreads out. Top row: A standard isotropic material. Bottom row: Our
method tracks the deformation via a tension texture and computes the corre-
sponding anisotropic reflection. The first and last objects in the composition
are at a “rest” state while all objects in between are deformed. Middle row:
Alternating zoomed-in regions of isotropic (top row) and deformed anisotropic
(bottom row). A helpful analogy to understand the highlight changes that occur
with our model is a rubber balloon: as it gets inflated (stretched out), it becomes
smoother and shinier, see Figure 1.5. Our model can replicate this behavior even
for anisotropic stretching. (The bird and the dog models are part of Chaos Cos-
mos content collection [2023a].)

we compute a transformation in local space that converts the “rest” edges to the
current deformed edges.

We use the UV mapping coordinates assigned to the surface as the stable
local space. For each shading point, we can compute an orthonormal matrix that
converts from world space to the local UVW space for the deformed mesh, and
another orthonormal matrix that converts from world space to the local UVW
space for the “rest” mesh. Using these two matrices, we can rotate the edges of the
currently shaded triangle in the deformed mesh and the edges of the same triangle
in the “rest” mesh to local space. Note that in general the local UVW spaces are
not orthonormal [Pharr et al., 2016] but we force them to be by preserving the
U direction and then orthogonalizing and normalizing the matrices. In this way,
we retain the shape of the triangles and only align them with the U direction in
the tangent plane. Let r1 and r2 be the transformed edges in the local space of
the “rest” triangle, and d1 and d2 be the transformed edges in the local space
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of the deformed triangle. These edges are 2-dimensional because we are only
interested in the projection to the tangent UV space. Then the 2 × 2 tension
matrix is T = DR−1, where R = (r1 r2) and D = (d1 d2), see Figure 4.7. For

Figure 4.7: Tracking mesh deformation. A triangle of the “rest” mesh
(blue) and its corresponding triangle in the deformed mesh (red). The edges of
these triangles are rotated to UV space (yellow): the edges of the “rest” triangle
r1 and r2 form the matrix R that converts to the space of the “rest” triangle, and
the edges of the deformed triangle d1 and d2 form the matrix D that converts
to the space of the deformed triangle. Therefore, the matrix T = DR−1 encodes
the local tension of the deformation.

shading, we embed the tension matrix in the matrix M , see Equation (4.1). The
tension texture is applied to the deformed object and keeps a reference to the
“rest” object. During texture evaluation, the matrices R and D are computed for
the shaded triangle and the tension matrix T is returned.

This method computes per-face tension matrices and requires relatively fine
geometry tessellation to achieve smooth results. Another option is to pre-process
the “rest” mesh and the deformed mesh and to store a weighted average of the
face tension matrices in the vertices. In this case, vertex tension matrices are
interpolated along the triangles to facilitate continuous shading.

4.4.2 Stretch anisotropy
We have established that traditional anisotropy can be reproduced as a special
case of our framework by using a non-uniform scaling matrix, see Equation (4.22).
For our stretch anisotropy, we use a convenient scaling transform that is defined

47



by a single scaling factor s ∈ (−1, 1):

Ms =

⎧⎪⎨⎪⎩
diag

(︂
1

1−s
, 1 − s, 1

)︂
, s ∈ [0, 1)

diag
(︂
1 + s, 1

1+s
, 1
)︂

, s ∈ (−1, 0)
. (4.24)

For positive values of s it stretches the x-coordinate and shrinks the y-coordinate
while for negative values of s, it does the opposite. Moreover,

det Ms = 1, MT
s = Ms, M0 = I and M−1

s = M−s. (4.25)

Note that a 2D rotation can be concatenated with the matrix Ms, but we choose
to keep the matrix simple and perform anisotropy rotation via the shading frame
rotation.

We showcase our technique in Figure 4.8. The vases have brushed aluminum
material, and all of them have anisotropic shape-variant distributions that do not
have analytic equations for elliptical anisotropy, given in Equation (3.15).

4.5 Conclusion
We propose a change in how one goes about the construction of anisotropic mi-
crofacet distributions. Performing these derivations based on the transformations
that need to be done to the micro-geometry, instead of based on the directional
variation of surface roughness, offers desirable advantages: our approach works
with all planar linear transformations (including skew), and with all slope dis-
tribution functions, regardless of whether they are shape-invariant, or not. This
offers artists a wider range of creative control, both in terms of the highlight
shapes they can create, and the types of surfaces that can be made anisotropic.
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Figure 4.8: Brushed aluminum vases rendered with (anisotropic)
GTR distribution. Columns from left to right have roughness values α =
0.01, 0.04, 0.16. The top row has the Berry distribution γ = 1 and the bottom
row has a tail exponent γ = 3.5. All materials have shape-variant anisotropic
distributions with scaling factor s = 5

2 , see Equation (4.24). (The vase model is
part of Chaos Cosmos content collection [2023a].)
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Chapter 5

Multiscale Microfacet Model

5.1 Introduction
In this chapter, we investigate the problem of efficient filtering of the combined
BRDF, which we defined in Chapter 3, Equation (3.27). Filtering techniques like
MIP mapping [Williams, 1983] and summed-area tables (SATs) [Crow, 1984] are
available for diffuse color textures, but they do not work for normal maps due
to the nonlinearity of the reflection operator [Han et al., 2007]. We show that
the normal map filtering problem can be solved using a generalized summed-area
table known as integral histogram (IH) [Porikli, 2005].

Here we develop an accurate and efficient filtering algorithm for Beckmann
flake roughness that can be implemented using IH. However, the memory re-
quirements of standard IH implementations make them impractical to use for
non-trivial scenes with large and numerous assets. Therefore, we introduce a new
optimized form of IH, the Inverse Bin Map (IBM), which is very fast to build,
and has modest memory requirements, comparable with MIP maps and SATs.

5.2 Related work
We start with a brief discussion of Integral histograms (IH). Then we review the
diverse palette of techniques for rendering reflection from microstructures and
place focus on normal-map-based approaches for rendering glints.

5.2.1 Integral histograms (IH)
Integral histograms (IH) were first introduced in the field of computer vision
[Porikli, 2005] and became a fundamental tool for image analysis and processing
with numerous applications [Ballester-Ripoll and Pajarola, 2019]. Due to their
high memory requirements, WaveletSAT [Lee and Shen, 2013] was developed,
offering lossless compression of IHs at the cost of reducing the query complex-
ity from constant to logarithmic. Compression rates are commonly around 1:8
[Ballester-Ripoll and Pajarola, 2019].

Recently, Ballester-Ripoll and Pajarola [2019] proposed a lossy compression
scheme for IHs based on tensor decomposition with higher compression rates and
extended IH queries for arbitrary regions: however, the price for this is slower
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retrieval time. In principle, our algorithm or other variations based on the binned
BRDF described in this chapter can be implemented with any of these three
data structures: classical IH, WaveletSAT and the tensor decomposition scheme.
Due to the high number of bins required by our solution, and potentially high-
resolution normal map, the memory requirements of the first two are too high
for our practical application. The method of Ballester-Ripoll and Pajarola [2019]
provides significantly more flexibility in terms of supported query regions, but it
is not viable for our problem, due to its pre-processing time which can range from
a few minutes up to several hours.

5.2.2 Explicit microstructure modeling
Günther et al. [2005] simulated metallic car paint glitter based on non-filtered
procedurally generated normal maps. Weidlich and Wilkie [2008] used a simi-
lar approach to render the glitter in aventurescent gems (we provide microscope
photographs of a goldstone in Figure A.2). We also employ procedurally gener-
ated normal maps to render car paint and demonstrate that filtering is crucial to
resolve its inherent sharp glints, see our video in Attachments.

Rump et al. [2008] rendered car paint using measured data. Ershov et al.
[1999, 2001] simulated metallic car paint using a statistical model: the main
drawback of their approach is that the results are not consistent in animation.
Jakob et al. [2014] developed a model based on microfacet theory which uses
a stochastic process to compute temporally consistent sparkling. This led to
a more practical version of the same underlying model which features optimal
importance sampling strategy [Atanasov and Koylazov, 2016]. These stochastic
methods can be used to render metallic flakes, but flakes’ roughness and sizes, and
the transparency of the flake layer cannot easily be included in the model. Zirr and
Kaplanyan [2016] presented a real-time approach for rendering sparkling flakes
and parallel scratches, however, their method is limited to Beckmann distribution.
Later, Chermain et al. [2020] developed a real-time approach to render glitter that
additionally converges to the microfacet BRDF for high flake densities.

Methods specialized in the efficient rendering of scratches have been recently
developed [Raymond et al., 2016, Werner et al., 2017, Velinov et al., 2018].
Kuznetsov et al. [2019] simulate materials with stochastic nature like flakes and
scratches with a pre-trained neural network. All these approaches are limited to
specific spatial details and thus have limited expressiveness.

5.2.3 Normal-mapped microstructure
Approaches based on normal maps are more flexible since they can represent
arbitrary spatial and directional features. Therefore, efficient implementation
of normal map filtering is a very important problem for production rendering
systems.

Approaches that approximate the distribution of normals inside the pixel with
a single lobe [Toksvig, 2005, Olano and Baker, 2010, Dupuy et al., 2013, Hery
et al., 2014] offer artifact-free solutions and are compatible with real-time graph-
ics, but high-frequency detail like sharp sparkling is lost [Yan et al., 2014]. Both
Han et al. [2007] and Xu et al. [2017] investigated the combined effect of an
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isotropic BRDF and a normal map and provided filtering techniques that ap-
proximate the distribution of normals by a small number of lobes.

Notably, Wu et al. [2019] developed a method for prefiltering displacement-
mapped surfaces with isotropic BRDFs that accounts for accurate shadowing-
masking and interreflections. The method does not support high directional res-
olutions to render glints from specular surfaces.

A family of accurate approaches for rendering specular normal maps inherits
the mathematical model of Yan et al. [2014]. This model represents the NDF
as a convolution of Gaussian footprints around the shading points and Gaus-
sian intrinsic roughness lobes around the normal map directions. This definition
leads to 4D texture-direction Gaussian queries to evaluate the NDF. Subsequent
approaches that are based on the same model improve performance [Yan et al.,
2016], compute antialiasing for global illumination effects [Belcour et al., 2017],
derive accurate shadowing-masking factors using approximation with anisotropic
Beckmann lobes [Chermain et al., 2018], and introduce wave effects [Yan et al.,
2018]. All of them have high memory requirements and are based on expensive
4D position-normal queries.

Zhu et al. [2019] developed a method based on the method of Yan et al. [2016]
which offers memory reduction for the special case of normal maps with a block
structure. Wang et al. [2020] generate an infinite surface from a small example
map via by-example blending. Its memory usage is 35MB for a 5122 map.

Recently, Deng et al. [2022] presented a normal map prefiltering method that
offers constant storage and constant queries. This is achieved by enumerating all
NDFs and compressing them with a tensor rank decomposition. They report a
dramatic performance improvement compared to Wang et al. [2020] and a moder-
ate improvement compared to our method [Atanasov et al., 2021]. While Deng’s
method benefits from constant queries, our method requires a kd-tree traversal
for each query due to our choice to trade some performance for memory efficiency
by using the IBM, instead of a classical IH. On the other hand, enumerating and
compressing all NDFs is viable only for small tiles that cannot faithfully repre-
sent all normal map features. Furthermore, Deng’s method has a lengthy pre-
computation for NDF generation and compression. Also, their method is based
on Wang’s method [2020] and thus it inherits Wang’s repetitive artifacts [Deng
et al., 2022]. Importantly, all of these three methods based on map tiles [Zhu
et al., 2019, Wang et al., 2020, Deng et al., 2022] are intended to render textures
with predominantly stationary structures, and without macroscopic features. In
the survey of Zhu et al. [2022], it is evident that both Zhu et al. [2019] and Wang
et al. [2020] methods visually diverge from the reference images.

Gamboa et al. [2018] explored the combined filtering of specular normal maps
and environment illumination maps. The additional prefiltering of the incident
illumination by projecting the environment to a spherical harmonics (SH) basis
is a key advantage of their technique. The prefiltering of the SH coefficients is
achieved by a spherical histogram, which is an integral histogram that is con-
structed over spherical bins. This aspect is similar to our solution, although the
use of classical IH attributes to the large memory requirements of the method
(2.3-2.7GB for 2K maps). In comparison, our proposed method usually uses less
than 40MB (for 2K maps), which is at least 60 times less memory. Apart from
very high memory requirements for a moderate number of directional bins, the
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method requires at least minutes of pre-computation time, which is needed for SH
projections of the environment light coefficients. Furthermore, the SH coefficients
of area light sources cannot be pre-computed. In theory, they can be calculated
at run-time [Wang and Ramamoorthi, 2018], however, Gamboa et al. [2018] do
not showcase their method with area lights.

The specular manifold sampling (SMS) method was demonstrated to render
glints with modest memory requirements and with similar convergence rates [Zelt-
ner et al., 2020]. The method also has a brief pre-computation: only a LEAN
map [Olano and Baker, 2010] is built. However, SMS does not employ an ac-
celeration or prefiltering data structure to find the glints in the pixel footprint,
and instead relies on stochastic sampling. This strategy becomes impractical for
an increasing number of glints in the footprint [Zeltner, 2021]. In Figure 5.7 we
show that SMS fails to render the aggregated subpixel glints when there are a
large number of them.

5.2.4 Classification of normal map filtering techniques
Given such a large body of previous work, it is necessary to position our method
in the landscape of existing techniques. We restrict our discussion to normal map
based techniques since normal maps are widely accepted in the industry and they
offer full control over the surface’s spatial and directional features (notice that
we exclude the tile-based techniques that do not fully capture these features [Zhu
et al., 2019, Wang et al., 2020, Deng et al., 2022]). These techniques can be
classified into two main categories:

• Real-time prefiltering. These are all filtering techniques that are used
for the antialiasing of normal maps [Han et al., 2007, Olano and Baker,
2010, Dupuy et al., 2013, Hery et al., 2014, Xu et al., 2017]. They allow real-
time performance due to prefiltering based on MIP mapping and consume
a low to moderate amount of memory for a small number of MIP maps.
They also expose roughness control which is usually in terms of Beckmann
roughness. To the best of our knowledge, no filtering technique for normal
maps with GGX BRDF has been demonstrated. The main limitation of
these techniques is that they are not capable of rendering sharp subpixel
glints.
Bruneton and Neyret [2012] formulate the nonlinear prefiltering problem,
offer a classification of the main approaches to tackle it and survey the early
techniques.

• Offline specular filtering. These are offline rendering techniques for
rendering specular normal maps, which enable the accurate rendering of
glints [Yan et al., 2014, 2016, Gamboa et al., 2018, Zeltner et al., 2020].
All of these methods, except for SMS, have very high memory requirements
and heavy pre-computation. None of them offers roughness control (in
Section 5.5.2 we show that Yan’s intrinsic roughness is not designed to
control the appearance).
Zhu et al. [2022] survey the recent techniques for rendering glints, mainly
focusing on the convolutional framework of Yan et al. [2014]. However, they
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also offer performance comparisons with our method [Atanasov et al., 2021].
It is noteworthy, that for the same roughness, our method produces sharper
results compared to the convolutional approaches. The reason for this is
that convolutional approaches use Gaussian footprint (see Figure 5.5) which
results in an additional blur, thus improving their performance. Also, the
survey omits the important aspects of performance at different scales and
pre-computation times. We detail these distinctions in Section 5.5.

In general, our method belongs to the second category since it is an offline
technique for the accurate rendering of glints. However, it is also bridging the gap
between the two categories, because our method exposes the Beckmann roughness
parameter, has very low memory usage and implements prefiltering. All of these
properties are of great importance for practical applications, as we discussed in
Section 5.5.1.

5.3 Normal map filtering
In this section, we analyze the challenging problem of accurate and fast filtering
of normal maps. The main notation for this chapter is given in Table 5.1.

A Finite region in texture space around x
fα

A Filtered BRDF over A
wk Texel weight |A ∩ Tk|/|A|
Hj Bin on the hemisphere with index j
B Total number of bins
Wj Bin weight ∑︁k|tk∈Hj

wk

σ Standard deviation of Beckmann roughness
(︂
α =

√
2σ
)︂

B0 Number of bins within 3σ of a Beckmann distribution
I 2D data array
SATI Summed-area table of I
β, β−1 Binning strategy and its inverse
IHI,β Integral histogram of I with binning β
B, B−1 Bin Map and Inverse Bin Map
I Index storing the size and the offset of bin’s texel position list
F Forest of 2D kd-trees for the bins with large texel position lists
L Maximum number of elements for each leaf in F
σr Yan’s intrinsic roughness [2014, 2016]

Table 5.1: Notation for normal map filtering.

5.3.1 Filtered BRDF
We define the filtered BRDF fα

A by averaging the spatially varying combined
BRDF fα

x over a finite texture space region A around the shading point x:

fα
A(i, o, n) = 1

|A|

∫︂
A

fα
x (i, o, n)dx. (5.1)
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Note that on both sides of the equation, n is the normal at the position x. Like all
previous filtering techniques, we rely on the assumption of a locally flat geometry.
In practice, this is a source of bias, which is sufficiently small when the surface
normal n does not change considerably over the region A. The filtered BRDF can
be defined more generally using an arbitrary filter kernel, but we use the constant
“box” filter over the region A because this will lead to an efficient implementation
later.

Using Equation (3.27) for fα
x we expand fα

A by substituting the microfacet
BRDF fα and distributing the integration over the normal map texels Tk

fα
A(i, o, n) = F (i, h)

N∑︂
k=1

C(i, o, tk, n)wk, (5.2)

where
wk = |A ∩ Tk|

|A|
. (5.3)

Texel weights wk sum up to 1 and they are non-zero if the texels Tk cover the
filtering region A.

Therefore, the evaluation of this filtered BRDF requires a loop over all normal
map texels that happen to be fully or partially contained in the filtering region
A. For a small number of texels in A, this formulation is the most efficient way
to compute the filtered BRDF, but as A grows to cover more texels, this formula
becomes impractical. For such scenarios, we derive an alternative formulation for
fα

A.

5.3.2 Binned BRDF
We partition the hemisphere H2 into directional bins

Hj ⊂ H2 (5.4)
such that

Hi ∩ Hj = ∅, ∀i ̸= j, (5.5)
∪B

j=1Hj = H2, (5.6)
where B is the total number of bins. Each normal from the map belongs to a bin
tk ∈ Hj, and therefore for a sufficiently fine binning all normals inside a bin are
nearly identical. This allows us to group the terms in fα

A by bin index j

fα
A(i, o, n) ≈ F (i, h)

B∑︂
j=1

C(i, o, bj, n)Wj, (5.7)

where bj ∈ Hj is a normal in bin j and the bin weights are
Wj =

∑︂
k|tk∈Hj

wk. (5.8)

Consequently, the bin weights Wj also sum up to one like the texel weights wk.
The bin weight represents what portion of the texture space area in the region A
has normal in a given bin.

Therefore, if we have an efficient way of computing the bin weights Wj, we can
use Equation (5.7) to compute the binned approximation of the filtered BRDF.
This can be achieved using the integral histogram data structure, which we intro-
duce next.
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5.3.3 Integral histograms in 2D
For our exposition we describe 2D IHs, however, they are directly generalized to
higher dimensions. We start by defining the related concept of a summed-area
table (SAT) [Crow, 1984]. It is a cumulative table of a 2D array used for fast
integral look-ups in arbitrary axis-aligned regions. Given a 2D array I(i, j) ∈ R,
the SAT of I is again a 2D array of the same size

SATI(i, j) =
i∑︂

k=0

j∑︂
l=0

I(k, l). (5.9)

Given an arbitrary axis-aligned region i0 ≤ i ≤ i1, j0 ≤ j ≤ j1 in I, the SAT is
used to efficiently look up the sum of I over it

SATI(i1, j1) − SATI(i1, j0) − SATI(i0, j1) + SATI(i0, j0). (5.10)

Note that this is a discrete application of the Fundamental Theorem of Calculus
in 2D.

Integral Histograms (IHs) are a natural extension of SATs. For a 2D data
set with a specified binning strategy, the idea is to build SATs on the indicator
functions of the bins [Ballester-Ripoll and Pajarola, 2019]. Specifically, for a data
set I with binning β the indicator functions are

Ib(i, j) =
⎧⎨⎩1, β(I(i, j)) = b

0, otherwise
, 0 ≤ b < B (5.11)

where B is the number of bins. The IH of the data set is

IHI,β = {SATI0 , · · · , SATIB−1} (5.12)

Consequently, the histogram of any axis-aligned subregion of I can be extracted
by evaluating Equation (5.10) for each bin.

In their original form, IHs are ideal due to their fast look-ups, but they have
three considerable disadvantages:

• High memory requirements: the higher the number of bins the sparser
the bin indicator functions are. This redundancy increases the memory
footprint proportionally to the number of bins. Therefore, it is not unusual
for IHs to be unviable due to them exceeding the available memory for a
given task [Ballester-Ripoll and Pajarola, 2019].

• Slow construction: the construction speed can be too slow for some ap-
plications, especially for a large number of bins.

• Only axis-aligned look-ups: traditional IHs with fast look-ups are re-
stricted to axis-aligned rectangle regions. In turn, this would imply that we
would have to use axis-aligned pixel footprints, which could be undesirable.

Note that if we build an IH of the normal map with a given binning we can
compute the bin weights Wj in Equation (5.7) efficiently for any axis-aligned
region in texture space A⊥, that additionally do not split texels.
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5.4 Our solution
There are practical concerns regarding the direct use of Equation (5.7) with an
IH. Although a single bin can be queried cheaply using Equation (5.10), a large
number of bins can lead to significant overhead. The other practical challenges
stem from the issues of the classical IHs, which are discussed in Section 5.3.3. In
this section, we address these issues and describe our filtering algorithm.

5.4.1 Beckmann flake roughness
First, we specify the microfacet BRDF fα. We use the Beckmann microfacet
BRDF with Smith shadowing-masking function. The corresponding equations
can be found in Appendix C, Equations (C.1) and (C.2). The Beckmann micro-
facet distribution Dα is a Gaussian distribution of slopes with standard deviation
σ = α√

2 [Heitz, 2014]. The tails of Dα are exponentially bounded, and therefore,
95% of its microfacets are within 2σ and nearly all of them are contained within
3σ. We selected the Beckmann distribution with this property in mind because
the bin weights Wj in Equation 5.7 do not need to be computed for all bins out-
side of this region. Indeed, these terms of the sum will be multiplied by the tails
of Dα and will have a negligible contribution to the BRDF value.

Given a threshold 3σ where we cut the tails, the truncated part of Dα lies in a
cone of angle θ0 = arctan(3σ) with radius sin(θ0). Subsequently, we can evaluate
Equation (5.7) by only considering a smaller number of bins B0 that sufficiently
cover this cone:

fα
A(i, o, n) ≈ F (i, h)

B0∑︂
j=1

C(i, o, bj, n)Wj. (5.13)

5.4.2 Binning strategy
We partition the bounding square [−1, 1]2 of the unit disk D uniformly into b × b
bins, each with index j ∈ [0, b2 − 1], see Figure 5.1 (left). Hence, each normal on
the unit disk belongs to a single bin. The bins that do not overlap with D are
empty (B ≤ b2). Then we can efficiently implement the binning function β and
its inverse:

• β(m) = j: Given a normal m ∈ H2, we can find the index of the bin j
which contains it: j = ⌊b(0.5mx + 0.5)⌋ + b⌊b(0.5my + 0.5)⌋.

• β−1(j, ξ0, ξ1) = m: We can sample a random normal inside a given bin j:
(mx, my) = (2(⌊j%b⌋ + ξ0)/b − 1, 2(⌊j/b⌋ + ξ1)/b − 1), where ξ0 and ξ1 are
uniform random variables.

Our key idea is to choose the bin resolution b depending on the flake roughness
α in such a way that the number of contributing bins B0 is a small constant. Thus,
surfaces with lower roughness will have higher bin resolutions. This can be done
in several ways, but we found that the following approach works well in practice.
We take a square neighborhood of bins centered at the bin which contains the
half vector by taking two bins in each direction, a total of 25 bins.

Let the 3σ cone of radius sin(θ0) is centered around the half vector (0, 0, 1)T .
Our goal is to choose b so that the neighborhood of bins sufficiently covers this
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Figure 5.1: Bins and their corresponding texel positions. Left: The unit
disk, which is partitioned into 5 × 5 bins. The half vector h is inside the bin Hj.
Right: The pixel footprint A in the texture space. All 5 texels corresponding
to the j-th bin B−1(j) = {kj1, . . . , kj5} are drawn in red. Three of them overlap
with A, thus contributing to the bin weight Wj.

cone. We set b in such a way that the ratio between the 25 neighborhood bins
and the total number of b2 bins approximates the ratio between the area of the
cone’s bounding square 4 sin2(θ0) and the square of area 4 which bounds the unit
disk (i.e., [−1, 1]2):

b =
⌊︄

5
sin(θ0)

⌋︄
. (5.14)

Lastly, we omit the four corners of this square neighborhood, because they are
mostly outside the 3σ cone and end up with B0 = 21, see Figure 5.2.

5.4.3 Evaluation and sampling
Using the binning β we transform the input normal map into a bin map B, which
is an integer map of bin indices corresponding to normal map elements:

B(k) = β(tk) = j, tk ∈ Hj. (5.15)

See an illustration of the bin map in Figure 5.3. Once the bin map is computed
we do not store the original normal map because all necessary components of our
algorithm are based on B.

We evaluate the BRDF as follows:

• Find the bin of the half vector j = β(h).

• Find all nearby B0 − 1 bins that belong to the neighbourhood of j, see
Figure 5.2.

• Compute all B0 bin weights Wj of these bins.

• For all nonzero bin weights, compute the texel contribution function C at
bin centers and accumulate the result, see Equation (5.13).
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Figure 5.2: Bin size vs. Beckmann flake roughness. Shown is the unit disk
with entries for two half vectors (black dots), and their corresponding 3σ cones
(blue). Left: bin resolution 12 × 12 for Beckmann flake roughness α = 0.2 and
Right: 34 × 34 for α = 0.07. See Table 5.5 for the memory usage of our method
for different bin resolutions.

• Apply Fresnel term for conductors or dielectrics.

To use this BRDF in the multiple importance sampling (MIS) framework
[Veach and Guibas, 1995], we also provide a sampling technique for this BRDF:

• Sample a random point in A.

• Find the corresponding texel Tk.

• Look up its bin index from the bin map j = B(k).

• Compute the center normal of this bin bj = β−1(j, 0.5, 0.5).

• Generate a random normal with Beckmann distribution m ∝ Dα centered
at bj.

• Compute the BRDF direction by reflecting the outgoing direction o from
the generated micro-normal: i = reflect(o, m).

The corresponding probability is

p(i) = 1
4(i · h)

B0∑︂
j=1

Dα(h, bj)Wj. (5.16)

The rest of this section describes how we compute the bin weights Wj.

5.4.4 Inverse Bin Map (IBM)
We developed a novel variant of IH data structures that we call Inverse Bin
Map. Its memory footprint and construction time are practically independent
of the number of bins. Additionally, it natively supports arbitrary-shaped query
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Figure 5.3: Data structures for sampling and evaluation. Left: The
original normal map. Middle: The bin map is a map of bin indices that is
created from the original normal map. The normal map is quantized using a
binning strategy, see Equation (5.15). As a result, normals that are pointing in
similar directions are assigned the same bin index. Right: The inverse bin map
is built from the bin map, and it consists of concatenated lists of texel positions.
Each such list contains all texel positions in the bin map which correspond to a
given bin. For example, all texels with normals that are inside the bin with index
“2” (cyan) are found in positions “0”, “2” and “8” in the bin map.

regions. These critical advantages come at the price of raising the look-up cost
to logarithmic, as with WaveletSAT.

A key observation is that in our context sampling and evaluation are inverse
operations. Sampling finds the incoming light direction i which is reflected from
a generated microsurface normal, while the evaluation finds all contributing mi-
crosurface normals given the direction i. As usual, the inverse problem is the
harder of the two. We notice that sampling based on the bin map B is a very
efficient operation, while the evaluation would require looping over all bin map
texels inside the filtering region A. Potentially, this is inefficient since the number
of texels could be arbitrarily large.

Therefore, we designed a data structure that can act as the inverse of the bin
map, to make the reverse operation efficient. Since the bin map B maps a texel
position to a bin index, we define the inverse bin map B−1 as the mapping from
a bin index to the list of texel positions of all the texels with the given bin index:

B−1(j) = {kj1, kj2, · · · , kjn}, B(kji) = j, i = 1..n, (5.17)

where n is the total number of normal map normals in bin j. All lists of positions
B−1(j) are concatenated in a single array of size N (note that |B−1| = |B|).
Essentially, a map of all normal map texel positions that are grouped by bin
index, see Figure 5.3.

We use B−1 to compute all bin weights Wj by selecting the subset of texels in
B−1(j) that overlap with A: in Figure 5.1, only texels {kj2, kj4, kj5} overlap with
A.

Note that in a typical normal map for some bins the list of texels |B−1(j)| is
too large for an efficient linear traversal. Therefore, we construct a 2D hierarchy
for each bin j such that |B−1(j)| > L, where L is a fixed leaf size (L = 10 is our
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implementation).
Two additional data structures accompany B−1:

• Index I: Given a bin index, it returns the size of B−1(j) and an offset.
For |B−1(j)| <= L the offset is the start of the list B−1(j) in B−1. This
list is a single leaf and is queried linearly: all texels k ∈ B−1(j) are tested
directly for intersection with A and wk are computed, see Equation (5.3).
If |B−1(j)| > L the offset is the start of the 2D hierarchy in the forest F . I
is implemented as an array of size B.

• Forest F : A forest of 2D kd-trees, one for each bin j such that |B−1(j)| > L.
During the construction of the forest, we follow several conventions. First,
we always split the larger side of the node in the middle, so that the split
dimension and split position do not need to be stored. Second, we sort each
texel list so that for each tree node its texels are consecutive in B−1. This
serves two purposes for the traversal: cache coherence is improved, and the
size of each node is implicitly propagated as offsets to the node start and
end in B−1. This property provides prefiltering data, so if a node is entirely
inside the filtering region A, its total area is immediately returned, see
Figure 5.4. Lastly, to achieve memory efficiency and to favor serialization,
we pack the whole forest topology in a single integer list.

Usually, IH is used to query the whole histogram with all B bins, or as in
our case sub-histogram of B0 bins together. The inverse bin map is designed
with this proposition in mind. Since all kd-trees have the same splitting planes,
therefore the same node sizes. We implement traversal for a fixed number of bins
that computes the intersections between tree nodes and the region A once for
all queried bins. While the tree nodes are axis-aligned, we use a parallelogram
approximation of the pixel footprint A based on ray differentials [Igehy, 1999]. In
principle, IBM can work with arbitrarily shaped query regions by providing the
proper node-region intersection procedures.

5.5 Discussion and results
As pointed out in Section 5.2.4, our method belongs to the family of techniques
for the accurate rendering of glints. Here we discuss how our method compares
to these previous techniques and provide results.

5.5.1 Glints in production rendering systems
Some properties of normal map filtering techniques are of great importance for
practical applications. For example, the integration of accurate glint rendering
shaders into production rendering systems requires a reasonable balance of these
method properties:

• Roughness control. Users usually expect to be able to control the
roughness of the surface, regardless of the normal map being used. While
the normal map defines the main surface features, the roughness parameter
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Figure 5.4: Kd-tree traversal with prefiltering. A key advantage of our
method is its prefiltering, which we illustrate here. The unit texture space is
drawn on the left, and a part of the inverse bin map is on the right. During
an evaluation, we want to compute the area of the intersection between the pixel
footprint and all texels in bin j. In the figure, we have a large pixel footprint, and
the list of texel positions in the inverse bin map corresponding to bin j has a kd-
tree in F . If during traversal a tree node (blue) is contained in the pixel footprint,
we stop the traversal and immediately return the total area corresponding to the
node. This is possible because we sort all texel positions in the inverse bin map
B−1 so that each kd-tree node has its texel indices consecutive in the memory
layout of B−1. This layout is shown on the right. During traversal, we keep track
of the “begin” texel position kjb, which is the first texel included in the node,
and the “end” texel position kje, which is the first texel excluded from the node
(kj(e−1) position is the last texel included in the node). Thus, the total number
of texels in the node is e − b, and the total area corresponding to the node is this
same number, scaled by the area of a single texel.

allows them to change the appearance of the glints — low roughness val-
ues produce very sharp and sparkling glints while higher roughness values
decrease the sparkling and produce smoother glints.

• Instant pre-computation. It is very common for normal maps to be
created in external tools, or to be generated on the fly based on a set of
input parameters. Furthermore, production scenes usually have a large
number of materials and maps. Therefore, an instant pre-computation for
a reasonably large map is needed to ensure quick iterations when choosing
the desired appearance. In any case, a few seconds or even minutes of
pre-computation for a single normal map is rarely permissible.

• Low memory usage. Low memory requirements for a single map are also
important since the number of maps is usually very high in some production
scenes. In practice, a few MIP maps for a single normal map is considered

62



reasonable.

• Multiscale (prefiltering). All normal map filtering techniques employ
a form of filtering – this could be either a specialized data structure as is
the case of Yan’s method, or a numerical method as is the case of SMS.
However, prefiltering is a stronger property. It is related to some filtering
information that is pre-computed or organized during the pre-computation
stage of the method which is directly used during rendering. Therefore, the
prefiltering property is tightly related to the performance of the technique
at different scales. The performance of all filtering techniques that do not
employ a prefiltering strategy deteriorates for large filtering regions — that
is for large texel-to-pixel ratios.

Note that increasing the texel-to-pixel ratio is an extremely common sce-
nario in practical renderer usage. It takes place when:

– The normal-mapped object is moving away from the camera.
– The camera is zooming out.
– The scene is rendered at a lower resolution.
– The tiling of the texture is increased.

In our method, the contributing texels in each pixel increase with Beckmann
flake roughness. Therefore, our data structure provides prefiltering: the
aggregated projected area of texels with similar normals inside the pixel is
efficiently computed for high texel-to-pixel ratios.

In Table 5.2, we show which techniques of the class of accurate filtering for
glints have these properties. Our method has all of them.

Gamboa Zeltner Yan Ours
Roughness control ✗ ✗ ✗ ✓

Instant pre-computation ✗ ✓ ✗ ✓

Low memory usage ✗ ✓ ✗ ✓

Multiscale (prefiltering) ✓ ✗ ✗ ✓

Table 5.2: Properties of glint rendering techniques — Gamboa et al. [2018], Zelt-
ner et al. [2020], Yan et al. [2016] and our method [Atanasov et al., 2021].

5.5.2 A remark on Yan’s method
The method of Yan et al. [2016] provides two modes of operation: flat Gaussian
elements which represent the non-interpolated normal map, and curved Gaussian
elements which represent a smooth interpolated surface. We support only flat
un-interpolated normal maps, and therefore our surface is very similar to Yan’s
flat elements, see Figure 5.5.

Our proposed technique aims to provide a practical filtering solution not only
for specular surfaces, but also for surfaces with low roughness where the ap-
pearance changes dramatically, but filtering is still beneficial. To this end, our
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Figure 5.5: Surfaces of different filtering techniques. A 50× zoom is
applied to the Kettle scene [Zeltner et al., 2020] to observe the surfaces of three
different models. From left to right: our method, Yan et al. [2016] flat and curved
Gaussian elements. The rightmost image is the normal map. Our method does
not support normal map interpolation and renders a piecewise flat surface similar
to the flat Gaussian elements. Yan’s flat elements are blurrier due to the Gaussian
footprint whereas our method uses a pixel-wide “box” filter. The original kettle
scene can be seen in Figure 5.9.

solution exposes a single parameter, Beckmann roughness, which provides mean-
ingful artistic control. This parameter, which we also refer to as Beckmann flake
roughness, is conceptually similar to the intrinsic roughness of Yan et al. [2016].
But the intrinsic roughness is designed and demonstrated to work in a small op-
erational range that represents specular surfaces. Surfaces with slightly larger
roughness values are out of the scope of Yan et al. [2016] — in these cases the
method loses energy, see Figure 5.6. Note that in all comparisons we match
our Beckmann flake roughness to Yan’s intrinsic roughness using the relation
α =

√
2σr [Heitz, 2014].

5.5.3 Comparison with the state of the art
The method of Yan et al. [2016] is widely regarded as the state-of-the-art tech-
nique for high-resolution specular normal maps [Zeltner et al., 2020, Zhu et al.,
2022, Deng et al., 2022]. All comparison results in this subsection are based
on the original code, scenes and scripts provided by Zeltner et al. [2020], which
includes the original implementation of SMS and Yan’s method. We also imple-
mented our method as a Mitsuba 2 BRDF plug-in [Nimier-David et al., 2019].
The source code is available on the project page, see Attachments. Comparisons
were rendered on an AMD Ryzen Threadripper 3970X machine.

As discussed earlier, we want to investigate the scenario of increasing the
number of texels that fall within a typical image pixel. Figure 5.7 shows equal-
time comparisons for our method, Yan’s method and SMS, for a scene with many
texels in each pixel. The SMS method cannot find all subpixel glints, which results
in darkening due to lost energy, thus it is excluded from subsequent performance
comparisons.

We perform a more detailed comparison between our method and Yan’s
method by rendering the original scenes from Zeltner et al. [2020], and by in-
creasing the tiling of the input texture 8 times which results in increasing the
texel-to-pixel ratio 82 times. The results from these comparisons are presented
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Figure 5.6: Increasing roughness test. Renders of the Shoes scene [Zeltner
et al., 2020] with Gaussian flat elements (top row) [Yan et al., 2016] and with
our method (bottom row). The three columns show increasing roughness σr

(0.01, 0.05, 0.25). Note that the method of Yan et al. [2016] is designed to render
specular surfaces and does not conserve energy for increased roughness.

in Figures 5.8 and 5.9. Our method demonstrates very similar convergence rates
to Yan’s flat elements for equal matched roughness σr = 0.005. The convergence
plots for both scenes clearly show a tendency: as the number of texels per pixel
grows, Yan’s curved elements convergence declines.

Note that both Yan’s flat and curved elements use the same hierarchy and
intrinsic roughness values. The difference in the performance in “×8 tiles” scenes
(right columns in Figures 5.8 and 5.9) is because, in the case of the curved ele-
ments, there are 1-2 orders of magnitude more contributing elements to be pro-
cessed in comparison with the case of the flat elements. The method of Yan et al.
[2016] must locate all Gaussian elements inside the pixel that contribute to the
reflection. Then contributing elements are processed individually and weighted
against the Gaussian footprint. This is inefficient for high texel-to-pixel ratios
and many contributing elements.

We also provide additional results from our method with increased roughness
to demonstrate that our convergence is not impeded by the growing number of
contributing texels. In fact, it improves slightly.

Additionally, the Shoes scene demonstrates that for some normal maps,
the appearance of Yan’s curved elements can be matched with our method with
increased roughness, see Figure 5.8 (Yan (curved) and Ours (rough)).

Furthermore, our method is 90× more memory efficient and the pre-processing
is around 30× faster than Yan’s method with flat Gaussian elements, see Tables
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Figure 5.7: Equal-time comparison with state-of-the-art techniques. We
render Shoes and Kettle scenes [Zeltner et al., 2020] in resolution 512 × 512
with four different methods: our method [Atanasov et al., 2021], Yan’s flat and
curved Gaussian elements [2016] and SMS [Zeltner et al., 2020]. The tiling of the
textures is increased ×8 in order to compare the methods for large texel-to-pixel
ratios. All images were rendered for 1 minute on an AMD Ryzen Threadripper
3970X machine. While our method and Yan’s flat elements show comparable
performance, the other two approaches have issues. Yan’s curved elements be-
come very slow due to the lack of prefiltering. See also the convergence plots in
Figures 5.8 and 5.9. This issue has been identified also by Deng et al. [2022].
On the other hand, SMS is unable to find all the glints in the pixel, resulting in
substantial darkening.

5.3 and 5.4.

Ours Yan (flat) Yan (curved) Ours (rough)
Shoes scene 36MB 3.2GB 19.3GB 36MB
Kettle scene 36MB 3.4GB 59GB 36MB

Table 5.3: Memory usage of the methods from Figures 5.8 and 5.9.

Our method has low memory requirements for a wide range of Beckmann flake
roughness values, and therefore a wide range of bin resolutions, see Table 5.5. For
higher resolutions, the index I takes more memory, but the trees in the forest F
are shallow and take less memory. For lower resolutions, it is the opposite.

5.5.4 Animated glints
We demonstrate our method with different normal maps and lighting scenarios
in our supplementary video (see Attachments).

We have implemented a car paint material with metallic flakes, modeled with
a normal map. Flakes orientations are sampled from a GTR distribution [Burley,

66



Ours Yan (flat) Yan (curved) Ours (rough)
Shoes scene 0.2s 8.2s 56.6s 0.3s
Kettle scene 0.3s 8.4s 241.3s 0.3s

Table 5.4: Pre-processing times of the methods from Figures 5.8 and 5.9.

Beckmann roughness α 0.0025 0.01 0.04 0.16
Bin resolution b2 9422 2352 592 152

Wing mirror scene (2K map) 43MB 37MB 36MB 36MB
Car wheel scene (1K map) 15MB 9MB 9MB 8MB

Shoes scene (2K map) 40MB 36MB 36MB 36MB
Kettle scene (2K map) 42MB 36MB 36MB 36MB

Table 5.5: The bin resolution and memory usage of our method for varying
Beckmann flake roughness.

2012], and the corresponding Smith shadowing-masking function is applied for Gx

[Dimov, 2015]. These equations are given in Appendix C. The paint consists of
three layers: a specular coat layer, metallic flakes layer filtered with our algorithm
and a base layer with mixed diffuse and glossy terms. The transparency of the
flake layer is computed using a single-channel MIP map. When we report the
memory for our car paint material we include this map in the total.

Additionally, we provide a control for the roughness of the individual flakes,
as we show in the Wing mirror scene, Figure 5.10.
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Figure 5.10: Car paint material with roughness control. A photograph of
a wing mirror (top left) with pronounced glints from metallic flakes that served
as an inspiration for our wing mirror scene (all other images). In this scene, the
metallic flakes are modeled with a 2K normal map with flakes sampled from a
GTR distribution (GTR γ = 1.5, GTR α = 0.002) [Burley, 2012]. Additionally,
we provide three renders (top right, middle left, middle right) of this scene with
different roughness values of the flakes — α = 0.0025, 0.01, 0.04, respectively. The
Beckmann flake roughness contributes to the overall appearance and is a useful
parameter for artistic control. In the bottom row, we provide three zoomed-in
regions from these same renders. Small perturbations of the roughness of the
flakes completely change the behavior of the glints. The rendering of such nearly
specular surfaces requires some form of filtering, the effect of which is shown in
our accompanying video (see Attachments). All the renderings in this figure were
done with our proposed normal map filtering algorithm. (The wing mirror scene
was created by Tashko Zashev.)

This scene is lit by a sun light and an environment light. In our video, we show
that for a range of small Beckmann flake roughness values the filtering is crucial to
achieving converged results: renders with equal time stochastic sampling exhibit
severe flickering.

Our second scene, the Car wheel (Figure 5.11) has a 1K map with scratches
that are tiled over the surface to achieve a high texel-to-pixel ratio.
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Figure 5.11: Scratched metal with roughness control. Car wheel scene
with scratch normal map and Beckmann flake roughness 0.01 (left) and 0.04
(right), and filtered with our algorithm. The behavior of this surface in an an-
imation can be seen in the accompanying video: due to our prefiltering, object
appearance is temporally stable across frames.

The scene is lit by 9 small area lights and an environment with large light
sources. In our video, we observe that the portions of the surface lit by the high-
frequency illumination (the 9 small lights) benefit from our filtering technique
for low roughness values. As the roughness increases the filtered version is still
more stable and some “boiling” can be seen in the stochastic version, however,
the benefit of our technique for these scenarios is smaller.

5.6 Conclusion
In this chapter, we presented an efficient normal map filtering method: there
are no noticeable pre-computation times, and its memory requirements are very
low. Due to prefiltering being applied, our technique does not slow down if large
numbers of normal map texels fall within a single pixel: zooming out from a
surface with glints does not cause performance issues.

The algorithm we propose filters direct illumination. Our filtering solution is
based on an Inverse Bin Map: a specialized integral histogram implementation
that enables us to perform the necessary lookups with low memory requirements,
and at reasonable speeds. We believe that this data structure has the potential
to replace IHs in some applications where construction speed, memory efficiency
or regions with arbitrary shapes are important.
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Figure 5.8: Convergence plots (Shoes scene). We render two different
texture tiles — left column: the original scene from Zeltner et al. [2020] and
right column: modified scene with ×8 tiles of the normal map. These two scenes
are rendered in four variations: our method, Yan et al. [2016] flat elements, Yan
et al. [2016] curved elements, and our method with slightly increased roughness.
The first three variations have equal roughness values σr = 0.005, while the
last demonstrates our method with higher Beckmann flake roughness α = 0.05
(σr = α/

√
2), which is not supported by Yan’s method. The large images in

the top row are rendered with our low roughness variant (the first variant labeled
Ours). Two regions of size 80×80 are selected from both scenes, and convergence
plots are computed for each of them (middle and bottom row). We use the script
provided by Zeltner et al. [2020] to compute the plots.
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Figure 5.9: Convergence plots (Kettle scene). We render two different
texture tiles — left column: the original scene from Zeltner et al. [2020] and
right column: modified scene with ×8 tiles of the normal map. These two scenes
are rendered in four variations: our method, Yan et al. [2016] flat elements, Yan
et al. [2016] curved elements, and our method with slightly increased roughness.
The first three variations have equal roughness values σr = 0.005, while the
last demonstrates our method with higher Beckmann flake roughness α = 0.05
(σr = α/

√
2), which is not supported by Yan’s method. The large images in

the top row are rendered with our low roughness variant (the first variant labeled
Ours). Two regions of size 80×80 are selected from both scenes, and convergence
plots are computed for each of them (middle and bottom row). We use the script
provided by Zeltner et al. [2020] to compute the plots.
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Chapter 6

Conclusion

In this thesis, we have presented two microfacet models that are designed to
resemble two distinct visual phenomena — anisotropic surfaces and surfaces with
visible microstructure. Both models are tailored to express a wide variety of
appearances, and both are very efficient to compute.

Linearly Transformed Microsurface. In Chapter 4, we described a model
that transfers all important properties from isotropic distributions to anisotropic
distributions — normalization of the microfacet distribution and the shadowing
function, NDF and VNDF sampling. It is based on closed-form formulas, thus it is
very attractive — analytic microfacet models are usually the most efficient models
for computation. With this model for the first time, all microfacet distributions
can have anisotropic versions, which are also consistent with existing anisotropic
models. We also showed that this model can be utilized to compute the reflection
of deforming surfaces.

Multiscale Microfacet Model. In Chapter 5, we presented a practical fil-
tering method that is suitable for high-quality (animated) glints. Among other
techniques, it is the first to offer control over the roughness of the individual
microfacets, defined by the normal map. We have demonstrated that this aux-
iliary parameter significantly improves the model’s expressiveness. Furthermore,
our technique has appealing properties: improved performance in some scenarios
and comparable performance in others, instant pre-computation and the lowest
memory usage of all methods that filter full normal maps.

6.1 Limitations and future work
We are aware of the following limitations, and we discuss possible improvements.

Our anisotropic model assumes that surface deformations are uniformly trans-
ferred to the microsurface geometry. However, the deformations of the micro-
geometry are highly dependent on the physical properties of the material. For in-
stance, as a balloon is getting inflated not only does its roughness change but also
its thickness, see Figure 1.5. Therefore, our model could be used as a reasonable
approximation or as a starting point in simulating more complex behaviors. In
the future, it will be interesting to explore the problem of deforming skin [Nagano
et al., 2015] where our model has the potential to replace run-time convolutions
with analytic expressions.

Our normal map filtering algorithm has two main limitations. First, it is
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designed to work with Beckmann roughness only. For example, if GGX flake
roughness is required, our algorithm must query all hemispherical bins for each
evaluation, due to GGX having a non-negligible projected area of microfacets
that are oriented in all directions. This will be considerably less efficient than
the small number of bins that we query for our Beckmann roughness. Second,
our algorithm does not support textured Beckmann flake roughness. Indeed,
our bin resolution is chosen in advance, based on a fixed flake roughness value.
Perhaps, one can build several IBMs for a range of roughness values, but we
leave this for future work. Another avenue for future work would be to develop
a hybrid normal map filtering technique that uses fast prefiltering like LEAN
mapping [Olano and Baker, 2010] for high-roughness surfaces and our algorithm
for the more demanding low-roughness surfaces.

6.2 Production use
Both microfacet models, presented in this dissertation, are currently used in pro-
duction. They are part of the official installation of Chaos V-Ray.

V-Ray is a production renderer with a rich set of features that is available for
many 3D platforms including Autodesk 3ds Max, Trimble SketchUp, Autodesk
Maya, Maxon Cinema4D, SideFx Houdini, McNeel Rhinoceros 3D, Autodesk
Revit and Blender, and it is spanning a broad spectrum of industries like archi-
tecture, automotive, interior design, product design, games, television and film
VFX and more [Chaos, 2023b].

The two models are implemented in the following V-Ray material plug-ins:

• VRayMtl. This is the main material in V-Ray — it has a wide range of ca-
pabilities such as different types of diffuse and glossy reflections, refraction,
translucency, cloth’s sheen, coat and more [Chaos, 2023d]. The reflection
layer is a GTR microfacet BRDF, which prior to our work used to provide
non-physical anisotropy due to the lack of analytic anisotropic equations.
The anisotropic model described in this dissertation was developed specifi-
cally to address this issue.

• VRayFlakesMtl2, VRayCarPaintMtl2. VRayFlakesMtl2 is a single
BRDF material that is used as a layer in more complex compound materials.
Internally, it generates a flake normal map based on a set of parameters
such as flakes’ size, density and orientation. Flake orientations are sampled
from GTR distribution with tunable roughness and tail exponent. This
BRDF is filtered using our proposed multiscale microfacet model. The Flake
roughness parameter is exposed to the user interface. VRayCarPaintMtl2 is
a three-layer material: the base layer is a mix of diffuse and GGX lobes, the
middle layer is the flakes BRDF and the top layer is a clear (or glossy) coat.
The wing mirror scene in Figure 5.10 was rendered with it. The behavior
of some VRayCarPaintMtl2 parameters, along with corresponding renders
can be explored at Chaos’s documentation page [2023c].

Note that our multiscale model is not currently used as a general normal map
filtering technique in V-Ray due to the limitations mentioned above.
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Appendix A

Microscope photographs

Microfacet models are capable of predicting a wide range of surface appearances,
depending on their microstructure and material properties. To support intuition,
we provide a set of microscope photographs of exemplary conductors and di-
electrics in Figures A.1 and A.2, respectively. All photos were taken using Canon
D5600 camera and Olympus SZX7 microscope.

Figure A.1: Microscope photographs of rough conductors. From top to
bottom: scratched silver spoon; strongly anisotropic brushed steel piece; circular-
anisotropic steel back of a watch manufactured using a lathe machine; car toy
with metallic paint.
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Figure A.2: Microscope photographs of rough dielectric materials. From
top to bottom: a piece of a rubber balloon (the same from Figure 1.5); the same
balloon piece stretched ×4; a button made from rough plastic; a nylon guitar
pick; a leather wallet; a weakly anisotropic bamboo wireless charger; a piece of
cloth; a goldstone.
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Appendix B

Integration on the hemisphere

The material in this appendix is partially based on the book by Pharr et al. [2016].
We denote 3-dimensional vectors with bold small letters v = (vx, vy, vz)T ∈ R3.
The scalar product of two vectors v and w is defined as v·w = vxwx+vywy +vzwz

and the Euclidean norm of a vector: ∥v∥ =
√

v · v. The unit hemisphere is

H2 = {v ∈ R3 | vz ≥ 0, ∥v∥ = 1}, (B.1)

and it is isomorphic to the unit disk D: directions v ∈ H2 can be represented on
the unit disk by projection (vx, vy) ∈ D, and the z-coordinate can be recovered
by the re-projection vz =

√︂
1 − v2

x − v2
y .

It is often convenient to express unit directions on the hemisphere in spherical
coordinates. Each direction on the unit hemisphere v ∈ H2 can be represented
by the pair of angles (θv, ϕv), where θv is the angle between v and the z axis
(i.e., the up direction) and ϕv is the angle between the projection of v onto the
xy plane and the x axis, see Figure B.1 a). The following equations transform
between spherical and Cartesian coordinates:

vx = sin θv cos ϕv (B.2)
vy = sin θv sin ϕv (B.3)
vz = cos θv (B.4)

and

θv = arccos vz (B.5)

ϕv = arctan vy

vx

. (B.6)

Solid angles are a generalization of planar angles: planar angles are measured
with the length of the arc that they cut from the unit circle, and by analogy, solid
angles are measured with the surface area from the unit sphere that they encom-
pass. Planar angles are measured in radians, while solid angles are measured in
steradians (denoted sr).

A real-valued function on the hemisphere is

f : H2 → R. (B.7)

To integrate such a function on the hemisphere, we need to define a differential
solid angle dv around the integration variable v. In spherical coordinates, this
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a) Spherical coordinates b) Differential solid angle

Figure B.1: Illustration of spherical geometry. a) Spherical coordi-
nates: each direction v on the (hemi) sphere can be expressed with the pair of
angles (θv, ϕv). b) Differential solid angle: a spherical quadrilateral (blue)
with sides dθv and sin θvdϕv, the product of which is equal to the differential
area of the quadrilateral, see Equation (B.8).

is expressed as the differential area of a spherical quadrilateral, see Figure B.1
b). The first side of this quadrilateral is the arc dθv and the second side is the
arc dϕv, downscaled by sin θv. The differential area of the quadrilateral is the
product of its two sides

dv = (sin θvdϕv)(dθv). (B.8)
Therefore, the integral over the hemisphere is expressed as∫︂

H2
f(v)dv =

∫︂ 2π

0

∫︂ π
2

0
f(θv, ϕv) sin θvdθvdϕv. (B.9)

Consider the simple example of integrating the constant f(v) = 1:
∫︂ 2π

0

∫︂ π
2

0
sin θvdθvdϕv =

∫︂ 2π

0

(︃
− cos θv

⃓⃓⃓π
2

0

)︃
dϕv =

∫︂ 2π

0
dϕv = 2π, (B.10)

which is equal to the surface area of the unit hemisphere.
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Appendix C

Common microsurfaces

In this appendix, we provide microfacet distributions that are relevant to this
thesis: Beckmann distribution [Beckmann and Spizzichino, 1963], Trowbridge-
Reitz distribution [1975] which was popularized by Walter et al. [2007] with the
alias GGX, and the Generalized Trowbridge-Reitz (GTR) distribution [Burley,
2012]. We also provide their corresponding average visibility functions Sα(µ)
(where µ = cot θv) from which their Smith monodirectional shadowing terms can
be constructed using Equation (3.8).

C.1 Beckmann distribution
The Beckmann surface is an early model based on the Gaussian distribution of
slopes with microfacet distribution

Dα(m, n) = 1
πα2 cos4 θm

exp
(︄

−tan2 θm

α2

)︄
, (C.1)

and an approximate average visibility function

Sα(µ) =
⎧⎨⎩

3.535a+2.181a2

1+2.276a+2.577a2 , a < 1.6
1, otherwise

, (C.2)

where a = µ/α.

C.2 GGX distribution
The most popular microfacet distribution is GGX:

Dα(m, n) = 1
πα2 cos4 θm

(︂
1 + tan θm

α2

)︂2 . (C.3)

Its average visibility is
Sα(µ) = 2

1 +
√︂

α2

µ2 + 1
. (C.4)
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a) GTR Microfacet distribution Dα
γ b) GTR Average visibility Sα

γ

Figure C.1: GTR distribution and shadowing plots. Plots of the microfacet
distribution Dα

γ and the average visibility Sα
γ for γ = {0, 1, 2, 3, 4} and for a fixed

roughness α =0.6. Note that limα→0,γ>0(Dα
γ , Sα

γ ) = (δ, 1) and limα→1(Dα
γ , Sα

γ ) =
(D0

0, S0
0).

C.3 GTR distribution
Burley [2012] introduced the Generalized Trowbridge-Reitz (GTR) distribution
as a generalization of the GGX distribution which offers additional control on the
tails:

Dα
γ (m, n) = (γ − 1)(α2 − 1)

π(1 − (α2)1−γ)(1 + (α2 − 1) cos2 θm)γ
, (C.5)

where α ∈ [0, 1] controls the roughness and γ ≥ 0 is the tail exponent. The
distribution has a 0/0 singularity at γ = 1, and it converges to the Berry distri-
bution [Berry, 1923, Burley, 2012] at the limit

Dα
1 (m, n) = lim

γ→1
Dα

γ (m) = (α2 − 1)
π(log α2)(1 + (α2 − 1) cos2 θm) . (C.6)

A plot of the GTR distribution for a fixed roughness α = 0.6 and tails γ ∈
{0, 1, 2, 3, 4} is presented in Figure C.1 a).

Dimov [2015] followed the derivation procedure of Smith shadowing that is
described by Walter et al. [2007]. With this approach, he was not able to find a
general analytic formula Sα

γ , perhaps due to the singularity at γ = 1. Fortunately,
he found analytic formulas for a few special values - γ ∈ {0, 1, 3, 4}. Follows a list
of formulas for the GTR average visibility for integer tails, including the GGX
average visibility Sα

2 for completeness:

Sα
0 (µ) = 2

1 +
√︂

1
µ2 + 1

, (C.7)

Sα
1 (µ) = µ log α2

A1 − B1 + µ log
(︂

α2(µ+B1)
µ+A1

)︂ , (C.8)

where A1 =
√

µ2 + α2 and B1 =
√

µ2 + 1,

Sα
2 (µ) = 2

1 +
√︂

α2

µ2 + 1
, (C.9)
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Sα
3 (µ) = 4B3µA3

α2(3α2 + 1) + 2µB3(µ + A3) , (C.10)

where A3 =
√

µ2 + α2 and B3 = α2 + 1 and

Sα
4 (µ) = 2A4µB3

4
A4µ(B3

4 + µ3) + 3α2(α2(5α4 + 2α2 + 1) + 4µ2(2α4 + α2 + 1)) , (C.11)

where A4 = 8α4 + 8α2 + 8 and B4 =
√

µ2 + α2.
In Figure C.1 b) we show these shadowing curves for a fixed roughness α = 0.6.

To compute an accurate approximation for all non-integer tails γ ∈ (0, 4) all
five integer formulas are evaluated and a cubic spline interpolation [de Boor,
2001] is performed. Natural boundary conditions are suggested to minimize the
oscillations.

We have verified that with this approach the constraint in Equation (3.9) is
closely met.

C.4 An improved sampling for the GTR distri-
bution

Rendering a microfacet BRDF with a high-roughness GTR distribution has in-
herent high variance due to the lack of sampling equations from the distribution
of visible normals [Heitz and D’Eon, 2014]. The reduced effectiveness of the
sampling from D [Walter et al., 2007] is due to increased shadowing. When
the roughness is approaching 1, the single scattering term gets darker and more
diffuse.

We found that stochastic mixing of the sampling strategy with uniform sam-
pling improves the sampling of rough surfaces. A random number and the rough-
ness α determine whether uniform sampling or sampling from D will be used for
the direction. The balance heuristic is finally applied for probability computa-
tion [Veach and Guibas, 1995]. Render time comparison can be seen in Figure
C.2.
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Figure C.2: Render time comparison between standard NDF sampling
and our improved sampling. Left: Torus knot with GTR roughness α = 0.3,
tail exponent γ = 1 and anisotropy s = 0.75, lit by a rectangular light. Right:
Charts for the torus knot scene showing how much render times improve for the
same image quality when switching from standard sampling to our sampling de-
scribed in Appendix C.4. We use a variance-based image sampler which samples
each pixel until a given noise level is reached. The top left chart is for isotropic
material (s = 0) with 95 average samples per pixel (aspp) for the standard sam-
pling vs. 84 aspp for our sampling. The top right, bottom left and bottom right
charts represent anisotropic materials with s = {0.25, 0.5, 0.75} and 91 vs. 79
aspp, 95 vs. 89 aspp and 131 vs. 119 aspp, respectively. Therefore, our sampling
technique reduces the number of samples per pixel by 10% on average for this
scene. Moreover, the charts demonstrate that this technique helps with very dif-
ferent distribution tails: GTR with γ = 0.1 has a much heavier tail than GGX
while the tail of GTR with γ = 4 is much “lighter”, see Figure C.1 a).
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Appendix D

Mathematica code

D.1 GTR normalization
In Listing 1, we use Mathematica [Wolfram Research, 2016] to find normalization
for the GTR distribution by evaluating Equation (3.5). For the isotropic case, we
find the proper normalization from Equation (C.5), while Mathematica is unable
to solve the anisotropic case.

Listing 1: Computing normalization coefficients for isotropic and anisotropic
GTR.

In[1]:= Integrate[Cos[t]*Sin[t]/(aˆ2*Cos[t]ˆ2+Sin[t]ˆ2)ˆg,
{t, 0, Pi/2}, {p, 0, 2*Pi}] (* Isotropic GTR *)

Out[1]=
(1-(a2)1-g)π

(-1+a2)(-1+g)

In[2]:= Integrate[Cos[t]*Sin[t]/
(Cos[t]ˆ2+Sin[t]ˆ2*(Cos[p]ˆ2/aˆ2+Sin[p]ˆ2/bˆ2))ˆg,
{t, 0, Pi/2}, {p, 0, 2*Pi}] (* Anisotropic GTR *)

Out[2]=

D.2 Derivation of the Jacobian for Linearly
Transformed Microfacet Distributions

In Listing 2, we provide the Mathematica notebook with the derivation of the Ja-
cobian which is used to normalize Linearly Transformed Microfacet Distributions,
see Equations (4.9) - (4.13). This notebook is published in Wolfram Foundation’s
Notebook Archive [Atanasov, 2022].
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Listing 2: Mathematica nodebook [Wolfram Research, 2016] with derivation for
Equations (4.9) - (4.13).

In[3]:= (* Length of the transformed micro-normal ||MˆTm||,
where mzˆ2=1-mxˆ2-myˆ2 *)
len[mx_, my_, a_, b_, c_, d_]:=

Sqrt[(a*mx+b*my)ˆ2+c*mx+d*my)ˆ2+1-mxˆ2-myˆ2]

(* Components of the transformed normalized micro-normal u,
where uzˆ2=1-uxˆ2-uyˆ2 *)
ux[mx_, my_, a_, b_, c_, d_]:=

(a*mx+b*my)/len[mx, my, a, b, c, d]
uy[mx_, my_, a_, b_, c_, d_]:=

(c*mx+d*my)/len[mx, my, a, b, c, d]

In[4]:= (* Partial derivatives of u *)
duxdmx = Simplify[D[ux[mx, my, a, b, c, d], mx]]

Out[4]=
b my (mx - c2 mx - c d my) + a (1 + c d mx my + (-1 + d2) my2)

(1 - mx2 - my2 + (a mx + b my)2 + (c mx + d my)2)
3/2

In[5]:= duydmy = Simplify[D[uy[mx, my, a, b, c, d], my]]

Out[5]=
c mx (-a b mx + my - b2 my) + d (1 + (-1 + a2) mx2 + a b mx my)

(1 - mx2 - my2 + (a mx + b my)2 + (c mx + d my)2)
3/2

In[6]:= duxdmy = Simplify[D[ux[mx, my, a, b, c, d], my]]

Out[6]=
a mx (-c d mx + my - d2 my) + b (1 + (-1 + c2) mx2 + c d mx my)

(1 - mx2 - my2 + (a mx + b my)2 + (c mx + d my)2)
3/2

In[7]:= duydmx = Simplify[D[uy[mx, my, a, b, c, d], my]]

Out[7]=
d my (mx - a2 mx - a b my) + c (1 + a b mx my + (-1 + b2) my2)

(1 - mx2 - my2 + (a mx + b my)2 + (c mx + d my)2)
3/2

In[8]:= (* Notice that the determinant of M is in the numerator and the
length of the transformed micro-normal (see ‘‘len’’ above) to the
4-th power is in the denominator *)
Simplify[duxdmx*duydmy-duxdmy*duydmx]

Out[8]=
-b c + a d

(1 + (-1 + a2 + c2) mx2 + 2 (a b + c d) mx my + (-1 + b2 + d2) my2)2
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Ghosh, and Paul Debevec. Skin Microstructure Deformation with Displacement
Map Convolution. ACM Trans. Graph., 34(4), July 2015. ISSN 0730-0301. doi:
10.1145/2766894. URL https://doi.org/10.1145/2766894.

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis.
Geometrical Considerations and Nomenclature for Reflectance. Final Report
National Bureau of Standards, Washington, DC. Inst. for Basic Standards.,
October 1977.

Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. Mitsuba
2: A Retargetable Forward and Inverse Renderer. ACM Trans. Graph., 38
(6), November 2019. ISSN 0730-0301. doi: 10.1145/3355089.3356498. URL
https://doi.org/10.1145/3355089.3356498.

Marc Olano and Dan Baker. LEAN Mapping. In Proceedings of the 2010
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D
’10, pages 181–188, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-
939-8. doi: 10.1145/1730804.1730834. URL http://doi.acm.org/10.1145/
1730804.1730834.

Michael Oren and Shree K. Nayar. Generalization of Lambert’s Reflectance
Model. In Proceedings of the 21st Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH ’94, page 239–246, New York, NY,
USA, 1994. Association for Computing Machinery. ISBN 0897916670. doi:
10.1145/192161.192213. URL https://doi.org/10.1145/192161.192213.

Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically Based Render-
ing: From Theory to Implementation. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 3rd edition, November 2016. ISBN 9780128006450.

90

https://doi.org/10.1145/2077341.2077350
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291520-6378%28199608%2921%3A4%3C292%3A%3AAID-COL4%3E3.0.CO%3B2-L
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291520-6378%28199608%2921%3A4%3C292%3A%3AAID-COL4%3E3.0.CO%3B2-L
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291520-6378%28199812%2923%3A6%3C362%3A%3AAID-COL4%3E3.0.CO%3B2-5
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291520-6378%28199812%2923%3A6%3C362%3A%3AAID-COL4%3E3.0.CO%3B2-5
http://opg.optica.org/abstract.cfm?URI=josa-42-12-969
https://doi.org/10.1145/2766894
https://doi.org/10.1145/3355089.3356498
http://doi.acm.org/10.1145/1730804.1730834
http://doi.acm.org/10.1145/1730804.1730834
https://doi.org/10.1145/192161.192213


GI Pokrowski. Zur Theorie der Diffusen Lichtreflexion. Zeitschrift für Physik, 30
(1):66–72, 1924.

GI Pokrowski. Zur Theorie der Diffusen Lichtreflexion. IV. Zeitschrift für Physik,
36(6):472–476, 1926.

Fatih Porikli. Integral Histogram: A Fast Way To Extract Histograms in Carte-
sian Spaces. In Proceedings of the 2005 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition (CVPR’05) - Volume 1
- Volume 01, volume 1 of CVPR ’05, page 829–836, USA, 07 2005. IEEE
Computer Society. ISBN 0769523722. doi: 10.1109/CVPR.2005.188. URL
https://doi.org/10.1109/CVPR.2005.188.

Pierre Poulin and Alain Fournier. A Model for Anisotropic Reflection. SIG-
GRAPH Comput. Graph., 24(4):273–282, September 1990. ISSN 0097-8930.
doi: 10.1145/97880.97909. URL https://doi.org/10.1145/97880.97909.

Boris Raymond, Gael Guennebaud, and Pascal Barla. Multi-Scale Rendering of
Scratched Materials using a Structured SV-BRDF Model. ACM Transactions
on Graphics, July 2016. doi: 10.1145/2897824.2925945. URL https://hal.
inria.fr/hal-01321289.
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