
submitted to

Graz University of Technology

DOCTORAL THESIS

Dipl.-Ing. Ulrich Krispel

Generative Methods for Data Completion in Shape
Driven Systems

Prof. Dr. techn. Dieter W. Fellner

Institute of Computer Graphics and Knowledge Visualization (CGV)

to achieve the university degree of

 Doktor der technischen Wissenschaften

Supervisor

Graz, August 2018

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all material

which has been quoted either literally or by content from the sources used. The text

document uploaded to TUGRAZonline is identical to the present doctoral thesis.

Date Signature

Abstract

In many application domains, such as building planning, construction, or docu-
mentation, it is of high importance to acquire a digital representation of the shape
of real world objects, e.g. for visualization or documentation purposes. Such ob-
jects are often part of a class or domain of similarly structured objects; and often
complex objects, such as houses, are composed by simpler objects, such as walls,
doors and windows. Especially man-made objects exhibit such structure, mostly
due to manufacturability and design reasons.

A rich digital representation of a complex object consists not only of its shape,
but also its structure, i.e. the composition hierarchy of simpler objects. A more
general way to represent such a composition hierarchy is a generative model, that
generates the structure upon evaluation; a parametric generative model can ge-
nerate a whole class of similarly structured objects.

In this thesis, I review shape-based methods for generative creation of mo-
dels, and present a novel system for generative forwardmodeling based on shape
grammars. Furthermore, I present two methods for solving the inverse problem:
acquiring a rich digital representation of real-world objects from measurements
and utilizing a generative model of prior domain knowledge. Using this prior
knowledge, it is now possible to complete missing features, or reduce measu-
rement errors. The first method parses the hierarchical structure of a building
façade, given an ortho photo and a grammar that describes architectural con-
straints. The second method yields a hypothesis of electrical wiring inside walls,
given optical measurements (point clouds and photographs), and a grammar that
describes the technical standards.

2

Kurzfassung

In vielenAnwendungsdomänenwie zumBeispiel Visualisierung oderDokumen-
tation für Gebäudeplanung und -konstruktion, ist es von großerWichtigkeit, eine
digitale Repräsentation von real existierenden Objekten zu erfassen. Solche Ob-
jekte sind oft Teil einer Gruppe oder Klasse (die Domäne) von ähnlich struktu-
rierten Objekten, und komplexere Objekte, wie etwa Häuser, sind oft aus sim-
pleren Objekten zusammengesetzt, wie etwa Wände, Türen und Fenster. Dies ist
besonders oft bei vom Menschen geschaffenen Objekten der Fall, aufgrund von
Gestaltung und Fertigbarkeit.

Eine reichhaltige digital Beschreibung eines komplexen Objekts besteht daher
nicht ausschliesslich aus seiner Formoder äußerenHülle, sondern auch aus seiner
Struktur beziehungsweise der Kompositionshierarchie von simpleren Objekten.
Eine allgemeinere Möglichkeit um solche Kompositionshierarchien zu beschrei-
ben ist ein generatives Modell. Ein solches Modell generiert die Hierarchie oder
Struktur bei seiner Auswertung. Ein parametrisches generatives Modell kann so-
mit eine ganze Klasse von ähnlich strukturierten Objekten generieren.

In dieser Arbeit bespreche ich formbasierte Methoden zur generativen Er-
zeugung von Kompositionshierarchien, und präsentiere eine neuartige Shape-
Grammatik für generative Vorwärtsmodellierung. Weiters stelle ich zwei Metho-
den vor, umdas inverse Problem zu lösen: Die Akquise einer reichhaltigen digita-
len Beschreibung von real existierenden Objekten durch die Weiterverarbeitung
vonMeßdaten. Zur Erzeugung dieser Struktur werden generativenModellenmi-
teinbezogen, welche das Vorwissen über die Objektklasse repräsentieren. Damit
wird es möglich fehlende Meßdaten zu ergänzen oder Meßfehler zu dezimieren.
Die erste Methode parst die hierarchische Struktur einer Gebäudefassade, ausge-
hend von einem Orthofoto der Fassade und einer Grammatik welche die archi-
tektonischen Richtlinien beschreibt. Die zweite Methode liefert eine Hypothese
von elektrischen Leitungen in Wänden, anhand von Distanzmessungen, optis-
chen Meßdaten (Fotos), und einer Grammatik welche die technischen Normen
zur Leitungsverlegung beschreibt.

3

Acknowledgment

Thiswork builds uponmany discussionswithmy supervisors and colleagues; my
thanks go to Mr. Fellner for always providing me with helpful comments end en-
couragement. Furthermore, I want to thank Torsten Ullrich and Sven Havemann
for the many interesting discussions and guidelines. I also want to thank Wolf-
gang Thaller, Bernhard Hohmann, and Christoph Schinko – with whom I shared
offices, worked on collaborative projects and had many insightful discussions.

Themethods and results presented in this workwere partly funded by the fol-
lowing authorities and projects: The Austrian Research Promotion Agency (FFG)
andMicrosoft Photogrammetry for funding the research project CITYFIT (“High-
QualityUrbanReconstructions by Fitting ShapeGrammars to Images and derived
Textured Point Clouds”), grant number 815971/14472. The European Commu-
nity’s Seventh Framework Programme (FP7/2007-2013) under grant agreement
no. 600908 (“DURAARK - Durable Architectural Knowledge”), 2013-2016 and
the Fraunhofer Discover project GENMOD - “Generative, Rule BasedModeling of
the Real World for Virtual Purposes”. The Austrian Research Promotion Agency
(FFG) for the research project AEDA (K-Projekt “Advanced Engineering Design
Automation”).

This thesis would not be possible without the work of many people I had the
joy of working with in the last years; First, the CITYFIT project: the raw scan data
(Lidarmeasurements andphotographs)was acquired and kindly provided byMi-
crosoft Photogrammetry, thanks go to Konrad Karner and his team; The data pre-
processing, façade ortho photo generation (Figure 4.1) and initial semantic façade
classification was done by Hayko Riemenschneider; my project co-workers Bern-
hard Hohmann and Wolfgang Thaller. I also want to thank my colleagues from
the DURAARK project: Stefan Dietze, Jakob Beetz and Martin Tamke as project
leads; Robert Viehauser from ICG for the implementation of the socket detection
pipeline for ElecDetect; Henrik Leander Evers, Per-Kristian Hanson and Marcus
August Frølich Innvær from CITA for the acquisition of the 3D scan data set,
panoramic images and ground truth for the electrical line data set described in
Section 4.2; themethod for extracting an augmented floor plan representationwas
kindly provided by Sebastian Ochmann from UBO; Martin Hecher implemented
the DURAARK service platform and the DURAARKworkbench. Thanks also go
to the architecture office ORTLOS engineering for their models in the GANDIS
project.

Finally, Iwould like to thankmy family, friends, and colleagues that supported
me throughout the development of this thesis: myparents Theresia andGottfried,
Helmut Fresl Sensei, Matzi (TTD!), Erich, Andy, walx, – and Nicoletta for her
unconditional support. Thank You.

Contents

Contents 4

1 Introduction 7
1.1 Generative Modeling . 7
1.2 Contribution . 11
1.3 Overview . 12

2 Background 13
2.1 Introduction to the Generative Paradigm 13
2.2 Languages and Grammars . 21
2.3 Shape Representations and Building Blocks 25
2.4 Syntactic Pattern Recognition and Inverse Generative Modeling . 35
2.5 Building Information Modeling 39
2.6 The Robustness Problem . 41
2.7 Summary . 45

3 Robust Generative Shape Composition using Convex Polyhedra 49
3.1 Basic Structure . 49
3.2 Shapes: Half Spaces and Convex Polyhedra 51
3.3 Rule based volumetric shape modeling 54
3.4 Robust Evaluation . 64
3.5 Generative Architecture . 77
3.6 FaMoS - Interactive Façade modeler 85
3.7 Summary . 92

4 Inverse Generative Modeling 93
4.1 Inverse Generative Modeling of Building Façades 93
4.2 Inverse Generative Modeling of Electrical Wiring in Building Inte-

riors . 108
4.3 Summary . 128

5 Applications and Results 131
5.1 Generative Forward Modeling of Building Facades 131

4

CONTENTS 5

5.2 Inverse Generative Modeling: The CITYFIT project 133
5.3 Inverse Generative Modeling in the DURAARK Project 135
5.4 GANDIS: Forward Modeling of Generative Buildings 140
5.5 Forward Modeling of Constructive Roof Geometry 143
5.6 GMLCompositor: A User Interface for Generative Forward Mo-

deling . 144
5.7 Generative Forward Modeling of Parametric Houses for Driving

Simulations . 148
5.8 Summary . 149

6 Discussion 151
6.1 Shape Grammars on Convex Polyhedra 151
6.2 Discussion on Inverse Generative Modeling 154

7 Conclusion 157
7.1 Contributions . 157
7.2 Outlook and Future Work . 158

8 Appendix 161
8.1 Selected Publications . 161
8.2 All Publications . 161
8.3 Parsing Example . 164
8.4 Example Grammar for Electrical Installation Zones 168

Bibliography 175

1Introduction
Digital methodologies have become ubiquitous in today’s world, particularly in
all domains that are concerned with a representation of the physical appearance
of an object – the shape. Due to the growing availability of efficient 3D scanning
methods, the costs of acquiring measurements of an object have decreased, and
more scanned shape data is available. These measurements consist typically of
large sets of individual 3D scan points of the measured surface, which are called
point clouds. A connected surface can be obtained from these point clouds using
a surface reconstruction algorithm – but an underlying abstraction, or semantic
information about the shape is not directly accessible from this data. Therefore,
extracting geometric and semantic information from such unstructured data is a
very wide, and very active area of research. In this thesis, I review and analyze
shape-based methods that utilize prior knowledge, a “vocabulary” of a specific
domain such as architecture. This knowledge is utilized to extract domain in-
formation from measured data, e.g. the structure of a building façade from a
photograph. I present contributions in the areas of generating shapes using such
domain-specific vocabularies and extracting geometric and semantic information
for two specific applications in the domain of building modeling.

1.1 Generative Modeling

Connecting geometric shape representation with corresponding semantic infor-
mation is getting more prominent, as these metadata are instrumental for many
further processing tasks. Application domains that utilize enriched shape data
include computer-aided design (CAD), computer-aided engineering (CAE) and
computer-aided manufacturing (CAM), or the digital representation of all buil-
ding aspects – building information modeling (BIM) – to name a few. Each of
these domains uses a digital representation of shape, the model. The creation of
such models is often a resource demanding process, in which generative methods
– algorithms that generate a model – can help to improve the quality of a model
and the speed of its construction process. Such methods have become popular
in several domains where it is desirable to create specific instances of an object,
the model, which belongs to a family of objects, the domain. To name a few exam-

7

8 CHAPTER 1. INTRODUCTION

ples, in visualization and the movie and games industry such methods have been
used to create instances of plants and buildings, up to whole cities. Generative
techniques are used in games to create varied instances of levels or game-play.
In Computer Aided Design (CAD), parametric modeling is used to describe real-
world behavior of components, a designer can alter a few parameters to adjust the
model and dependent shapes are updated accordingly.

The procedure of obtaining a specific instance of an object, which is part of a
family of objects, is a frequent use scenario. A practical example is the creation
of a detailed model of a building façade from an observation, e.g. a photograph,
as seen in Figure 1.1. It depicts a façade in the city center of Graz, Austria. Crea-
ting a digital representation is helpful in a variety of scenarios: Visualization for
navigation, documentation or architectural planning. The digital version can also
be used to display enhanced or altered variants of the object. A classical manual
reconstruction workflow consists of a human using a 3D modeling suite to cre-
ate the digital 3D model. The suite provides a set of tools for constructing basic
shapes such as cubes or spheres, or more complex tools, like directly modifying
the surface mesh representation, e.g. adding or modifying vertices and facets.
Modeling the façade could proceed in the following fashion: Starting with a large
rectangular block that represents the complete façade, holes would be cut into
the place where windows will be placed, facade elements, like windows, doors
and ornaments would be modeled in detail afterwards. Coding this construction
process for a model, e.g. using a scripting language, is called forward genera-
tive modeling, and obtaining a generative model from an real-world observation
or a coarse specification of high-level parameters is called inverse generative mo-
deling.

Forward Generative Modeling

The architectural components of the example façade from Figure 1.1 show several
symmetries: There is a slightly protruding middle column of the façade, with co-
lumns on the left and right that use a symmetric layout. All windows use similar
wood frames and glass configurations, the keystone ornaments above the win-
dows are the same for columns and floors. A human modeler could reduce the
modeling effort by making use of these symmetries: modeling the inner window
details (glass and frame) only once, and placing it in each of the different frames
with keystone ornaments using copy and paste. Furthermore, only themiddle co-
lumn and one side column need to be modeled, because the second side column
can be copied and pasted, and mirrored if necessary, as well.

1.1. GENERATIVE MODELING 9

Figure 1.1: An example of a façade in the city of Graz, Austria. We can observe
several symmetries in the architectural design: similar windows with different
ornaments above – see also the encircled example – a middle column with sym-
metric parts left and right, and similarly structured elements like columns and
ornaments (photo by author).

The steps carried out when modeling the façade can be seen as an algorithm
that utilizes tools of the 3D modeling suite – which is the generative model of this
façade. Such a generative representation can be desirable in several scenarios:

• A generativemodel can encode a class of shapes using parameters – various
shapes can be created by re-evaluation using different parameter values.

• Machine code evaluation is less error prone than manual modeling.

• The generative model is often extremely small, compared to the evaluated
geometry and therefore a compact representation.

Creating such representations is also associatedwith increased initial costs – crea-
ting a generativemodel of a single façademay be costly, but whenmodelingmany
façades (e.g., a city), the effort will soon pay off. Still, just having an algorithmic
description does not automatically reduce modeling effort, therefore, it is desira-
ble to have a set of composable – and hence reusable – generative components.
Examples of such generative components would be windows that automatically
adapt to a given space, while maintaining a fixed width for its framing – a feature
that cannot be accomplished by copy and paste with rigid transformations.

10 CHAPTER 1. INTRODUCTION

(a) input (b) rule set

(c) parse tree

Figure 1.2: Reconstructing structure: First, an input observation is preprocessed
using a classifier for façade elements such as windows and doors (a). Given a set
of rules that describes valid façades (b) the inverse problem retrieves a concrete
rule application hierarchy (c) that describes the observation.

Inverse Generative Modeling

The inverse approaches described in this thesis obtain a concrete generative mo-
del, i.e. rules and their parameters, given an observation (e.g., a photograph such
as in Figure 1.1) and prior knowledge about the model structure. This prior kno-
wledge is described generatively, and constrains the solution search space. For in-
stance, a class of façades is described by a set of rules, a formal grammar system.
This model is composed using structural information such as floor partitioning
or symmetric subdivision of the façade, like repetition of similar elements. Simi-
lar to syntax parsing in compiler construction, the inversemodeling approachwill
yield the concrete steps of rule application from the given grammar, that will pro-
duce a façade most similar to the observation. This is demonstrated in Figure 1.2.
This generative representation has several advantages: it can be transformed to a
generative forwardmodel using code transformation tools; this generativemodel,
when evaluated, will produce a 3D model which is always valid. Furthermore,
the parse tree can be analyzed to gain insight into the observation, e.g. extract the
number of floors or examine found symmetries.

1.2. CONTRIBUTION 11

To summarize, the main problem is to extract geometric and semantic shape
information from real-worldmeasurements. For example, the geometric informa-
tion may be a 3Dmodel of a façade, the semantic information may be the number
of floors and the symmetries of the façade structure. Now, the idea is to utilize
specific domain knowledge to reduce the search space. Typical approaches in
this problem field encode the domain knowledge directly in the reconstruction
or post-processing algorithms. The approaches presented in this thesis are based
on the idea to utilize a more general description to express the domain know-
ledge. This is done with a set of rules that encodes “good” or “possible” (valid)
configurations. Creating a reconstruction algorithm that utilizes such a genera-
tive description is a powerful tool, as it decouples the information extraction step
from the description of prior knowledge. This allows to easily exchange the do-
main knowledgewithout the need tomodify the recognition algorithm. Thus, the
proposed method is to describe domain knowledge by generative modeling and
fit to measured data.

1.2 Contribution

This thesis deals with the application of generative methods for shape creation
in the context of data completion, mainly in the domain of building modeling. It
contains three main contributions

• As first contribution, I describe a new generative forward modeling system
that is flexible, fast and robust. It uses a novel geometric representation
(convex polyhedra) in a shape grammar approach.

• In the second contribution, I utilize a two-dimensional split grammar to
describe a façade style prior and to parse the structure of a given façade
photo. Then I describe an automatic conversion of these parse trees to a
generative forward model using the modeling approach shown in the first
contribution.

• In the third contribution, I derive a hypothesis of the layout of electrical
wiring in indoor situations from preprocessed terrestrial laser scans, pho-
tographs, and a generative specification: a 2D grammar of technical stan-
dards. Augmented floor plans are extracted from the measurement data,
and the positions of observable endpoints (sockets and switches) are de-
tected using a pre-trained classifier. From these input data, a hypothesis for
power wiring connecting the observable endpoints is deduced.

12 CHAPTER 1. INTRODUCTION

1.3 Overview

This thesis is structured as follows: Chapter 1 motivates and introduces themeth-
ods developed in this work, and gives an overview of the main contributions.
Chapter 2 summarizes important techniques and related work that have been in-
strumental for the development of the proposed methods. Chapter 3 is divided
in two parts; in the first part, I give a thorough description of the developed gene-
rative forward modeling system, and discuss the robust and fast implementation
of surface evaluation for the proposed system. The second part of Chapter 3 is
concerned with an application of this shape grammar to the domain of building
exterior modeling. Chapter 4 summarizes my research on inverse generative mo-
deling. First, a method for exterior façade reconstruction by parsing shape gram-
mars on façade orthophoto classifications is presented; the second method des-
cribes the reconstruction of electrical wiring in office spaces using a generative
representation of technical standards and preprocessed measurements from ter-
restrial laser scanning. In Chapter 5, I show examples of collaborative works that
utilize the proposed methods. The results of this thesis are discussed in Chapter
6, which is concluded with an outlook on future work and some open questions.

2Background
This chapter summarizes important techniques and foundations that have been
relevant for this thesis. Most of this chapter appeared as “The rules behind - Tutorial
on Generative Modeling” at the Symposium for Geometry Processing, 2014 [108]
and “A Survey of Algorithmic Shapes” [109].

2.1 Introduction to the Generative Paradigm

In the context of computer-aided design (CAD) and shape description, the digi-
tal creation of a shape is called modeling. The most common representation of a
shape is a composition of elementary objects. However, a shape can also be des-
cribed by its generating process. In this case, the description is called a generative
model. Note that there is also a paper titled Generative Modeling: a symbolic system
for geometric modeling by Snyder and Kajiya [172] which describes an early version
of a symbolic shape design system; shapes are created by transformation of anot-
her shape called the generator shape. The term generative model in this thesis is
used in a broader context and stands for any generating process. A generative
model does not describe a shape by the parts it consists of, but by the operations
and steps needed to be performed in order to create it; in otherwords, a generative
model is an algorithm. Its implementation is an algorithmic description written
in a programming language. Depending on the used software engineering para-
digm, a generative model may also be called a procedural model or a functional
model, if the algorithm is implemented procedurally, respectively functionally.
For many purposes in CAD, the mightiness of a Turing-complete programming
languagemay lead to potential problems, such as the halting problem. In order to
avoid these problems, CAD frameworks often offer a language that is not Turing-
complete; i.e., the set of language features is reduced to parametric modeling.
Note that in the literature the term procedural modeling is often used ambigu-
ously, describing all kinds of generative models.

In generative modeling, the object is not just the end result of applied opera-
tions, as this paradigm describes a shape by a sequence of processing steps. The
result is a paradigm shift from shape design to rule design. This approach is very
general and can be applied to any domain, as well as using any shape represen-

13

14 CHAPTER 2. BACKGROUND

tation that provides a set of generating functions.
In many cases, it is desirable not only to automate the shape construction, but

to create an abstraction that allows expressing semantics within the construction,
or as E. W. Dijkstra put it [43]:

In this connection it might be worth-while to point out that the purpose
of abstracting is not to be vague, but to create a new semantic level in which
one can be absolutely precise.

I follow with some examples of domains with established practice of generative
design.

Compass and Ruler

The ruler-and-compass construction is the construction of lengths, angles, and ot-
her geometric figures using only an idealized ruler and compass. Geometry from
the days of the ancient Greeks placed great emphasis on problems of constructing
various geometric figures using only a ruler without markings (to draw lines) and
a compass (to draw circles). All ruler-and-compass constructions consist of repea-
ted application of five basic constructions based on Euclid’s axioms [74] using the
points, lines and circles that have already been constructed. It turns out that all
constructions possible with a compass and straightedge can be done with a com-
pass alone, as long as a line is considered constructed when its two endpoints
are located [209]. The reverse is also true, since Jacob Steiner showed that all
constructions possible with straightedge and compass can be done using only a
straightedge, as long as a fixed circle and its center have been drawn beforehand.
Such a construction is known as a Steiner construction. Based on these geometric
primitives and a fixed set of operations, the ruler-and-compass constructions –
such as illustrated in Figure 2.1 – have been the first algorithmic descriptions of
generative models. This kind of constructions were made available on computers
to teach geometry and trigonometry, one of the first being Cabri Geometry1. A free
version of such a construction program is included in the open source K Education
Project under the name Kig2.
The long history of geometric constructions [125] is also reflected in the history
of civil engineering and architecture [132]. For example, Gothic architecture and
especially window tracery exhibits quite complex geometric shape configurati-
ons. But this complexity is achieved by combining only a few basic geometric
patterns. Sven Havemann and Dieter W. Fellner present some principles of this
long-standing domain, together with some delicate details, and show how the
constructions of some prototypical Gothic windows can be formalized using their

1http://www.cabri.com/
2https://edu.kde.org/applications/mathematics/kig/

http://www.cabri.com/
https://edu.kde.org/applications/mathematics/kig/

2.1. INTRODUCTION TO THE GENERATIVE PARADIGM 15

A
B

C

(a) Triangle ABC

A

C

(b) Construct perpendicular to AC

B

C

(c) Construct perpendicular to BC

A
B

C

c

(d) Circumcircle center at intersection

Figure 2.1: A simple example of a generative model using compass and ruler con-
structions: The circumcircle of any non-degenerate Triangle ABC is constructed
by creating perpendicular lines to any two triangle edges, in this case AC and
BC . The intersection of these lines is the center c of the circumcircle ofABC , the
radius corresponds to the distance between c and any triangle vertex.

generativemodeling techniques [71]. Usingmodularization, so that complex con-
figurations can be obtained from combining elementary constructions, different
combinations of specific parametric features can be grouped together, which le-
ads to the concept of styles. They permit differentiating between the basic shape
and its appearance, i.e., in a particular ornamental decoration [189]. This leads to
an extremely compact representation for a whole class of shapes [21].

16 CHAPTER 2. BACKGROUND

Natural Patterns: Fractals and L-Systems

Benoit B. Mandelbrot of “The Fractal Geometry of Nature” [122] developed a
theory of self-similar sets, the fractals, that exhibit similarities to natural pheno-
mena. Such sets may be constructed by iterated function systems (IFS) which
were developed by John Hutchinson [87]. An extensive overview of fractal geo-
metry and iterated function systems is given in the book “Fractals Everywhere”
of Michael F. Barnsley [14].

In today’s generative modeling systems, scripting languages and grammars
are often used as a set of rules to achieve a description. Early systems based on
grammars were Lindenmayer systems [155] (L-systems) named after the biologist
Aristid Lindenmayer. They were successfully applied to model plants. Given a
set of string rewriting rules, complex strings are created by applying these rules

The L-System is described by:

• The axiom: FX

• The angle: 28◦

• Two rules:
F 7→ C0FF − [C1 − F + F] + [C2 + F − F]

X 7→ C0FF + [C1 + F] + [C3 − F]

whereas F denotes “draw forward” and +/− denote “turn left”/“turn right”.
The square bracket [corresponds to saving the current values for position and
angle, which are restored when the corresponding square bracket] is executed.
C0, C1, C2 switch colors andX does not correspond to any drawing action. This
example can be executed online by Kevin Roast’s L-Systems-Demo:
http://www.kevs3d.co.uk/dev/lsystems/

Figure 2.2: Lindenmayer systems are a simple but elegant “turtle rendering” plat-
form. The recursive nature of L-system rules lead to self-similarity and thereby
fractal-like forms. Plant models and natural-looking organic forms “grow” and
become more complex by increasing the iteration level – i.e., the number of sub-
stitutions.

http://www.kevs3d.co.uk/dev/lsystems/

2.1. INTRODUCTION TO THE GENERATIVE PARADIGM 17

Figure 2.3: L-Systems may also be used to grow 3D geometry, as shown in this
figure. It first grows the trunk and branches of the tree and instantiates quads
for leaves (left). Assigning materials to branches and leaves yields a more rea-
listic rendering (right). This example was generated using the VegGen plugin for
Blender from Tom Trval.

to simpler strings. Starting with an initial string the predefined set of rules form
a new, possibly larger string. The L-systems approach reflects a biological mo-
tivation. In order to use L-systems to model geometry an interpretation of the
generated strings is necessary.

Themodeling power of these early geometric interpretations of L-systemswas
limited to creating fractals and plant-like branching structures (see Figure 2.2).
This lead to the introduction of parametric L-systems. The idea is to associate
numerical parameters with L-system symbols to address continuous phenomena
which were not covered satisfactorily by L-systems alone.

Combined with additional 3D modeling techniques, Lindenmayer systems
can be used to generate complex geometry [193], [194]. In order to generate mo-
dels of plants, terrains, and other natural phenomena that are convincing at all
different scales, Robert F. Tobler et al. introduce a combination of subdivision
surfaces, fractal surfaces, and parameterized L-systems, which makes it possible
to choose which of them should be used at each level of resolution. Since the
whole description of such multi-resolution models is procedural, their represen-
tation is very compact and can be exploited by level-of-detail renderers that only
generate surface details that are visible.

This kind of data amplification can be found in various fields of computer
graphics. E.g. curved surfaces specified by a few control points are tessellated di-

18 CHAPTER 2. BACKGROUND

rectly on theGPU. This results in low storage costs and allows generating the com-
plex model only when needed, while also reducing memory transfer overheads.
Although L-systems are parallel rewriting systems, derivation through rewriting
leads to uneven workloads. Furthermore, the interpretation of an L-system is an
inherently serial process. Thus, L-systems are not straightforwardly amenable to
parallel implementation. In 2010, Markus Lipp et al. presented a solution to this
algorithmic challenge [120].

Art and Entertainment

George Stiny coined the term shape grammar, when he presented a formal ap-
proach to capture the design of two-dimensional paintings in his seminal work
“Shape grammars and the generative specification of painting and sculpture” [178]. An
example for another method of formalizing art is presented by Henderson [75],
where he deconstructs the woodcut Square Limit of M.C. Escher using a functio-
nal approach. The annual Generative Art Conference [173] presents artworks and
life performances in addition to conference talks (papers).

The demoscene is a computer related subculture that specializes in producing
demos, which are programs that perform audio-visual presentations. This scene
has been active since the advent of personal computers, for a brief history I refer
to the book of Tomas Polgar [153]. The creation of such programs is often tied
to various constraints, as memory and general hardware capabilities of the early
personal computers were quite limited. Nowadays, these constraints are mostly
of self-imposed nature, e.g. creating a demo using only a file size of 4096 bytes
(or 4kB). Naturally, these constraints facilitate the usage of procedural methods
for any type of presentation content: 3D geometry (meshes), textures [49], sound,
and so on.

Even without such limitations, various forms of content creation [197] have
always been the main field of application for procedural techniques: from game
design [9], [38], [93], [151], [196], and virtual worlds [163], to non-geometry as-
pects such as story-telling and dramamanagement [139], camera movements [98]
and player [195] as well as artificial intelligence modeling [12], [85].

Although procedural methods arose in the field of early video game develop-
ment, from a historical point of view their use was not common in the special
effects and feature animation community.

While computer-generated contentmade first appearance inmovies in the late
70s, it was not until the 90s, most notablywith themovies Terminator 2 and Jurassic
Park, that the film industry started using 3D computer graphics for content aut-
horing and animation. Nowadays, procedural effects for 3D games are similar to
procedural effects for movie productions. Differences can be found in the degree
of visual fidelity, but these are mainly caused by the real-time demands of 3D
games.

2.1. INTRODUCTION TO THE GENERATIVE PARADIGM 19

Visual artists use 3D animation tools to create procedural effects. Some recent
examples are the approach presented by Daniel Heckenberg et al.[73] to create,
animate and render repetitive geometric features such as scales or cobblestones
developed for the movie Walking With Dinosaurs 3D. These tools were used to
realize hundreds of different dinosaur characters from nine species. Another ex-
ample is an algorithm to create procedural tentacle bundles for an alien creature
in the movie Edge of Tomorrow that was presented by Dan Sheerin [168]. It allows
an entire tentacle bundle to be defined by a base curve and a list of parameters.

Generative Architectural Design

In many cases, there is a kind of structural interrelation with a design idea of an
architect, for example, in classical architectural design [34] there are fixed ratios
for lengths in the design of columns; classical architecture exhibits much regula-
rity, e.g. repetitions or symmetries. Utilizing such regularities makes the domain
of design and planning of buildings much suited for a generative description.
The term generative design is used architecture to describe algorithm-based design
techniques.

The usage of generative modeling techniques in architecture is not limited to
buildings of the past [133], [134]. Over the last few decades, architects have used
a new class of design tools that support generative design. Generative modeling
software extends the design abilities of architects and may even help to reduce
costs by harnessing computing power in new ways. Computers, of course, have
long been used to capture and implement the design ideas of architects by means
of CAD and 3D modeling. Generative design actually helps architects design by
using computers to extend human abilities [82].

An impressive example is the Helix Bridge in Singapore (see Figure 2.4). This
280 m bridge is made up of three 65 m spans and two 45 m end spans. The major
andminor helices, which spiral in opposite directions, have an overall diameter of
10.8 m and 9.4 m respectively. The outer helix is formed from six tubes which are
set equidistant from one another, whereas the inner helix consists of five tubes.
This bridge design is the product of inseparable collaboration between architects
(Cox Architecture and Architects 61) and civil engineers (Arup Consultant). For
its 280 m length, the dual helix structure of the bridge utilizes five times less steel
than a conventional box girder bridge. This fact enabled the client to direct the
structure to be constructed entirely of stainless steel for its longevity.

Another example of generative, architectural design has been presented by
Torsten Ullrich et al. [202]. They interpret a generative script as a function,
which is nested into an objective function. Thus, the script’s parameters can be
optimized according to an objective. They demonstrate this approach using archi-
tectural examples: each generative script creates a buildingwith several free para-
meters. The objective function is an energy-efficiency-simulation that approxima-

20 CHAPTER 2. BACKGROUND

Figure 2.4: The Helix Bridge is a pedestrian bridge in the Marina Bay area in Sin-
gapore. Its generative design has been optimized numerically. Furthermore, the
bridge was fully modeled in order to visualize its form and geometric compatibi-
lity, as well as to visualize the pedestrian experience on the bridge. Photo kindly
provided by Volker Settgast.

tes a building’s annual energy consumption. Consequently, the nested objective
function reads a set of building parameters and returns the energy needs for the
corresponding building. This nested function is passed to a minimization and
optimization process. Outcome is the best building (within the family of buil-
dings described by its script) concerning energy-efficiency. The contribution is a
new way of modeling: The generative approach separates design and engineer-
ing. The complete design is encoded in a script in a way that ensures that all
parameter combinations (within a fixed range) generate a valid design. Then the
design can be optimized numerically.

The adjustment of architectural forms to local and specific conditions is a fun-
damental study. When discussing energy consumption and solar power harness
in buildings, important aspects have to be taken into account, e.g., the relation
between a building form and its energy behavior, and the local weather conditi-
ons on an all-year basis. Several studies were published so far, trying to answer
these questions. “Form follows energy” has become an omnipresent dogma in
architecture, but its realization is difficult. The manual analysis of the various re-
lations between form, volume, and energy consumption has to face many – not
only numerical – problems.

The new approach by Torsten Ullrich et al. [202] for architectural design is
opening the door to new possibilities for the user. It relieves the user from additi-
onal, interdisciplinary burdens: the designer can concentrate on the design, while
the civil engineer can focus on engineering aspects. This new approach based on
procedural modeling can be used in various fields of product design.

2.2. LANGUAGES AND GRAMMARS 21

2.2 Languages and Grammars

Originally, scripting languages have been designed for a special purpose, e.g., to
be used for client-side scripting in a web browser. Nowadays, the applications
of scripting languages are manifold. JavaScript, for example, is used to animate
2D and 3D graphics in VRML [29] and X3D [17] files. It checks user forms in
PDF files [27], controls game engines [42], configures applications, defines 3D
shapes [165], and performs many more tasks. According to John K. Ousterhout
scripting languages use a higher level of abstraction compared to systemprogram-
ming languages as they are often type-less and interpreted to emphasize the rapid
application development purpose [145]. Whereas system programming langua-
ges are designed for creating algorithms and data structures based on low-level
data types and memory operations. As a consequence, low-level graphics libra-
ries [143], graphics shaders [140] and scene graph systems [159], [206] are usually
still written in C/C++ dialects [50], and procedural modeling frameworks use
scripting languages such as Lua, JavaScript, C#, etc.

Language Processing & Compiler Construction

The evaluation of procedural descriptions typically utilizes techniques used for
description of formal languages and compiler construction [148]. There exists a
wide range of different language concepts to describe a shape, which also com-
prehends all kinds of linguistic concepts [35]. The main categories to describe a
shape are

• rule-based: using sets of substitutions and substitution rules to build com-
plex structures out of simple starting structures [146], [103], [135], [172].

• imperative and scripting-based: using a scripting engine and techniques
used in predominant programming languages [69], [165], [102], or

• GUI and dataflow-based: using new graphical user interfaces (GUI) and in-
telligent GUIs to detect structures in modeling tasks, which can be mapped
onto formal descriptions [119], [187].

Nevertheless, the general principles of formal descriptions and compiler construc-
tion are in all cases the same – independent of ahead-of-time compilation, just-in-
time compilation or interpretation [166].
From a historical point of view, the first procedural or generative modeling sy-
stems were Lindenmayer systems [155], or L-systems for short. These early sy-
stems, based on grammars, provided the means for modeling plants. The idea
behind it is to start with simple strings and create more complex strings by using

22 CHAPTER 2. BACKGROUND

a set of string rewriting rules. The modeling power of these early geometric inter-
pretations of L-systems was limited to creating fractals and plant-like branching
structures.

Later on, L-systems are used in combination with shape grammars to model
cities [147]. Yogi Parish and Pascal Müller presented a system that generates a
street map including geometry for buildings given a number of image maps as
input. The resulting framework is known as CityEngine – a modeling environ-
ment for CGA Shape. Also, based on CGA Shape, Markus Lipp et al. presented
another modeling approach [119] following the notation of Pascal Müller [135].
It deals with the aspects of more direct local control of the underlying grammar
by introducing visual editing. Principles of semantic and geometric selection are
combined as well as functionality to store local changes persistently over global
modifications.

Sven Havemann takes a different approach to generative modeling. He pro-
poses a stack based language calledGenerativeModeling Language (GML) [69]. The
postfix notation of the language is similar to that of Adobe Postscript. Havemann
calls this approach generative mesh modeling; a shape is constructed by a small
set of operations: the euler operators. These operators are a closed and complete
set of five local mesh modification operations that preserve the Euler-Poincaré
characteristic of a shape.

Generative modeling inherits methodologies of 3D modeling and program-
ming [200], which leads to drawbacks in usability and productivity. The need to
learn and use a programming language is a significant inhibition threshold espe-
cially for archaeologists, cultural heritage experts, etc., who are seldom experts in
computer science and programming. The choice of the scripting language has a
huge influence on how easy it is to get alongwith proceduralmodeling. Processing
is a good example of how an interactive, easy to use, yet powerful, development
environment can open up newuser groups. It has been initially created to serve as
a software sketchbook and to teach students fundamentals of computer program-
ming. It quickly developed into a tool that is used for creating visual arts [157].

Processing3 is basically a Java-like interpreter offering new graphics and uti-
lity functions together with some usability simplifications. A large community
behind the tool produced libraries to facilitate computer vision, data visualiza-
tion, music, networking, and electronics. Offering easy access to programming
languages that are difficult to approach directly reduces the inhibition threshold
dramatically. Especially in non-computer science contexts, easy-to-use scripting
languages are more preferable than complex programming paradigms that need
profound knowledge of computer science. The success of Processing is based on
two factors: the simplicity of the programming language on the one hand and
the interactive experience on the other hand. The instant feedback of scripting

3https://processing.org/

https://processing.org/

2.2. LANGUAGES AND GRAMMARS 23

environments allow the user to program via “trial and error”. In order to offer
our users this kind of experience, we enhanced our already existing compiler to
an interactive environment for rapid application development.

Scripting Languages for Generative Modeling

There exists a broad variety of tools and techniques for procedural modeling. We
provide an overview of a collection of generative modeling techniques (see Table
2.1 and 2.2) under the following aspects:

application domain: Generative modeling tools often incorporate prior know-
ledge of a specific application domain, e.g. generativemodeling of architec-
ture [178], or modeling of organic structures [122], [155], which is reflected
in this aspect.

programming category: Some methods are building on conventional program-
ming languages, or scripting languages. On the contrary, some techniques
are built using proprietary languages, such as rule-based systems for buil-
dings [213], or [135] for urban modeling. Some systems can be used even
without any scripting, e.g. graph-based languages [189], or the visual inte-
ractive editing of split grammars [119].

environment: This aspect covers the tool set that provides geometric entities and
operations, for example the geometry kernel of a 3d modeling software,
e.g. the open source modeling suite blender or a proprietary system such
as shape grammars on convex polyhedra [190].

There exist various programming paradigms in software development. The-
refore, they also apply to the field of generativemodeling, where some paradigms
emerged to be useful for specific domains.

imperative: Inmany cases, generativemodeling is carried out using classical pro-
gramming paradigms: A programming language is used to issue the com-
mands that generate a specific object using a library that utilizes some sort
of geometry representation and operations to perform changes. An exam-
ple are compass and ruler systems used by an imperative language. Thus,
any modeling software that is scriptable by an imperative language, or pro-
vides some sort of API, falls into this category. Note that the resulting geo-
metry is often produced as side effects.

dataflow based: The program is represented as a directed graph of the data flo-
wing between operations [86]. The graph representation also allows for a
graphical representation; Visual Programming Languages (VPL) allow to
create a program by linking and modifying visual elements, many VPL’s

http://www.blender.org/

24 CHAPTER 2. BACKGROUND

are based on the dataflow paradigm. Examples in the domain of generative
modeling are the Grasshopper3D plug-in for the Rhinoceros3D modeling
suite, or thework ofGustova Patow et al. [150] built on top of the procedural
modeler Houdini.

rule based systems: Another different representation that proved useful for ge-
nerative modeling are rule-based systems. Such systems provide a decla-
rative description of the construction behavior of a model by a set of rules.
An example are L-Systems, as described in the Introduction. Furthermore,
the seminal work of George Stiny and James Gips [178] introduced shape
grammars, as a formal description of capturing the design of paintings and
sculptures, in the sense of “design is calculating”. Similar to formal gram-
mars, shape grammars are based on rule replacement.

shape grammars: In its classical definition [178], a shape grammar is the
4-tuple SG = (VT , VM , R, I), where VT a set of shapes, VT ∗ denotes the
set of the shapes of VT with any scale or rotation. VM is a finite set of non-
terminal shapes (markers) such that VT ∗ ∩ VM = ∅. R denotes the set of
rules, which consists of pairs (u, v), such that u = (s,m) consists of a shape
s ∈ VT ∗ combined with a marker ofm ∈ VM , and v is a shape consisting of
either

• v = s

• v = (s, m̃) with m̃ ∈ VM
• v = (s ∪ s̃, m̃with s̃ ∈ VT ∗ and m̃ ∈ VM

Elements of the set VT ∗ that appear in and rules of R are called terminal
shapes. I is called the initial shape, and typically contains an u ∈ (u, v) ∈ R.
The final shape is generated from the shape grammar by starting with the
initial shape and applying matching rules from R: for an input shape and
a rule (u, v) whose u matches a subset of the input, the resulting shape is
another shape that consists of the input shape with the right side of the rule
substituted in the matching subset of the input. The matching identifies a
geometric transformation (scale, translation, rotation, mirror) such that u
matches the subset of the input shape and applies it to the right side of the
rule. The language defined by a shape grammar SG is the set of shapes that
will be generated by SG that do not contain any elements of VM .

split grammars: The work of Peter Wonka et al. [213] applied the concepts
of shape grammars to derive a system for generative modeling of architec-
tural models. This system uses a combination of a spatial grammar system
(split grammar) to control the spatial design and a control grammar, which
distributes the design ideas spatially (e.g. set different attributes for the first

http://www.grasshopper3d.com/
http://www.rhino3d.com
http://www.sidefx.com

2.3. SHAPE REPRESENTATIONS AND BUILDING BLOCKS 25

floor of a building). Both of these grammars consist of rules with attribu-
tes that steer the derivation process. The grammar consists of two types of
rules: split and convert. split is a partition operation which replaces a shape
by an arrangement of smaller shapes that fit in the boundary of the original
shape. The convert rule replaces a shape by a different shape that also fits in
the boundary of the original shape. A simple example is shown in Figure
2.5.

This system has further been extended by the work of Pascal Müller et
al. [135], which introduced a component split to extend the split paradigm to
arbitrary 3d meshes, as well as occlusion queries and snap lines to model
non-local influences of rules. For example, two wall segments that intersect
each other should not produce windows such that the window of one wall
coincideswith the other wall, therefore occlusion queries are used to decide
if a window should be placed or not.

The evaluation of a split grammar, starting from an initial shape, yields
a tree structure, which suggests that the evaluation can be speed up by a
parallel implementation, which has been shown by Jean-Eudes Marvie et
al.[126]. Parallel generation is especially useful in an urban context, with
scenes with high complexity and detail. The work of Lars Krecklau et
al. [101] used gpu accelerated generation in the context of generating and
rendering high detailed building façades; the work of Zhengzheng Kuang
et al. [112] proposes amemory-efficient procedural representation of urban
buildings for real-time visualization.

With more advanced shape grammar systems, non-local influences are a
problem because they introduce dependencies between arbitrary nodes of
the derivation tree. Recent work by Markus Steinberger et al. [176] shows
how to overcome this problem in an GPU implementation. Furthermore,
the same authors presented methods to interactively generate and render
only the visible part of a procedural scene using procedural occlusion cul-
ling and level of detail [177]

2.3 Shape Representations and Building Blocks

This section is concerned with mathematical representations of shapes. As this
thesis mainly concerns with man-made objects such as buildings, I restrict the
shape representations to three-dimensional and two-dimensional shapes.

The description will start at a quite low level with reference to unstructured
representations, continuingwith a short introduction to topology and the resulting
common surface representationswithin computers and algorithms. Furthermore,

26 CHAPTER 2. BACKGROUND

S T T T T

T WA WA

WA
K

WI

WA

WA

WI

K

(a)

S

(b)

Figure 2.5: A split grammar is suitable for representing repetitive structures, like
buildingwindowswith decorative elements are generated (right) if the set of rules
(left) is applied to the start image. The split grammar derivation process introdu-
ced byWonka et al. [213] is guided by an additional control grammar, that decides
e.g. which keystone is selected.

2.3. SHAPE REPRESENTATIONS AND BUILDING BLOCKS 27

(a)

(b)
(c)

Figure 2.6: One of the simplest geometry representations are point clouds; the
surface of an object is described by an unstructured set of points. This represen-
tation is of importance because it is the natural representation of several surface
measurement techniques, e.g. laser scanning methods. In these examples, the
bunny (a) consists of 35.947 points. The dragon (b) is made of 437.645 points,
and the happy buddha (c) is composed of 543.652 points. Data provided by the
Stanford 3D Scanning Repository. 4

related work concerning the building blocks for the next chapter, half space mo-
deling, is introduced.

The surface of a shape may be represented by a set of points, a so-called point
set. A point set is a list of points defined in a coordinate system. Due to the lack
of connectivity information between points, such a representation is also called
unstructured. While such a representation is not preferred for modeling, or chan-
ging a shape, it is a natural representation for scanned objects. Commercial 3D
scanning system such as laser scanning systems (called LiDAR - Light Detection
And Ranging) survey an object by performing many distance measurements to
an objects’ surface, which maps directly to a point set. These devices are typically
placed on the ground, inwhich case they are also called Terrestrial Laser Scanning
(TLS) devices. Such devices that do not move acquire a point cloud in a spherical
area around the measuring device per scan. Indoor situations or larger areas may
require multiple scans to cover the whole area of interest. Multiple scans have to
be aligned to a common coordinate system before further processing.

Various approaches for rendering point sets are available, see the literature
survey of Markus Gross andHanspeter Pfister for an extensive explanation [64].

4https://graphics.stanford.edu/data/3Dscanrep/

https://graphics.stanford.edu/data/3Dscanrep/

28 CHAPTER 2. BACKGROUND

Basic Topology Facts

The mathematical branch topology concerns itself with the study of geometric ob-
jects, respectively topological spaces, and their invariant properties under defor-
mations. I give an informal overview on some aspects of topology that are impor-
tant for this thesis in this subsection, for a formal overview I refer to the books of
Erich Ossa [144] and John Lee [116]. Note also that topology, while being the the-
oretical basis for the representation of shape within computers, is a much wider
and abstract field that is applied to many problems outside of shape representa-
tion and processing.

The majority of shape representations that are of interest for shape modeling
using computers are based on some core topological principles. Topology intro-
duces cell complexes, a method to construct topological spaces from elementary
building blocks, the cells [68]: In general, we start with a discrete set X0, whose
points are regarded as 0-cells. Then, form the n-skeletonXn fromXn−1 by atta-
ching n-cells. This means that Xn is the quotient space of the disjoint union of
Xn−1, with a collection of n-disks. Thus, any Xn is a set of the union of d-disks
with d ranging from 0 to n. In computer graphics, the 0-cells are often referred to
as vertices, the 1-cells as edges and the 2-cells are called faces.

Surface Representation

The simplest surface element is a triangle: three coordinates define via their ba-
rycentric parametrization a linear surface representation. Any surface may be
piece-wise linearly approximated by a set of such triangles.

An unstructured set of triangles may also represent a surface, but, similar to
unstructured point representations, such a representation is not so suited for mo-
deling. For such applications, a topological representation that describes neig-
hborhood relation of geometric elements is desirable.

Therefore, the common definition of a surface in the context of computer gra-
phics applications is that of an orientable continuous two-dimensional manifold embed-
ded inR3 [24]. Amanifold of dimension d is a topological space in which the neig-
hborhood of each point is homeomorphic to the d-dimensional euclidean space.
In other words, the intersection of an infinitesimal small sphere with a surface
point of such an embedding is homeomorphic to a disk.

In many cases, such surfaces are represented by triangle meshes, which con-
sist of a geometric and a topological component. The latter can be represented
by a graph structure, a complex, that consists of a set V of vertices v and a set F
of triangular faces f that connects the vertices. Sometimes, the connectivity may
also be represented by V and the set of edgesE where each edge connects exactly
two vertices. The geometric embedding of a triangle mesh into R3 is specified by
associating a 3D coordinate to each vertex v.

2.3. SHAPE REPRESENTATIONS AND BUILDING BLOCKS 29

An important topological quality of a triangle mesh is if it is a two-manifold
or not, as mentioned before. A triangle mesh is not two-manifold if it contains a
non-manifold edge or a non-manifold vertex. If it contains neither, it is two-manifold.
Such non-manifold edges and vertices violate the condition that the manifold is
locally similar to two-dimensional euclidean space: a non-manifold edge is adja-
cent to more than two triangles, and a non-manifold vertex can be generated by
connecting the tip of two cones, each represented by a fan of triangles. An exam-
ple of non-manifold configurations is shown in Figure 2.7. To evaluate a general
surface, composed of triangles, we utilize the surface evaluation of a triangle: any
point p in the interior of a triangle, defined by the points a, b and c, can be written
as a barycentric combination:

p = λ0 · a+ λ1 · b+ λ2 · c (2.1)

with
λ0 + λ1 + λ2 = 1 (2.2)

Two-manifolds can describe the surface of non-degenerate three-dimensional
solids; non-degenerate means in this context that the solid does not have any infi-
nitely thin parts, in which case the surface properly separates the solid into an in-
terior and exterior part. Continuous is intuitively understood such that the surface
does not have any holes (in which the surface is called a surface with boundaries,
and can be transformed into a proper boundary surface by filling the holes).

Orientability can be understood as the possibility to consistently assign an
orientation to a manifold surface. In the case of two-manifolds this corresponds
to consistently assign surface normals. In other words, on a non-orientable two-
manifold, there exists a path that brings a surface normal back to its starting po-
sition, pointing in the opposite direction. Non-orientable two-manifolds do not
correspond to solids, as there is no interior or exterior surface. A prominent ex-
ample of a non-orientable two-manifold is the moebius strip, see Figure 2.8.

A d-dimensional simplex is the generalization of a tetrahedral region of space
to d dimensions. With d = 1, the simplex is a line segment. With d = 2, the
simplex is the convex hull of three points, a triangle. In d = 3, the simplex is
the convex hull of 4 points, a tetrahedron, etc. Barycentric coordinates were first
introduced by August Ferdinand Möbius in 1827, as a means of describing points
with respect to the simplex.

Representation using computers

There exist many variations of surface representations, which representation to
choose depends on the intended purpose – a geometry processing algorithmmay
need to utilize the topological structure, for data exchange a simpler description
of smaller size might be sufficient.

30 CHAPTER 2. BACKGROUND

Figure 2.7: Two-manifold meshes are an important representation for geometry
processing algorithms. A mesh is not two-manifold if it contains a non-manifold
edge, or a non-manifold vertex. The left object shows a non-manifold edge con-
figuration, marked by the red line, and the right object contains a non-manifold
vertex, marked by the red sphere.

Figure 2.8: The moebius strip is a non-orientable two-manifold - a single surface
that cannot be coherently oriented. It can be constructed by taking a rectangular
strip of paper, and gluing together the shorter sides, twisting one side by 180◦
before connecting.

2.3. SHAPE REPRESENTATIONS AND BUILDING BLOCKS 31

Inmany cases, the surface of a shape is represented by a set of polygonal faces.
Often, two-dimensional simplices – triangles – are used for this representation.
For data exchange, these representations are often unstructured lists of faces, in
the case of triangles also called triangle soups. The de-facto standard data interface
between CAD software and machines, such as milling machines or 3D printers,
is the STL file format which encodes a triangle soup.

While unstructured data is sufficient for manufacturing or rendering purpo-
ses, it is often not suitable for further processing, as there is no exploitable topo-
logical information, e.g. for traversing the local neighborhood of a triangle.

The indexed face set (IFS) is a commonly used representation of surfaces for
computer graphics and data exchange. For example, the OpenGL graphics ap-
plication programming interface (API) defines the concept of vertex and index
buffers. A common file format for computer graphics applications is the Wa-
vefront OBJ format, which utilizes an IFS based description. An IFS defines a
list of vertices V , where the geometric coordinates for each vertex are specified.
Furthermore, it contains a set of faces F ; each face is defined by a list of vertex
indices, where each index points to the position of a vertex in V . Thus, different
faces may reference the same vertex by using the same index, which corresponds
to neighborhood, or topological information. See also Figure 2.9 for a simple ex-
ample.

While IFS representations are sufficient for rendering and data exchange, ri-
cher topology information is desired for shape modeling and modification ope-
rations. An important method for representing exploitable topology information
uses an edge based representation, an early version is the winged edge data struc-
ture, presented by Bruce G. Baumgart in 1972 [15]; more modern variants are
known in slight variations as half-edges [123], [19], directed edges [33], doubly
connected edge list (DCEL) [40], or FE-structure [208] which can represent orien-
table two-manifolds. An example is shown in Figure 2.10. Each edge of manifold
is represented by two directional half-edges with opposite orientations. Half ed-
ges are linked to adjacent half edges in the face cycle, each face and each vertex
are linked to at least one adjacent half-edge. This data structure is also used to
represent surface descriptions in the computational geometry algorithms library
(CGAL) [97].

These edge based data structures are used to represent two-dimensional ma-
nifolds, which also is the representation used in this thesis. Although outside
the scope of this thesis, arbitrary dimensional manifolds can be represented with
a generalized data structure - the combinatorial map [53] [198]. Non-orientable
surfaces can be represented by generalized maps [117].

32 CHAPTER 2. BACKGROUND

A B

C

D

(a) A tetrahedron

1 # WaveFront OBJ comment
2 # starts with ’#’
3

4 # list of vertices
5

6 v -1 -1 0 # A (1)
7 v 1 -1 0 # B (2)
8 v 0 1 0 # C (3)
9 v 0 0 1 # D (4)
10

11 # triangular face cycles
12

13 f 1 3 2 # A - C - B
14 f 1 2 4 # A - B - D
15 f 2 3 4 # B - C - D
16 f 1 4 3 # A - D - C

(b) Wavefront OBJ file

Figure 2.9: TheWavefront OBJ file format is a text based file format. This example
shows the OBJ representation (right) of a simple tetrahedron (left). The format
uses an indexed face set to describe the surface of a shape: First, a list of vertices
is defined, corresponding to A, B, C and D. Each face is defined by a sequence of
vertex indices, with 1 pointing to the first vertex in the list. Note that comments at
the end of lines with vertex or face definitions are here displayed for brevity and
may not be supported by a software that reads OBJ.

A

B

C

D

(a)

A

B C

D

(b)

Figure 2.10: The surface of a tetrahedron (a) is a closed orientable two-manifold
and can be represented by adirected-edge data structure; each edge is represented
by two oriented half-edges, each face is composed of an consistently oriented loop
of half-edges, as can be seen on the right (b).

2.3. SHAPE REPRESENTATIONS AND BUILDING BLOCKS 33

A B

(a) Input Shapes (b) Intersection (c) Union (d) Difference

Figure 2.11: Constructive solid geometry describes a shape by combination of
shapes using Boolean set operations. This example shows two input shapes A
and B (a), and the result of the corresponding Boolean operation as filled area.
Common operations are intersection

⋂
(b), union

⋃
(c) and difference − (d).

Solid Modeling - Constructive Solid Geometry - Half Space Modeling

The principles for modeling three-dimensional solid objects are summarized by
the term solid modeling. A solid can be represented by a closed orientable two-
manifold surface. Typically, these principles describe the composition of complex
shapes by a combination of simpler shapes. Mathematically, this is represented
by associating the shapes to sets, and describing composition using operations of
elementary set theory [10], i.e. operations such as intersection or union, as can be
seen in Figure 2.11. These operations are also referred to as Boolean operations.
The term Constructive Solid Geometry denotes the methodology to create complex
shapes by a Boolean combination of primitive shapes. This combination is often
represented by a binary tree, the CSG Tree where the leaves consist of primitive
shapes, and each node contains a corresponding Boolean operation. The root of
the tree corresponds to the final shape.

The term half space modeling denotes amodeling paradigm that allows creating
complex shapes by the combination of simpler basic shapes, namely half spaces.
A half space is a region of d-dimensional space that lies on either side of a d-
dimensional hyperplane. A more thorough definition of the half space modeling
methods used by the proposed method are given in the beginning of the next
chapter. A basic form of this modeling paradigm dates to Nef polygons [138],
which introduced modeling of polygonal structures in 2D using the combination
of half spaces with the operations complement and intersection.

An euclidean half space is a convex set, as it satisfies the convexity criterion:
Given any two distinct points in the set, their shortest connection corresponds to a
straight line segment. A set is considered convex if every point on the connecting
line of any point pair is also in the set. It can be trivially shown that this is the
case for any point pair on one side of a d-dimensional hyperplane, therefore a
half space is also convex. The intersection of convex sets is also convex: For any
point pair that is contained in each set, their connection is also contained in each
set. Therefore, the connection is also contained in the intersection of all sets. An
intersection of half spaces is also called a convex polyhedron.

34 CHAPTER 2. BACKGROUND

A

B
C

D

E

A

OUTC

B

E

D

IN IN

OUT

OUT OUT

Figure 2.12: A BSP tree is a binary partition of space into convex cells using sub-
sequent hyperplane splits. In this example, a simple two-dimensional shape as
seen on the left is described by the BSP tree shown on the right. Each node corre-
sponds to a directed hyperplane (A - E), the left child of a node corresponds to the
space below the hyperplane, the right child to the space above. Leaves are labeled
ether as IN or OUT, whether they belong to the inside or the outside of the shape.

A related technique is the representation of solid shapes using binary space
partitioning (BSP) trees. A BSP tree is a binary tree that corresponds to a succes-
sive subdivision of space using half spaces. Each node corresponds to a volume,
a convex polyhedron, with the root being the whole space. A hyperplane divides
this space into two non-overlapping volumes, the intersections with the half spa-
ces on either side of the hyperplane, which correspond to the children of a node.
Thus, the leafs correspond to convex polyhedra that are composed by the inter-
section of all hyperplanes along the path from the leaf to the root. Thus, a BSP
tree corresponds to a complete, non-overlapping partition of space into convex
cells, its leaves. A shape is now described by a union of such leaf cells, which are
labeled as inside, all other leaves are labeled as outside. See also Figure 2.12 for a
two-dimensional example. BSP trees also generalize to any dimension d, where
d-dimensional space is partitioned by d-dimensional hyperplanes.

The BSP tree is popular in computer graphics as it is a fast and versatile data
structure. It is often used for visibility calculations, e.g. back to front sorting
for rendering transparencies, occlusion culling, or visibility culling [5]. But there
is a drawback: constructing a BSP tree for a given shape is prone to numerical
instabilities, as cutting hyperplanes might also split the shape’s geometry - which
means intersections have to be calculated. For a more extensive description of the
causes of such problems see also Section 2.6 “The Robustness Problem”. This is
often not an issue because the construction of a BSP tree is a pre-processing step,
and encountered problems can be identified and fixed at this stage. Furthermore,

2.4. SYNTACTIC PATTERN RECOGNITION AND INVERSE GENERATIVE
MODELING 35

building the smallest possible BSP tree is NP-complete [89], so any real world
application has to use approximation techniques.

While BSP trees are popular for rendering, the data structure is also used in
other contexts: The seminal work of Bruce Naylor et al. [137] presented an al-
gorithm for combining BSP trees using Boolean set operations. In contrast to
Booleans on boundary representations (BReps), which require complicated and
error-prone modifications of the boundary representation, the BSP method ends
upmerging binary tree structures and intersecting polygons, a much simpler ope-
ration. This algorithm has been improved byMikola Lysenko et al. [121] by repla-
cing the polygon intersection step with linear programming. Furthermore, they
presented a compression schema for a reduced memory footprint of BSP trees by
reusing identical sub trees. The surface of all IN-leaves of a BSP tree can be reco-
vered from a binary tree that contains only hyperplane definitions [37] - a more
robust variant has been proposed in 2012 by Wang et al. [207]. For use cases that
require frequent conversion between a BSP tree and a corresponding BRep, mixed
representations that contain both representations have been proposed, such as the
BRep-index by George Vanĕček [204], or the topological bsp tree by Comba et al.
[37]. While half spaces are mostly represented by planar (linear) hyperplanes,
extensions to BSP representations have been proposed that use non-planar (qua-
dric) partitions, and methods to convert between boundary representations and
constructive solid geometry (CSG) trees [31]. Additionally, BSP trees are a suit-
able method for an implicit representation of polygonal objects: signed distance
fields, or BSP-fields as presented by Fryazinov et al. [59]

2.4 Syntactic Pattern Recognition and Inverse Generative
Modeling

In the seminal work Pattern Recognition and Image Processing of King-Sun Fu and
Azriel Rosenfeld, pattern recognition methods are grouped into two main cate-
gories: decision-theoretic (or discriminating) approaches and syntactic (or struc-
tural) approaches. The first category, a set of characteristic measurements, the fe-
atures, are extracted into a feature vector, and recognition is done by building a
classification algorithm that associates a given feature to a pattern class – which
is a classical machine learning task.

The syntactic approach draws an analogy between the structure of patterns
and the syntax of a language. Pattern recognition is carried out by parsing the
structure using a given set of syntax rules. In this sense, the approaches I present
in this thesis belong to the syntactic pattern recognition family.

As has been explained in the foregoing sections, forward generativemodeling
describes a shape or object using an algorithm – a set of parameters will yield a

36 CHAPTER 2. BACKGROUND

(a) Input Image (b) Synthesized Image

Figure 2.13: Texture synthesis approaches synthesize an image (b) that is locally
similar to a given input image (a). The above image was created using the Image
Quilting algorithm from Alexei A. Efros and William T. Freeman [55].

model instance after evaluation. The inverse problem is now to find the model
parameters, given a model or an observation.

When talking about creatingmathematicalmodels of physical phenomena, an
important property of such problems is the so-called well-posedness of a problem,
as defined by Jacques Hadamard [67]. A problem is well-posed in the mathema-
tical sense if

• a solution to the problem exists

• the solution is unique for any given input

• the solution depends continuously on data and parameters

The third point entails that a small change in the input results in small changes in
the solution, and a large change in the input will lead to a proportionally larger
change in the solution. In general, inverse problems are often ill-posed, which
makes them hard to solve robustly.

I will now consider several previous works, grouped into similarity of the ap-
proach taken, that concern themselves with the inverse problem using generative
methods. Generally, I will call a generative ModelM , that, when evaluated with
parameters x = (x0, · · · , xn), yields a model instance I . An observation or mea-
surement is called O.

Similar Model Synthesis. One family of approaches does not use a genera-
tive description language, but will produce a similar object, given an exemplary
3D model. The Model Synthesis algorithm [130], as presented by Paul Merell
and Dinesh Manocha, is inspired by well-known Texture Synthesis approaches.
Texture Synthesis is a method to create larger 2D images from a smaller sample
image, often used for texture mapping in computer graphics, see also Figure 2.13
for a texture synthesis example using the Image Quilting algorithm [55]. Merell

2.4. SYNTACTIC PATTERN RECOGNITION AND INVERSE GENERATIVE
MODELING 37

describes in his thesis [129] discrete model synthesis, where a model is compo-
sed of transformed base model pieces, the degrees of freedom are reduced using
several types of constraints. He further describes continuous model synthesis,
where an example model does not have to be decomposed into pieces: the face
planes of the input model are shifted parallel in discrete steps, the arrangement
of all such planes in space forms a discrete structure from which a locally similar
shape can be derived. Again, the search space is reduced using several types of
constraints: dimensional constraints, which e.g. fix the width of an object, alge-
braic constraints, which e.g. fix the aspect ratio of an object, incidence constraints,
whichmaintain neighborhood structure and large scale constraints, which specify
the rough structure of the generated object.

Grammar Inference from Symmetry. A related, more general approach was
presented byMartin Bokeloh et al. in the paperAConnection between Partial Sym-
metry and Inverse Procedural Modeling. In this work, they describe the identifica-
tion of symmetric boundaries, that separate the dissimilar parts of amodel. These
boundaries are called docking sites, and the parts are called dockers. The docking
sites are automatically identified in an inputmodel via symmetry detection. Sym-
metric parts (e.g. one part that is symmetric under translation) can be used to con-
struct docking sites by cutting through them and recombine the model together
using cut lines from different symmetric parts. As not all cuts through symmetric
parts are valid docking sites, an algorithm is presented to extract valid docking
sites from an input model. From the hierarchical dependencies of extracted valid
docking sites, a context free grammar is extracted. Randomproductions from this
grammar will yield models that are locally similar to the input model. A variant
to analyze 2D vector images was presented by Ondrej Stava et al. [175]: Inverse
Procedural Modeling by automatic generation of L-Systems automatically generates a
generative representation from a given image. The method analyzes instances
of terminal symbols and clusters similarities in placement to create non-terminal
symbols and L-System rules.

The second family will find a “best” approximation to a given high-level des-
cription, while using a generative description to constrain the search or result
space. These problems are generally hard to solve, as the search space is too vast to
explore exhaustively. Torsten Ullrich presented in his thesis Reconstructive Geo-
metry [199] a method to semantically recognize 3D objects. This solution utilizes
a generative description to describe an object class and its variability. A distance
based minimization procedure is utilized to find the best model parameters P .
The optimization utilizes a compiler tool-chain to analyze the generative descrip-
tion, the Euclides framework. The description itself is a scripting language similar
to JavaScript. The observation of the input shape is given as a point cloud O,
the algorithm answers the questions whether O can be described by the gene-
rative Model M and if so, what are the input parameters x such that M(x) is a

38 CHAPTER 2. BACKGROUND

good description ofO. The latter is found using a distance based, weighted error
function

f(x) = dψ(O,M(x)) (2.3)

which should be minimal. Summarizing, the result is constrained to the family
of shapes described by the generative description. The similarity is measured
using a distance metric based on point distributions in space, the solution is a
local optimum, i.e. it depends on the initialization values.

Stochastic Approaches. Due to the vastness of the search space, stochastic
methods are often used. The family ofMarkovChainMonteCarlo (MCMC)meth-
ods samples from an unknown probability distribution by constructing aMarkov
Chainwith the desired distribution as equilibrium, each step in the chain depends
on the foregoing step only. In the context of recognition of façade structure from
images, several works have been concerned using variants of syntactic pattern
recognition. Nora Ripperda et al. presented an approach [162] to reconstruct a
façade structure to a given grammar using a reversible jumpMarkovChainMonte
Carlo (rjMCMC) process to explore the solution space. Similarly, Olivier Teboul
et al. use a random walk MCMC to derive a parse tree from a 2D split gram-
mar to obtain a semantic labeling of an ortho photo of a façade. A more general
variant has been presented by Jerry O. Talton et al. - in their work Metropolis
Procedural Modeling, they present a method to automatically create a derivation,
given a grammar and a high-level specification of the desired production [183].
The approach is also based on MCMC inference using the Metropolis Hastings
algorithm, and the authors demonstrate its application on generative models of
trees, cities buildings andMondrian paintings. Similarly, Ondrej Stava et al. [174]
presented a method to fully automatic find the parameters of a general procedu-
ral tree model. The general model covers several species and is based on recent
advances in plant biology and computer graphics. It grows branches from active
so-called buds per growth cycle. The model contains 24 parameters in total and
the authors define a novel similarity measure to determine the parameters to a
given representation that has been obtained from point clouds; From this repre-
sentation they are able to create similar instances of the same plant or tree family,
or replace all plants of a family with another. The optimization procedure also
utilizes the Metropolis-Hastings algorithm to obtain the parameters of the gene-
rative representation.

Similarities to Parsing. Asmany of these syntactic pattern recognition appro-
aches model structural relations with formal grammars, parsing methods from
compiler construction may also be applied to derive a derivation tree from an ob-
servation. The main problem with such methods is that classical parsing meth-
ods are used to analyze text, and not observations such as images, that may con-
tain uncertainties or measurement errors. One such algorithm, the well-known
Cocke-Younger-Kasami (CYK) algorithm is a dynamic programming algorithm

2.5. BUILDING INFORMATION MODELING 39

that iterates over all substrings of the input and all non-terminals of the grammar.
Michail I. Schlesinger et al. [167] adapted this algorithm for two-dimensional
split grammars to parse the structure of musical note sheets. Such classical par-
sing algorithms fall into the category of discrete optimization, many problems can
be modeled using graph theoretic approaches.

Graph theory anddiscrete optimization. Agraph consists of a set of elements
(nodes) together with a binary relation that is defined on the set [211]. Graphs can
be visually represented by diagrams in which the elements are shown as points
and binary relations as lines (edges) joining pairs of points. Discrete or combina-
torial optimization [99] concerns itself with finding optimal solutions in discrete
problem domains. Such problems often exhibit a seemingly simple structure, but
finding the optimal solution leads to an exhaustive search of the solution space,
which is often not feasible (e.g. the famous traveling salesman problem). There-
fore, approximative algorithms are used in practice that may not find the global
optimum but terminate in an acceptable amount of time.

Further Literature. For the interested reader I refer to the excellent course
on inverse procedural modeling for virtual worlds that was given in SIGGRAPH
2016 by Daniel Aliaga et al. [7] for additional information.

2.5 Building Information Modeling

Most of the generative approaches are used in a presentation or visualization con-
text, e.g. in virtual worlds. Nevertheless, the demand of the application of such
methods in a real world context, e.g. in the domains of Architecture, Engineering
and Construction (AEC) or Facility Management (FM), is increasing. Therefore,
generative modeling can also be helpful in the context of building information
modeling (BIM), the new paradigm of today’s building industry [2]. The Ame-
rican National Building Information Model Standard (NBIMS-US) project com-
mittee defines BIM as “a digital representation of physical and functional cha-
racteristics of a facility. A BIM is a shared knowledge resource for information
about a facility forming a reliable basis for decisions during its life cycle; defined
as existing from the earliest conception to demolition” [136]. Other definitions
are summarized in a literature review by Abbasnejad and Moud, who conclude
that a generally accepted comprehensive definition of BIM has not been establis-
hed yet, and different stakeholders (architects, builders, owners, etc.) have mixed
expectations towards BIM [1]. In contrast to established computer-aided design
(CAD), a building information model does not just store the geometry of a buil-
ding, but includes semantic data about the functions of the buildings and its ele-
ments. Furthermore, BIM is intended to be used throughout the building’s life
cycle, containing information for planning, design, construction, operation and
maintenance. That is, a model is not only used by architects, contractors and sup-

40 CHAPTER 2. BACKGROUND

pliers, but by all kinds other users, e.g., government agencies, owners, real estate
agents, facility managers, etc.

Eastman et al. help to understand BIM by describing examples that are not
BIM technology. As already mentioned, models without object attributes, but
only 3D data, are not considered BIM. Furthermore, models composed of multi-
ple 2D drawings that have to be combined or models that do not automatically
reflect changes made in one view in other views are not building informationmo-
dels. Moreover, Eastman et al. consider parametric object capabilities as essential
for BIM. Parametric objects in BIM can include rules to automaticallymodify asso-
ciated objects (e.g., a wall is changed when a door is placed in it) and for ensuring
feasibility (e.g., regarding size and manufacturability) [48]. Such intelligent ob-
jects are similar to the idea of generative modeling.

One use-case is documenting a building “as-built BIM” [77], to aid, amongst
others, in the application scenarios of restoration, documentation and mainte-
nance. Such a model is built from measured data, which is typically acquired
by terrestrial laser scanning (TLS) or image-based approaches (photogrammetry
or structure from motion techniques), which yields point positions in 3D. From
these point clouds, a mesh can be created using 3D surface reconstruction techni-
ques, e.g., Poisson surface reconstruction [95]. Furthermore, the surface appea-
rance has to be acquired [210]. Such semantic relationships have to be acquired
and represented within the model [184]; see also the foregoing section about se-
mantic enrichment. A recent example of the usage of parametric elements for the
reconstruction and documentation of complex architecture is the case of a reactor
building, as shown by Jean-François Hullo et al. [84].

For historic building information modeling, or HBIM, procedural methods
have been used to aid the reconstruction and documentation process. In the work
of Conor Dore et al., a shape grammar approach was applied to model classical
building facades for historical BIM [46] and reconstructed the FourCourts, a histo-
ric classical building in Dublin City [47] using rule-basedmodeling in ArchiCAD.
Another recent example of creating a HBIM model with rich semantics from ter-
restrial laser scanning data has been shown by Ramona Quattrini et al. in the case
study of the Church of Santa Maria at Portonovo [156] using Autodesk Revit.

In the context of functional building information modeling (FBIM), genera-
tive techniques can be used to semantically filter a CAD data set of a building. A
major future challenge in the building industry is to reduce primary energy use
of buildings. Hence, energy performance simulation becomes an increasingly im-
portant topic. Accurate, yet efficient simulation depends on simple building mo-
dels. Most of the required data can be found in BIMs. However, typical BIM data
contains a lot of irrelevant data, in particular geometric representations, which
are too detailed for energy performance simulation. Using generative modeling
techniques, Daniel Ladenhauf et al. [113, 114] showan approach of geometry sim-

2.6. THE ROBUSTNESS PROBLEM 41

plification subject to semantic and functional groups. These simplified models
are sufficiently accurate for energy calculations and small enough so that they do
not flood simulation software with unnecessary details. As these semantically-
filtered models are generated automatically, they simplify the design process sig-
nificantly and offer an energy calculation, even at early design stages.

2.6 The Robustness Problem

This section is concerned with some obstacles that arise when using generative
shapes in the real world, i.e. problems that occur within implementations of geo-
metric algorithms.

In general, implementations of geometric algorithms are often susceptible to
being non-robust, due to numerical errors that arise when working with limited-
precision floating-point representation – which is the default data type for nume-
rical operations in most programming languages. As has been said by Yap [214]:

“Non-robustness refers to qualitative or catastrophic failures in geo-
metric algorithms arising from numerical errors.”

Why do geometric algorithms seem to be especially error-prone? There is of-
ten a gap between the theoretical design of a geometric algorithm and its practi-
cal implementation: geometric algorithms are usually designed and proven using
real numbers, while fixed-size floating-point numbers, floats, are used for imple-
mentation. The IEEE Standard for Floating-Point Arithmetic (IEEE 754 [90]) is one
of the most widely used technical standards, available in hardware floating-point
units; it defines e.g. binary and decimal arithmetic formats, interchange formats,
special values, rounding rules etc. In general, a floating-point number in this for-
mat is represented by a sign bit s, and the integer mantissam, or significant, and
an integer exponent ewith respect to a base b:

(−1)s ·m · be (2.4)

For example, the IEEE 754 double precision format defines a mantissa size of
52 bits, and an exponent size of 11 bits, which allows it to represent an absolute
numeric range between≈ 5 · 10−324 and≈ 1.798 · 10308. The intermediate result
of any numerical operation using such numbers will be rounded to this represen-
tation, introducing small errors. Furthermore, the representable values are not
evenly spaced on the real number line; the gap between two representable values
increases with the distance from the origin.

The rounding error introduced by using floats is negligible in many appli-
cations. However, when used in geometric algorithms, the consequences can be
quite severe. Typically, the observed behavior is undesired or strange output for
some input configurations, in some cases the program may even crash. In many

42 CHAPTER 2. BACKGROUND

cases, this leads to a tedious cycle of problem identification and local repairing,
typically by introducing small tolerances, also often referred to as epsilon values.
While this approach reduces problems in most cases, it is commonly agreed on
that this approach does not lead to a completely robust algorithm [80]. The pro-
blems can also be hard to track down, as these errors typically arise after applying
specific operations in a specific order, which can be hard to reproduce.

To find out why and where these algorithms fail we take a look at the repre-
sentation of shape in a program, and the way of applying modification to this
representation: Typically, the data representing a shape is stored using some sort
of topological information, as well as geometric information. The topological in-
formation is discrete, which naturallymaps to an exact digital representation. The
positional information, however, often corresponds to real values and is represen-
ted using floating-point. Depending on the application, the represented shape
may be assumed to comply with specific properties. An algorithm that modifies
such a representationmight violate these properties inadvertently as a side effect,
due to rounding errors in the positional information.

As an example, imagine a line pair of intersecting lines which are almost iden-
tical. Rounding the intersection point to a representable value may introduce a
deviation from the real intersection, in the case of almost identical lines the devi-
ation may even get relatively large, as a small deviation of the input yields a large
deviation in the output.

So, what constitutes a robust algorithm? The answer mostly depends on the
needs of the person being asked this question, but in most cases a robustly im-
plemented algorithm means it will not fail (in the sense of a program error), re-
gardless of the input given to the program. A detailed answer depends on the
use case; In some cases, exact evaluation might be necessary, in other cases it is
acceptable to tolerate rounding errors in favor of evaluation speed.

The following paradigms on how to treat this situation can be identified:

The standard paradigm In many cases the fact that the algorithm is not robust is
simply overlooked or ignored. Tolerances are used to handle uncertainties,
but it is commonly agreed that this method will not be robust [79], and one
will most likely end up in the aforementioned cycle of problem track-down
and local repair.

The exact paradigm Conceptually, the simplest solution is to remove the discre-
pancy between the theoretical algorithm and its implementation. This is
achieved by changing the representation of numerical values in the system
from floats to a suitable representation of arbitrary precision. Therefore, no
rounding error is made; the implementation directly reflects the theoretical
algorithm description. However, the simplicity at implementation level co-
mes with a performance cost: arbitrary sized numbers are typically slower

2.6. THE ROBUSTNESS PROBLEM 43

by several orders of magnitude, and as numerical values grow in precision,
the memory cost can be high as well.

Depending on the nature of the problem, the result of a geometric algo-
rithm is sometimes bounded in precision. For example, Boolean operations
of solids bounded by planar regions: the result of such an operation on
two polyhedra will either contain boundary elements of the input polyhe-
dra and optionally new elements introduced by the intersection of the two
objects. The input polyhedra can uniquely be described just by their topo-
logical information and the plane equations of their faces. Vertex positions
correspond to intersections of adjacent planes. Therefore, there is no gro-
wth of precision as newly created intersection vertices also correspond to
intersections of planes of the two input objects. Thus, any intermediate cal-
culations in the algorithm (the predicates) are also bounded in precision,
as they depend on the input planes (and vertices expressed through inter-
section of such planes).

These predicates typically give the answer to a question with a few dis-
crete answers (e.g. inside or outside), such an answer can be obtained using
interval arithmetic [78] to decide if the calculation can be carried out ef-
ficiently using an imprecise data type, or if higher precision is needed to
obtain the correct result. Thus, the calculation is carried out using normal
floats, and a rounding error interval (dependent on the actual arithmetic
tree) is propagated with the calculation. After evaluation, the answer may
be given directly if the interval suggests that the answer is unambiguous.
If not, a higher precision (and slower) numerical representation is used to
obtain the true answer. Various types of such predicates exist; they howe-
ver all guarantee the correctness of their result. Their implementation can
be quite involved, therefore research has been carried out into systems that
automatically generate filter code, given a predicate algorithm [128].

Another recent approach proposes a newfloating-point based format called
UNUM [66] that utilizes one bit of the representation to distinguish between
exact, i.e. a floating-point value exactly represents a real value, and inexact,
i.e. the value represents the interval between two consecutive representable
floating-point values. Therefore, no rounding will occur if calculations are
carried out exactly - which may require interval arithmetic techniques.

The rounding paradigm Another method to tackle this problem is to calculate
one step of the algorithm precisely, and rounding the result back to a repre-
sentation using a limited precision, while maintaining a topology as close
as possible to the exact result. The predicates therefore operate on boun-
ded precision input, and therefore require only bounded precision as well.
Their evaluation however still has to be exact.

44 CHAPTER 2. BACKGROUND

An example is themethod of snap rounding an arrangement of line segments
in low dimensions [62]. The input consists of a set of lines with integral start
and end coordinates. The algorithm calculates an arrangement with inter-
section vertices at integral positions. Different variations of this rounding
techniques exist, each with different properties on the number of newly in-
troduced segments or bounds of the distance of intersection vertices to ori-
ginal line segments.

Unfortunately, these algorithms are available for a limited number of geo-
metric algorithms only, and some are too involved (regarding implementa-
tion or run-time cost) to be considered for practical implementation.

The symbolical reasoning / topological consistency paradigm It was observed
that geometric algorithms can also be made robust (in they sense that they
always produce a result that conforms to given specifications, regardless
of the input) if the topological structure is always held consistent with re-
spect to the aforementioned requirements to a geometric algorithm. Let’s
look again at a clipping problem, where this approach was proposed by
Sugihara [180]. When clipping a convex polyhedron with a plane, the ver-
tices of the polyhedron classify into the two groups inside and outside the
clipping region. When we look at the neighborhood graph of the polyhe-
dron, due to convexity, each vertex group is one connected subset, and in-
tersection vertices are placed on edges between the two groups. An algo-
rithm can now be made robust if the topological consistency is enforced
before updating the topological structure: In this example, it corresponds
to re-classify vertices until the aforementioned requirement holds. The al-
gorithm will always produce some output and terminate; however the re-
sulting geometric information may not correspond to the desired output.
Consider an example where the convexity requirement is violated, due to
round-off errors. The classification now gives two connected regions that
classify as outside, and one region that classifies as inside. Enforcing topo-
logical consistency, we relabel one outside region to inside; the topological
structure now corresponds to the requirement. The relabeled region is ho-
wever ignored for clipping andmay introduce a geometric error (e.g. a bulk
that protrudes into the clipping region). Cleverly designed algorithms ho-
wever run nearly as fast as when ignoring the problem while introducing
only small deviations from an exact solution. State-of-the-art methods per-
form e.g. a direct repairing after a non-robust operation to guarantee the
robustness [11].

Micro Fragments. Nearly all these methods share a common problem: as
the evaluation is carried out exact, small errors - that stem from any problems
in the input - are represented exactly as well. For example, using a plane-based

2.7. SUMMARY 45

representation to intersect planes that form a cone, their intersection will almost
never meet in a common point. This may lead to geometrically small fragments
(micro-fragments) in the topological representation, which decrease performance.
A geometric rounding strategy or a post processing step might be able to remove
some micro-fragments, but it is not clear if rounding is always possible without
compromising geometric and topological constraints, e.g. that all vertices of a face
lie exactly in one plane.

2.7 Summary

In this Chapter, i first gave an extensive overview of the generative modeling pa-
radigm (Section 2.1) and discuss several existing methodologies to approach ge-
nerative modeling (Section 2.2), in particular various languages and shape gram-
mars. Then, I described the basic building blocks for generative modeling: the
mathematical description of shapes and their surfaces (Section 2.3) and somemo-
dification paradigms. Furthermore, I gave an introduction to establishedmethods
for inverse generativemodeling in Section 2.4, which builds the foundation for the
inverse approaches described in Chapter 4. Specifically, Section Section 2.5 dis-
cusses the application scenario for the inverse approach presented in Section 4.2.

Finally, I discuss themost important robustness problems that arise frequently
within generative forward modeling Section 2.6. The next chapter is concerned
with my proposed generative forward modeling system based on convex polyhe-
dra, and its robust evaluation.

46 CHAPTER 2. BACKGROUND

Tool Name Application Domain Programming Category Environment

Blender
Scripting

general purpose
modeling

python
scripting

open source
modeling software
blender

CGAL - The
Computational
Geometry
Algorithms
Library[192]

general purpose
modeling

C++ CGAL open source
project

CityEngine
[135]

urban modeling CGA shape commercial
integrated
development
environment
CityEngine

Generalized
Grammar G2

[103]

scientific python
scripting

commercial
modeling software
Houdini

Generative
Modeling
Language
(GML) [69]

CAD postscript
dialect

proprietary,
integrated
development
environment for
polygonal and
subdivision
modeling

Grasshopper
3D

visual arts, rapid
prototyping,
architecture

visual
programming
based on
dataflow
graphs,
Microsoft .NET
family of
languages

commercial
modeling software
Rhinoceros3D

HyperFun [149] scientific specialized
high-level
programming
language

proprietary
geometry kernel
FRep (Function
Representation)

Maya Scripting general purpose
modeling

Maya
Embedded
Language
(MEL) and
python
scripting

commercial
modeling software
Autodesk Maya

OpenSCAD CAD OpenSCAD
language

open source, based
onCGALgeometry
kernel

Table 2.1: Overview on generative 3D modeling tools and approaches (part 1).

http://www.blender.com
http://www.blender.com
https://www.python.org/
http://www.cgal.org/
http://www.cgal.org/
http://www.cgal.org/
http://www.cgal.org/
http://www.cgal.org/
http://www.esri.com/software/cityengine
https://www.graphics.rwth-aachen.de/software/generalizedgrammar
https://www.graphics.rwth-aachen.de/software/generalizedgrammar
https://www.python.org/
http://www.sidefx.com
http://www.generative-modeling.org/
http://www.generative-modeling.org/
http://www.generative-modeling.org/
http://www.generative-modeling.org/
http://www.grasshopper3d.com/
http://www.grasshopper3d.com/
http://www.microsoft.com/net
http://www.microsoft.com/net
http://www.rhino3d.com
http://hyperfun.org
http://hyperfun.org/wiki/doku.php?id=frep:main
http://www.autodesk.com/products/autodesk-maya/
https://www.python.org/
http://www.openscad.org/
http://www.cgal.org/

2.7. SUMMARY 47

Tool Name Application Domain Programming Category Environment

PLaSM scientific python
scripting,
Function Level
scripting

integrated
development
environment Xplode

Processing visual arts, rapid
prototyping

Java dialect open source,
integrated
development
environment
Processing

PythonOCC general purpose
modeling and CAD

python
scripting

Open CASCADE
Technology

Revit Scripting architecture Microsoft .NET
family of
languages

commercial
modeling software
Autodesk Revit

siteplan [96] rapid prototyping,
architecture

interactive
GUI-based
modeler

open source,
integrated
development
environment
siteplan

Sketchup
Scripting

architecture, urban
modeling and CAD

Ruby scripting commercial
modeling software
SketchUp

Skyline Engine
[150]

urban modeling visual
programming
based on
dataflow
graphs, python
scripting

commercial
modeling software
Houdini

speedtree plants/trees interactive
GUI-based
modeler, SDK
for C++

standalone modeler
and integration into
various game
engines

Terragen landscape
modeling

interactive
GUI-based
modeler

free and
commercial,
integrated
development
environment
Terragen

XFrog [41] plants/trees interactive
GUI-based
modeler

integrated develop-
ment environment,
standalone and
plugins for Maya
and Cinema4D

Table 2.2: Overview on generative 3D modeling tools and approaches (part 2)

http://www.plasm.net/
https://www.python.org/
http://www.processing.org
http://java.com/
http://www.pythonocc.org/
https://www.python.org/
http://www.opencascade.org
http://www.opencascade.org
http://www.autodesk.com/products/autodesk-revit-family/
http://www.microsoft.com/net
http://www.microsoft.com/net
http://twak.blogspot.co.at/2011/04/interactive-architectural-modeling-with.html
http://www.sketchup.com
http://www.sketchup.com
https://www.ruby-lang.org/en/
http://ggg.udg.edu/skylineEngine/
https://www.python.org/
http://www.sidefx.com
http://www.speedtree.com/
http://www.planetside.co.uk/terragen
http://xfrog.com/

3Robust Generative Shape Composition
using Convex Polyhedra

In this chapter, I give a short review of the characteristics of rule-based procedural
modeling systems and give some design rationale, followed by the description of
the proposed system for a shape grammar on convex polyhedra. Parts of this sy-
stem have been published in “Shape Grammars on Convex Polyhedra” [190] and “Fast
and Exact Plane-based Representation for Polygonal Meshes” [111]. First, I start by
describing the basic structure and a low level interface for shape construction via
intersection of half spaces, then I discuss a robust implementation of the surface
evaluation. Afterwards, I review some higher level operations for modeling of
architecture and showcase a standalone application that allows direct interactive
modeling of generative façades.

3.1 Basic Structure

Asdescribed in Section 2.3, there exist various shape representations and building
blocks for shape creation and modification. A generative modeling system utili-
zes generating functions to create such a shape representation. Naturally, these
generating functions are tightly coupled to the chosen representation of geome-
tric entities and their adjacency relations. A desired property is that rules can be
generalized, i.e. applied to a wider range of situations. For example, if a rule can
not only be applied to a specific shape (e.g. a box), but on families of shapes (e.g.
convex polyhedra).

The goal of the proposed rule based modeling system is to obtain a concise
and generalized generative description of a desired model (or model class). The
system reaches these goals by describing the model using a combination of hier-
archical refinement and growingmetaphors: Refinement is carried out by partitio-
ning shapes into smaller shapes (e.g. a split) as can be seen in Figure 3.1. Growing
(see Figure 3.2) is specified by constructing new shapes using other shapes (e.g.
an extrusion). In both cases, a rule specifies the creation of new shape from an ex-
isting shape. This shape is called the parent, and the resulting, or created shapes,
the children.

To facilitate generalization, many rules in the proposed system do not use
named entities or indices to specify important aspects in an input shape (e.g. a face

49

50
CHAPTER 3. ROBUST GENERATIVE SHAPE COMPOSITION USING

CONVEX POLYHEDRA

Figure 3.1: A coarse to fine modeling approach by consecutive subdivision is well
suited for expression in rule based modeling, as the hierarchical refinement steps
are modeled by respective rules, e.g. the refinement of a building by splitting a
box into smaller parts to create the structure of a building [81].

for extrusion), but rather use search directions with respect to a local coordinate
system. Furthermore, attributes can be attached to the shapes to influence the
behavior of rules that will be applied in a later stage of the evaluation hierarchy.

Notation

The descriptions in this chapter use the following notation symbols:

• bxe denotes rounding a value x to its nearest integer

• bxc is the largest integer ≯ x

• dxe is the smallest integer ≮ x

• x ∈ R denote scalar values along an axis in the standard coordinate system

• x̂ ∈ Rdenote scalar values along an axis in the plane grid coordinate system
(see Section 3.4)

• integer values are denoted as x∗ ∈ Z0

• the functionB(x∗)→ N+ denotes the number of bits that is needed to store
the value of an integer x∗ (the result of a computation using finite length
integer values).

• c = 〈~a,~b〉 of two D-dimensional vectors specifies the dot product c =
D∑
i=1

ai · bi

3.2. SHAPES: HALF SPACES AND CONVEX POLYHEDRA 51

(a)

(b)

(c)

Figure 3.2: The grow (or construction) paradigm constructs new shapes from exis-
ting shapes, e.g. starting from a polygon on the ground (a), a prism is constructed
for each line segment, with bisectors between the segments (b). The resulting
shapes are subdivided and some windows are placed. Note that the window sill
is also modeled using a growing paradigm: extrusion.

3.2 Shapes: Half Spaces and Convex Polyhedra

Efficient representation of arbitrary shaped surfaces is still a challenge for genera-
tive systems, or as Mueller et al. denoted it, the Problem of complex surfaces [135]:
The outcome of a rule should accordingly reflect the input shape of the rule. Arbi-
trary shapes might be composed of complex surfaces with complicated topology,
where no general method of simple rule production is known.

Many procedural modeling systems deal with this problem by restricting its
shape representation to a discrete set of basic shapes; each basic shape has to be
handled individually in each rule. The solution of Müller et al. [135] is to instan-
tiate new shapes from surface elements (vertices, edges and faces) of a shape with
a complex surface, and allow rule adaption according to overlap tests (e.g. to not
create a window in the region of two overlapping wall segments). The problem
with this approach is that it yields many overlapping shapes, which is sufficient
for visualizing purposes, but it puts severe limits to its usage if the system should

52
CHAPTER 3. ROBUST GENERATIVE SHAPE COMPOSITION USING

CONVEX POLYHEDRA

(a) (b) (c)

Figure 3.3: The convex hull of a shape is the smallest enclosing convex set that
fully contains the shape. Some examples of shapes and their convex hulls (red)
are given in two dimensions (a), (b) and three dimensions (c).

perform geometric reasoning about the result of such overlapping shapes, e.g. a
ledge that runs along a façade that is composed of several segments fromdifferent
rules.

In order to overcome the limitations of this surface-oriented approach, I define
both the basic shapes and the basic partition rules to be volume-oriented, using one
consistent representation. The reasoning about shapes in common split grammar
systems is also volumetric: shape query operations are mostly carried out on the
bounding box of a shape, along principal axis directions. In order to achieve ver-
satility but still maintain enough flexibility to achieve general rules that adapt to
a wide range of shapes, the rules of the proposed system query the convex hull
of a shape (see Figure 3.3), instead the bounding box. Therefore, rules can be de-
fined to operate on a wider range of shapes, in contrast to have a specific rule for
each basic shape, as long as the shape is convex. Non-convex shapes have to be
partitioned in convex parts.

Themost elementary shape entity in the proposed system is a volumetric con-
vex shape. This allows creating rules that operate on shape families without ha-
ving to address the problem of complex surfaces. Therefore, the basic shape en-
tity is a convex polyhedron. Shapes that cannot be expressed by a single convex
polyhedron will be composed by a union of several polyhedra. I review the basic
properties of half spaces and convex polyhedra necessary for the constructions
in this section, for an extensive background on the theory of convex polyhedra
in arbitrary dimensions I refer to the seminal work of Grünbaum et al. [65] and
Aleksandrov [6].

The low-level construction entity is a planar half space; convex polyhedra will
be composed of such half spaces. A half space can be described by an oriented
hyperplane, see Figure 3.4 for an example of a two-dimensional half space.

Definition 1. A half space in D dimensions is the set of points p ∈ RD that satisfy the
equation

〈~n, p〉+ d < 0 (3.1)

3.2. SHAPES: HALF SPACES AND CONVEX POLYHEDRA 53

�n

exterior

interior

Figure 3.4: An oriented D-dimensional hyperplane partitions RD in two regi-

ons (half-spaces). The outward pointing normal �n specifies the orientation. This

image shows an example in 2D.

the tuple (�n, d) describes an oriented hyperplane in RD, and ‖�n‖ > 0.

The D-vector �n corresponds to the normal direction of the hyperplane, and

if ‖�n‖ = 1, the scalar d corresponds to the signed distance from the origin. (in

which case the representation is called hessian normal form, or HNF).

Given such an oriented hyperplane (�n, d), we can now classify any point p ∈
RD with respect to this plane in the following manner:

H(�n, d) = sgn(〈�n, p〉+ d) =

⎧⎪⎪⎨
⎪⎪⎩
−1 → � interior

0 → � on

+1 → ⊕ exterior

(3.2)

Such a function, as H, that yields a (discrete) decision value with respect to a

geometric configuration, is called a geometric predicate. When modeling with half

spaces, it is often useful to swap interior and exterior half space, (flipping). This

is achieved by inverting the inequality in Equation (3.1), and can easily be imple-

mented by reversing the sign of the tuple: (�n, d)→ (−�n,−d).

Definition 2. A convex polyhedron P is defined by the intersection of k interior half

spaces H = {(�n1, d1), (�n2, d2), ..., (�nk, dk)}, with k ∈ N0. The interior of P consists

of all points p that satisfy

∀p ∈ P : ∀i ∈ {1..n} : 〈�ni, p〉+ di < 0 (3.3)

If P = ∅ the polyhedron is called empty. A polyhedron containing an empty set of half

spaces (k=0) spans the whole space: P = RD.

The half spaces inH are also called the defining half spaces of the polyhedron.

So far, we have defined the interior of a convex polyhedron. Another important

concept is the boundary of a convex polyhedron:

54
CHAPTER 3. ROBUST GENERATIVE SHAPE COMPOSITION USING

CONVEX POLYHEDRA

(a) standard bounded (b) empty (c) unbounded

Figure 3.5: Several configurations may arise depending on the geometric confi-
gurations of the defining half spaces of a convex polyhedron: the standard case
where a bounded intersection exists (a), the case where no intersection exists (b),
and the case where an unbounded intersection exists (c).

Definition 3. The points on the boundary of a convex polyhedron are the points that
classify on (�) for at least one defining half space, and interior () for all other defining
half spaces of the polyhedron.

Any defining half spaces that do not contribute to the boundary of a polyhe-
dron are called redundant.

3.3 Rule based volumetric shape modeling

This section describes the basic entities and operations for the proposed approach
of rule based shape modeling. A rule takes an input shape, the parent, applies an
operation that may or may not create new output shapes, the children.

The Scope

In computer science, the term scope denotes part of a program where the binding
of a named entity, a variable, is valid. Similarly, in the spirit of CGA Shape [133],
the scope in the proposed generativemodeling system is the part of the generative
model that corresponds to the current context when evaluating a rule.

Each scope consists of the following attributes

• a convex boundary CP

• a shape S (the geometry)

• a rigid transformation T that defines a local coordinate system, composed
of a position ps and orthogonal axis ~xs, ~ys an ~zs.

• a set of named additional attributesA

3.3. RULE BASED VOLUMETRIC SHAPE MODELING 55

The set of named attributes correspond to properties that are necessary for
visualization (e.g. visibility or material), or can be used to propagate semantic
information to subsequent rules.

Rules

In this subsection, I describe a notation of the proposed rule system. Theproposed
system was much influenced by parametric set grammar systems [213]: A formal
grammar is defined as the tuple

G = (N,T, P, S) (3.4)

where

• N is the set of non-terminal symbols,

• T is the set of terminal symbols,

• P is the set of production rules,

• and S is the start symbol.

• The empty symbol is denoted by ε.

Each production rule p ∈ P is of form p : LHS → RHS, where LHS, the
left-hand side, corresponds to one symbol in N (parent), and RHS, the right-
hand side, corresponds to one or more symbols in {N ∪ T ∪ ε} (children). The
children automatically inherit all attributes from their parent, production rules
may add or alter attributes.

When evaluating production rules, each symbol on the left side is associated
to exactly one scope; several production rules with the same symbol but different
scopes may exist. Each symbol on the RHS of a rule may be associated to one or
more scopes, depending on the operation. Assigning several scopes to one RHS
label means producing that number of non-terminal symbols.

The production rule determines the method of shape transformation; con-
ceptually, I distinguish between the following types of production rules that are
grouped with respect to a “default” modification regarding the scope attributes:

instantiation : rules that create an instance of a shape given its parameters (e.g.
create a prism). In this case S is ignored, i.e. the LHS shape is irrelevant.

construction : rules that create new shapes that depend on the shape S of LHS,
i.e. refinement and construction operations.

attribution : rules that define new attributes other than S , in this case the shape
S from LHS is inherited, like the other attributes.

56
CHAPTER 3. ROBUST GENERATIVE SHAPE COMPOSITION USING

CONVEX POLYHEDRA

The general notation for a production rule p is:

p : α →
op(p)

β0, β1, . . . (3.5)

where α is the non-terminal label, op denotes the modeling operation that
changes or creates a shape using the parameters p. Optional parameters are en-
closed with angle brackets, e.g. 〈a〉, and β denotes the RHS labels of this rule,
also denoted as output labels.

The ability to generalize is limited in systems using a static list of output la-
bels, as was also found to be a limitation for Krecklau and Kobbelt [103]. Their
solution accepts non-terminal symbols as parameters in modeling rules. For ex-
ample, a window structuring rule, i.e. splitting borders, insets and window sills,
might be the same for a range of windows with different glass partitions. In my
implementation I chose to allow for a right-hand symbol β to be either a label
name or an anonymous function with no parameters that yields a label name.
The evaluation scope of this function has access to the Scope attributes; storing a
label name in an attribute allows to define an exchangeable label for an evaluation
hierarchy, i.e. the sub-tree.

Modeling Operations

The modeling operations are grouped into low level operations, which provide
the simplest basic mechanisms to manipulate shapes in the proposed systems,
and higher level operations, which utilize the low level operations.

The system defines only two low level modeling operations: create half spaces
and compose polyhedra from such half spaces. All volumetric modeling opera-
tions are expressed in terms of these two basic low level operations. Intersecting
an existing polyhedronwith another half space is simply expressed by adding the
half space to the list of defining half spaces for this polyhedron.

The volumetric modeling operations can further seen as either constructing
new volumes (e.g. placing a box, or extruding a face), or subdivision operations,
where the geometry of a scope is replaced by non-overlapping smaller geome-
tries. Therefore, most volumetric modeling operations are concerned with the
way they construct the half spaces which constitute the resulting polyhedron (or
polyhedra).

Specification of Half Spaces and Convex Polyhedra

There are several meaningful ways to specify a half space; the concrete method
depends on the use case. The methods are depicted in Figure 3.6.

normal ~n and point p : The tuple (~n, p) defines a half space with outward nor-
mal~n, where p is a point on the plane (�). The implicit form is easily derived
from case (�) in Equation (3.2).

3.3. RULE BASED VOLUMETRIC SHAPE MODELING 57

x

y

p

~n

(a)

x

y

~n d

(b)

x

y

p1

p2

(c)

Figure 3.6: Three different ways to specify a half space in 2D: by point p and nor-
mal direction ~n (a), by normal direction ~n and distance to origin d (a), or by two
plane defining points p1 and p2 (three points in 3D) (a). Note that the order of
points is important to define the orientation of the half space in the last case.

normal ~n and distance to origin d : (~n, d), in this case the implicit form is alre-
ady given.

three points p1, p2, p3 : Three ordered points define a triangle, from which a
plane description can easily be retrieved. The normal vector is orthogonal to
two triangle edges, which can easily be calculated using the cross product:

~n = (p2 − p1)× (p3 − p1) (3.6)

Assuming the points are given in counter clockwise direction. The implicit
form is retrieved as in the first case, using ~n and any one of the three points.

A convex polyhedron P is simply specified by a list of n bounding half spaces
{h1 · · ·hn}, see also Equation (3.3), in which case the rule is an instantiating rule.

Parametric Basic Shapes

While any planar bounded convex shape can serve as scope in the proposed sy-
stem, using parameterized versions of specific shapes simplifies the modeling
task. Only the type of shape, e.g. a box, and a few parameters, e.g. position,
orientation or size have to be specified in these instantiating rules.

The platonic solids are a special group of three-dimensional convex polyhe-
dra. Each vertex is adjacent to the same number of faces, and all faces are congru-
ent. It can be easily shown that only 5 of such polyhedra exist, in fact, the proof
is a classical textbook example. The five platonic solids are the Tetrahedron, the
Octahedron, the Cube, the Dodecahedron and the Icosahedron (see Figure 3.7).

The rule for instantiating such a basic shape, e.g. a cube, is

α →
shape-cube(~c,~u,s)

β (3.7)

58
CHAPTER 3. ROBUST GENERATIVE SHAPE COMPOSITION USING

CONVEX POLYHEDRA

Figure 3.7: Only five convex polyhedra exist that have congruent faces and the
identical number of faces that meet in each vertex, these polyhedra are called the
platonic solids.

Figure 3.8: Another type of basic shapes in the proposed system are prisms, which
are defined via extrusion of a convex polygon. Note that the extrusion direction
need not be orthogonal to the polygon, as is demonstrated on the right side.

The shape- rules instantiate a new basic shape by constructing their accor-
ding bounding planes (a static arrangement for the platonic solids), using the pa-
rameters center ~c, the up vector ~u and a scale factor s. These rules inherit the
shape of scope α.

General prisms are polyhedra that contain two congruent faces, with all re-
maining faces being parallelograms. The shape-prism operation constructs a
subset of general prisms, namely prisms with two convex congruent faces. Its pa-
rameters are the polygon points [p0, p1, · · · , pi], the extrude direction ~u, and the
extrude length l (see also Figure 3.8.

α →
shape-prism([p0,p1,··· ,pi],~u,l)

β (3.8)

Cylinders are just special cases of prisms with polygon points describing a
circle. But any curved surfaces or round objects, like cylinders or spheres, have to
be approximated by several planar segments.

In most cases it is sufficient to combine these basic shapes to create more com-
plex shapes, special, i.e. domain specific, shapes can be added to the system by

3.3. RULE BASED VOLUMETRIC SHAPE MODELING 59

defining a new rule that composes bounding planes in the desired manner.

Convex Splits

Convex splits are a generalized volumetric refinement operation that belong to
the construction category. A convex split partitions a shape into non-overlapping
convex parts (a convex partition).

Generalized Interval Splits
The split-axis and repeat-axis operations using absolute and relative

sizes were inspired from CGA shape, [135] but have been generalized to arbitrary
convex splits. Both split operations are defined using an arbitrary direction (axis)
~a, and a list of absolute and relative parts i, which is called the split interval: I =

[i0 · · · in] as the split is eventually calculated using an one-dimensional interval
that is split into n sub-intervals. Example: [1, 1̃] denotes a split into two parts,
relative sizes are specified using the ∼ symbol.

α →
split-axis(~a,[i0···in])

β0 · · ·βn (3.9)

The split-axis operation partitions a shape into n parts, as specified in the
split interval, using split planes orthogonal to the split direction ~a. Absolute va-
lues describe the length of the corresponding sub-interval. The length of sub-
intervals of relative values is determined from the remaining available space of
the original interval, see Figure 3.9.

α →
repeat-axis(~a,lm)

β (3.10)

The repeat-axis operation subdivides a shape along the split direction ~a
into as many parts as possible, with each part having a minimum length lm when
being projected along the split direction. The actual number n of parts depends
on the size of the interval upon rule application. All parts are assigned to the
same output label β.

In a conventional box grammar system, the intervals are measured along the
bounding box of the shape in principal coordinate directions only. The generali-
zed interval split determines the spatial scope by projecting the convex hull on an
axis defined by the search direction, which leads to the interval, see Figure 3.10.
As a consequence, box grammar splits can be carried out by simply using themain
coordinate axis as search directions.

FrameSplit The operation split-frame is another versatile convex split ope-
ration. In principle, it corresponds to an offsetting operation, that partitions a
shape into an inner and outer (border) parts, see Figure 3.11. Such offsetting ope-
rations can be solved via skeletons, e.g. the straight skeleton algorithm presented
by Aichholzer et al. [4]. The straight skeleton is however sensitive to small input

60
CHAPTER 3. ROBUST GENERATIVE SHAPE COMPOSITION USING

CONVEX POLYHEDRA

A B

A B
I = [1̃, 1̃]

A B
I = [1̃, 4, 2̃]

Figure 3.9: Example of several interval splits using split-axis on the interval
[A,B] (upper line): the split interval [1̃, 1̃] partitions the interval into two equally
sized parts (middle line). The interval [1̃, 4, 2̃] partitions the interval into three
parts, with the middle part having a length of 4 units, and the left and right parts
have a length ratio of 1:2, in this case 2 and 4 units.

A

B
~a

Figure 3.10: The split-axis and repeat-axis operations calculate the extend
of the split interval [A,B] by orthogonally projecting the convex hull of the shape
on a given axis, the search direction ~a.

segments, and a numerically stable implementation is demanding. Therefore, I
devised the split-frame operation that yields similar output to a skeleton ba-
sed offset by simulating the offset by an outward extrusion: Given a convex shape,
the shape is shrunk by translating all boundary planes by a given offset in their
negative normal direction, creating the inner part. Now, for each edge on the
inner polyhedron, a bisector plane is created. The outer parts are created using
the corresponding bounding planes of inner and outer polyhedra, as well as the
adjacent bisector planes.

α →
split-frame(d,〈lbl〉)

βi, βf (3.11)

split-frame takes the parameter d, the inward displacement distance, and
〈lbl〉, a set of labels that indicate faces that should not get displaced, i.e. these 〈lbl〉,
a set of labels that indicate faces that should not get displaced, i.e. these faces will
not be part of the frame. The rule assigns the created scopes to two output labels,
the inner scopes βi and the frame scopes βf .

Bevel Split. The split-bevel operation mimics a chamfering; bevel is a
well-known operation available in many 3D modeling programs. It constructs

3.3. RULE BASED VOLUMETRIC SHAPE MODELING 61

(a)

HR

(b) (c)

PI PF

PF

PF

PF

(d) (e)

Figure 3.11: Two-dimensional demonstration of the split-frame operation: The
operation decomposes a convex shape into an inner part and parts for selected
bounding planes. The boundary planes of an input polyhedron (a) are offset to
create the inner polyhedron (b). Note that the planeHR does not contribute to the
boundary of the inner polyhedron. A bisector plane is created for each vertex of
the inner polyhedron (or corresponding edge for 3D polyhedra), as can be seen as
red dotted lines in (c). The final partition consists of the inner polyhedron PI and
a polyhedron PF for each boundary plane of the inner polyhedron (d). By com-
parison, offsetting using the straight skeleton [4] produces a different partition
(e).

a bevel plane for each edge that is adjacent to a list of given planes, identified
by labels 〈lbl〉. The bevel planes are constructed for each edge using a normal
direction ~n, and a point p, where the point p is the edge midpoint and ~n is the
sum of the normals of the two adjacent faces. The number of beveled edges is e.
The bevel planes are moved in opposite normal direction by a given distance d:

α →
split-bevel(d,〈lbl〉)

βi, βb0 · · ·βbe−1 (3.12)

The inner part βi is constructed by adding bevel planes to the input scope, a
bevel part βb is constructed for each beveled edge, such that the union of all bevel
parts and the inner part yields the input shape.

Radial Split. The split-radial operation corresponds to a radial partition
of a scope in slices with identical angles. Its parameters are the center point of
the radial split p, the radial axis ~r, a vector in the first split plane ~d, and the num-
ber of slices s. The operation constructs s split planes, and creates each slices by
intersecting the input scope with two bounding split planes that form the slice
wedge. The normal of the first split plane corresponds to the direction ~r× ~d. See
also Figure 3.12 for an example of a radial split with 5 slices. To facilitate a ver-
satile usage, the local coordinate system of each scope is oriented with respect to
the slice bounding split planes, such that the ~z-axis points to the bisector between
these split planes, and the ~y-axis points to the radial axis ~r.

α →
split-radial(p,~r,~d,s)

β0, β1, · · · , βs−1 (3.13)

62
CHAPTER 3. ROBUST GENERATIVE SHAPE COMPOSITION USING

CONVEX POLYHEDRA

p
~r

~d

~x~x

~y~y
~z~z

(a)

~x~x

~y~y
~z~z

s0

s1

s2 s3

s4

(b)

β0β0

β1β1

β2β2

β3β3

β4β4

(c)

Figure 3.12: The split-radial operation partitions a convex shape into pieces,
bounded by split planes that are oriented radially around a given point p and a
rotation axis ~r, as well as a starting direction ~d, as seen in (a). Given the number of
slices s, The operation constructs split planes s0 to s4 (b) and creates the slices (b).
Note that the local coordinate system of each slice is oriented to give a standard
orientation within each slice, with z pointing to the bisector of the bounding split
planes of the slice, as is shown for slice β0 in (b).

Extrude

Extrusion is a well-known principle in CADmodeling, and can be seen as the ge-
neration of a shape by sweeping a profile along a straight line. The term extrusion
is also used in process technology to describe the creation process of solids with
a fixed cross-sectional profile. Typically, extruding creates a new shape. Thus,
extrusions correspond to the growing metaphor.

Move Plane Technically not really an extrusion, this method is described here
because it serves a similar purpose for modeling.

α →
move-plane(~s,d)

β (3.14)

The direction vector ~s specifies a search direction. From the input shape α,
the bounding plane having the normal vector that is most most similar to ~s will
be translated by the distance d in its normal direction.

Extrude Face
This operation creates a new polyhedron, via extrusion of the face polygon of

a corresponding bounding plane by a given direction.

α →
extrude-face(~s,d)

β0, β1 (3.15)

Again, ~s specifies a search direction, and the face of the polyhedron with its
normal most similar to ~swill be selected. β0 is identical to α, as αwas consumed
by this rule, and β1 corresponds to the extruded polyhedron. The bounding pla-
nes are constructed from the flipped face plane, the translated face plane, and a

3.3. RULE BASED VOLUMETRIC SHAPE MODELING 63

~s

~n

(a)

d

(b)

d

(c)

Figure 3.13: The difference between move-plane and extrude-face, when
being applied to a shape: The face with the direction of its normal vector ~n
being most similar to the extrude direction ~s is selected (a). With move-plane,
the face bounding plane is translated by d units in normal direction (b), whe-
reas extrude-face will introduce new bounding planes orthogonal to the face
plane (c). Note that depending on the geometric configuration, it is possible that
move-plane (b) might also make the moved bounding plane redundant or the
polyhedron empty.

plane for each face polygon edge that goes through the edge and has a normal
vector orthogonal to the face normal.

See also Figure 3.13 for a graphical interpretation of these operations.

Merging Scopes

The operation merge-scope takes several input scopes and merges them into
one new scope, whose geometry is the union of the input geometries. The scope
boundary is calculated as the convex hull of the resulting shape [13], thus allowing
to build a non-convex shape from convex primitives.

Generic Boolean Operations

Naturally, Boolean combination of volumetric entities constitute a powerful tool
for geometric modeling. Splits can be seen as some constrained Boolean operati-
ons; each split corresponds to the intersection with a split volume.

As convex polyhedra are already defined as intersection of half spaces in the
proposed system, the other Boolean operations union and difference can be ex-
pressed using only intersection and complement using De Morgan’s laws. The
complement of a half space is easily obtained by swapping exterior and interior
as described in Section 3.2.

This method to perform Boolean operations is related to BSP tree merging
[137], as described in Section 2.3; each convex polyhedron can be seen as a dege-
nerated BSP tree with one inside leaf. The implemented method does not use a
BSP representation, but treats a shape as a flat list of convex polyhedra, i.e. only
the inside - leaves, and utilizes the BSP tree leaf merging operations to combine
polyhedra. For example, subtracting a convex polyhedron b from a convex poly-

64
CHAPTER 3. ROBUST GENERATIVE SHAPE COMPOSITION USING

CONVEX POLYHEDRA

(a) (b) (c) (d)

Figure 3.14: Boolean operations: A configuration of “hole” cylinders (b) is sub-
tracted from a set of outer cylinders (a), which yields the configuration (c). This
highly nonconvex object is represented by a union of non-overlapping convex po-
lyhedra, which are here visualized using an offset operation in (d), where each
bounding plane of a convex part has been slightly displaced inward. The parti-
tion is similar to binary space partitioning.

hedron ameans to intersect a with all flipped bounding half spaces of b. Similar
to the improved BSP merging method presented by Lysenko et al. [121], merging
stops when an intersection is empty.

The result is expressed by a set of non-overlapping polyhedra; their union
represents the shape after an operation.

3.4 Robust Evaluation

This section concerns itself with the aspects of robust and performant implemen-
tation of the proposed system. Parts of this section were published in [111].

An implementation of a system utilizing the modeling operations mentioned
in the foregoing Section 3.3 has to deal with the robustness problem (as described
in Section 2.6), as it will have to calculate intersections of half spaces and construct
new shapes from the result.

In the proposed system, shapes correspond to convex polyhedra, which can
be represented by the intersection of half spaces. The shape is therefore fully re-
presented by the list of half spaces. For any geometric reasoning, the boundary
surface of the polyhedron is relevant, therefore the system has to perform a con-
version from a list of half spaces to a boundary representation: a manifold mesh.
This is known in the literature as vertex enumeration of a convex polyhedron repre-
sented by half spaces.

Due to the nature of this rule based modeling system, namely constructing
new polyhedra from existing polyhedra, an incremental algorithm is preferred,
as it allows caching of intermediate results between rules. Because of this, and the
fact that polyhedra in this system are always in either 2 or 3 dimensions, it was
chosen to not use vertex enumeration algorithms (e.g. based onMotzkin’s double
description method [60]) but represent the polyhedron by a mesh and implement

3.4. ROBUST EVALUATION 65

a plane clipping algorithm.

Quantized Plane Based Representation

Plane based representations of meshes store the geometric information of a mesh
into faces (plane equations) instead of vertices (point coordinates).

Sugihara et al. [179] pointed out that such a representation allows to robustly
perform Boolean operations on polyhedra as there need no constructions to be
made, the geometric information of the resulting mesh consists of face planes of
the inputmeshes only. Vertex positions are calculated onlywhen they are needed,
e.g. for visualization.

This led to the choice for using a plane based mesh representation for the
intersection algorithm, with integral plane coefficients. The choice for integral
coefficients was motivated as the intersection points of hyperplanes in this repre-
sentation correspond to rational values. Therefore, the geometry kernel could be
implemented using only integer operations, and kept exact by using static filte-
ring techniques [58], which require a lot less implementation and computational
effort than floating-point filtering techniques [169]. Using limited length integers
for plane coefficients reduces the number of possible planes in this representation
to a discrete set (see also Figure 3.15).

Notation: The proposed system uses two coordinate systems, world coordi-
nates and plane grid coordinates. World coordinates are written without special
notation (e.g. x), plane grid coordinates are denoted with a hat (e.g. x̂), and are
not necessarily integer. Coefficients and variables in integer representation are
denoted by a star, e.g. a∗. A half space in this representation is therefore noted
by (~n∗, d∗). For the static analysis, the function B(x) is used to denote an upper
bound for the number of bits necessary to store a value (or intermediate value)
in the given calculation tree. Given a half space (~n∗, d∗) in this representation,
the constantsB~n∗ andBd∗ represent the number of bits that are used to represent
plane coefficients of defining planes in the proposed system, which is a value that
can be chosen to balance between evaluation speed and accuracy.

~n∗ =

a∗b∗
c∗

 ⊂ Z3 : a∗, b∗, c∗ ∈ {−(2B~n∗−1) . . . 2B~n∗−1 − 1}

d∗ ∈ Z : d∗ ∈ {−(2Bd∗−1) . . . 2Bd∗−1 − 1}

(3.16)

Statically Filtered Geometric Predicates

It is well known thatmany geometric intersection algorithms can be expressed via
few geometric predicates and topological modifications based on the results of

66
CHAPTER 3. ROBUST GENERATIVE SHAPE COMPOSITION USING

CONVEX POLYHEDRA

these predicates. Typically, these predicates are expressed by signs of 4x4 Matrix
determinants (e.g. for point-plane classification).

In order to guarantee a correct result of such a predicate, static filtering ana-
lysis [58] determines the necessary number of bits for a calculated result. If all
calculations are carried out using large enough integers, the result will be exact,
and therefore correct. In contrast, adaptive filtering for geometric predicates [169]
is typically directly applied to floating-point representations. Creating an adap-
tive filter implementation of a predicate by hand is a tedious task, therefore formal
methods for automatic generation of geometric predicates have been developed
[131]. The proposed system uses statically filtered integer predicates, because the
static filter analysis just determines the necessary number of bits to guarantee that
the direct implementation of predicates yields a correct result. Therefore, no ad-
ditional overhead filter code needs to be generated, and no additional run-time
penalty will be introduced, which is an important factor for the evaluation of a
possibly complex generative model.

The necessary number of bits for the following predicates depends on the con-
stants B~n∗ and Bd∗ that limit the resolution of a plane in integer representation.
Thus, by choosing appropriate values for these constants allows balancing bet-
ween resolution, i.e. the possible number of representable planes and intersection
points, and efficiency, i.e. all calculations can be carried out in machine precision.

Intersection Points

To increase performance, polyhedra vertices (which correspond to intersection
points of three planes) are cached in an exact intermediate representation in the
proposed system. Point - plane classification is carried out on this representation
instead of always calculating 4x4 determinants, which reduces the total number of
arithmetic computations: Intersection points, which are rational expressions, are
represented as points in homogeneous coordinates [171]. An intersection point
p of three planes represented by the tuples (~n1, d1), (~n2, d2) and (~n3, d3) can be
determined by this simple system of linear equations:

A∗ =


~n∗1
T

~n∗2
T

~n∗3
T

 , ~d∗ =

d∗1d∗2
d∗3

 , A∗ · p̂+ ~d∗ = 0 (3.17)

which yields the point p in homogeneous coordinates withD being the homoge-
neous factor:

p̂ =

[
adj(A∗) · (−~d∗)

det(A∗)

]
=

[
p∗N
D∗

]
(3.18)

with adj(A) being the adjugate of the 3x3 matrixA (i.e. the transposed cofac-
tor matrix). As each element of adj(A) is calculated by a 2x2 minor of elements

3.4. ROBUST EVALUATION 67

with size B~n∗ , the number of necessary bits for storing an element ~p∗N are:

B(p∗N) = 2 ·B~n∗ +Bd∗ + 3 (3.19)

The determinant D∗ can be expressed by the triple product 〈 ~n1, (~n2 × ~n3)〉, the-
refore we obtain

B(D∗) = 3 ·B~n∗ + 3 (3.20)

Point - Plane Classification

The implementation of Equation (3.2) of an intersection point p̂ with respect to a
half space h = (~n∗, d∗) corresponds to the evaluation of the sign of PPH(p̂, h) =

〈~n∗, p̂〉 + d∗. As p̂ = [x∗, y∗, z∗, D∗]T = [p∗N , D
∗]T is given in homogeneous

coordinates, we can apply a few simple transformations to remove the division of
the homogeneous factor from the predicate:

PPH(p̂, h) = sgn(〈~n∗, p̂〉+ d∗)

= sgn(D∗) · sgn(〈~n∗, p∗N 〉+ d∗ ·D∗) =


−1 → 	 interior
0 → � on
+1 → ⊕ exterior

(3.21)

The number of necessary bits to calculate this predicate is

B(PPH) = 3 ·B~n∗ +Bd∗ + 6 (3.22)

Plane Indexing

In this section I will describe an exact and efficient method formaintaining a strict
weak order between planes stored as (~n∗, d∗)-tuples using integer plane coeffi-
cients. This allows us to implement plane indexing using generic data structu-
res (containers) and algorithms. However, the (~n∗, d∗)-representation is not ca-
nonical, therefore it has to be normalized. The idea here is that we develop an
element-wise normalized comparison method without actually performing nor-
malization on (~n∗, d∗)-tuples. Using this comparison we can order tuples using
a lexicographical ordering scheme: Given a tuple (~n∗, d∗), we write the HNF of
〈~n∗, p〉+ d∗ = 0 with p = [x, y, z]T and ~n∗ = [a∗, b∗, c∗]T :

a∗

‖~n‖
· x+

b∗

‖~n‖
· y +

c∗

‖~n‖
· z +

d∗

‖~n‖
= 0 (3.23)

In this form, lexicographical ordering of two planes is achieved by comparing
respective coefficients, e.g. the first coefficient a of two planes:

a∗1
‖ ~n1‖

<
a∗2
‖ ~n2‖

(3.24)

68
CHAPTER 3. ROBUST GENERATIVE SHAPE COMPOSITION USING

CONVEX POLYHEDRA

As planes are required to be valid (‖~n‖ > 0), we can multiply by the denomi-
nators. To evaluate this predicate exactly with respect to the closure of the used
data type (integers), we reformulate this equation so that it contains no square
roots. Therefore, we introduce the new quadratic coefficients ã:

ã =

{
a2 iff a ≥ 0

−a2 iff a < 0
(3.25)

The plane index comparison predicate PPI for one coefficient is then written

ã1 · (a∗22 + b∗22 + c∗22) < ã2 · (a∗21 + b∗21 + c∗21) (3.26)

For lexicographical ordering, a <-operator for (~n, d)-tuples would first com-
pare coefficient a of two planes using Equation (3.26), unless the left and right
side of this equation are equal, in which case coefficient b is used, etc.

Vertex Indexing

It is also highly desirable to index the cached polyhedron vertices in rational re-
presentation efficiently. Similar to the plane indexing method presented in the
last Subsection, a simple lexicographical ordering method is derived:

The comparison between the x-coordinate of two rational points in homoge-
neous coordinates p̂1 = [x∗1, y

∗
1, z
∗
1 , D

∗
1]T and p̂2 = [x∗2, y2∗, z∗2 , D∗2]T is

x1
D1

<
x2
D2

(3.27)

Again, we multiply the denominators in order to remove the divisions, howe-
ver, the signs of the denominators have to be taken into account, which yields:

x1 ·D2 � x2 ·D1 (3.28)

with the comparison operator �:

� =

{
< iff (D1 < 0 ∧D2 ≥ 0) ∨ (D1 ≥ 0 ∧D2 < 0)

> iff (D1 < 0 ∧D2 < 0) ∨ (D1 ≥ 0 ∧D2 ≥ 0)
(3.29)

This leads to the lexicographical comparison predicate PV I for each compo-
nent of a vertex in rational representation, as has been described in the foregoing
subsection (the plane indexing approach). The necessary bits for this predicate
are given by

B(PV I) = B(pN) +B(D) = 5 ·B~n∗ +Bd∗ + 6 (3.30)

3.4. ROBUST EVALUATION 69

Geometric Rounding / Plane Quantization

In this section, I discuss methods for converting planes fromworld coordinates to
the proposed representation.

The choice to represent planes in the system using fixed length integer coef-
ficients leads to a discrete set of representable planes using these coefficients (see
also Figure 3.15), the plane grid. Note that this grid is different fromdiscrete hyper-
planes as found in the literature [8] in that the intersection points are rationals and
therefore the coordinates of intersection points are not limited to integral num-
bers. See Figure 3.15 for a visualization of a plane grid with low precision. The
surface of any shape bounded by planes in this representation is a subset of the
arrangement of the plane grid.

In the proposed system, I utilize a plane based representation for polyhedral
meshes, whichmeans that faces of such polyhedra are represented by planes from
the set of representable planes of the plane grid. However, direct specification of
the integral plane coefficients is not intuitive for procedural modeling. Therefore,
it is necessary to convert from a more convenient description to the plane grid.
Furthermore, the same applies when importing arbitrary geometric data.

Conversion fromWorld Coordinates to Plane Grid

In principle, the plane grid is associated to an axis aligned bounding box (AABB)
in world coordinates, i.e. translation and scale (see also Figure 3.16). This means
that a plane grid of planes specified by (~n∗, d∗)-tuples, with is defined in respect
to a world coordinate system in R3 (see also Equation (3.16)).

PO ∈ R3 :the plane grid origin in world coordinates
w :the width of the plane grid bounding box in world coordinates
ŵ :the width of the plane grid bounding box in plane grid coordinates

B(~n) ∈ N+ :max bits for component of ~n
B(d) ∈ N+ :max bits for component d

(3.31)

The conversion from a point p world coordinates to a point p̂ in plane grid
coordinates is a simple translation and scaling operation, and is expressed by

p̂ =
(p− PO) · ŵ

w
(3.32)

For an efficient implementation it is practicable to choose w and ŵ such that both
are a power of two.

A half space described by a point p = [px, py, pz]
T ∈ R3 and a normal vector

~n = [nx, ny, nz]
T ∈ R3, ‖n‖ = 1 as shown in Figure 3.6a, given in world coordi-

nates, is converted to the plane grid by choosing a near plane from the plane grid

70
CHAPTER 3. ROBUST GENERATIVE SHAPE COMPOSITION USING

CONVEX POLYHEDRA

−8 −6 −4 −2 0 2 4 6
−8

−6

−4

−2

0

2

4

6

Figure 3.15: The discretization of plane coefficients leads to a discrete set of pos-
sible planes, the plane grid, when using a fixed length description for the plane
coefficients (~n, d). This image shows a visualization of all possible planes having
coefficients of ~n ∈ {−2, .., 1} (2 bit) and d ∈ {−8, .., 7} (4 bit), all coefficients ∈ Z.
It can be seen that even with equidistant planes, the intersection points are not
evenly spaced; furthermore, there is an area of higher resolution near the center.
By varying the number of bits the resolution can be balanced between evaluation
speed and precision.

3.4. ROBUST EVALUATION 71

X

Y

PO

(a)

X∗

Y ∗

(b)

Figure 3.16: As the plane based representation of the proposed system yields hig-
hest resolution around the origin, a transformation from world coordinates (a) to
the plane grid (a) is introduced. The plane grid is defined by its origin point PO
and the size of the bounding box (dashed lines) in world and plane grid coor-
dinates. Inside the plane grid bounding box, intersections are guaranteed to be
carried out robustly, as they are exact.

to the point in plane grid coordinates. p and ~n are stored as floating-point values.
The coefficients (n∗, d∗) of the fixed size integer representation the followingway:

The normal component ~n∗ corresponds to a vector in integral coordinates.
World coordinates are stored as a floating-point number f . The IEEE754 stan-
dard [90] defines themost commonly used binary representation of floating-point
numbers.

Any floating-point number can be expressed as

f = m · 2e (3.33)

wherem is called themantissa, and e the exponent. Thus, the floating-point num-
ber can be seen as the following fraction, assuming that e > 0:

f =
m

2−e
(3.34)

The exact integer representation of ~n is found by a scaling of ~n such that all ele-

72
CHAPTER 3. ROBUST GENERATIVE SHAPE COMPOSITION USING

CONVEX POLYHEDRA

ments of ~n are integer, assuming without loss of generality that e < 0:

~n =

nxny
nz

 =

 mx
2−ex
my

2−ey

mz
2−ez


~n∗1 = ~n · 2−ex · 2−ey · 2−ez =

mx · 2−ey · 2−ez
my · 2−ex · 2−ez
mz · 2−ex · 2−ey


(3.35)

if 0.9e ≤ 0, that coefficient is already integer in the form of Equation (3.33), the-
refore the nominator does not need to be multiplied.

This vector can be shortened by dividing all components of ~n∗1 by their grea-
test common divisor (gcd), if it exists. If this vector fits into the chosen plane grid
(B(~n∗1) ≤ B(~n)), an exact corresponding normal vector has been found. Other-
wise, a suitable representative vector in the plane grid has to be chosen. In my
implementation i chose to round to the nearest point of ~n scaled to the length of
half the plane grid boundary.

~n∗ = b2B(~n)−1 · ~ne (3.36)

The distance component d∗ is simply obtained from the implicit plane equa-
tion via rounding:

〈~n∗, p〉+ d = 0→ d∗ = b−〈~n∗, p〉e (3.37)

Constructing Orthogonal and Bisector Planes

For operations like extrude-face or split-frame, new planes have to be con-
structed. Thus, the newly constructed planes may not be representable in the
plane grid, and need to be rounded. This introduces a slight deviation of the nor-
mal vector of the plane. Therefore, an appropriate plane from the representable
set has to be selected such that the geometric rounding error is as small as possi-
ble.

For the extrude-face operation, a new plane has to be constructed that is
orthogonal to a given face, i.e. its defining half space, and that goes through an
edge, which is defined as the intersection of an adjacent half space with the face
half space, compare also in Figure 3.13. Therefore, the normal vector of the ort-
hogonal plane can be constructed by orthogonal projection of the normal vector
of the adjacent half space, (see also Figure 3.17):

Given two half spaces A and B, the normal vector ~nC for half space C is con-
structed by orthogonal projection of ~nB onto ~nB , similar to Gram-Schmidt Ort-
hogonalization [10]:

~n∗C = ~n∗B − ~n∗A ·
〈~n∗B, ~n∗A〉
〈~n∗A, ~n∗A〉

(3.38)

3.4. ROBUST EVALUATION 73

A

B

~nA~nB

(a)

A

B

~nA~nB

~nC

C

(b)

Figure 3.17: Construction of an orthogonal plane C from a plane A and an edge
that lies inA and is defined by the intersection ofA andB: The normal vector ~nC
ofC is constructed by orthogonal projection of the normal vector ~nB ofB ontoA.

which is rewritten to remove the fraction:

~n∗C · 〈~n∗A, ~n∗A〉 = ~n∗B · 〈~n∗A, ~n∗A〉 − ~n∗A · 〈~n∗B, ~n∗A〉 (3.39)

Thus, the result of Equation (3.39) yields a scaled version of~n∗C , which can be shor-
tened by dividing each vector element through their greatest common divisor. If
the resulting vector does not fit into the plane grid, it has to be rounded (similar
to Equation (3.36)). After this step, the distance component d∗C is determined like
in Equation (3.37), using a point on the edge as plane defining point, which yields
the tuple (~n∗C , d

∗
C).

Edge Bisectors. The split-frame operation requires the construction of bi-
sector planes (see also Figure 3.11). The bisector planes will be constructed with
respect of two defining half spaces of a convex polyhedron whose intersection
forms an edge, see Figure 3.18.

The bisector normal direction is derived by the following considerations: All
points p in the bisector planeC with respect to two non-parallel half spacesA and
B yield the property that the signed euclidean distance to half spaces A and B
are equal, assuming without loss of generality that the orthogonal projection of p
onto the edge, which is defined by the intersection of A and B, is the origin.

d1 =
−〈~n∗A, p〉
‖~n∗A‖

= d2 =
−〈~n∗B, p〉
‖~n∗B‖

(3.40)

AsC intersects the origin aswell, this equation can be rewritten into implicit form,
and determine the direction of the normal component of C :

~nC = ~n∗A · ‖~n∗B‖ − ~n∗B · ‖~n∗A‖ (3.41)

74

CHAPTER 3. ROBUST GENERATIVE SHAPE COMPOSITION USING

CONVEX POLYHEDRA

(a) (b)

Figure 3.18: The split-frame operation requires the construction bisector pla-

nes for edges of a convex polyhedron: A bisector plane C (blue) is constructed

from two edge-defining planes A (green) and B (red).

unfortunately, the multiplication terms with vector norms prevent a direct eva-

luation in integers for most cases, therefore, my choice of implementation con-

verts integer plane normals into a normalized representation �n◦
A and �n◦

B using

floating-point, calculating �n◦
A − �n◦

B and - converting (rounding) the normal back

to the integer representation using the method described in Equation (3.36). Fi-

nally, the distance component of C is determined using a point of the edge and

Equation (3.37).

Note that bisector and some orthogonal plane constructions may need to be

rounded, and thus can lead to micro fragments.

Boundary Evaluation

Up to now, I have described which points belong to the interior and the boundary

of a polyhedron, and shape rules that construct half spaces and define convex

polyhedra via sets of half spaces. At some point, the boundary, or surface, of such

convex polyhedra has to be evaluated. This boundary evaluation can be seen as

an incremental construction: a consecutive intersection of half space interiors, or,

consecutive clipping of an object that is large enough to represent the shape with

planes, similar to classical Sutherland-Hodgman style polygon clipping [181].

This approach fits best into our generative modeling application, as the ma-

jority of operations consists of consecutive splits of convex polyhedra. A split is

easily expressed by the intersection of an object with the interior and the exterior

of a given half space. The bounding box of the plane grid is chosen as the initial

polyhedron representing the available space. Thus, the only operations needed

for surface evaluation are the intersection of a convex polyhedron with the inte-

3.4. ROBUST EVALUATION 75

rior of a half space, and flipping the interior and exterior part of a half space (see
also Equation (3.2)).

Convex Polyhedron - Half space Intersection

The clipping algorithm follows the classical approach of modification of the pre-
dicates. It evaluates the boundary B of a convex polyhedron defined by the half
spaces H = {(~n1, d1), (~n2, d2), ..., (~nk, dk)}. If the intersection clips parts of the
polyhedron away, due to the convexity, exactly one new face, the horizon will be
introduced. The algorithm proceeds through the following stages, see also Fi-
gure 3.19 for an accompanying example.

1. Initialization The initial polyhedron represents the whole space. Therefore,
the half-edge data structure representing the boundaryB is initializedwith
the predefined topology of the bounding box of the plane grid.

2. Vertex Classification For each intersection of a half space h ∈ H , the vertices
of B are classified into 	,� or ⊕with respect to h (see Equation (3.21)).

3. Insert Horizon Corresponding horizon vertices and edges are inserted.

4. Remove Clipped part The vertices, edges and faces in the exterior half space
(marked ⊕) are removed.

Vertex positions are stored as homogeneous coordinates, representing exact
intersection points, see Equation (3.18). Any additional half space intersection
(e.g. a split) on B can be carried out efficiently by repeating steps 2-4.

Mesh export

The presented approach evaluates the surface of one convex polyhedron. Non-
convex ormore complex objects can be expressed by a union of several polyhedra.
Exporting the surface of each polyhedra of such a union yields a lot of excessive
geometry inside the union. As all polyhedra in the system are bounded per de-
finition, their union is therefore also bounded and watertight. This union can be
calculated using the Boolean approach described in Section 3.3: a naive approach
to calculate this union goes as follows: the surface of the union of a set of polyhe-
dra can be found by subtracting all other polyhedra from each polyhedron of the
set. In practice, I implemented the surface extraction via a 2Dpolygonal difference
operations for each face of the polyhedron, using the polygon clipping technique
proposed by Bernstein et al. [23]. Naivly subtracting all faces of all polyhedra for
each output face is time-consuming; this can be speed up with a standard spatial
search structure to determine intersecting polyhedra before subtraction. I used a
variant of axis aligned bounding box (AABB) trees [203] to efficiently test if two
polyhedra intersect before calculating their intersection.

76
CHAPTER 3. ROBUST GENERATIVE SHAPE COMPOSITION USING

CONVEX POLYHEDRA

h

A

B

C

D

(a)

A

B C

D

(b)

h

A

B

C

D

(c)

	

	 	

⊕

(d)

A

B

C

D

(e)

	

	 	

⊕

�

� �

(f)

A

B

C

(g)

	

	 	

�

� �

(h)

Figure 3.19: Clipping of a tetrahedron with a half space: First, the vertices of the
boundary representation (b) are classified with respect to the clipping half space
h (d). Then, horizon vertices and edges are inserted (f), and the parts residing in
the exterior of h are removed (h).

3.5. GENERATIVE ARCHITECTURE 77

Geometric Queries

To facilitate reusability, the rules that compose parametric elements should be
created in a way that makes them applicable in a wide range of situations, i.e. to
a wide range of shapes. Furthermore, application should be robust. If the shape
does not correspond to assumptions that are made by the rule, e.g. that the input
polyhedron is a box, the rule should still produce results - as good as possible.

In parametric CAD and similar systems, such non-robustness is often tied to
the persistent naming problem [124], which states that “referenced entitiesmust then
be named in a persistent way in order to be able to reevaluate the model in a con-
sistent manner. In particular, when a reevaluation leads to topological modifica-
tions, references between entities used during the design process are frequently
reevaluated in an erroneous way, giving results different from those expected”.

Typically, identifying such references is done e.g. by using an index of a topo-
logical entity, such as a face or a vertex. In the proposed system, my solution for
this problem is to express such references not by indices but as search directions,
specified in the local coordinate system. One example is the split-axis opera-
tion, that calculates the extent of the split interval by searching for minima and
maxima of projections of polyhedron vertices on search directions.

nearest vertex : If the polyhedron is topologically evaluated, i.e. the mesh repre-
sentation exists, the nearest vertex with respect to a given plane (~n, d)can
be found by directly querying the distances from mesh vertices using the
calculated distance from Equation (3.1):

arg min~v |〈~n,~v〉+ d| (3.42)

the optimal vertex with the shortest distance to a given search direction ~s is
simply found by

arg min~v〈~s,~v〉 (3.43)

query face : For many operations, e.g. extrude-face, one polyhedron face
needs to be identified. Given a search direction ~s that is specified with re-
spect to a local coordinate system, the face with its face normal ~nF being
most similar to ~swill be selected:

arg max~nF
〈 ~nF
‖~nF ‖

,
~s

‖~s‖
〉 (3.44)

3.5 Generative Architecture

The proposed system provides various parametric elements that can be combi-
ned to create a complex model, with a focus on classical architecture, as this do-
main exhibits much structural regularity. This chapter presents some higher level
methods for modeling of architecture using procedural half spaces.

78
CHAPTER 3. ROBUST GENERATIVE SHAPE COMPOSITION USING

CONVEX POLYHEDRA

(a) (b) (c)

Figure 3.20: Examples of simple parametric footprints. The red arrows corre-
spond to parameters that allow to alter the shape within its design space.

Modeling follows a coarse to fine approach, similar to established procedu-
res in the community: first, the coarse outline or mass model of a building are
defined, then the appropriate rules are applied to generate more andmore detail.

Footprints and Mass Models

In order to model the coarse outline of a building, several methods are applica-
ble. In some cases, it suffices to refine one of the basic shapes. Other cases can
be modeled by specifying a 2D-polygon and create walls using extrusion. Some
simple examples are shown in Figure 3.20. Another approach is by specifying
several objects and combine them to create a more complicated shape; this ap-
proach also mimics an architects’ way of creating an initial design using wood or
clay. This approach is also known as mass modeling, and is found within many
architectural modeling suites (e.g. Autodesk Revit Architecture). This approach
is typically expressed using Boolean set operations, or constructive solid geome-
try (CSG). CGA shape addressed this problem using query operations that detect
intersections at rule level and choose the appropriate rule for an intersection case,
e.g. to suppress windows that would be intersecting with a wall of a neighboring
building. The proposed system uses a different approach: intersection is geome-
trically evaluated using the CSG methods available with convex polyhedra, see
also Section 3.3.

Basic Shape Refinement

In many cases, it is sufficient to instantiate and refine a basic shape (basic shapes
have been introduced in Section 3.3). For more complicated shapes, either a po-
lygonal description can be given that is extruded to a volumetric representation,
or a set of basic shapes can be combined to yield a more complicated volumetric
basic representation.

Structuring a Building

In general, the modeling paradigm of the proposed system corresponds to a co-
arse to fine strategy, i.e. a rule replaces a scope by smaller sub-scopes. In such a

3.5. GENERATIVE ARCHITECTURE 79

manner, a building can be structured by first creating its outer hull. Afterwards,
it is partitioned into outer walls and floors. Then, windows are split into walls
and indoor space is further subdivided into rooms, and so on.

Footprints: working with polygons

In the proposed system, footprints are described by a union of convex polygons,
e.g. for floor slab creation, or a boundary polygon. In the general case, the former
will be derived from the latter, either manually or with a convex partition algo-
rithm [63]. From boundary polygon segments, walls can be extruded using bi-
sector partition, using split-frame (3.11). Creating a floor slab is created by ex-
truding the convex polygons, whose union represent the floor, into prisms using
shape-prism (3.8). Both approaches can be seen in Figure 3.22.

After extrusion, the walls can be split into storeys and floor slabs.

Mass Modeling

Massmodeling is the method that is used by architects in an early stage of design,
when a general concept is being developed. This is often done using clay or wood
to create a physical representation of an early design concept. This terminology
was also used by Pascal Müller et al. [135] for describing the coarse structure of
a building, and is also used in commercial tools like Autodesk Revit [212].

As an example, we examine the mass model of a building that is shown in
Figure 3.24: The building consists of three rectangular parts, each having four
parameters: footprintwidth and length, building height (not shown in the figure),
and rotation angle.

The three parts are combined into an united mass model, after that further
refinement rules are applied until the final model is obtained, see Figure 3.23 for
the final result.

After the creation of the general mass model structure, I split the coarse struc-
ture into walls and an inner part, using the split-frame operation. The walls
and the inner part are then split into floors; the result after this step is a volume
for each wall in each floor, volumes for floor slabs, and a volume that represents
the inner part of the building.

Parametric Elements

In order to maximize the expressibility and the reusability, a generative modeling
system should facilitate the creation of generic rules that can be applied in several
situations. I give examples on the creation and design rationale of parametric
elements for the domain of façade modeling of classical architecture.

80
CHAPTER 3. ROBUST GENERATIVE SHAPE COMPOSITION USING

CONVEX POLYHEDRA

TerminalConcrete

BrickWall

WallSpace

WallShape

DoorSpace

SplitWalls

SplitFloors

WindowSpace

ParametricDoor

SplitWallElements

ParametricWindow

FloorSlabShape

HullShape

FloorShape

InteriorShape

Void

*

*

*

**

Figure 3.21: The split graph is a data flow representation of a concrete generative
model in the proposed system. Rectangular nodes represent shapes, i.e. con-
vex polyhedra, and elliptic nodes, such as SplitWallElements, represent rules.
Parametric rules that correspond to a terminal element, e.g. a window, are high-
lighted by a blue background.

3.5. GENERATIVE ARCHITECTURE 81

(a) (b) (c)

(d) (e)

Figure 3.22: Workingwith footprint polygons: A convex partition (b) of a footprint
polygon (a) is used to extrude floor slabs (c). Furthermore, with an operation
that creates a convex polygon using bisector partition similar to the split-frame
operation, walls can be extruded (e) from the footprint boundary (e).

Figure 3.23: Rendering of an instance of the freeform office example.

82
CHAPTER 3. ROBUST GENERATIVE SHAPE COMPOSITION USING

CONVEX POLYHEDRA

Figure 3.24: Examples of a simple parametric mass model.

Windows, Doors and Arches

Parametric elements, like windows, can be seen as terminals. I propose the fol-
lowing structure for such elements: Each parametric element (e.g. a rectangular
window) can be configured by a set of parameters (e.g. the number of glass par-
titions). To facilitate their usage, the element should also provide default values
for all parameters.

Windows. In the following, I will detail the progress of the creation of a pa-
rametric window: A modern rectangular window typically consists of an outer
frame that is placed in the walls. A window wing (or wings) is mounted inside
this frame, which consists of another framing that holds the window glass. This
framing may be partitioned into various forms of subdivision.

The available space reserved for a window is then split into frame and glass
parts using the split graph structure shown in Figure 3.25. This parametric win-
dow rule partitions the available space in outer and inner frame volumes, and
an inner part that will be used for the glass partitions. The outer and inner fra-
mes are split using absolute measurements, the glass parts are defined using rela-
tive measurements and will therefore automatically adapt to the available space.
The remaining inner part corresponds to the glass partition, the concrete type of
partition is chosen by the rule that is written in an attribute which defaults to
termGlass.

Doors are similar to windows, in terms of splitting structure, for the proposed
generative modeling system. Simple doors can be expressed using a similar split-
ting strategy than the rectangular window, but the door tile has no space below
the inner door rule, and terminal rules correspond to wood, mostly.

Arches, curved structural members spanning an opening or recess, typically
to support the structure above the opening and distribute vertical pressure late-
rally. I will describe a rule that creates a one-centered semicircular arch: Given an
input scope, the rule fits the largest inscribing circle, a remaining degree of free-
dom is resolved with respect to the up direction of the local coordinate system.
The rule will then create split planes for the circular arc and partition the scope

3.5. GENERATIVE ARCHITECTURE 83

ofw

ifw

termIF

split-axis (inner frame horizontal)

Void

split-axis (inner frame vertical)

ShapeInner

split-axis (inset)

split-axis (outer frame vertical)

split-axis (outer frame horizontal)

ShapeOF2

termGlass

ShapeOuterFrame

termOF

ShapeInset

InputShape

ShapeInnerFrame

ShapeIF2

ShapeIF1

Figure 3.25: The split graph of the parametric window tile shows the application
of several split-axis operations to split an outer and inner frame. The filled
ellipses correspond to terminal rules for this parametric rule. By using attributes
to represent the concrete rule name, behavior can be exchanged onper-application
base of the parametric window terminal, e.g. by replacing the termGlass glass
terminal rule by a 2x2 window partition. The attributes ofw and ifw correspond
to the with of the outer and inner frames.

84
CHAPTER 3. ROBUST GENERATIVE SHAPE COMPOSITION USING

CONVEX POLYHEDRA

(a) (b)

Figure 3.26: The arch rule will fit the largest circle in the bounding box of a shape,
with respect to the local coordinate system upper ~z direction. The rule produ-
ces one (convex) inner part, and outer parts of the arch - whose union yields the
nonconvex outer part.

(a) (b)

Figure 3.27: Consecutive application of the arch rule yields a cross vault: The first
application of the arch rule partitions a rectangular scope into the part below and
above the archline (a), applying the arch rule again to the upper part in the ortho-
gonal direction yields a volumetric cross vault partition. The lower part from the
first rule application is shown in red, the lower part from second rule appliation
is shown in green, and the upper part from the second application is shown in
blue. This part also corresponds to a cross vault structure, as is shown in the right
picture (b).

into the inner arch part and the outer part, see also Figure 3.26.

Some other variants of rounded structures, e.g. holes can be made using a
similar approach than with arches, and is not described in detail here.

Pillars and Columns have been realized by fitting the largest inscribing circle
to the polyhedron face that is selected by an given up direction.

3.6. FAMOS - INTERACTIVE FAÇADE MODELER 85

(a) (b)

Figure 3.28: Structuring of often occuring façade layout stiles is done using a tile
approach: the tile rules TileWindow, TileWindowGable and TileWindowPillar-
Gable (a) define the general structure, a great variety of façade tiles can be quickly
created by populating the tiles with parametric window and gable terminals (b).

Façade structuring

Visually examining neoclassical façades shows recurring patterns in the design of
such façades. Many patterns can be explained using irregular sized rectangular
grids [160]. This irregular grid can be created on a façade using split rules, which
partitiones the façade into rectangular regions called tiles These tiles will be used
to distinguish between different types of facade parts, e.g. parts with windows or
doors. A façade tile rule will split the input shape into a wall and inner element
parts. In these examples, I assume the following local coordinate system assump-
tion: The up-axis is in Z-direction, the X-direction points to the rightwhen looking
frontal at the façade, and the Y-direction corresponds into that viewing direction.

A window tile rule set looks like the following, the attributes att-ww corre-
sponds to thewindowwidth, andatt-wh corresponds to thewindowheight. The
windowwill be horizontally centered, with thewindow sill placed 1.1m above the
lower edge of the tile:

TileWindow →
split-axis(~X,[1̃,att-ww,1̃])

Wall,WindowColumn,Wall

WindowColumn →
split-axis(~Z,[1.1,att-wh,1̃])

Wall,WindowRule,Wall
(3.45)

3.6 FaMoS - Interactive Façade modeler

In the course of this thesis I also worked on a method to define rule sets interacti-
vely, instead of modifying the textual representation of a shape grammar. The
modeler was presented at a workshop [107]. This system builds upon a shape
grammar implementation of the proposed system using convex polyhedra in the
generative modeling language (GML) [72]. The modeler itself was written using
C# with windows forms.

86
CHAPTER 3. ROBUST GENERATIVE SHAPE COMPOSITION USING

CONVEX POLYHEDRA

Figure 3.29: Variations of similar buildings can be generated using random in-
tervals for values like width and height of a building. This randomly populated
set of houses contains no two exactly similar houses - and is generated from two
basic building layouts.

3.6. FAMOS - INTERACTIVE FAÇADE MODELER 87

I abstracted the process of writing a rule set into a graphical user interface
using the following requirements:

• interactively creating/manipulating split operations in the 3d view, similar
to the system proposed by Markus Lipp et al. [119].

• grouping of several split operations into rules

• manipulating attributes

Each split partitions a scope into several child scopes. Grouping a number of
consecutive splits into a rule yields a tree structurewith one scope as input and an
arbitrary number of child scopes, the leaves of the tree, as output. The interface is
built upon manipulating such tree structures. The trees are transformed to GML
code, which yields the geometry after evaluation.

Interface overview

The user interface (called FaMoS, the FacadeModeling System) consists of 5 main
components that are shown in Figure 3.30. A Model consists of a collection of
rules (split trees), which are grouped in referenceable rules and instance rules
(which actually produce geometry). Manipulation and selection operations on
the tree result in direct visual feedback in the 3D View.

Mapping user input to code. When designing a user interface that utilizes
user input on the 3D view, the user actions have to be mapped to according code.
This also means the persistent naming problem has to be addressed: the question
of how to robustly identify entities in the model, on which future constructions
depend, is not trivial.

Picking

Picking in the 3Dview iswell suited for intuitive interaction techniques. However,
the pick operations that are carried out on actual 3D geometry have to bemapped
back to operations that identify the picked object within a rule - which should be
independent of geometry.

Therefore, vertices of a convex polyhedron are expressed within generated
code as search directions in the scopes LCS, for finding the outermost vertex in
that direction. This means that exactly the selected vertex will be picked if the
shape is identical to the shape that was used for rule definition, when the shape
is different, the next nearest vertex in that search direction will be used.

Split tree operations

Split trees can be seen as a graph where nodes correspond to operations and the
edges correspond to scopes, as each node has one scope as input and zero, one

88
CHAPTER 3. ROBUST GENERATIVE SHAPE COMPOSITION USING

CONVEX POLYHEDRA

Figure 3.30: The main components of the user interface are: 3D-View (1), scope
split hierarchy (2), attribute editor (3), a list of rules loaded from a library (4), and
the toolbar buttons on top that provide access to the editing features (5).

or more child nodes as output. We conceptually group these operations into the
following categories:

Interval Split. The generalized interval split defined in section 3.3 is used to
partition the scope into child scopes. As axis parallel splits are often used, buttons
for the X, Y and Z axis of the LCS are added for convenience. The number of
children is inferred from the split interval.

Subdivide. This operation partitions a scope with straight splits along a split
direction into equally sized parts. The number of children is not known before-
hand, as the number depends on the size of the input scope. Therefore, subdivide
has only one children node which is applied to all children when the rule is eva-
luated.

Extrude. Extrude allows to displace one of the planes that define the faces of a
polyhedron along its normal direction. The user selects a face of the polyhedron
the rule was defined on, the system generates code for selecting the face of the
polyhedron with the most similar normal vector than the selected face.

Terminals. These types of operation consume the scope and have no child
scopes. In the editor, 3 different types are used: F (filled), which fills a scopewith a
material (e.g. concrete), V (void), which corresponds to empty space and X, which
marks the child as output node of the current rule. The terminal type AA allows

3.6. FAMOS - INTERACTIVE FAÇADE MODELER 89

Figure 3.31: Modeling structure spanning multiple elements: The grammar tree
(top) shows the steps used to createwindows on a facade next to an inclined street.
Subdivide is used to partition the scope into parts with similar width and each part
is processed the same way (”window in wall”). By referencing a plane that was
defined before the subdivide operation, we can create a parametrization that pro-
duces desired output when changing the width of the subdivided parts (bottom).

90
CHAPTER 3. ROBUST GENERATIVE SHAPE COMPOSITION USING

CONVEX POLYHEDRA

to call predefined parametric rules (e.g. such as shown in Figure 3.28).
Applying Rules. The terminal of the type corresponds to an output scope of

this rule. In other words, X means “What happens to this part is to be specified
later, each time the rule is applied”. Applying a rule to scope yields as many
children as X terminals inside that rule are defined. This allows defining more
general rules with better reusability.

Modify attributes. The LCS andmaterial attributesmay bemodified. E.g. the
LCS may be changed by defining three points that correspond to the X direction,
origin and Z direction of the new coordinate system. These points are identified
via the vertex picking operation.

Scope dependent planes. A key feature for reusable rules was the abstraction
of planes, that are dependent on the scopes shape, as attributes of that scope. Such
attribute planes are inherited to children for later reference and use. These planes
can either be defined using the interval split mechanism, or by picking 3 vertices
of the input scope.

Reference Split. Scope dependent attribute planes can be reused for splits in
any sub-level of the rule hierarchy, an example is shown in Figure 3.31.

Selection. Selection changes the visual appearance in the 3D view. If a node
from a tree is selected, only this sub-tree is shown. The input scope of the node
and its LCS is visualized in 3D; if the operation is a split its splitplanes are also
visualized. Applying an operation replaces the currently selected sub-tree with
that rule.

Drag & Drop. It was practical to use drag & drop for applying rules and
operations. Dragging the root node of rule A to another node B replaces the sub-
tree of B with an application call to A. Drag & Drop is also used to move or copy
a node and its sub-tree.

Insert and delete. The insert operation inserts a dummy node (which per-
forms no operation and yields the input scope as output), which can be replaced
by any other operation. Deleting a node deletes also its dependencies (its sub-
tree). Dummy nodes can also be used for attribute definitions if no operation is
necessary.

Visualization and code generation

For visualization, the split tree is converted into a GML program that generates
the 3D geometry. As noted in [81], the call graph of shape grammar rules defined
as GML functions corresponds to a depth-first evaluation. In the same manner,
the code is generated using a depth-first traversal of the split trees. Each refe-
renceable rule tree is transformed into a GML function, and each instance rule is
transformed into statements that will be executed when evaluating the generated
code.

3.6. FAMOS - INTERACTIVE FAÇADE MODELER 91

Figure 3.32: The parametric terminal rules can model a variety of different win-
dow and door styles.

Depending on the modeling operation and selection state, the generated code
is altered to add visual aids for operations or selection (e.g. visualization of the
currently selected volume). Callbacks are generated for pick-able objects in the
3D view, e.g. for selecting a face or a vertex.

The generated code is then sent to the GML interpreter plug-in [21] which
parses and executes the code and renders the evaluated model in the 3D View.

Modeling procedure

The modeling prototype was evaluated by creating various models of façades ba-
sed on real world examples. Some interesting cases were façades in neoclassical
style (”Gründerzeit”), as those contain non-rectangular structures. We implemen-
ted the facade elements (doors, windows and gables) as scripted parametric ter-
minal rules (cf. Fig. 3.32)

A façade is modeled in a top-down manner in the proposed modeler. The
majority of façades that were modeled could be structured as follows: First, we
split into horizontally aligned symmetric parts. Second, we vertically split into
floors and ledges. Last, we split into horizontally aligned parts that contain façade
terminal elements.

Reusing structure. We call the similarly structured façade elements tiles. Ti-
les are created with the parts to be filled in as X nodes. The tiles for a specific

92
CHAPTER 3. ROBUST GENERATIVE SHAPE COMPOSITION USING

CONVEX POLYHEDRA

façade are created by assigning corresponding terminals, see also Figure 3.28 for
some exemplary tiles.

3.7 Summary

In this Chapter, I first describe a novel shape grammar system using convex po-
lyhedra in Section 3.2. This method allows to write shape rules that generalize to
a larger group of shapes than box grammars. The next Section, (Section 3.3), des-
cribes common modeling and refinement operations that turned out to be useful
in various scenarios. I then describe and discuss my proposed approach for fast
and exact surface evaluation of convex polyhedra in the shape grammar system
(Section 3.4). Afterwards, I describe a set of higher-level architectural construc-
tion rules that ease the construction of more complicated architectural objects.
This method was used by the parse tree to model conversion described in the
next Chapter (Section 4.1) and several others described in Chapter 5. Finally, I
presented the standalone façade modeling application FaMoS (Section 3.6), that
demonstrates direct interactive modeling using the proposed shape grammar sy-
stem.

4Inverse Generative Modeling

In this chapter I describe two approaches for utilizing generative descriptions in
the context of shape reconstruction frommeasurements. Suchmodel based recon-
structions utilize an optimization step to create a final hypothesis that explains the
measurements. A generative model can be used to describe a family of allowed or
meaningful configurations, which can further be used to narrow down the search
space of the optimization. The first approach encodes rules of classical architec-
ture, i.e. repetition and symmetry, and uses methods from compiler construction
to parse a given facade labeling, which yields an explanation of these labels favo-
ring the architectural rules. It was published in “Irregular lattices for complex shape
grammar facade parsing” [160] at the CVPR conference. The second approach uti-
lizes scans of building interiors to create a hypothesis of electrical wiring below
the walls, solely from the surface measurements. Under the assumption that the
building was built using technical standards, a generative description that enco-
des these technical standards is used to restrict the search space to configurations
that adhere to the norms and standards, from which a final hypothesis is extrac-
ted. The developed methods have been published amongst others in “Automatic
Texture and Orthophoto Generation from Registered Panoramic Views” [106] and “Data
completion in building information management: electrical lines from range scans and
photographs” [105].

4.1 Inverse Generative Modeling of Building Façades

This Section describes a method that constructs a generative description of buil-
ding façades from distance measurements and photographs. This work was done
in collaboration with Hayko Riemenschneider andWolfgang Thaller [160], and
was published at CVPR [160]. My main contribution to this work was the imple-
mentation of parts of the parsing system and the transformation of parse trees to
3D models.

Pre-processing and Classification of Façade Elements

For the task of analyzing the structure of a façade, the first step is to partition the
measurements into the relevant information for each façade. Since the structure

93

94 CHAPTER 4. INVERSE GENERATIVE MODELING

(a) (b) (c) (d)

Figure 4.1: Ortho photos are extracted from the measurements. Classification of
façade elements and structural parsing is carried out on this view of a facade.

is predominantly two-dimensional, a main plane for each façade is detected and
an orthographic view of the façade, an ortho photo, is extracted.

In order to find positions of windows and doors, a computer vision algorithm
has been trained to detect instances of windows and doors in the still pictures
acquired by each camera. The window detection is difficult because of the intra-
class appearance variations, and strong distortion and aspect ratio changes of the
various camera orientations.

This classification approach is described in detail in [160] and [161]. The re-
sult is a pixel-wise probability function for each class; this function represents the
probability of each pixel to belong to a semantic class, e.g. wall or window etc. -
see also Figure 4.2. The merit function for the class terminal label is inspired by
semantic scene labeling [170, 115]. A pixel-wise classifier is used on local image
features giving the log-likelihood of each pixel xi belonging to a class terminal
ψ ∈ L, as

Ψ(xi) = −log(P (ψ|i)) (4.1)

Parsing Façade Structure

The approach uses a context-free grammar to partition rectified building facades
into semantic image segmentations. The process involves training a local classifier
for the desired terminal symbols and performing hierarchical splits to partition
the image. This splitting process is guided by the low-level classifier probabilities
and is designed to overcome the limitations of the local structure regularization.

Shape Grammar for Façade Parsing

The grammar for parsing the 2D facade structure and its relationship with the
2D image space are defined as follows. Following the definition of formal gram-
mars in Equation (3.4), the two-dimensional split grammar G = (N,T, P, S) is
a context-free grammar, where the right-hand side of each rule consists either of

4.1. INVERSE GENERATIVE MODELING OF BUILDING FAÇADES 95

(a) ortho photo (b) wall (c) window

(d) door (e) sky (f) ML

Figure 4.2: The semantic labeling algorithm yields a probability value for each
pixel of the input image (a) to belong to a specific semantic class. White corre-
sponds to a high probability, and black corresponds to a low probability. The
figures (b) – (e) show the probalbilities of their respecting semantic class, and the
last image (f) shows amaximum likelihood (ML) labeling, where each pixel is assig-
ned to the class with the highest probability value.

a single non-terminal symbol, or of a terminal symbol (an operator) followed by
zero or more non-terminal symbols, where the number of non-terminal symbols
matches the number of arguments expected by the operator.

A parse tree is an ordered treewhose interior nodes are labeled by non-terminal
symbols, and whose leaves are labeled by terminal symbols (operators) from the
grammar, and by an attribute a. The meaning of this attribute depends on the
operator. The root of the tree is labeled by the grammar’s starting symbol S. It
follows from the restrictions we have imposed on the rules that for each interior
node (non-terminal), its leftmost child is a leaf (an operator) and its other children
are interior nodes (non-terminals) as well.

A parse tree is denoted by d = opa d1 . . . dn, and the set of all possible parse
trees for a given grammar is denoted as D. The number of arguments n is a con-
stant for each operator op. The attribute value a is taken from a set Aop which

96 CHAPTER 4. INVERSE GENERATIVE MODELING

(a) label

A B

(b) hsplit

A

B

A

B

(c) vsplit

A

B

A

B

A

(d) vrep

A B A B A

(e) hrep

B A B

(f) hmirror

Figure 4.3: The 6 different split operators used by the grammar parsing system
are the label operator, which assigns a terminal class to a given range (a), the hori-
zontal (b) and vertical (c) split operators, vertical (d) and horizontal (e) alternating
repeat operators, aswell as the symmetricmirror around amiddle column (f) ope-
rator. Note that alternating repeat andmirror operators include an additional size
constraint: ranges associated to the same symbol (either A or B in the figure) have
a similar size.

may be different for each operator. The sub-trees d1 through dn are themselves
parse trees, but with different start symbols.

Operators and their Graphical Interpretation

A range is a rectangular area of an image that may or may not be mirrored around
the y axis. Formally, a range r is a tuple (x1, y1, x2, y2) with y1 ≤ y2. A point
p = (x, y) is written p ∈ r iff ((x1 ≤ x < x2) ∨ (x2 ≤ x < x1)) ∧ (y1 ≤ y < y2).
For the mirrored version of a range: r̄ = (x2, y1, x1, y2).

To give a graphical interpretation of a parse tree d, a function D(d, r) is de-
fined which maps the parse tree to a labeling of the rectangular range r. This
function can be defined recursively for each operator.

There is exactly one label operator for each label (wall, window, door, . . .);
a label operator takes no arguments and represents a rectangular image area be-
longing to that class. The remaining operators each split the range r they operate
on into several sub-ranges ri. The described method supports the standard hori-
zontal and vertical split operators hsplit and vsplit, as well as horizontal and
vertical alternating repeat and horizontal mirror with center operators. The mirror
operator describes the common symmetry pattern ABĀ. The alternating repeat
operators are an indexed family of operators alt(3), alt(5), . . .which describe pat-
terns of the form ABA, ABABA, . . . , respectively.

4.1. INVERSE GENERATIVE MODELING OF BUILDING FAÇADES 97

Each of these operators defines a set Aop of possible attribute values. For a
standard split operator, the attribute value indicates the (relative) position of the
split line between the two parts, for the mirror and the alternating repeat opera-
tors, it is the position of the split between the A and B parts. We could have defined
a single alternating repeat operator whose attribute a also describes the number
of repetitions. Our approach provides more flexibility in that it allows the gram-
mar to express relations between the repetition counts in different parts of the
facade. As we can establish reasonable upper bounds on the repetition counts,
a variable repetition count can always be expressed by having one rule for each
possible count.

The number m of sub-ranges is either equal to or greater than the number
of arguments n. Each sub-range ri is described by the sub-parse tree df(i). The
values ofm, ri and the function f may depend on the operator op, on the attribute
a from the parse tree and range r.

D(opa d1 . . . dn, r) =

m⋃
i=1

D(df(i), ri) (4.2)

where the set union operator is used to express the concatenation of labelings on
adjacent ranges ri.

Additionally, the method allows each non-terminal symbol in the grammar
to be annotated with minimum and/or maximum sizes. Only parse trees are
considered valid if the extent of the non-terminal falls within the allowed range.

Irregular Rectangular Lattice

A pixel-wise analysis of the whole façade image is not feasible, as the require-
ments for the parsing algorithm are too demanding in terms of run time and me-
mory requirements. Therefore, to reduce the search space of the configuration, an
irregular rectangular lattice is derived Such a lattice is a splitting of the orthogonal
building frame into lattice tiles of varying width and height. Each tile, or several
adjacent tiles, may represent a range of a terminal symbol, see also Figure 4.4.
This lattice serves as an initialization for the inference process, and is defined by
horizontal and vertical split lines. Each dimension solved independently, as the
solution is not constrained to be regular. A split line is a transition which divi-
des the image space into tiles, where neighboring tiles may belong to a different
terminal label. Given the join distribution of the pixel-wise classifier for a tile,
the resulting lattice marginalizes label transitions for each dimension. The actual
lattice inference is described in detail in [160], and uses an energy minimization
approach that is solved using graph cuts [25].

98 CHAPTER 4. INVERSE GENERATIVE MODELING

(a) (b)

Figure 4.4: The irregular lattice (a) is a rectangular splitting of the image (b) into
tiles of varying size, which depend on terminal symbols.

Grammar Matching

The task is now to match a grammar, a given set of production rules - that encode
feasible facade structures - to a given lattice with associated class probabilities.
The presented algorithm is similar to the standard Cocke-Younger-Kasami (CYK)
parse algorithm for context-free grammars. It uses bottom-up parsing and dyna-
mic programming. The modified CYK algorithm finds a solution by minimizing
a cost function c(d, I) over all possible labelings d ∈ D:

d∗ = argmin
d∈D

c(d, I), (4.3)

where the setD denotes the set of all possible parse trees. Dynamic programming
algorithms like CYK require the so-called optimal substructure property, i.e. it must
be possible to efficiently calculate the optimal solution from the optimal solutions
to its sub-problems. A sub-problem in our case means finding the optimal way
of matching a given non-terminal against a given rectangular sub-range of the
input. We write q(I, r, S) to denote the optimal match for a non-terminal S on
the sub-range r of input I .

Thus, given an operator op (that takes n arguments), an attribute value a and
a range r, we can efficiently determine n sub-problems (ri, Si), such that

min
d1...dn

c(opa d1 . . . dn, I, r) = c(opa d
∗
1 . . . d

∗
n, I, r), (4.4)

where d∗i = q(I, ri, Si) are the optimal solutions for the sub-problems.

4.1. INVERSE GENERATIVE MODELING OF BUILDING FAÇADES 99

The optimal solution for (r, S) can thus be determined by calculating the costs
for all rules applicable toS and for all possible values of a for the operatormentio-
ned in each rule and choosing the minimum. This assumes that all sub-problems
(ri, Si) have already been processed, which can easily be guaranteed by proces-
sing smaller ranges first.

Cost Function

A cost function is defined that implements a maximum a posteriori probability
estimator: From the given grammar rule set, we get a prior probability distribu-
tion over all facades. The grammar is not yet stochastic, therefore this distribution
is uniform for all segmentations that can be described by a parse tree, and zero
for all “impossible” labelings. Thus, we maximize the posterior probability over
the set of all parse trees D (rather than over the set of all possible labelings). The
cost function is sought to be the log-likelihood of the parse tree:

c(d, I, r) = − logP (D(d, r)|I). (4.5)

In order to implement the estimator, the cost function has to fulfill the optimal
substructure condition ((4.4)) and approximate this ”ideal” cost function. First, it
is checked if any size constraints for the non-terminal symbol at the root of the
current parse tree are violated. If so, the parse tree is assigned infinite cost. Ot-
herwise, the matching proceeds according to the operator used at the root of the
parse tree.

For label operators, c is calculated by summing up the pixel-wise merits Ψ for
all pixels in the range r. For the other operators, we get (using Equation 4.2 and
the assumption that the sub-trees di are statistically independent of each other):

c(opa d1 . . . dn, I, r) = − log
m∏
i=1

P (D(df(i), ri)|I)

=

m∑
i=1

c(df(i), I, ri) (4.6)

In the case of the standard (vertical and horizontal) split operators, this results
in c(d1, I, r1)+c(d2, I, r2), which fulfills the optimal substructure condition (4.4).

In the general case, which includes the mirroring and alternating repetition
operators, a cost function is acquired that violates the optimal substructure con-

100 CHAPTER 4. INVERSE GENERATIVE MODELING

dition by matching the same sub-tree against multiple sub-ranges:

c(mira d1d2, I, r) = c(d1, I, r1) + c(d2, I, r2)

+ c(d1, I, r̄3) (4.7)

c(alt(m)a d1d2, I, r) =

m∑
i=1,3...

c(d1, I, ri)

+
m∑

i=2,4...

c(d2, I, ri) (4.8)

Clearly, the di which minimize these costs are not necessarily the optimal so-
lutions d∗i = q(I, ri, Si) on any of the sub-ranges. It is, however, a reasonable
approximation to assume that they are.

Making that assumption still does not make the algorithm efficiently imple-
mentable. The cost of the optimal sub-solutions, c(d∗i , I, ri), has already been cal-
culated by previous iterations of the dynamic programming algorithm, but the
costs c(d∗i , I, rj) for i 6= j have not. Therefore, these costs are estimated based on
values that aremore readily available, such as the costs c(d∗i , I, ri) and c(d∗j , I, rj),
which are already pre-calculated.

Also, a dissimilarity estimate ∆(I, ri, rj) is introduced, which indicates the
probability that two ranges should have the same labeling:

∆(I, ri, rj) := −logP (xri = xrj |I) (4.9)

This can be calculated from Ψ, again assuming statistical independence bet-
ween the pixels.

The probability that two ranges can be explained by the same parse tree can
be estimated using the probability that one of the ranges can be explained by the
parse tree and the probability that the ranges have the same labeling:

P (xri = D(d∗i , ri) ∧ xrj = D(d∗i , rj)|I)

= P (xri = D(d∗i , ri) ∧ xri = xrj |I)

≈ P (xri = D(d∗i , ri)|I)P (xri = xrj |I) (4.10)

Taking this estimation together with the fact that c(d∗i , x, rj) ≥ c(d∗j , x, rj),
the result is

c(d∗i , x, rj) ≈ max(c(d∗j , x, rj),∆(x, ri, rj)). (4.11)

Inference on the Lattice

For the basic horizontal and vertical split operators, the irregular lattice amounts
to limiting the choices for the attribute values a at the various parse tree nodes.

4.1. INVERSE GENERATIVE MODELING OF BUILDING FAÇADES 101

The result is equivalent to maximizing posterior probability under the assump-
tion that each lattice tile has a homogeneous label.

For mirror and repeat operators, the situation is slightly more complicated. In
an application of the mirror operator, if the sub-range r1 is exactly representable
on the lattice, the sub-range r̄3 that is its mirror image might not be, and vice
versa. Likewise, the various sub-ranges ri of a repetition operator will usually
not fit exactly.

The sub-problem solutions d∗i are therefore calculated on the closest range
actually available in the lattice, and then used as an approximation for the exact
range. This has the effect of adding the split lines required by the symmetries
and repetitions to the output labeling, even if they have not been found during
the lattice generation phase. The dissimilarity ∆ is defined on ranges of different
sizes to be the ∆ between the smaller range and the corresponding sub-range
in the center of the larger range, plus an extra penalty value proportional to the
difference in areas.

A complete example of a parsed façade structure of the example façade shown
in Figure 4.2 can be seen in Figure 4.5.

Parse Tree to Model Transformation

The parse tree corresponds to a coarse to fine refinement of façade structure,
which partitions the façade into semantic elements by applying operators. The-
refore, such a parse tree can be naturally converted back to program source code,
similar to the code generation step in a conventional compiler pipeline.

In this subsection, I describe a transformation from façade parse trees toGML,
theGenerativeModeling Language, a concatenative programming languagewith
a syntax similar to postscript. The method utilizes the robust generative shape
composition method described in Chapter 3. The general approach consists of
the following code generation steps:

1. For each façade, a volume will be generated that corresponds to the maxi-
mum bounds of the façade space. Each volumewill be refined startingwith
the root of the according parse tree.

2. Each parse tree is converted into textual generative representation of the
operations that are applied to the façade bounding volume.

3. Each terminal symbol is associated to a predefined parametric rule such as
the parametric windows or doors described in Section 3.5. The according
rule application is generated for each terminal.

Coordinate System. The geometric operations are carried out in a local façade
coordinate system that has the lower left point as origin. When looking from front

102 CHAPTER 4. INVERSE GENERATIVE MODELING

Figure 4.5: Parsed structure of a façade. Detected alternating repetitions of co-

lumns are shown as alternating rectangles of orange and yellow, symmetric side

columns between a middle column are shown as blue rectangles (symmetric side

columns) that are connected by a blue arc line. The result shows nested detected

symmetries, such as repetitions inside a symmetric side column (left and right

part). Also, the door has been parsed as a middle part that is surrounded by

symmetric side columns.

4.1. INVERSE GENERATIVE MODELING OF BUILDING FAÇADES 103

at the façade, the x axis is pointing to the right, the y-axis points along the view
direction and the z-axis points up. For each façade, a transformation is specified
that positions the façade in a global world coordinate system.

Short GML Primer. The language GML is similar to Adobes PostScript, and
was developed by Sven Havemann for generative mesh modeling; I will give a
brief overview of the most important concepts, for more details see [70] for an
extensive description of the language and the features. It is a stack oriented, con-
catenative [76] programming language. A GML program consists of a stream of
tokens; operators take their arguments from the stack and push their result onto
the stack. For example, the program 19 23 add will first push 19 on the stack,
then push 23 on the stack, the operator addwill take the two arguments from the
stack and push the result (42) on the stack. Variables and names are organized
using key - value stores, so-called dictionaries. In addition to the standard stack,
GML also maintains a dictionary stack that contains dictionaries only. A name in
GML is just put on the stack when prefixed with a slash (e.g. ’/FOO’), a name
without prefix retrieves the key with that name from the first dictionary on the
dictionary stack that contains the key. By creating a new dictionary on the dictio-
nary stack, a program can create a new namespace for variable names. Functions
or methods are just arrays of tokens, enclosed by curly brackets ({, }), and thus
can be stored in variables as well. The operator DEF takes a name and a value and
stores the key-value pair in the topmost dictionary on the dictionary stack.

Parse Tree to GML Transformation. I assume that operations on parse trees
are side effect free and have a convex polyhedron as input and yield one or more
convex polyhedra as output, and that the correct order of children nodes is main-
tained. Under this assumption, parse trees can easily be transformed toGML code
using a standard tree traversal and generate code while traversing, as is standard
in a conventional compiler tool chain. Code generation is especially easy as GML
is a concatenative language and intermediate results are automatically put and
taken from the stack, which means that call parameters are implicitly handled.
In general, when converting parse trees between languages, the operations avai-
lable in the source language have to be mapped to equivalent operations in the
target language. If a directly equivalent operation is not available, code needs
to be generated that expresses the original source operation via available target
operations.

Basic GML operations. The available target operations in GML correspond
to the modeling operations described in the previous chapter in Section 3.3.

The relevant operations for code generation of parse trees are:

planes – modeling operations are expressed in the local coordinate system des-
cribed above, each basic orthogonal modeling axis (corresponding to the ~x,
~y and ~z-axis) is described by a function that retrieves the according plane
in the global coordinate system for splitting. The names are CPX, CPY and

104 CHAPTER 4. INVERSE GENERATIVE MODELING

CPZwith the plane normal pointing in the according axis direction. Functi-
ons for inverse directions (to swap children order) have a N added to their
name, e.g. CPXN. By using these names in rules for scope split operations,
the symmetry operator can easily reuse a parse tree on a mirrored scope by
switching the accordingplane pair. Inmy implementation this is realized by
making e.g. CPX and CPXN functions that return the according plane from
the current scope state. The mirror operation just reverses the direction of
that plane of the scope state.

split – the implementation of the generalized interval split, described in the pre-
vious Section 3.3. The GML syntax is split-interval, and it expects its
parameters on the stack, pushed in this order: a scope dictionary that con-
tains all scope state, the absolute/relative distance interval, and a splitting
plane (which will be moved along its normal direction). alternating splits
are also built using the generalized interval split.

mirror – the mirror-h operator assumes the following parameters, pushed in or-
der: a scope dictionary that contains all scope state, an absolute or relative
distance interval that partitions the scope into exactly 3 parts. This opera-
tion will split along the CPX axis using the given interval, which yields 3
parts ABA, where A is the horizontally mirrored version of A. The opera-
tor will switch the according scope state plane ofA and leaves the scope on
the stack in the orderBAA, ready for consumption by the following opera-
tions.

I give an example of a possible transformation of the three steps described
above; the first part of the program is initialization and the definition of functi-
ons that correspond to terminals and their respective parametric façade elements:

1 ShapeGrammar.Tools.init % prepare scope split methods
2 dict begin % create namespace for terminals
3
4 /t101 { 3 0 0.05 0.03 AA.window.rect } def % rectangular window
5 /t102 { 9 2 0 0.05 0.03 AA.window.arched } def % arch window

Initialization. This example code first initializes the shape grammar state and
defines the appearance for terminal symbols, exemplary shown for the terminals
t101 and t102. Each terminal corresponds to a pre-trained class that was de-
tected in themeasurements, e.g. wall or different window styles, such as rounded
or square windows. Each parametric terminal is assigned values for the parame-
ters, e.g. the thickness of a frame in centimeters and so on. Then, each façade is
initialized using its spatial extend, assuming a fixed façade depth (e.g. 1m):

1 (0,0,0) (23,1,25.9) 3 scope-box

This code creates a box-shaped convex polyhedron on the stack, correspon-
ding to a façade with 23m width, 25.9m height and 1.0m depth. The depth is just

4.1. INVERSE GENERATIVE MODELING OF BUILDING FAÇADES 105

WALL WALLsplit Y [-1,-1]

DOORWALL

split X [-1,-1,-1]
X [-1, -1, -1] split-interval
WALL
Y [-1, -1] split-interval
WALL
DOOR

WALL

Figure 4.6: A parse tree (left) that contains operations in nodes and terminal sym-
bols as leaves is converted to a GML program (right) via a pre-order depth-first
tree traversal.

an arbitrary fixed constant at this point, in future work the façade parse tree could
also be applied to the sidewall scopewhich is part of a larger volumetric complete
house model.

Parse tree to GMLCode. The corresponding GML code to a façade parse tree
is then generated by a pre-order depth-first tree traversal, see also Figure 4.6 for a
simple example. Code for split operations is simply generated when visiting the
according split node, each split in the proposed grammar consumes one scope
and leaves two scopes on the stack; the code generation for alternating repetition
and mirror is slightly more elaborate.

The parse tree node for alternate repeat operators (hrep and vrep) contains
only two childrenA andBwith their respective column split widths, as described
in Section 4.1. The generated code for e.g. the sequence ABABA will first per-
form a single split with the width of A, and generate the code for the A sub-tree
that is applied to this first A in the sequence. Then, a loop is created that splits
the remaining scope in BA blocks; each block is then split to separate B and A.
Then, the code for each sub-tree B and A is created inside the loop.

The hmirror operator (see also Figure 4.3) also contains two children S and
M (for side and middle columns). For this node, code is generated that applies
the GML method mirror-h, then generate a code block for the sub-tree of S that
is looped two times for the left and right column, and generate the code block for
the sub-tree ofM for the middle column.

The complete code of the transformed parse tree for the façade shown in Fi-
gure 4.5 is shown in the appendix Section 8.3.

Experimental Evaluation

An experimental evaluation was carried out using a 30 image data set of Haus-
mannian style against the approach of Teboul et al. [186, 185] and a data set of

106 CHAPTER 4. INVERSE GENERATIVE MODELING

50 neoclassical façades of Graz was evaluated against manually labelled ground
truth.

4.1. INVERSE GENERATIVE MODELING OF BUILDING FAÇADES 107

(a)

MAP [186] [185] Our

Window 29 81 81 68
Wall 63 83 84 87
Balcony 42 72 63 69
Door 90 71 84 56
Roof 62 80 86 83
Sky 95 94 94 95
Shop 26 95 97 97

Average 58 82 84 80

(b)

(c)

Method W
in
do

w

W
al
l

D
oo

r

Sk
y

G
lo
ba

l

C
la
ss

Io
U

MAP 60 66 57 80 66 65 43
Our 60 84 41 91 78 69 58

(d)

Figure 4.7: An experimental evaluation was carried out using two data sets: the
Paris2010 data set [186, 185], an example can be seen in (a), and theGraz50 data set,
of which an example is shown in (c). The proposedmethod produces comparable
results to the state of the art (b) and increases the classification result of a simple
MAP combination of the detection results (d).

108 CHAPTER 4. INVERSE GENERATIVE MODELING

4.2 Inverse Generative Modeling of Electrical Wiring in
Building Interiors

The second approach concerning inverse generative modeling I present in this
thesis is the creation of a hypothesis of the placement of electrical wiring inside
buildings from unstructured data. This information can be useful for renovation
or rebuilding projects, or in the case of urbanmining situations. Urbanmining de-
notes the method of detecting, removing and handling re-usable resources when
a building is deconstructed. The estimation of electrical wiring is a valuable asset
for such situations [152]. The information acquired by the proposed method can
be used to determine the amount of resources, in this case copper, that could be
salvaged.

Typically, such information can be acquired by using metal detectors, but the
scanning and documentation process is demanding in terms of resources and
time. On the other hand, a domain expert that considers technical standards and
construction practices is able to give an educated guess of the placement of elec-
trical wiring just by looking at a wall. The proposed system mimics such expert
knowledge using a 2D grammar that creates electrical installation zones, given
the coarse reconstructed room geometry as input.

The technique was evaluated by building a complete pipeline that creates a
hypothesis from measured unstructured data. Our prototype implementation is
called RISE - short for Reveal Invisible StructurEs.

Overview

The emphasis that was put into the system was to be as automated as possible,
while being general and broadly applicable. The main idea is to train a system to
detect the appearance of observable end points of electrical wiring, i.e. sockets or
switches, and create a hypothesis of electrical wiring under the assumption that
the installation follows regulations or technical standards that describe preferred
for zones the installation of electrical wiring. However, technical standards may
change over time, or differ between countries, therefore this information is repre-
sented by an exchangeable set of rules.

The complete task of wiring hypothesis has been subdivided into smaller sub-
problems, which leads to a pipeline architecture. The complete pipeline is shown
in Figure 4.8. The following subsections describe the most important parts of the
proposed approach. The input to the pipeline consists of distance measurements
(point clouds in E57 format [83]) and color information (panoramic images), and
is described in more detail in Section 4.2: a coarse geometric description, a floor
plan representation, is extracted from the point clouds in the data pre-processing
stage, see Section 4.2. Furthermore, an image per wall is created, that contains
the color information of this wall (an ortho photo) of known scale. In these ima-

4.2. INVERSE GENERATIVE MODELING OF ELECTRICAL WIRING IN
BUILDING INTERIORS 109

RISE

Point Cloud (E57)Panoramic Images

OrthoGen
Ortho photo Generation

Floorplan
JSON

Geometry
Extraction

Ortho Photos ElecDetect
Endpoint Detection

Endpoint
Training DB

Floorplan
+ Detections JSON

Installation
Zone RulesetWireGen

Hypothesis Generation

Wire Hypothesis

Figure 4.8: Overall Architecture of the RISE pipeline. Modules (processes) corre-
spond to blue nodes with rounded corners, and data (e.g. intermediate results)
corresponds to green nodes. Circles depict data that represents prior knowledge.

ges, instances of visible endpoints are detected usingmethods of computer vision.
Section 4.2 describes the method of encoding the prior knowledge from technical
standards in an installation zone grammar, and the optimization approach that
synthesizes a probable wiring, given the floor layout, detected endpoints and in-
stallation zones.

110 CHAPTER 4. INVERSE GENERATIVE MODELING

(a) (b)

Figure 4.9: The 3D scanning unit used for acquisition did not capture important
features that are necessary for classification. Furthermore, the images are easily
over- or underexposed when lighting conditions are not optimal (a). Therefore, a
manually taken image had to be used that yields higher resolution (b).

Data Acquisition

The data that was used to evaluate the pipeline has been acquired using a Faro Fo-
cus 3D 1 scanning device in E57 format. This scanner also acquires color informa-
tion by stitching a spherical panoramic image, i.e. an equirectangular projection
of a surrounding sphere, where each pixel corresponds to one distance measure-
ment; this image can be used to assign colors to points to acquire a colored point
cloud. The initial idea was to utilize this color information for the detection of
sockets and switches, but it turned out that the quality was too low for sufficient
recognition of endpoints, as is shown in Figure 4.9. Therefore, a high resolution
panoramic image (HRPI) was acquired at the scanning position. A Nodal Ninja
3 panoramic head was mounted on the scanner’s tripod for the acquisition, the
HRPIs were stitched from pictures taken with a Canon 500DDSLRwith a fish eye
lens, see also Figure 4.10.

Data Pre-processing

The data is processed to reconstruct a floor plan representation using the method
of Ochmann et al., which creates a BIM model from unstructured point cloud
data, and was developed in the DURAARK project. First, the point cloud acqui-
red from multiple scans is segmented into rooms [142], afterwards, a floor plan
representation is generated from the segmented point cloud [141], see also Fi-
gure 4.11.

The result that is processed further in the RISE pipeline is an augmented
floor plan representation that contains the connectivity of rooms, walls, and ope-
nings inside walls, like doors and windows. This representation has the under-
lying assumption that a building structure can be represented by a stack of two-
dimensional structures, this typically corresponds to the floors of a building. Such

1http://www.faro.com/

http://www.faro.com/

4.2. INVERSE GENERATIVE MODELING OF ELECTRICAL WIRING IN
BUILDING INTERIORS 111

(a) (b) (c)

(d) (e)

Figure 4.10: A Faro Focus 3D scanning device (a)was used to acquire a point cloud
that consists of two scans (b). The scanner also acquires color information per
scan (c). Additional high resolution panoramic images (e) were acquired using a
panoramic head and a digital camera (d).

a two-dimensional structure has the basic underlying structure of an arrangement
[3]. The RISE pipeline represents this arrangement structure by JSON format that
contains a list of walls and a lists of elements that are associated to the walls, such
as openings, or detections. See Figure 4.12 for an explanation of the floor plan
encoding, each wall is specified in relation to a global world coordinate system.
The elements that are associated to a wall are encoded in a two-dimensional wall
coordinate system, as can be seen in Figure 4.13.

Pre-processing and Classification

OrthoGen

The OrthoGen module is responsible to extract the measured color information
for each wall, the ortho photo, using the acquired panoramic images and the
above described floor plan format, see also Figure 4.15.

Each panoramic image corresponds to a sphere that captures incoming light
at the scanning position. The image uses the pose of the scanner; Manually acqui-

112 CHAPTER 4. INVERSE GENERATIVE MODELING

(a) (b)

(c) (d)

Figure 4.11: The proposed pipeline uses the approach presented by Ochmann
et al. [141] to create an augmented floor plan representation from unstructured
data. A point cloud is acquired using a laser scanning device (a) (the ceiling points
have been removed for the images (b)-(d) for better visibility). The point clouds
are segmented in rooms (b), as is shown by different colors. Then, the position
of walls, and their height and thickness are detected (c). For each wall, openings,
such as windows or doors, are detected and stored in the resulting IFCmodel and
the augmented floor plan representation.

red images may, although taken at the scanning position, additionally need to be
aligned along the azimuth (up) axis. Typically, the solution for such an image
registration task is based on feature detection andmatching [182], but in this con-
strained case a much simpler method was sufficient. First, both images are con-
verted to a normalized gray-scale version; Normalization is carried out by sub-
tracting the gray-scale mean and divide by the standard gray-scale deviation of
the image. Both images are re-scaled to the same size. The alignment is resolved
by an exhaustive test of all possible alignments at every horizontal pixel position.
The minimal sum of absolute differences (SAD) determines the final alignment.

The color information is then projected on the proxy geometry, similar to tex-
turemapping. Therefore, an error naturally ariseswhere the proxy geometry does
not correspond to the real geometry, e.g. fine details or furniture that are not re-
presented by the proxy geometry. Typically, this error does not pose a problem for
the proposed pipeline, as the resulting images are used to detect the appearances

4.2. INVERSE GENERATIVE MODELING OF ELECTRICAL WIRING IN
BUILDING INTERIORS 113

room0

room1

room2

1

1

2 2 3

3

4 5

6 7

8 9

wall0

wall1

wall2

wall3

wall4

wall5

wall6

wall7

wall8
wall9

wall10
wall11

(a) The floor plan representation encodes rooms as oriented wall cycles, in countercloc-
kwise order. For example, room0 consists of the wall cycle wall0-wall1-wall2-wall3. T-
Vertices are encoded as crosslinks, e.g. between wall1 and wall5.

1 {
2 " l a b e l " : "WALL" ,
3 " a t t r i b u t e s " : {
4 " id " : " wall1 " ,
5 " l e f t " : 0 ,
6 " top " : 0 ,
7 "width " : 6156.679 ,
8 " height " : 3182.134 ,
9 " th i ckness " : 200 ,
10 " o r ig in " : [7887.29 , 1989.9 , 11840 .8] ,
11 " x " : [−0.787 , 0 .617 , 0] ,
12 "y " : [0 , 0 , −1] ,
13 " roomid " : " room0"
14 } ,
15 " l e f t " : 2 ,
16 " r i gh t " : 7 ,
17 " c r o s s l i nk " : [" wall5 "]
18 }

(b) The wall cycle is encoded by specifying the id of the adjacent corner points, when
looking at the wall from inside the room.

Figure 4.12: Description of the floor plan exchange format.

114 CHAPTER 4. INVERSE GENERATIVE MODELING

~x

~y

(a) Positional information of a wall element (e.g. a door) is encoded by
an axis aligned bounding box with attribute names left,right,width,height
that is related to a wall coordinate system with origin on top left, as seen
from inside the room (all measurements in mm).

1 {
2 " l a b e l " : "DOOR" ,
3 " a t t r i b u t e s " : {
4 " l e f t " : 3856.68 ,
5 " top " : 432.13 ,
6 "width " : 1250 ,
7 " height " : 2650 ,
8 " wal l id " : " wall0 "
9 }
10 } ,

(b) Each element is represented by a category label and a set of attributes that describe
the location and context of the element.

Figure 4.13: Encoding of elements that are associated to a wall.

4.2. INVERSE GENERATIVE MODELING OF ELECTRICAL WIRING IN
BUILDING INTERIORS 115

X
Y

Z
X'

Y'Z'
p'

p

φ
θ

Figure 4.14: Ortho photo Projection: A rectangular patch in 3D space is sampled
at a desired resolution, e.g. 1 pixel/mm. Each pixel p is transformed into the lo-
cal coordinate frame (X ′, Y ′, Z ′) of the panoramic sphere in spherical coordinate
angles azimuth φ and elevation θ to determine the color value in the panoramic
image.

of sockets and switches, which are more likely to reside in the walls main surface
plane.

Eachpixel of the ortho photo corresponds to a 3Dposition of thewall rectangle
in world coordinates. The projection is carried out by using a simple projection
approach which is shown in Figure 4.14: For each pixel p of the patch, the system
creates a ray from the corresponding 3D position to the center of the panoramic
sphere. The intersection p′ of the ray and the sphere is then transformed into

116 CHAPTER 4. INVERSE GENERATIVE MODELING

the local spherical coordinate system of the panoramic sphere, which yields the
azimuth angle φ and the elevation angle θ. These angles are used to acquire the
color value of this pixel from the panoramic photograph. The ortho photos are
sampled such that the distance between two neighboring pixels corresponds to
1mm. If a room consists of several scans, the sphere with shorter distance to the
pixel world coordinates is chosen. The complete approach is described in [106].

The ortho photo generation has also been used in contexts where a detailed
floor plan description was not available, but instead a rough proxy geometry con-
sisting of an indexed face set of either triangles or quads. Input geometry, even if
coarse, commonly contains many small features or triangles. Therefore, the idea
is to group as many as possible together. My method synthesizes rectangular pa-
tches by a fine-to coarse clustering approach using the mean shift algorithm [36].
It works in two principal steps: first, all similarly oriented triangles are grouped.
Second, similarly oriented triangles that lie in the same plane are grouped. From
these groups, the smallest rectangular patch is found within the plane of each
triangle group. All patches are coherently oriented regarding the up direction.

The color information of each patch is obtained by projection: each patch is
sampled for every pixel position, with a desired resolution, e.g. 1mm/pixel. For
each pixel, the nearest scan – that is not occluded by the input geometry – is cho-
sen. The color is obtained by intersecting the panoramic sphere with the ray from
the pixel patch position in world coordinates to the center of scanner’s position.
Thus, an image for each patch is acquired. Note that due to this simple projection
approach, the projected color will only correspond to the real value if the measu-
red surface point lies in the detected plane of the patch, otherwise the projection
will be distorted. This is especially noticeable with smaller details that were me-
asured but are not present in the proxy geometry, such as furniture. To use the
patches as texture information for the proxy geometry, I perform a coordinate sy-
stem conversion from the world coordinate system into patch coordinates, where
patch coordinate X and Y axis correspond to the image X and Y axis, and Z corre-
sponds to the normal direction of the patch. I project each triangle into its corre-
sponding patch cluster plane, and obtain texture coordinates directly from patch
coordinates, normalized to the patch size in world coordinates. An example of
ortho photo extraction can be seen in Figure 4.16 and Figure 4.17.

ElecDetect

The automatic detection of sockets gained early attention in the field of robotics,
in order to build self-charging robots [32], [127]. The chosen approach follows a
classical object detection methodology from computer vision: For each pixel p of
an ortho photo, a small image patchP centered around p is analyzed to determine
the detection probability of an object class for this pixel.

Instances of power sockets and light switches can be challenging to classify:

4.2. INVERSE GENERATIVE MODELING OF ELECTRICAL WIRING IN
BUILDING INTERIORS 117

(a)

(b)

Figure 4.15: The ortho photo generation module projects the acquired color infor-
mation, represented by the spheres in (a), on the coarse geometry that has been
reconstructed from the point cloud (b).

118 CHAPTER 4. INVERSE GENERATIVE MODELING

(a)

(b)

Figure 4.16: Another example of ortho photo extraction: the input consists of a
point cloud that was fused from 7 scans, with a total of 76.98 million points (a).
The front facing wall has been removed from this point cloud to facilitate a better
view of the scene. A coarse proxy geometry has been extracted, which serves
as input for the ortho photo generation, together with the spherical panoramas
acquired at the scanning positions (b). Scan datawas acquired by the architectural
office Fojab in Malmø, Sweden, property of Paul Pierce.

4.2. INVERSE GENERATIVE MODELING OF ELECTRICAL WIRING IN
BUILDING INTERIORS 119

(a)

(b)

Figure 4.17: This figure shows some exemplary ortho photos that were extracted
using the proposed approach, black pixels were not visible from any scanning
position. The left patch shows the ground plane, the patches on the upper right
correspond to wall and window planes. The patch on the bottom right highlights
detected sockets (a). The colored patches generated by themethod have been used
as texture data for the proxy geometry. The figure (b) shows two different views
from top of the scanned model, the top floor slab has been removed for a better
visual experience.

120 CHAPTER 4. INVERSE GENERATIVE MODELING

These objects are typically designed to be unobtrusive and thus are un-textured,
but there exists a wide variety of different shapes or colors. The appearance of
sockets and switches is generally defined by their silhouettes and mostly homo-
geneous colored regions of varying colors, e.g. for different brands.

For the classification task, the information inside a patch P is reduced to a
discriminative numerical representation, typically a vector with less than 200 di-
mensions. This representation is called a descriptor. For the task of power sockets
and switches detection, an approach that utilizes both gradient and color infor-
mation proved to be the most discriminative. The descriptor contains

• a histogram of oriented gradients (HoG) [39], that models the distribution
of intensity gradients, or edge directions. The patch is sub-sampled in a
regular grid, and for each cell a histogram of gradient directions is created.

• color information is encoded by separating the color channels, and calcu-
lating differences in mean intensity of randomly sized and positioned sub-
regions inside the patch, similar to Haar-like features [205].

• an additional descriptor part was developed that also encodes gradient in-
formation, but differently than the HoG descriptor: For each patch pixel
where the local gradient magnitude is larger than a threshold, the gradient
vector is normalized (scaled to length 1). Then, the gradient vector is pro-
jected onto a set of four fixed unit vectors, each angularly separated by 45◦.
This projection uniquely and continuously describes the vector’s direction.
By considering only absolute values of these projections, the descriptor be-
comes invariant to contrary object- and wall intensity values. The final des-
criptor entries are built using Haar-like differences of random sub-regions,
similar to the color descriptor.

For training, a self-annotated database of 41 power sockets and 13 light swit-
ches was used. From each annotation, 10 training patches were generated by ap-
plying a random jitter, yielding a total number of 540 positive training samples.
In order to create negative training data, 726 image patches were randomly ex-
tracted from unmarked regions of the annotated set. A random forest classifier
[26] was used to retrieve the probability for the object classes power socket, switch
and background. A non-maxima suppression is applied after classification on the
probability maps to yield the final detection result, see Figure 4.18 for an example
classification.

Hypothesis creation

At this stage of the pipeline, the floor plan information has been enrichedwith de-
tected sockets and switches, associated to a wall in the samemanner as openings,

4.2. INVERSE GENERATIVE MODELING OF ELECTRICAL WIRING IN
BUILDING INTERIORS 121

(a) (b)

(c) (d)

Figure 4.18: A machine learning algorithm is used for detection of sockets and
switches. The detected elements are shown as colored rectangles in (a) and (c).
The corresponding probability maps are shown in (b) and (d), where white is
probability zero and color intensity encodes the probability for class 1 (sockets,
blue) and class 2 (switches, green).

see also Figure 4.13. In order to create a hypothesis of probable wiring beneath
the surface, additional prior information has to be taken into account. A domain
expert might be able to give an educated guess about the position of electrical
wiring, based on two key observations:

explicit knowledge that is directly observable, e.g. the locations of sockets and
switches that have already been acquired in the pipeline, and

implicit knowledge e.g. “best practice” techniques, that apply to the layout of
electrical wiring. This implicit knowledge may also be influenced by man-
datory technical standards, e.g. for buildings in the public domain.

As technical standards may differ between countries or change over time, a
general approach is desirable that is able to cope with such changes. Therefore,

122 CHAPTER 4. INVERSE GENERATIVE MODELING

Figure 4.19: A schematic representation of installation zones defined by the Ger-
man technical standard DIN18015 [44]. The placement of installation zones is
influenced by neighboring walls, or forbidden zones, such as windows or doors.

this prior knowledge is encoded as an exchangeable set of rules, that is inspired
from formal languages.

Installation Zones

Technical standards define zones for preferred routing of electrical installations.
for example the “Deutsche Industrienorm” (DIN), the German industry standard
specification, specifies so-called installation zones as the preferred method to de-
cide the actual position of cable routing in walls in residential areas, as described
in DIN 18015 [44]. Several additions to this standard exist, for example for rooms
with bathtubs or showers as described in DIN VDE 0100-701 [45]. A similar ap-
proach is defined in the “Stærkstrømsbekendtg relsen”, the technical standard in
Denmark [56]. The key observation was that these zones are defined horizon-
tally or vertically by distance intervals from walls, or “forbidden zones” such as
windows or doors. See also Figure 4.19 for an example.

Electrical Wiring Hypothesis

An overview of the hypothesis creation is shown in Figure 4.20. For each wall in
the floor plan description, the system creates a set of installation zones using an
installation zone grammar, that utilizes the location of walls, openings and de-
tections as starting rule. Furthermore, a power root has to be specified, e.g. if the
location of the main fuse box on the floor is known. The Evaluation of this rule
yields the set of separated horizontal and vertical installation zones for each wall.
The line arrangement of these zones corresponds to a graph that contains all pos-
sible routes of electrical wiring. From this graph, invalid elements, i.e. lines that
cross forbidden zones, are removed and unconnected detections are connected
via additional routes. Furthermore, given the wall and room adjacency from the
floor plan representation, zones associated to adjacent rooms are connected as

4.2. INVERSE GENERATIVE MODELING OF ELECTRICAL WIRING IN
BUILDING INTERIORS 123

(a) (b)

(c) (d)

Figure 4.20: The Hypothesis generation begins with the starting symbol that spe-
cifies walls, openings (yellow), detections (green and blue), and roots (purple) as
seen in (a). Applying the generative rule set, installation zones are created (b).
From these zones, a graph is created that connects all given end points (c), and a
final hypothesis is extracted that connects all endpoints to a root and minimizes
the total wire length (d)

well. To create the final hypothesis, a sub-graph is extracted that connects all de-
tections to a power root, under the assumption that the overall length of power
lines, which corresponds to material costs, is minimized using a discrete optimi-
zation approach.

Installation Zone Grammar

As has been observed from the technical standards, the zones are placed with
respect to wall boundaries, or forbidden zones. We define the installation zone
grammar as an attribute grammar GIZ = (N,T, P, S) that consists of the set of
non-terminal symbols N , the set of terminal symbols T , the set of production
rules P and the start symbol S. Non-terminal symbols NT ∈ N are written in
uppercase letters, e.g. WINDOW and terminals t ∈ T are written in lowercase, e.g.

124 CHAPTER 4. INVERSE GENERATIVE MODELING

hzone. A production rule is written

NT {constraints} → 〈t|NT〉 {attributes} (4.12)

The left side of a production rule contains exactly one non-terminal, and an
optional constraint that yields a Boolean expression, the rulewill bematched only
if the constraint evaluates to true. The right side can consist of any number of non-
terminal and terminal symbols, together with attribute definitions in curly brac-
kets. An attribute corresponds to a key-value pair. All symbols on the right-hand
side inherit all attributes from the left-hand side, afterwards additional attribute
definitions are carried out.

The starting production rule produces non-terminal symbols according to the
elements that influence installation zone placement (walls, doors, windows, de-
tections). All positional information is stored in attributes, with respect to wall
coordinates (see also Figure 4.13). The terminal symbols of this grammar corre-
spond to horizontal and vertical installation zones, as well as forbidden zones,
e.g. doors or windows.

Given such a starting rule that corresponds to the information given in the
floor plan description, the production rules are evaluated until the list of non-
terminal symbols is consumed and only terminal symbols are left. The terminals
with a special meaning for the optimization system are hzone, vzone and root,
other terminals are treated as an endpoint if it contains the attribute endpoint
that is set to true. Using this mechanism, users can manually add points that
should be contained in the routing hypothesis, e.g. if there are known positions
of wiring that could not be detected by the automatic endpoint detection.

This grammar is context free, but it turned out that this approach fails in cases
where there is strong evidence for an installation area that is not given solely by
the rules of the technical standard, but when the detected endpoints contain large
horizontal or vertical structures, e.g. an array of sockets. Therefore, the grammar
description has been extended to also contain rules in the form

NT1 : NT2 {constraints} → 〈t|NT〉 {attributes} (4.13)

where the left-hand side consists of pairs of non-terminals, written “NT1 :

NT2”, with an optional condition statement. Upon evaluation, the production
evaluation system creates for these pair rules all possible pairings of concrete in-
stances of non-terminals. These rulesmatch if their condition statement evaluates
to true. Pair rules are always prioritized until no pair of non-terminals matches,
afterwards context free rules are processed.

Using these pair rule system, rules can be defined that match two neighbo-
ring elements to a HGROUP: elements are defined to be horizontally adjacent if the
bounding box of their union satisfies the constraint that the height of the union

4.2. INVERSE GENERATIVE MODELING OF ELECTRICAL WIRING IN
BUILDING INTERIORS 125

corresponds roughly to the height of an element, and the width of the union cor-
responds roughly to the sum of the widths plus a spacing. Additionally, rules are
defined that extend a HGROUP by matching the group with an element. A context
free rule that matches if the width of a HGROUP exceeds a specific threshold will
create an additional hzone, as is suggested from the horizontal arrangement of
elements.

Wire Routing Hypothesis

Awire routing corresponds to a set of possibly connected straight wire segments
beneath a wall surface, and is represented by a graphGW = (V,E), that contains
vertices v ∈ V and edges e ∈ E, where a vertex is associated to a position in
wall coordinates, and an edge connects two vertices v0 and v1. Vertices can also
be associated to an endpoint, such as sockets and switches, or a power root.

The graph of all possible wire routes is created from the list of terminal sym-
bols after grammar evaluation, by building the line arrangement formed by the
horizontal and vertical installation zones. Any edges that intersect forbidden zo-
nes, e.g. windows or doors, are removed. Terminals that aremarked as endpoints
are connected to the graph, distinguished by three different cases: terminals near
vertices are directly associated to this vertex, terminals near edges will split the
edge and introduce an additional vertex on the edge, any remaining terminals
will create a new vertex and connected with either a horizontal or vertical edge to
the edge or vertex of the graphwith the smallest distance. Finally, graphs that cor-
respond to adjacent walls are connected at neighboring nodes using zero length
edges.

The final hypothesis is extracted from this graph under the assumption that
the wiring was carried out minimizing material costs. The problem of finding a
hypothesis sub-graph GH ⊆ GW , where GH = (VH , EH) is a forest subject to

∀v ∈ V : v ∈ VH if v is endpoint (4.14)

with the cost function ∑
v0,v1 of e∈EH

d(v0, v1) (4.15)

with the penalty d being the euclidean distance.
This problem is also called theminimumSteiner tree problem in graphs, which

is of practical importance in several areas, e.g. chip design or shortest-length con-
nection of households to a power grid. This problem is also known to be NP-
complete, as shown by Hwang and Richards [88], even within an approximation
factor of ≈1.129 which was shown by Kaklamanis et al. [94]. For small graphs,
e.g. single or few-room data sets, this can be evaluated exhaustively to find the
global optimum, for larger data sets a faster, approximative algorithmmay be nee-
ded. Our current solution implements a local search algorithm that is similar to

126 CHAPTER 4. INVERSE GENERATIVE MODELING

(a) (b)

Figure 4.21: The single room test data set consists of a point cloudwith 11million
points (a), additionally to the panoramic image acquired by the scanner ((b) top),
a high resolution panorama was acquired ((b) bottom).

“A Fast Algorithm for Steiner Trees” from Kou et al. [100]; this algorithm subse-
quently grows the final graph by sorting endpoints by 3D euclidean distance and
subsequently connecting each endpoint to the graph.

Export and Visualization

For result visualization, the floor plan representation and the hypothesis graph
are converted to a 3Dmodel in X3D format [30], which can be visualized in a web
browser using x3dom [18].

Wiring Hypothesis Evaluation

After pre-processing, a floor plan representation in the proposed format was de-
rived, and ortho images for each wall (see Figure 4.22b). The endpoint detection
yielded the results seen in Figure 4.23a. The grammar evaluation provided the
hypothesis of installation zones and endpoint groupings, depicted by the yellow
rectangles in Figure 4.23b. Finally, the hypothesis extraction delivered the wire
hypothesis shown in Figure 4.23c.

The pipeline was evaluated on several data sets, in this section I show results
on a smaller single room data set, further examples can be seen in the D7.4 report
of the DURAARK project [54]. The input measurements acquired from this room
were a point cloud scan and panoramic images as can be seen in Figure 4.21.

The evaluation was carried out on a Core i7-4930K with 3.40GHz and 6 cores.
The ortho photo generation took 2.4s, the endpoint detection 575.2s, and the wire

4.2. INVERSE GENERATIVE MODELING OF ELECTRICAL WIRING IN
BUILDING INTERIORS 127

(a) (b)

Figure 4.22: (b) shows the results of the ortho photo projection for the panoramic
color sphere of the single room data set, which is shown as a rendering in (a).

(a) Endpoint detection
wall1 wall3 wall2 wall4 wall5 wall0

(b) Installation zones after grammar evaluation
wall1 wall3 wall2 wall4 wall5 wall0

(c) Final Hypothesis

Figure 4.23: The hypothesis extraction for the single room data set: Utilizing the
detected endpoints (a), The evaluation of the grammar yields the installation zo-
nes, their center lines depicted by the dashed red lines. Note that zones are also
generated for context sensitive information from vertically grouped endpoints,
e.g. as shown by the ellipse in the middle of wall2 in (b). The final hypothesis is
shown in (c).

128 CHAPTER 4. INVERSE GENERATIVE MODELING

Figure 4.24: The resulting hypothesis of electrical wiring, re-projected into 3D.

hypothesis (inclusive grammar evaluation) 0.44s. The comparatively long run-
time of the endpoint detection stems from the exhaustive sliding window eva-
luation of each wall. This could be further improved by using an interest point
detector that reduces the search space of endpoint candidates.

4.3 Summary

In this Chapter, I presented two main contributions of this thesis: the applica-
tion of rule-based modeling in the context of data completion for measured data.
Both methods utilize a generative description to reduce the search space for an
optimization step.

In Section 4.1, I describe the first method, a novel technique to reconstruct

4.3. SUMMARY 129

the two-dimensional structure of a building façade from an ortho photo, using a
predefined grammar that encodes the possible buildings. Inspired by syntactic
pattern recognition methodologies and compiler construction tools, the presen-
ted algorithm finds a parse tree given pixel-wise classifications of the relevant
terminal symbols (e.g. walls, windows or doors) and a textual representation of
the grammar rules. In Section 4.1, I describe a method to automatically convert
these parse trees into a generative 3D model using the shape grammar system
described in Section 3.3.

The following Section 4.2 describes a novelmethod in the context of indoor re-
construction: a first automatic pipeline to geometrically and semantically enrich
measured data acquired by indoor terrestrial laser scanning. The method utilizes
a two-dimensional shape grammar that encodes the technical standards for pla-
cement of electrical wiring. It produces a hypothesis of electrical wiring, given
a reconstructed room layout and the detected position of observable endpoints
such as sockets or switches, and a textual representation of the grammar rules.

Both approaches have the advantage that the domain knowledge is not har-
dcoded in the reconstruction or optimization algorithm, but is declaratively spe-
cified in a text file, which allows to replace or alter the domain knowledge and
thus makes the method broader applicable than an algorithm that is tailored to a
specific domain.

The following Chapter 5 showcases collaborative works that utilize the propo-
sed shape grammar system from Chapter 3 and the inverse generative modeling
approaches described in this chapter.

5Applications and Results

This chapter presented a selected list of applications that demonstrate the contri-
butions in the fields of forward and inverse generative modeling. These projects
were mostly collaborative works.

5.1 Generative Forward Modeling of Building Facades

The first iteration of the shape grammar system was built on a simplified version
that used only rectangular boxes as scope shapes. It was used to reconstruct the
university building of the computer science faculty of Graz University of Techno-
logy, Inffeldgasse 16, using a generative approach [81], as this building is built of
rectangular structures, see also Figure 5.1. The systems structure is similar to ot-
her rule-based systems for shape creation, the result is a list of rectangular scopes
with different attributes, e.g. wall, window or office space. A description on this
semantic level allows not only to visualize the final model, but to create visuali-
zations for various application contexts. For example, visualizing a model where
“empty” office spaces and connecting hallways are visualized as filled volumes
to show all walkable office space in a building, for more examples I refer to the
publication [81].

Figure 5.1: The university building was modeled using a box shape grammar
approach (modeled by Bernhard Hohmann).

131

132 CHAPTER 5. APPLICATIONS AND RESULTS

Figure 5.2: Different window styles using the shape grammar system based on
convex polyhedra (modeled by Rene Zmugg).

5.2. INVERSE GENERATIVE MODELING: THE CITYFIT PROJECT 133

Figure 5.3: Examples of façades modeled from photos. Each façade is modeled
using split rules presented in Section 3.5 (modeled by Bernhard Hohmann).

5.2 Inverse Generative Modeling: The CITYFIT project

Most of the methodologies developed in this thesis have been developed in the
course of the CITYFIT project. CITYFIT’s goalwas to synthesize a shape grammar
that, when evaluated, creates a clean, CAD-quality reconstruction of a building,
that fits given highly redundant input imagery (road side photographs) and dis-
tance measurements (a LIDAR scanner mounted on a vehicle).

Several buildings were modeled using an early version of the shape grammar
based on convex polyhedra. These buildings consist of a manually created set
of rules, utilizing the structural rules presented in Section 3.5. Examples of two
buildings are shown in Figure 5.3.

Based on the convex polyhedra grammar, parametric elements such as win-
dows or doors have also been analyzed using the generative fact labeling method, as
was published in [191], see also Figure 5.2.

Data Acquisition

Two data sets were acquired by Microsoft Photogrammetry for evaluating the re-
construction approach. A car with 9 mounted cameras acquired images with at
least 20% overlap on the side cameras. Additionally, two LIDAR scanners were
mounted that took measurements in a half circle, orthogonal to the moving di-
rection, to the left and the right of the car. See Figure 5.4 for an example of the
input data. All data was registered and fused by Microsoft Photogrammetry, the
result were all calibrated images from each camera, with an according time stamp,

134 CHAPTER 5. APPLICATIONS AND RESULTS

(a) (b)

(c)

Figure 5.4: The first part of the input data are photographs mounted on a car,
as shown in (a). The second part of the input data were range measurements,
acquired by two LIDAR devices that measure distance around a half-circle to the
left and right of the car. The LIDAR points have been projected into a registered
picture (b). The points are separated into the stream from the LIDAR scanner
mounted on the left (red) and the onemounted on the right (yellow) of the vehicle.
Using this approach, a color can be assigned to each LIDAR point (c).

as well as the external camera parameters. For each LIDAR scan, i.e. one line of
180 points with 1◦ spacing, a time stampwas also recorded, which allows to easily
associate relevant points to single pictures.

Reconstruction

The façade localization evaluated on the acquired data set resulted in the separa-
tion of 240 individual buildings. The data set consists of 27195 highly overlapping

5.3. INVERSE GENERATIVE MODELING IN THE DURAARK PROJECT 135

Figure 5.5: The resulted generative reconstruction from scan data consists of a
small part of the city of Graz with 240 recognized façades. Note that the gene-
rative description represents only the front façades, without streets or other sur-
roundings.

images which was acquired on a driving length of about 3,6km. Furthermore, 18
Million 3D points have been acquired using LIDAR. The pre-processing yielded
63,7 MByte ortho photo image data, and 10,4 MByte grid data, as well as 355,2
MByte raw detection probability data. The data set was processed with the par-
sing method presented in Section 4.1. After parsing, the converted generative
description, the GML source code, is 2,06 MByte in size, with an additional 400
KByte needed for the shape grammar library. After evaluation, the resulting ge-
ometry was exported to an 35 MByte OBJ file. The final 3D geometry consists of
104.387 convex polyhedra. See also Figure 5.5 for a rendering of the whole façade
geometry.

5.3 Inverse Generative Modeling in the DURAARK
Project

With the ever-increasing availability of cheap and accurate 3D acquisition devices,
like laser range scanners, more andmore legacy buildings are becoming digitized
as 3D point clouds. Additionally, point clouds are increasingly used to document
the change of a building state of over its lifetime and its deviation from the origi-
nal 3D BIMmodel. Overall, the building industry is moving into a practice which

136 CHAPTER 5. APPLICATIONS AND RESULTS

engages various digital representations and data-sets to describe a building, such
as: 3D BIM and point clouds, technical annotations in PDFs, legacy 2D drawings
and information stored in databases, possibly on the web, such as digital libraries
of standards or building parts, GIS and environmental data and the general web
based knowledge, which is represented in sources such as DBpedia1. Taking into
account these issues, as well as the ever-increasing importance of 3D data in archi-
tecture and construction, a series of demands become more and more pressing:

• the demand for digital and semantically rich 3D documentation of existing
building stock, which will e.g. allow querying and finding information for
decisions regarding policy making and renovation.

• the creation of links and relations between themany data-sets, which allows
for powerful searches, that combine geometric data (such as the amount and
orientation of windows) with descriptive metadata (such as technical data
describing acoustic properties) and environmental data (such as the volume
of nearby streets).

• the automatic comparison and potential update of data-sets, which allows
e.g. to query for changes in a building over the last years.

• and finally means to guarantee long term access to the building informa-
tion, in order to secure the investment and knowledge that stakeholders
aggregate in building data.

What is therefore needed in AEC are technologies and processes to capture
existing building stock, as well as sustainable long-term preservation systems tai-
lored to the domain of AEC. The small and medium-sized enterprises (SMEs)
of which the European building market is largely composed (across the EU-27,
there are currently around 3.1 million construction enterprises, 72.1% of which
are SMEs, generating a turnover of EUR 1.5 billion in the EU-27 in 2013 [57]) can
hardly initiate the necessary research efforts on their own, yet they would benefit
from such research. Several research initiatives focusing on 3D long-term preser-
vation in non- SME-dominated fields, like aerospace, defense, and the automo-
tive industry have been undertaken, see [28] for an overview. Though partially
adaptable, the solutions created in these projects cannot be directly applied to
architectural 3D data due to several reasons:

• The largely fragmented nature of the industry and the large spectrum of
involved sub-domains have led to heterogeneous and inconsistentmetadata
schemes and ontologies for the description of building elements and their
properties in highly enriched BIM models.

1http://wiki.dbpedia.org/

http://wiki.dbpedia.org/

5.3. INVERSE GENERATIVE MODELING IN THE DURAARK PROJECT 137

• The huge stock of legacy buildings, which is represented either by unstruc-
tured point clouds or by low- level legacy 3DCADmodels from the pre-BIM
era, requires elaboratedmethods of architecturallymeaningful semantic en-
richment, otherwise, targeted retrieval in the long-term archive is not pos-
sible.

• With the advent of digital means of planning in contemporary AEC/FM,
additional challenges surfaced. Among them, the lack of interoperability
between the large variety of domain-specific computer applications used
in building projects is a well-understood problem [61]. In an industry with
fast iterations of release cycles for CAD and BIM software packages, reliable
preservation policies have to cover hundreds of proprietary data formats.
These formats are quickly outdated, often not backwards compatible and
each has a complex underlying information model.

This particular problem has been identified in earlier work on digital preser-
vation of building information like PROBADO [20] and FACADE [158]. The use of
vendor-neutral, inter-operable, and self-documenting data models has also been
employed in long-term data protection (LDP) projects of other engineering dom-
ains such as Automotive and Aerospace [28].

Collaborators from web and computer science, knowledge management and
architecture initiated hence the European FP7 research project DURAARK (Dura-
ble Architectural Knowledge), in order to tackle the challenges which come along
with the new data driven practices in AEC [110]. For this, the project developed
methods and tools for a highly automated semantic enrichment and long-term
preservation of architectural knowledge and data. In this context, semantic enri-
chment means automated and semi-automated techniques to bridge the semantic
gap between the many representations, which are used in AEC. These are lacking
semantic information about the context of a structure or the model, which would
facilitate non-ambiguous interpretation. Lacking informationmay aswell include
detailedmaterial properties, vendor information, provenance data or information
about legal, infrastructural and environmental context. One focus of DURAARK
was the semantic enrichment of data with particular linked data. Given the con-
tinuous evolution of Web data and vocabularies, targeted methods for crawling
and archiving Web data in a scalable manner are considered an inherent part of
the semantic enrichment approaches developed by DURAARK [16]. The other
focus, which is the focus of this chapter, was set on the geometric enrichment of
architectural data, especially BIM and point clouds from laser scanning. The two
representations constitute opposite extremes along the axes of semantic richness
and geometric compactness. BIM models on the one hand include a compact
description of explicit geometry, that often conveys design intent and includes at-
tributions and classifications of elements like doors or walls. They also contain

138 CHAPTER 5. APPLICATIONS AND RESULTS

vast amounts of textual metadata, which facilitates interpreting, navigating and
browsing such data. They represent the built reality in a highly abstract manner.
Point clouds on the other hand are able to capture the present state of a building
in high precision and can convey information about its usage and spatial atmos-
phere. Point clouds are however computationally heavy and cannot be processed
easily by existing tools in AEC. In order to support many common use cases in
the building profession and the digital preservation of buildings, these two op-
posed forms of representation have to be mapped and transferred in order to al-
low a comprehensive overview of the referred physical artifact. This mapping of
information can be thought of as a movement along the semantic richness and
geometric compactness axis which form fundamental building blocks of the DU-
RAARK project: Geometric Enrichment describes the effort of adding geometric
details to existing "as-built" models or deriving explicit geometries from measu-
red data. Semantic Enrichment describes the contextualization and attribution of
the underlying models from various resources including linked data. Synchroni-
zing both representations by bridging the semantic and the geometric gap enables
seamless preservation of heterogeneous architectural data. Two standardized file
formats were instrumental for the techniques that were developed in Section 4.2:
The Industry Foundation Classes (IFC) [92] is an ISO standardized datamodel for
buildings based on the standard for the exchange of product model data (STEP)
[91], which is used across numerous engineering domains [154] and the E57 file
format to capture point cloud data structures [83]. For an in-depth look at the
suitability of IFC as an archival format, I refer the reader to [118].

In order to investigate the necessary technologies and processes and to de-
monstrate the benefits for the profession the DURAARK consortium developed
a web based prototype for a long-term preservation system — the DURAARK
workbench. It includes workflows for data producers in the preparation of their
3D models for the submission to a digital preservation system and the semantic
and geometric enrichment of data.

The DURAARKWorkbench

Theworkbench is a graphicalweb application that runs in a browser, either locally
on the stakeholder’s computer, or as aweb service in a private or public cloud. See
Figure 5.6 for a screenshot.

The functionality of the workbench is organized into two workflows: the Pre-
ingest and the Retrieval workflow. The pre-ingest workflow prepares the 3D data
files to be added to a digital preservation system. Its steps handle the selection
of input 3D data files, the extraction, manipulation and enrichment of metadata,
and the creation of files containing additional geometric information. After the
pre-ingest workflow is finished, all necessary data files, enriched metadata and
geometric enrichment files are available to create a data package. The package is

5.3. INVERSE GENERATIVE MODELING IN THE DURAARK PROJECT 139

Figure 5.6: The DURAARK workbench.

then either transferred to a long-term archival system like ExLibris Rosetta 2 or it
can be downloaded locally for further processing.

The retrieval workflow allows to use the workbench as a flexible search sy-
stem for architectural data. An internal knowledge graph contains a continuously
growing information pool of buildings and their surrounding context, e.g., geo-
graphic, historic or legal context. The pre-ingest workflow directly adds or upda-
tes data to the knowledge graph, e.g., by using the focused crawling component
to add information topics related to a building. Additionally, for each building
instance ingested into the knowledge graph, a background task is automatically
enriching themetadatawith additional information. Togetherwith properties ex-
tracted as part of the geometric enrichment, carried out in the pre-ingest step, a
stakeholder is given fine-grained control on the archive search, allowing a great
set of usage scenarios. Archive queries can reach from simple queries like ”list all
buildings which are located in Berlin“ to more sophisticated ones where multiple
properties are used, e.g., ”list all buildings which have the architectural style of
Art Deco, are designed by the architect Ludwig Hoffman and are located in Berlin“.
The search system uses SPARQL3 as query language. SPARQL queries are very
flexible and allow fine-grained control how to combine properties into a search
query.

The electrical wiring reconstruction method presented in Section 4.2 has been
integrated into the geometric enrichment pipeline of the DURAARK workbench.

2http://www.exlibrisgroup.com/category/DigitalHeritage/
3SPARQL: https://www.w3.org/TR/rdf-sparql-query/

http://www.exlibrisgroup.com/category/DigitalHeritage/
https://www.w3.org/TR/rdf-sparql-query/

140 CHAPTER 5. APPLICATIONS AND RESULTS

5.4 GANDIS: Forward Modeling of Generative Buildings

In this section I present results from the GANDIS project, which attempts to close
the gap between early design and construction-ready planning using a novel met-
hod: procedural building templates. It was a collaborative work together with a
group of architects from the company ORTLOS engineering.

An important drawback of the conventional design process is that some im-
plications of the initial design become apparent only after construction planning.
The energy footprint of a building, for instance, depends on the A/V ratio (sur-
face to volume), the glass proportion, the number of floors, but also of the wall
insulation standard. So the requirement was to create an interactive planning tool
that allows for computing characteristic key values from a set of prototypical pa-
rametric buildings. Even if the prototype buildings are only roughly similar to
the building to be planned, the tool allows judging the impact of changes in the
building on the energy footprint. This allows answering questions such as: How
compact should the building be, what happens if we create this overhang, and
how expensive is it to compensate energy loss by better insulation on that wall,
etc.

We consider parametric building templates to be useful for many applications
other than energy design. The examples created in this case study are simple,
but once the approach is clear, more targeted and elaborate building models can
be created using the same approach. The objective of this paper is to illustrate
the process of developing parametric building models, in the hope that others
can learn from it. We seek to provide an enabling technology for interactively
changeable complex procedural building templates.

In the beginning, we had to assess the variability of the buildings. Thus,
the process starts from a set of example buildings provided by architects, see Fi-
gure 5.7 for an example. These reference models provided a helpful guideline in
the discussion that led to the abstraction of the buildings - they span the design
space that is to be parameterized. To define this space unambiguously, however,
required many discussions, e.g., on the parameter minima and maxima, or to cla-
rify which special cases should be prevented to guarantee that the building crea-
ted remains valid. The next step was to develop first simple buildings, and then
to successively extend them to create more complex ones. This inductive process
is marked by continuous refactoring in order to find a set of re-usable parametric
sub-constructions (doors, windows, floor plan processing). So our experiencewas
that developing the first fewmodels took most of the time, while later the tool set
and thus, the design space, were powerful enough to create more elaborate mo-
dels faster.

In total, two parametric models have been developed for each of the four ba-
sic shapes, as shown in Figure 5.8 using the proposed shape modeling system,
as described in Chapter 3. The first three basic shapes, rectangular, L-shaped and

5.4. GANDIS: FORWARDMODELING OF GENERATIVE BUILDINGS 141

Figure 5.7: The design space of the “residential” buildings group was explored
by architects by creating static referencemodels with conventional modeling soft-
ware, Google SketchUp. These models served as guideline for further generative
abstraction. Models by ORTLOS engineering.

atrium, are intended to approximate themore accuratemodels that will be created
later in the design process. The fourth “shape” is called free-form and is intended
not as a stand-in for any specific building but rather as an example that the user
can manipulate in order to learn more about energy efficiency. The exact set of
parameters varies between the different models. Common to all the models is the
“number of floors” parameter; the rectangular buildings have length and width
parameters, while the other types require more parameters to define their shape.
Additionally, the residential buildingmodels allow a choice of three different roof
shapes. The Office series of templates was created from the Residential series me-
rely by replacing the façade decoration rule, see Figure 5.9 and Figure 5.10.

Extracting Measurements from Geometry

The main objective of the GANDIS project is to assess the energy efficiency of a
procedurally generated parametric building. In fact only a few key quantities are
required for the approximate energy efficiency calculation.

Some of them, such as the exterior area and the enclosed volume of the buil-
ding, can be directly calculated from the parameters. It is much easier to multiply
length, width and height of a box than to calculate the volume of a box-shaped
building from the volumetric CP model. The most interesting challenge was to
find out the exact amount of glass area on each of the façades of the building.

142 CHAPTER 5. APPLICATIONS AND RESULTS

(a) rectangular (b) L-shaped (c) atrium

(d) freeform residential (e) freeform office

Figure 5.8: The extracted parameterized design space consists of simple rectan-
gular, L-shaped or atrium base shapes, or more complex freeform residential and
freeform office configurations. The degrees of freedom that were implemented as
parameters for the generative description are shown in red.

(a) residential façade (b) office façade

Figure 5.9: The residential (left) office (right) façades share the same parametric
basic shape template, detail structure is applied using different façade partition
rules. The residential buildings allow a choice of different roof shapes.

5.5. FORWARDMODELING OF CONSTRUCTIVE ROOF GEOMETRY 143

Figure 5.10: Various instances of the parameterized residential freeform building.

The area occupied by windows depends on the particular grammar used to
define the façades. Different grammar rules behave differently when the wall
length changes; therefore, we want to calculate the window areas just when buil-
ding the wall geometry, as this is possible thenwith little extra effort. Themethod
of choice is to collect all “glass” terminals that were produced for each outer wall,
and to calculate the total area of CP faces that point in the query direction after
building evaluation.

5.5 Forward Modeling of Constructive Roof Geometry

Thework of Johannes Edelsbrunner et al. [52] utilizes the library on convex poly-
hedra in the context of generative building creation for virtual worlds. Due to the
complexity and vastness of suchworlds, manual creation is often very demanding
in resources. A generative approach can help to reduce these costs by allowing
to specify building by a higher level approach, a set of primitives, and perform
the geometric detail evaluation of the combined model to the system. The do-
main of roof generation is especially challenging, as existing fully automatic roof
generation algorithms might not yield desired results, and complete manual spe-
cification can get very tedious due to complex geometric configurations.

TheConstructive Roof Geometry system allows to quickly create a complex buil-
ding by combination of convex base parts; the roof for each part is generated auto-
matically. To correctly combine the parts, the correct situation from a discrete set
of trimming rules is applied to a combined model, which is also specified in the
abstract building model description. See Figure 5.11c for an example of a model
without trimming (Figure 5.11a) and with applied trimming rules (Figure 5.11b).
The resulting model can be further refined and detailed by using the standard

144 CHAPTER 5. APPLICATIONS AND RESULTS

(a) (b)

(c)

Figure 5.11: Constructive Roof Geometry addresses the problem that arises for
roof configurations when a building is described generatively using parametriza-
ble parts. (a) shows that a simple union can lead to unwanted protruding parts.
The method presented in [52] addresses this problem by introducing automa-
tic roof trimming for solid building primitives (b). Applying further refinement
using parametric rules yields a detailed result (c). Modeled by Johannes Edels-
brunner.

shape grammar system based on convex polyhedra.
The system proposes an abstract building model that is in which a compound

structure is composed of several solids and their trimming influence to each other.
Each solid is composed by several sides, with additional trimming information.
For a more extensive description of the proposed roof language I refer to [52],
especially the graph shown in Fig. 14 and its definition in Section 4: “Specification
of the Building”.

5.6 GMLCompositor: A User Interface for Generative
Forward Modeling

Wolfgang Thaller built a method for interactive visual editing of generativemo-
dels, based on the generative modeling language GML and an underlying data
flow representation named code graphs [187], [189]. A code graph is a hyper-graph
inwhich nodes contain values and hyper-edges -which connect an arbitrary num-
ber of input nodes to an arbitrary number of output nodes - correspond to functi-
ons or operations. The user interface is called GMLCompositor - the interface can
be seen in Figure 5.12. The system allows visual editing and construction of ge-
nerative shape representations using various types of shapes and respective mo-
deling operations. The modeling system based on convex polyhedra described in

5.6. GMLCOMPOSITOR: A USER INTERFACE FOR GENERATIVE FORWARD
MODELING 145

Figure 5.12: The GMLCompositor developed by Wolfgang Thaller et al. [187,
189] is a tool for direct interactive visual editing of generative models. It consists
of a 3D view, where the current evaluation result of the generative description can
be inspected (A), a toolbar that contains various modeling operations (B), visible
parts of the 3D model can be selected and are highlighted in red (C), depending
on the generating code context, interactive 3D widgets are displayed that allow
direct manipulation of modeling parameters (D). These parameters can also be
edited in a context dependent property box (E). The modeler supports interactive
modeling of the proposed system using shape grammar rules based on convex
polyhedra.

Chapter 3 is one of them.
The direct visual editing approach was evaluated on a case study, in which

parts of the Louvre Palace located in Paris were reconstructed [215]. The system
also allows linking of different model parts to have the same rule applied to each
member of a group of linked scopes. In a coarse-to-fine methodology, coarse out-
lines of buildings have beenmodeled based on digitized old floor plans; extruded
walls or structures are gradually refined using rule application, see Figure 5.13.

The system allows two create a arbitrarily oriented box like volumetric shape
as a starting point for modeling. These boxes were aligned with the coarse outli-
nes of buildings as a starting point. At any point in the modeling hierarchy, the
user may assign either void to the volumetric shape, which makes the shape in-
visible, or assign a fill material, which effectively renders the shape in the final
model.

The available refinement operations are:

• the interval split, which is similar to the operation described in Section 3.3
that partitions a volumetric shapes into smaller sub-volumes.

• the extrude operation, see also Section 3.3, which allows to extend a volu-
metric shape in a given direction.

146 CHAPTER 5. APPLICATIONS AND RESULTS

Figure 5.13: A building part, in this case a part of the outer east wing pavilion of
the Louvre Palace, is reconstructed by gradual refinement using split and extrude
operations.

• the diagonal splitdiagonally partitions a volumetric shape, which is assumed
to be of rectangular shape along one of its diagonals; there are 6 possible
cases.

• the repeat operation splits a volumetric shape into equally sized parts, the
parts are linked, which means that the same rule applies to them.

• the repeatABA operation splits a volumetric shape in an alternating sequence
of two differently sized parts A and B, e.g. for automatic distribution of
pillars and gaps.

• the merge operation merges several volumetric shapes into one shape.

• the link operation creates a group of object that are treated in the same way,
i.e. the same rule is applied to each object in the group.

• the specialize operation creates an exception rule for a linked group, i.e. the
group is partitioned into two disjoined link groups.

• the mirror operation mirrors the orientation inside a volumetric object by
changing its local coordinate system.

5.6. GMLCOMPOSITOR: A USER INTERFACE FOR GENERATIVE FORWARD
MODELING 147

Figure 5.14: Parts of the Louvre Palace have been reconstructed in a case study
presented in [215], using the proposed rule-based system based on convex po-
lyhedra. These images show an intermediate step, also highlighting the convex
partition of the resulting model (modeled by Martin Pszeida).

• the rotate operation rotates just the local coordinate system of a volumetric
shape, without changing the shape itself, i.e. the rotation effects ruleswhich
are applied afterwards.

In addition to the above low-level modeling operations, the system also in-
cludes a set of pre-modeled parametric assets, such as doors, windows, arches,
columns and other architectural elements which can be inserted into a volume-
tric shape. The distinction between the low-level modeling operations and the
parametric assets is to some degree arbitrary; both use a given volumetric shape
and yield a partition or parts for later use. Such parametric partitioning assets
can be very versatile and may be used in several different situations. For exam-
ple, a round hole operation can be applied subsequently to produce a window
with borders, or rotated to produce a round pillar.

Due to time constraints, the reconstruction was finished only partially. The
result was exported and rendered using Blender, which is shown in Figure 5.14.

148 CHAPTER 5. APPLICATIONS AND RESULTS

Figure 5.15: Generative modeled buildings have been used to populate a rural
scenario for a driving simulation. The generative approach allowed for automatic
creation of several levels of detail, which is a crucial performance improvement
for large outdoor scenes (scenario by Volker Settgast).

5.7 Generative Forward Modeling of Parametric Houses
for Driving Simulations

Using the aforementioned structuring, I implemented a simple procedural model
of a parametric house that was used in the context of environment creation for a
driving simulation. While not many parametric instances were used - to improve
performance by re-instancing - the generative approachwas used to create several
levels of detail for a building. A screenshot can be seen in Figure 5.15.

The building is structured in the following way: A starting shape is split into
floor slabs and floor spaces using a subdivide operation. Then the floor spaces are
split into wall and inner building space using a frame split operation. Each wall
is then subdivided along the wall axis, and split into tiles that correspond either
to windows or doors if the current floor is the first floor. The roof is created by
extruding the top floor and then applying a gable split operation. The dormers
are just smaller scaled variants of a building split with gabled roof, similar to the
structuring presented in [51]. Two buildings have been created that use the same
set of parametric window and door terminals.

5.8. SUMMARY 149

5.8 Summary

In this chapter, I reviewed some application scenarios in which the presented
methods for forward and inverse generative modeling have been applied. These
projects have mostly been collaborative work, and demonstrate the practical ap-
plication of the proposed shape grammar system, and demonstrate a scope of
application for the proposed inverse methods.

6Discussion

In this Chapter I reflect on the findings obtained with the development of the
proposed generative methods. It is divided in two parts. The first part discusses
the rule based generative modeling system using half spaces. The second part
reviews the presented inverse modeling approaches.

6.1 Shape Grammars on Convex Polyhedra

The proposed system improves the state-of-the-art by utilizing a more general
shape representation to create generative rules (Chapter 3). Geometric queries
were developedwith a focus to facilitate reusability (see Section 3.4), which allows
creatingmore general rules that can be applied to a broader family of shapes. The
system was designed with a focus on robustness and evaluation efficiency (see
Section 3.4) and was successfully applied in various projects and applications, as
was shown in Chapter 5.

The rule based system presented in Section 3.3 is essentially a context free
shape grammar. Thus, the evaluation corresponds to a hierarchy, a tree. The
root of the tree corresponds to the starting symbol, non-terminal symbols of the
grammar are tree nodes, and the grammars’ terminal symbols are the leaves of
the tree. Creating a rule based representation of a real world object, for instance
a façade, the symmetries present in the object are rule candidates. However, such
symmetries may not always correspond to a tree structure – which is a limitation
of context free grammars. An example can be observed in the façade shown in
Figure 6.1: the symmetries of a rectangular façade may be floors (vertical parti-
tioning) and similar columns (horizontal partitioning). Let’s assume we split the
building first into columns and then into floors, we need to replicate the floor split
for each column with a different non-terminal rule. Depending on the desired
model and underlying shape grammar system, this can be addressed by enfor-
cing constraints over several rules by using attributes, or adding special rules that
enforce the constraints directly, e.g. a “grid” split in the above example, which
partitions a scope into grid elements at once.

A similar difficulty is to define a general rule that influence geometry that is
generated in a lower part of the rule evaluation hierarchy - e.g. the creation of a

151

152 CHAPTER 6. DISCUSSION

(a) (b)

Figure 6.1: The operations of a grammar should match the inherent structure of
the desired generative model: using only horizontal and vertical splits yields an
ambiguous situation for the façade shown in (a). In this example, the façade is
split into three columns horizontally and into ground floor and above vertically
(a). The split parameters for the second split need to be replicated for each scope
after the first split. This needs to be addressed if the final model should contain
both constraints, e.g. if the ground floor height and column width should be
adjustable parameters.

ledge that goes horizontally along a façade, crossing windows or balconies. The
abstraction ledge suits into the floor partitioning part of a façade, as ledges often
visually display floor transitions and correspond to the same partition direction.
But, ledges also go around protruding elements or columns, which are usually
defined in a lower hierarchy than the floor split. The current solution to these
problems is propagating attributes to scopes that mark them for later processing,
and perform the ledge operation in a separate step after evaluation of the hierar-
chy.

Having a more general geometric representation, (the convex polyhedra sy-
stem presented in Section 3.2) and rules that automatically adapt to this shape has
advantages over shape grammar systems that utilize a set of basic shapes. These
systems need to duplicate each split or repeat rule for each basic shape. When
workingwithmore complex shapes, non-convex objects need to be expressed by a
union of convex parts, and this union may lead to dependencies on explicit shape
configurations; identification of parts via search directions may lead to ambigu-
ous situations in non-convex objects. Moreover, the convex partitioning is done
manually by the expert that creates the rules, because it is not yet clear how to
automatically find a convex partition that corresponds to the desired abstraction
hierarchy.

6.1. SHAPE GRAMMARS ON CONVEX POLYHEDRA 153

A

B

Figure 6.2: An example of geometric rounding artifacts that arise when con-
straints are present, such as adjacent polyhedra A (blue) and B (red): The encir-
cled vertex is shared from bothA andB, but the three involved bounding planes
might not exactly intersect in one vertex, due to limitations of numerical repre-
sentation.

Advantages and Limitations of Generative Half Space Construction

The decision to use a quantized plane-based representation was caused by the
fact that numerical representations in computers use a fixed size of bits. Inter-
mediate results need to be rounded which leads to problems, as was reviewed in
Section 2.6. Thus, by using quantized plane-based representation, the rounding
step is carried out when computing coefficients for a new plane in the system
(Section 3.4), special construction operations were presented for orthogonal and
bisector planes. By quantizing plane coefficients and using static filters we can
choose how to value the trade-off between evaluation speed andmodel resolution
(or precision) by varying the number of bits used for quantized plane representa-
tion. In this representation, the vertices of a convex polyhedra are then evaluated
robustly (exact) and efficiently.

While the presented construction operations are tailored to produce repre-
sentable planes, in some cases rounding is necessary. This can lead to micro-
fragments in the generated geometry, but still evaluates robustly. An example of
a situation that introduces rounding is the case of two adjacent polyhedra that
should share vertices. Such constraints result in situations where four or more
planes should exactly intersect in one vertex. See Figure 6.2 that demonstrates
the problem on a two-dimensional example.

These artifacts are not a problem for visualization and rendering, which was
the main initial design goal for the system. Nevertheless, the perturbations intro-
duced by the quantization should be removed when exporting geometry to other

154 CHAPTER 6. DISCUSSION

systems, and thus introduce an additional post-processing step.

6.2 Discussion on Inverse Generative Modeling

Inverse Generative Modeling derives a generative model from observations or
coarse descriptions. Within this thesis, I examined two inverse approaches that
leverage generative descriptions to express prior knowledge of a model domain –
architectural design elements of building façades and technical standards for the
placement of indoor electrical wirings. This prior knowledge is used to restrict
the solution search space.

The first approachutilizes a two-dimensional split grammar to parse the struc-
ture of façade ortho photos; the parse trees are converted to a generative model
that evaluates to a 3D model of the façade. The second approach utilizes a rule
based description of technical standards to create a hypothesis of electrical wiring
below walls, given 3D scans and photographs of indoor office buildings.

Façade Reconstruction

The presented reconstruction approach uses principles from compiler construc-
tion to parse the structure of a façade. Observations are given as results of pixel-
wise object classifiers, e.g. the probability of a pixel belonging to thewall, window
or door class. A grammar was developed that favors rules from classical architec-
tural design: mirror symmetries and repetitions. The proposed parsing algorithm
finds a hierarchical description of concrete application of these rules, the parse
tree that corresponds to the description with global lowest costs. The parsing al-
gorithm utilizes dynamic programming, which means the problem must satisfy
the optimal substructure property – which is satisfied for context free grammars.
An irregular rectangular grid was used to reduce the complexity of the search
results, and thus the computational effort. This grid groups areas of similar clas-
sifier results; grid lines are candidates for split lines of the grammar.

In Section 4.1, I presented a method to automatically translate the parse trees
into a generative model. This generative model utilizes the half space modeling
approach presented in Chapter 3 to construct a 3D model of the parsed façade,
which can then be used for visualization or further modeling. See Figure 5.5 for
an automatic reconstruction result for a part of the city of Graz.

While the parsing or optimization step is independent of a concrete rule set,
this rule set needs to be created by a domain expert. This gives more control to
specifying the intended domain knowledge, in contrast to a method that fully
automatically learns a model. The cost function was designed to prefer structural
symmetry recognition, such as repetition of windows or symmetric columns of
similar façade structure. A strong benefit of the proposed method is the ability to

6.2. DISCUSSION ON INVERSE GENERATIVE MODELING 155

parse opticalmeasurements to any given grammar –which allows to exchange the
prior knowledge, without the need to re-implement parsing and optimization.

Electrical Wiring Hypothesis

The second inverse modeling approach was designed to fit into a first fully auto-
matic pipeline that creates a hypothesis of electrical indoor wiring from terrestrial
laser scans of office rooms. It answers the question “Under the assumption that
the constructions in this building followed the given technical standards, what is
the most probable position of electrical wiring, given observable endpoints (soc-
kets and switches) and the room layout.”

The room layout was extracted from terrestrial laser scans. Moreover, co-
lor information was extracted from the scans to yield rectified pictures of walls;
Sockets and switches were detected on these pictures using computer vision ob-
ject detection methods. The wall segments of the floor plans as well as the de-
tections are transformed into start symbols for a non-context free attributed two-
dimensional grammar that encodes the technical standards prior. The evaluation
of this grammar yields the position of installation zones for the observed room
layout. These zones are connected to a graph that represents all possible wiring
positions. From this graph, a final hypothesis of electrical wiring for the observed
situation is extracted. The final layout connects all endpoints and minimizes total
wire length –which corresponds to the assumption that the buildingwas planned
cost-effectively by reducing the amount of needed copper.

In a discussion with domain experts, two points of special interest emerged.
First, it was noted that the intermediate result of all possible installation zones
was also of interest. It could be used for planning electrical installations for a re-
building project for example, and thus would be an interesting add-on in an AEC
planning tool. Second, it was noted that such a tool could also be valuable for
estimating the wire costs in the planning stage of a building, which is a tedious
counting and estimating task. While the final hypothesis generated by the propo-
sedmethodmay not match the real cable runs, the overall length of the generated
hypothesis is a good approximation of the needed amount.

The method depends currently on several assumptions, e.g. that the real in-
stallation always complies with technical standards, and that the total wiring
length is minimized which might not always be possible or the most feasible ap-
proach in practice. Such additional known constraints can nevertheless be easily
integrated in the system, by adding more root connection nodes to the graph be-
fore final hypothesis extraction.

7Conclusion
In this thesis, I presented contributions to the field of forward and inverse ge-
nerative modeling, with the main application to extract geometric and semantic
shape information from real-world measurements. In this chapter, I summarize
the findings, and give a brief outlook on future work. I conclude with some open
questions that surfaced while developing the methods presented in this thesis.

7.1 Contributions

I presented solutions utilizing generativemodeling in the context of building out-
door and indoor reconstruction. The main contributions are:

• A new generative forwardmodeling system, based on shape grammars, for
planar bounded objects that utilizes a novel shape representation – convex
polyhedra – for geometric queries. The system provides improved genera-
lizability of rules that allow adapting rules to a larger family of shapes. I
presented an analysis to achieve an implementation that balances between
evaluation speed and robustness. The systemwas applied and evaluated in
various applications for forward and inverse generative modeling.

• I presented a novel method to extract two-dimensional building structure,
using a shape grammar as façade prior. Themethod builds on the results of
a pixel-wise classifier that identifies terminal symbols, such as walls, win-
dows or doors. Inspired by compiler construction methods, the method
finds an optimal hierarchy of rule applications – the parse tree. This means
that the search space for finding façade structure is constrained by all pos-
sible words of the façade shape grammar prior. In addition, I presented a
method to automatically convert such parse trees into a generative forward
model that constructs the given façade. Such a generative representation
has several advantages in comparison to a static 3Dmodel: First of all, gene-
rative description is much smaller in file size than the geometry that results
from evaluation; Furthermore, parts of the generated model, such as win-
dow or door types can easily be replaced by replacing the according rules.
Due to the structural representation, it is even possible to exchange an ar-

157

158 CHAPTER 7. CONCLUSION

bitrary part of the hierarchy, such as symmetric parts. Structural elements
such as windows or doors are not static geometry, but parametric rules that
adapt to the space they are applied to.

• The third contribution is a system that creates a hypothesis of electrical wi-
ring in indoor situations, given a pre-processed terrestrial laser scan, and a
shape grammar that encodes the technical standards that apply to the buil-
ding – the placement of electrical installation zones. The hypothesis was
integrated into a first fully automatic pipeline that pre-processes the laser
scan to extract augmented floor plans first. Then, color information from
the laser scanner is projected on wall segments and observable endpoints
of electrical wiring, such as sockets or switches, are detected usingmethods
of computer vision. I presented a context-sensitive attribute grammar that
produces installation zones from specific arrangements of detected end-
points, and a procedure to extract a probable wiring configuration from the
graph that is created from the arrangement of all installation zones. While
the hypothesis may not be perfect and can only be really verified by actu-
ally opening up walls or by using special detection devices, the proposed
method helps by providing an initial layout that helps stakeholders to vi-
sualize how an installation would look if it adheres to technical standards.
Furthermore, the total wire length of the extracted final graph can be used
as a good estimate for the value of wiring inside walls of old buildings, or
to estimate wiring material costs for planning of new buildings.

7.2 Outlook and Future Work

In the following section I will give a brief outlook on improvements and future
developments of the proposed methods.

shape grammars on convex polyhedra : The representable objects are currently
constrained to planar surfaces due to the planar half space kernel. A more
general representation of arbitrary general half spaces R3 → R : f(x) ≤ 0,
not just those bounded by linear inequalities, are an interesting direction
of future research. The surface extraction step for mesh export described
in Section 3.4 is a post processing step for export after evaluation of a mo-
del. This step is needed as the internal geometric representation does not
directly represent adjacency information of neighboring polyhedra. There-
fore, an interesting area of research would be the integration of volumetric
mesh representations, e.g. a cell complex of convex cells, to represent the
context of volumetric shape configurations with adjacency.

façade reconstruction : A natural choice for future work is the extension of the
proposed approach from single façade parsing to parsing of complete buil-

7.2. OUTLOOK AND FUTURE WORK 159

dings. At this point it is not clear if a context-free grammar is suitable to
represent general building structure, and how to extend the presented two-
dimensional approach to 3D point clouds or similar representations. More-
over, an interesting direction of future research would be the extraction of
such grammars from examples using a machine learning approach, while
still being able to steer some high-level constraints that let the system cap-
ture the desired design intent. In the context for façade grammars as descri-
bed in this thesis, the question arises if such a method could also learn the
shape operations (symmetries) or if the application is limited to the learning
of parameters or weights for rule application of given grammars.

indoor wiring hypothesis : The next logical step for the presented approach in-
cludes the integration of manual, visual editing of intermediate steps of
the pipeline. A visual editor of grammar rules could greatly improve the
user experience for domain experts modifying the grammar. Another in-
teresting point of research is the integration of existing BIM data into the
reconstruction approach; the electrical installation zone grammar set could
be chosen automatically using the semantic relationships that are known
about a building, e.g. time of construction, country, etc.

160 CHAPTER 7. CONCLUSION

Open Questions

I conclude with a selection of the broader, general questions that arose in the pro-
cess of developing the proposed methods:

“What is a suitable vocabulary for general specification of design spaces”: A design
space is a family of objects, e.g. the variations of a producible product. Most works
utilize coding a generative representation of such a design space in an imperative
scripting language – whichmeans the control flow is explicitly specified. An inte-
resting direction for future research would be to look at methods from declarative
programming and see if it is possible to find a usable vocabulary that can repre-
sent such design spaces. My conjecture is that the constraints that restrict the de-
gree of freedom, the shape dependency and functional or other requirements, may
indeed lead to such vocabularies.

“Is there a general hierarchical high-level description for generative 3D shape mo-
dels” The term generativemodel is broad as it contains any generative algorithmic
description. It ranges from scripting languages to more constrained descriptions,
such as context-free grammars. The latter seems to be too constrained to capture
the desired degrees of freedom for a forward generative model – thus, the ques-
tion arises if there is a general, hierarchical structural high-level description that
is able to describe continuous and discrete variations in a model. The answer to
this question may also be related to the foregoing question about design spaces.

“What are better low level shape representations for generative models”: Using con-
vex polyhedra still has limitations, as non-convex shapes must be represented by
union of convex elements. In this context, looking for better shape representations
and corresponding suitable geometric queries to facilitate reusable, robust rules
is a preferred direction for future research. This is related to the persistent na-
ming problem from parametric CAD – how to name geometric entities and parts
robustly such that they can be identified, even if the underlying model or shape
changes.

8Appendix

8.1 Selected Publications

Ulrich Krispel, Christoph Schinko, and Torsten Ullrich. A Survey of Algorithmic
Shapes. Remote Sensing, 7(10):12763, 2015

Wolfgang Thaller, Ulrich Krispel, René Zmugg, Sven Havemann, and Dieter W.
Fellner. Shape Grammars on Convex Polyhedra. Computers & Graphics, 37:707–
717, 2013

HaykoRiemenschneider,UlrichKrispel,WolfgangThaller,MichaelDonoser, Sven
Havemann, Dieter W. Fellner, and Horst Bischof. Irregular Lattices for Complex
Shape Grammar Facade Parsing. In 2012 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1640–1647, 2012

Ulrich Krispel, Henrik Leander Evers, Martin Tamke, and Torsten Ullrich. Data
completion in building informationmanagement: electrical lines from range scans
and photographs. Visualization in Engineering, 5(1):4, March 2017

8.2 All Publications

All participated publications that have been written prior or in the course of this
thesis:

1. Torsten Ullrich, Volker Settgast, Ulrich Krispel, Christoph Fünfzig, and Die-
ter W. Fellner. Distance Calculation Between a Point and a Subdivision Sur-
face. In VMV, pages 161–170, 2007

2. TorstenUllrich, Ulrich Krispel, andDieterW. Fellner. Compilation of Proce-
duralModels. Proceeding of the 13th International Conference on 3DWeb Techno-
logy, 13:75–81, 2008

3. BernhardHohmann, Ulrich Krispel, SvenHavemann, andDieterW. Fellner.
CityFit: High-Quality Urban Reconstructions by Fitting ShapeGrammars to

161

162 CHAPTER 8. APPENDIX

Images and Derived Textured Point Clouds. Proceedings of the ISPRS Inter-
national Workshop 3D-ARCH, 3:61–68, 2009

4. Bernhard Hohmann, Sven Havemann, Ulrich Krispel, and Dieter W. Fell-
ner. A GML Shape Grammar for Semantically Enriched 3D Building Mo-
dels. Computers & Graphics, 34(4):322–334, 2010. Procedural Methods in
Computer Graphics; Illustrative Visualization

5. Ulrich Krispel, Sven Havemann, and Dieter W. Fellner. FaMoS – A Visual
Editor for Hierachical Volumetric Modeling. In Tagungsband 05. Kongress
Multimediatechnik Wismar, pages 1–6, 2010

6. Wolfgang Thaller, Ulrich Krispel, Sven Havemann, Ivan Redi, Andrea Redi,
and Dieter Fellner. Developing Parametric Building Models - the GANDIS
Use Case. In Fabio Remondino and Sabry El-Hakim, editors, Proceedings of
the 4th ISPRS International Workshop 3D-ARCH 2011. ISPRS, 2011

7. Hayko Riemenschneider, Ulrich Krispel, Wolfgang Thaller, Michael Dono-
ser, SvenHavemann, DieterW. Fellner, andHorst Bischof. Irregular Lattices
for Complex Shape Grammar Facade Parsing. In 2012 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1640–1647, 2012

8. René Berndt, Christoph Schinko, Ulrich Krispel, Volker Settgast, Sven Ha-
vemann, Eva Eggeling, and Dieter W. Fellner. Ring’s Anatomy – Parametric
Design of Wedding Rings. In CONTENT 2012, pages 72–78. Xpert Publis-
hing Services, Wilmington, USA, 2012

9. W. Thaller, U. Krispel, S. Havemann, and D. Fellner. Implicit Nested Repe-
tition in Dataflow for Procedural Modeling. Proceedings of the International
Conference on Computational Logics, Algebras, Programming, Tools, and Bench-
marking (Computation Tools), 3:45–50, 2012

10. René Zmugg, Ulrich Krispel, Wolfgang Thaller, Sven Havemann, Martin
Pszeida, and DieterW. Fellner. A NewApproach for Interactive Procedural
Modelling in Cultural Heritage. In Proceedings of the 40th Conference of Com-
puter Applications and Quantitative Methods in Archaeology, 2012. to appear

11. WolfgangThaller, RenéZmugg,UlrichKrispel,Martin Posch, SvenHavemann,
and W. Fellner Dieter. Creating Procedural Window Building Blocks using
the Generative Fact Labeling Method. Proceedings of the ISPRS International
Workshop 3D-ARCH, 5:235–242, 2013

12. Wolfgang Thaller, Ulrich Krispel, René Zmugg, Sven Havemann, and Die-
ter W. Fellner. Shape Grammars on Convex Polyhedra. Computers & Gra-
phics, 37:707–717, 2013

8.2. ALL PUBLICATIONS 163

13. RenéZmugg,WolfgangThaller, UlrichKrispel, Johannes Edelsbrunner, Sven
Havemann, and Dieter W. Fellner. Deformation-Aware Split Grammars for
Architectural Models. Proceedings of the International Conference on Cyberwor-
lds, 11:4–11, 2013

14. RenéZmugg,WolfgangThaller, UlrichKrispel, Johannes Edelsbrunner, Sven
Havemann, andDieterW. Fellner. ProceduralArchitecture usingDeformation-
Aware Split Grammars. The Visual Computer, 12:1–11, 2013

15. Johannes Edelsbrunner, Ulrich Krispel, SvenHavemann, Alexei Sourin, and
Dieter W. Fellner. Constructive Roof Geometry. Proceedings of the Internati-
onal Conference on Cyberworlds, 12:63–70, 2014

16. Ulrich Krispel, Christoph Schinko, and Torsten Ullrich. The Rules Behind
– Tutorial on Generative Modeling. Proceedings of Symposium on Geometry
Processing / Graduate School, 12:21–249, 2014

17. Ulrich Krispel, Torsten Ullrich, and Dieter W. Fellner. Fast and Exact Plane-
based Representation for PolygonalMeshes. In Katherine Blashki and Ying-
cai Xiao, editors, Proceedings of the 8th International Conference on Computer
Graphics, Visualization, Computer Vision and Image Processing 2014,, Lisbon,
Portugal, 2014. International Association for Development of the Informa-
tion Society, IADIS Press

18. UlrichKrispel, Henrik Leander Evers,Martin Tamke, Robert Viehauser, and
Dieter W. Fellner. Automatic Texture and Orthophoto Generation from Re-
gistered Panoramic Views. ISPRS - International Archives of the Photogramme-
try, Remote Sensing and Spatial Information Sciences, XL-5/W4:131–137, 2015

19. Christoph Schinko, Ulrich Krispel, Torsten Ullrich, and Dieter W. Fellner.
Built by Algorithms - State of the Art Report on Procedural Modeling. In
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., volume XL-5/W4, pages
469–479. International Society for Photogrammetry and Remote Sensing,
2015

20. Ulrich Krispel, Christoph Schinko, and Torsten Ullrich. A Survey of Algo-
rithmic Shapes. Remote Sensing, 7(10):12763, 2015

21. Ulrich Krispel, Henrik Leander Evers, Martin Tamke, and Torsten Ullrich.
An Automatic Hypothesis of Electrical Lines from Range Scans and Photo-
graphs. In Nobuyoshi Yabuki and Koji Makanae, editors, Proceedings of the
16th International Conference on Computing in Civil and Building Engineering,
pages 815–822, July 2016

164 CHAPTER 8. APPENDIX

22. Ulrich Krispel, Henrik Leander Evers, Martin Tamke, and Torsten Ullrich.
Data completion in building information management: electrical lines from
range scans and photographs. Visualization in Engineering, 5(1):4, March
2017

8.3 Parsing Example

Example Grammar

This is an example grammar for general buildings up to 7 floors with symmetric
columns of similar window splits and a mirrored column structures around a
center structure with an optional cellar windows in the ground floor and a door
in the center structure.

1 S ::= sized(WALL,0,0,200,9999) | F | sized(WALL,0,0,200,9999)
2 F ::= F(1)
3 F ::= F(2)
4 F ::= F(3)
5 F ::= F(4)
6 F ::= F(5)
7 F ::= F(6)
8 F ::= F(7)
9
10
11 F(n) ::= F1(n,0)
12 F(n) ::= F1(n,1)
13
14 F1(n,cellar) ::= CENTERREGULAR(n,cellar)
15 F1(n,cellar) ::= (REGULAR(WINDOW_COLUMN(n) - WINDOW_ROW(1,cellar)) |

WALL) $ CENTERREGULAR(n,cellar)
16
17
18 REGULAR(x) ::= x
19 REGULAR(x) ::= halt(x, WALL)
20
21 CENTERREGULAR(n,cellar) ::= CENTERREGULAR(n,1,cellar)
22 CENTERREGULAR(n,cellar) ::= CENTERREGULAR(n,2,cellar)
23 CENTERREGULAR(n,cellar) ::= CENTERREGULAR(n,3,cellar)
24 CENTERREGULAR(n,cellar) ::= CENTERREGULAR(n,4,cellar)
25 CENTERREGULAR(n,cellar) ::= CENTERREGULAR(n,5,cellar)
26
27
28 CENTERREGULAR(n, 1, cellar) ::= WINDOW_COLUMN(n) - GROUNDFLOOR(1,cellar)
29 CENTERREGULAR(n,m >= 2, cellar) ::= halt(WINDOW_COLUMN(n), WALL, 2*m -

1) - GROUNDFLOOR(m,cellar)
30
31 GROUNDFLOOR(m, cellar) ::= WINDOW_ROW(m, cellar)
32 GROUNDFLOOR(m >= 3, cellar) ::= WINDOW_ROW((m-1) / 2, cellar) $ DOORTILE
33 GROUNDFLOOR(m < 3, cellar) ::= DOORTILE

8.3. PARSING EXAMPLE 165

34
35
36 DOORTILE ::= WALL $ DOOR2
37 DOORTILE {0, 0.7} ::= WALL | DOOR2 | WALL | (WIN - WALL) | WALL
38 DOORTILE {0, 0.7} ::= WALL | (WIN - WALL) | WALL | DOOR2 | WALL
39
40 DOOR2 ::= DOOR
41 DOOR2 ::= WALL - DOOR
42
43 WINDOW_ROW(1, 0) ::= WIN - WALL
44 WINDOW_ROW(1, 1) ::= WIN - WALL - CELLARWIN
45 WINDOW_ROW(m > 1, cellar) ::= halt(WINDOW_ROW(1,cellar), WALL, 2*m - 1)
46
47 WINDOW_COLUMN(0) ::= WALL
48 WINDOW_COLUMN(n > 0) ::= WALL - WIN - WINDOW_COLUMN(n-1)
49
50 WALL ::= t0
51 WIN ::= t1
52 CELLARWIN ::= sized(t1, 6,6,20,30)
53 DOOR ::= t3

Example Parse Tree

Automatically generated GML code of the parse tree of the façade shown in Fi-
gure 4.5:

1 <?xml version="1.0" encoding="ISO-8859-1"?>
2 <Library name="facade_0_0053403_0053679_grid">
3 <item id="main" exec="1">usereg
4 Userlib /ShapeGrammar known not {
5 Userlib begin "Shape-Grammar-CP-05.xgml" dictfromxgml edef end
6 ShapeGrammar.Tools.init
7 } if
8 Userlib begin "Shape-Grammar-CP-05.xgml" dictfromxgml edef end
9

10 ShapeGrammar.Tools.init
11
12 dict begin
13
14 % reset terminal assignment
15 [/t0 /t1 /t2 /t3 /t4 /t5 /t101 /t102 /t103 /t201 /t202 /t203] { { 4

set-material F } def } forall
16
17 % assign specific parametric rules to terminals
18 /t0 { F } def
19 /t1 { 3 0 0.05 0.03 AA.window.rect } def
20 /t2 { -0.03 -0.4 0.05 0 3 0.2 0.05 8 41 41 12 AA.door.rect-g } def
21
22 /t101 { 3 0 0.05 0.03 AA.window.rect } def
23 /t102 { 9 2 0 0.05 0.03 AA.window.arched } def

166 CHAPTER 8. APPENDIX

24 /t103 { -0.03 -0.2 0.0 0 10 4 0.6 0.01 0.03 8 8 41 46 AA.door.arched
-g } def

25 /t201 { -0.03 -0.4 0.05 0 3 0.2 0.05 8 41 41 12 AA.door.rect-g } def
26 /t202 { -0.03 -0.4 0.05 0 10 2 1.0 0.2 0.03 8 3 41 12 AA.door.arched-g }

def
27 /t203 { -0.03 -1.0 0.0 0 10 0 0.6 0.01 0.03 8 8 41 2 AA.door.arched-

g } def
28
29 facade_0_0053403_0053679_grid.construct
30 end
31 (11.5,-30,12.95) (0,-1,0) (0,0,1) (1,0,0) !d !c !b !a :a dup :b sub :c

opengl-camera </item>
32 <item id="construct" exec="1">
33 % code generated from parse tree
34 usereg (0,0,0) (23,1,25.9) 3 scope-box
35 [-35 -425] CPXN split-interval
36 [-386 -39] CPXN split-interval
37 t0
38 [-101 -185 -101] mirror-h 2 {
39 [-38 -63] CPXN split-interval
40 [-28 -35] CPXN split-interval
41 -1 CPXN subdivide 1 {
42 [-7 -28] CPXN split-interval
43 [-99 -419] CPZ split-interval
44 [-192 -227] CPZ split-interval
45 [-48 -179] CPZ split-interval
46 t0
47 t1
48 [-114 -78] CPZ split-interval
49 [-47 -31] CPZ split-interval
50 t0
51 t1
52 [-36 -78] CPZ split-interval
53 [-47 -31] CPZ split-interval
54 t0
55 t1
56 t0
57 [-58 -41] CPZ split-interval
58 t1
59 t0
60 t0
61 } repeat
62 [-99 -419] CPZ split-interval
63 [-192 -227] CPZ split-interval
64 [-48 -179] CPZ split-interval
65 t0
66 t1
67 [-114 -78] CPZ split-interval
68 [-47 -31] CPZ split-interval
69 t0
70 t1

8.3. PARSING EXAMPLE 167

71 [-36 -78] CPZ split-interval
72 [-47 -31] CPZ split-interval
73 t0
74 t1
75 t0
76 [-58 -41] CPZ split-interval
77 t1
78 t0
79 t0
80 } repeat
81 [-99 -419] CPZ split-interval
82 [-30 -155] CPXN split-interval
83 -3 CPXN subdivide 3 {
84 [-21 -30] CPXN split-interval
85 [-192 -227] CPZ split-interval
86 [-48 -179] CPZ split-interval
87 t0
88 t1
89 [-114 -78] CPZ split-interval
90 [-47 -31] CPZ split-interval
91 t0
92 t1
93 [-36 -78] CPZ split-interval
94 [-55 -23] CPZ split-interval
95 t0
96 t1
97 t0
98 t0
99 } repeat

100 [-192 -227] CPZ split-interval
101 [-48 -179] CPZ split-interval
102 t0
103 t1
104 [-114 -78] CPZ split-interval
105 [-47 -31] CPZ split-interval
106 t0
107 t1
108 [-36 -78] CPZ split-interval
109 [-55 -23] CPZ split-interval
110 t0
111 t1
112 t0
113 [-30 -119 -30] mirror-h 2 {
114 [-58 -41] CPZ split-interval
115 t1
116 t0
117 } repeat
118 [-38 -47 -38] mirror-h 2 {
119 t0
120 } repeat
121 t3

168 CHAPTER 8. APPENDIX

122 t0
123 </item>
124 </Library>

8.4 Example Grammar for Electrical Installation Zones

Example Grammar for installation zone reconstruction based on the technical
standard DIN18015 [44]. Each rule may specify a condition; the right hand side
(rhs) of a rule emits one or more terminal or non-terminal labels with attribute
specifications. Non context-free rules are specified by "NT:NT", BB corresponds
to a bounding box operator.

1 {
2 "WALL": [{
3 "rhs": [{
4 "label": "vzone",
5 "attributes": {
6 "pos": "left+150",
7 "wallid": "id"
8 }
9 },

10 {
11 "label": "vzone",
12 "attributes": {
13 "pos": "left+width-150",
14 "wallid": "id"
15 }
16 },
17 {
18 "label": "hzone",
19 "attributes": {
20 "pos": "top+150",
21 "wallid": "id"
22 }
23 },
24 {
25 "label": "hzone",
26 "attributes": {
27 "pos": "top+height-150",
28 "wallid": "id"
29 }
30 },
31 {
32 "label": "wall",
33 "attributes": {
34 "zone_width": "200"
35 }
36 }
37]

8.4. EXAMPLE GRAMMAR FOR ELECTRICAL INSTALLATION ZONES 169

38 }],
39
40 "DOOR": [{
41 "rhs": [{
42 "label": "vzone",
43 "attributes": {
44 "pos": "left-150"
45 }
46 },
47 {
48 "label": "vzone",
49 "attributes": {
50 "pos": "left+width+150"
51 }
52 },
53 {
54 "label": "door"
55 }
56]
57 }],
58
59 "WINDOW": [{
60 "rhs": [{
61 "label": "vzone",
62 "attributes": {
63 "pos": "left-150"
64 }
65 },
66 {
67 "label": "vzone",
68 "attributes": {
69 "pos": "left+width+150"
70 }
71 },
72 {
73 "label": "window"
74 }
75]
76 }],
77
78 "SOCKET": [{
79 "rhs": [{
80 "label": "socket",
81 "attributes": {
82 "endpoint": "true"
83 }
84 }]
85 }],
86
87 "SWITCH": [{
88 "rhs": [{

170 CHAPTER 8. APPENDIX

89 "label": "switch",
90 "attributes": {
91 "endpoint": "true"
92 }
93 }]
94 }],
95
96 "ROOT": [{
97 "rhs": [{
98 "label": "root",
99 "attributes": {

100 "endpoint": "true",
101 "root": "true"
102 }
103 }]
104 }],
105
106 "VGROUP": [{
107 "condition": "height > 350",
108 "rhs": [{
109 "label": "vzone",
110 "attributes": {
111 "pos": "left+width/2"
112 }
113 },
114 {
115 "label": "vgroup"
116 }
117]
118 },
119 {
120 "rhs": [{
121 "label": "vgroup"
122 }]
123 }
124],
125
126
127 "SWITCH:SWITCH": [{
128 "vars": {
129 "BBA": "BB(A)",
130 "BBB": "BB(B)",
131 "group": "BB(A).insertBB(BBB)"
132 },
133 "condition": "(DIFF(group.width(),BBA.width())<5)&&
134 (DIFF(group.width(),BBB.width())<5) &&
135 (group.height() < (BBA.height()+BBB.height()+50))&&
136 (A.wallid==B.wallid)",
137 "rhs": [{
138 "label": "VGROUP",
139 "attributes": {

8.4. EXAMPLE GRAMMAR FOR ELECTRICAL INSTALLATION ZONES 171

140 "left": "group.left()",
141 "top": "group.top()",
142 "width": "group.width()",
143 "height": "group.height()",
144 "wallid": "A.wallid"
145 }
146 },
147 {
148 "label": "switch",
149 "attributes": {
150 "left": "A.left",
151 "top": "A.top",
152 "width": "A.width",
153 "height": "A.height",
154 "wallid": "A.wallid",
155 "endpoint": "true"
156 }
157 },
158 {
159 "label": "switch",
160 "attributes": {
161 "left": "B.left",
162 "top": "B.top",
163 "width": "B.width",
164 "height": "B.height",
165 "wallid": "B.wallid",
166 "endpoint": "true"
167 }
168 }
169]
170 }],
171
172 "SOCKET:SOCKET": [{
173 "vars": {
174 "BBA": "BB(A)",
175 "BBB": "BB(B)",
176 "group": "BB(A).insertBB(BBB)"
177 },
178 "condition": "(DIFF(group.width(),BBA.width())<5)&&
179 (DIFF(group.width(),BBB.width())<5) &&
180 (group.height() < (BBA.height()+BBB.height()+50))&&
181 (A.wallid==B.wallid)",
182 "rhs": [{
183 "label": "VGROUP",
184 "attributes": {
185 "left": "group.left()",
186 "top": "group.top()",
187 "width": "group.width()",
188 "height": "group.height()",
189 "wallid": "A.wallid"
190 }

172 CHAPTER 8. APPENDIX

191 },
192 {
193 "label": "socket",
194 "attributes": {
195 "left": "A.left",
196 "top": "A.top",
197 "width": "A.width",
198 "height": "A.height",
199 "wallid": "A.wallid",
200 "endpoint": "true"
201 }
202 },
203 {
204 "label": "socket",
205 "attributes": {
206 "left": "B.left",
207 "top": "B.top",
208 "width": "B.width",
209 "height": "B.height",
210 "wallid": "B.wallid",
211 "endpoint": "true"
212 }
213 }
214]
215 }],
216
217 "VGROUP:SWITCH": [{
218 "vars": {
219 "BBA": "BB(A)",
220 "BBB": "BB(B)",
221 "group": "BB(A).insertBB(BBB)"
222 },
223 "condition": "(DIFF(group.width(),BBA.width())<5)&&
224 (DIFF(group.width(),BBB.width())<5) &&
225 (group.height() < (BBA.height()+BBB.height()+50))&&
226 (A.wallid==B.wallid)",
227 "rhs": [{
228 "label": "VGROUP",
229 "attributes": {
230 "left": "group.left()",
231 "top": "group.top()",
232 "width": "group.width()",
233 "height": "group.height()",
234 "wallid": "A.wallid"
235 }
236 },
237 {
238 "label": "switch",
239 "attributes": {
240 "left": "B.left",
241 "top": "B.top",

8.4. EXAMPLE GRAMMAR FOR ELECTRICAL INSTALLATION ZONES 173

242 "width": "B.width",
243 "height": "B.height",
244 "wallid": "B.wallid",
245 "endpoint": "true"
246 }
247 }
248]
249 }],
250
251 "VGROUP:SOCKET": [{
252 "vars": {
253 "BBA": "BB(A)",
254 "BBB": "BB(B)",
255 "group": "BB(A).insertBB(BBB)"
256 },
257 "condition": "(DIFF(group.width(),BBA.width())<5)&&
258 (DIFF(group.width(),BBB.width())<5) &&
259 (group.height() < (BBA.height()+BBB.height()+50))&&
260 (A.wallid==B.wallid)",
261 "rhs": [{
262 "label": "VGROUP",
263 "attributes": {
264 "left": "group.left()",
265 "top": "group.top()",
266 "width": "group.width()",
267 "height": "group.height()",
268 "wallid": "A.wallid"
269 }
270 },
271 {
272 "label": "socket",
273 "attributes": {
274 "left": "B.left",
275 "top": "B.top",
276 "width": "B.width",
277 "height": "B.height",
278 "wallid": "B.wallid",
279 "endpoint": "true"
280 }
281 }
282]
283 }],
284
285 "VGROUP:VGROUP": [{
286 "vars": {
287 "BBA": "BB(A)",
288 "BBB": "BB(B)",
289 "group": "BB(A).insertBB(BBB)"
290 },
291 "condition": "(DIFF(group.width(),BBA.width())<5)&&
292 (DIFF(group.width(),BBB.width())<5) &&

174 CHAPTER 8. APPENDIX

293 (group.height() < (BBA.height()+BBB.height()+50))&&
294 (A.wallid==B.wallid)",
295 "rhs": [{
296 "label": "VGROUP",
297 "attributes": {
298 "left": "group.left()",
299 "top": "group.top()",
300 "width": "group.width()",
301 "height": "group.height()",
302 "wallid": "A.wallid"
303 }
304 }]
305 }]
306
307 }

Bibliography

[1] Behzad Abbasnejad and Hashem Izadi Moud. BIM and Basic Challenges
Associated with its Definitions, Interpretations and Expectations. Interna-
tional Journal of Engineering Research and Applications, 3, 2013.

[2] Sepehr Abrishami, Jack Steven Goulding, Farzad Pour Rahimian, and Ab-
dulkadir Ganah. Integration of BIM and Generative Design to exploit AEC
Conceptual Design Innovation. ITcon Special Issue BIM Cloud-Based Techno-
logy in the AEC Sector: Present Status and Future Trends, 19:350–359, 2013.

[3] Pankaj K. Agarwal and Micha Sharir. Arrangements and Their Applicati-
ons. In Handbook of Computational Geometry, pages 49–119. Elsevier Science
Publishers B.V. North-Holland, 1998.

[4] Oswin Aichholzer and Franz Aurenhammer. Straight Skeletons for Gene-
ral Polygonal Figures in the Plane. In Jin-Yi Cai and ChakKuen Wong, edi-
tors, Computing and Combinatorics, volume 1090 of Lecture Notes in Computer
Science, pages 117–126. Springer Berlin Heidelberg, 1996.

[5] Tomas Akenine-Möller, Eric Haines, and Naty Hoffman. Real-Time Rende-
ring 3rd Edition. A. K. Peters, Ltd., Natick, MA, USA, 2008.

[6] AleksandrDanilovichAleksandrov. Convex Polyhedra. Number XII in Sprin-
ger Monographs in Mathematics. Springer Berlin Heidelberg, 2005.

[7] Daniel G. Aliaga, İlke Demir, Bedrich Benes, and Michael Wand. Inverse
ProceduralModeling of 3DModels for VirtualWorlds. InACMSIGGRAPH
2016 Courses, SIGGRAPH ’16, pages 16:1–16:316, New York, NY, USA, 2016.
ACM.

[8] Eric Andres, Raj Acharya, and Claudio Sibata. Discrete Analytical Hyper-
planes. Graphical Models and Image Processing, 59(5):302–309, 1997.

[9] Marios C. Angelides and Harry Agius. Handbook of Digital Games. John
Wiley & Sons, 2014.

175

176 BIBLIOGRAPHY

[10] Tilo Arens, Frank Hettlich, Christian Karpfinger, Ulrich Kockelkorn, Klaus
Lichtenegger, and Hellmuth Stachel. Mathematik. Spektrum Akademischer
Verlag, 1st edition, February 2008.

[11] Marco Attene. Direct Repair of Self-intersecting Meshes. Graphical Models,
76(6):658–668, 2014.

[12] Phillipa Avery, Julian Togelius, Elvis Alistar, and Robert Pieter van Leeu-
wen. Computational Intelligence and Tower Defence Games. Proceedings of
IEEE Congress on Evolutionary Computation (CEC), 13:1084–1091, 2011.

[13] C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. The Quick-
hull Algorithm for Convex Hulls. ACM Trans. Math. Softw., 22(4):469–483,
December 1996.

[14] Michael F. Barnsley. Fractals Everywhere. Academic Press, Cambridge, Mas-
sachusetts, 2nd edition, 1993.

[15] Bruce G. Baumgart. Winged Edge Polyhedron Representation. Technical
Report CS-320, Computer Science Department, School of Humanities and
Sciences, Stanford University, 1972.

[16] Jakob Beetz, Ina Blümel, Stefan Dietze, B. Fetahui, Ujwal Gadiraju, Martin
Hecher, Thomas Krijnen, Michelle Lindlar, Martin Tamke, Raoul Wessel,
and R. Yu. Lecture Notes in Computer Science, Edited Volume Sander Münster,
chapter DURAARK: Enrichment and Preservation of Architectural Know-
ledge. Springer LNCS, 2015.

[17] Johannes Behr, Patrick Dähne, Yvonne Jung, and SabineWebel. Beyond the
Web Browser – X3D and Immersive VR. IEEE Virtual Reality Tutorial and
Workshop Proceedings, 28:5–9, 2007.

[18] Johannes Behr, Peter Eschler, Yvonne Jung, and Michael Zöllner. X3DOM:
A DOM-based HTML5/X3D Integration Model. In Proceedings of the 14th

International Conference on 3D Web Technology, Web3D ’09, pages 127–135,
New York, NY, USA, 2009. ACM.

[19] Heinzgerd Bendels, Dieter W. Fellner, and Sven Havemann. Modellierung
der Grundlagen — Erweiterbare Datenstrukturen zur Modellierung und
Visualisierung polygonaler Welten. InModeling – Virtual Worlds – Distribu-
ted Graphics, pages 149–158. infix, 1995.

[20] René Berndt, Ina Blümel, Michael Clausen, David Damm, Jürgen Diet, Die-
ter W. Fellner, Christian Fremerey, Reinhard Klein, Maximilian Scherer, To-
bias Schreck, Irina Sens, Verena Thomas, and RaoulWessel. The PROBADO

BIBLIOGRAPHY 177

Project – Approach and Lessons Learned in Building a Digital Library Sy-
stem for Heterogeneous Non-textual Documents. Proceedings of the 14th

European Conference on Research and Advanced Technology for Digital Libraries
(ECDL), Springer, 6273:376–383, 2010.

[21] René Berndt, Dieter W. Fellner, and Sven Havemann. Generative 3D Mo-
dels: a Key to More Information within less Bandwidth at Higher Quality.
Proceeding of the 10th International Conference on 3DWeb Technology, 1:111–121,
2005.

[22] René Berndt, Christoph Schinko, Ulrich Krispel, Volker Settgast, Sven Ha-
vemann, Eva Eggeling, and DieterW. Fellner. Ring’s Anatomy – Parametric
Design of Wedding Rings. In CONTENT 2012, pages 72–78. Xpert Publis-
hing Services, Wilmington, USA, 2012.

[23] Gilbert Bernstein and Don Fussell. Fast, Exact, Linear Booleans. In Pro-
ceedings of the Symposium on Geometry Processing, SGP ’09, pages 1269–1278,
Aire-la-Ville, Switzerland, Switzerland, 2009. Eurographics Association.

[24] Mario Botsch,Mark Pauly, Leif Kobbelt, PierreAlliez, and Bruno Lévy. Geo-
metric Modeling Based on Polygonal Meshes. In Eurographics Tutorial, 2008.

[25] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast Approximate Energy
Minimization via Graph Cuts. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 23(11):1222–1239, November 2001.

[26] Leo Breiman. Random Forests. Machine Learning, 45(1):5–32, 2001.

[27] Frank Breuel, René Bernd, Torsten Ullrich, Eva Eggeling, and Dieter W. Fel-
lner. Mate in 3D – Publishing Interactive Content in PDF3D. Publishing in
the NetworkedWorld: Transforming the Nature of Communication, Proceedings of
the International Conference on Electronic Publishing, 15:110–119, 2011.

[28] Jörg Brunsmann, Wolfgang Wilkes, Gunter Schlageter, and Matthias Hem-
mje. State-of-the-art of Long-term Preservation in Product Lifecycle Mana-
gement. International Journal on Digital Libraries, 12(1):27–39, 2012.

[29] Don Brutzman. The virtual reality modeling language and Java. Communi-
cations of the ACM, 41(6):57–64, 1998.

[30] Don Brutzman and Leonard Daly. X3D: Extensible 3D Graphics for Web Aut-
hors. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2007.

[31] Suzanne F. Buchele and Richard H. Crawford. Three-dimensional Half-
space Constructive Solid Geometry Tree Construction from Implicit Boun-
dary Representations. In Proceedings of the Eighth ACM Symposium on Solid

178 BIBLIOGRAPHY

Modeling and Applications, SM ’03, pages 135–144, NewYork, NY, USA, 2003.
ACM.

[32] Luis Bustamante and JasonGu. Localization of ElectricalOutlet for aMobile
Robot Using Visual Servoing. In Electrical and Computer Engineering, 2007.
CCECE 2007. Canadian Conference on, pages 1211–1214. IEEE, April 2007.

[33] Swen Campagna, Leif Kobbelt, and Hans-Peter Seidel. Directed Edges -
A Scalable Representation for Triangle Meshes. Journal of Graphics Tools,
3(4):1–11, December 1998.

[34] Robert Chitham. The Classical Orders of Architecture. Elsevier, 2nd edition,
2005.

[35] Noam Chomsky. Three Models for the Description of Language. IRE Tran-
sactions on Information Theory, 2:113–124, 1956.

[36] Dorin Comaniciu and Peter Meer. Mean Shift: A Robust Approach Toward
Feature Space Analysis. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24(5):603–619, May 2002.

[37] JoãoComba andBruceNaylor. Conversion of Binary Space Partitioning Trees to
Boundary Representation, chapter GeometricModeling: Theory and Practice,
pages 286–301. Springer Berlin Heidelberg, Berlin, Heidelberg, 1997.

[38] Kate Compton and Michael Mateas. Procedural Level Design for Platform
Games. Proceedings of the Artificial Intelligence and Interactive Digital Entertai-
nment Conference, 2:109–111, 2006.

[39] Navneet Dalal and Bill Triggs. Histograms of Oriented Gradients for Hu-
man Detection. In Conference on Computer Vision and Pattern Recognition,
2005. CVPR 2005. IEEE Computer Society, volume 1, pages 886–893. IEEE,
2005.

[40] M. De Berg, M. Van Kreveld, M. Overmars, and O. Schwarzkopf. Computa-
tional Geometry: Algorithms and Applications. Springer, 2 edition, 2000.

[41] Oliver Deussen and Bernd Lintermann. Digital Design of Nature: Computer
Generated Plants and Organics. Springer, 2005.

[42] Marco Di Benedetto, Federico Ponchio, Fabio Ganovelli, and Roberto Sco-
pigno. SpiderGL: a JavaScript 3D graphics library for next-generation
WWW. Proceedings of the 15th International Conference on Web 3D Technology,
15:165–174, 2010.

[43] Edsger W. Dijkstra. The Humble Programmer. Communications of the ACM,
15(10):859–866, October 1972.

BIBLIOGRAPHY 179

[44] DIN 18015-1 - Electrical Installations in Residential Buildings. BeuthVerlag,
September 2013.

[45] Low-voltage Electrical Installations - Part 7-701: Requirements for Spe-
cial Installations or Locations - Locations Containing a Bath or Shower
(IEC 60364-7-701:2006, modified); German Implementation HD 60364-7-
701:2007, October 2008.

[46] C. Dore and M. Murphy. Semi-Automatic Modelling of Building Façades
with Shape Grammars Using Historic Building Information Modelling. IS-
PRS - International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, XL-5/W1:57–64, 2013.

[47] C. Dore, M.Murphy, S. McCarthy, F. Brechin, C. Casidy, and E. Dirix. Struc-
tural Simulations and Conservation Analysis - Historic Building Informa-
tion Model (HBIM). ISPRS - International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, XL-5/W4:351–357, 2015.

[48] Chuck Eastman, Paul Teicholz, Rafael Sacks, and Kathleen Liston. BIM
Handbook. Wiley, 2 edition, 2011.

[49] David S. Ebert, F. KentonMusgrave, Darwyn Peachey, Ken Perlin, and Steve
Worley. Texturing and Modeling: A Procedural Approach. Morgan Kaufmann,
2002.

[50] Bruce Eckel. Thinking in C++: Introduction to Standard C++, Practical Pro-
gramming. Prentice Hall, 2003.

[51] Johannes Edelsbrunner, UlrichKrispel, SvenHavemann, Alexei Sourin, and
Dieter W. Fellner. Constructive Roof Geometry. Proceedings of the Internati-
onal Conference on Cyberworlds, 12:63–70, 2014.

[52] Johannes Edelsbrunner, UlrichKrispel, SvenHavemann, Alexei Sourin, and
Dieter W. Fellner. Constructive Roofs from Solid Building Primitives. Lec-
ture Notes in Computer Science, 9550:17–40, 2016.

[53] J. R. Edmonds. A Combinatorial Representation for Oriented Polyhedral
Surfaces. Notices Amer. Math. Soc., 7:641, 1960.

[54] Dag Fjeld Edvardsen, JakobBeetz, Henrik Leander, ThomasKrijnen,Martin
Hecher, Martin Tamke, Mateusz Zwierzycki, Michael Panitz, RaoulWessel,
Richard Vock, Sebastian Ochmann, and Ujwal Gadiraju. DURAARK Deli-
verable D7.4 - Evaluation. http://duraark.eu/wp-content/uploads/
2016/02/DURAARK_D7.4.pdf, January 2016.

http://duraark.eu/wp-content/uploads/2016/02/DURAARK_D7.4.pdf
http://duraark.eu/wp-content/uploads/2016/02/DURAARK_D7.4.pdf

180 BIBLIOGRAPHY

[55] Alexei A. Efros and William T. Freeman. Image Quilting for Texture Synt-
hesis and Transfer. In Proceedings of the 28th Annual Conference on Compu-
ter Graphics and Interactive Techniques, SIGGRAPH ’01, pages 341–346, New
York, NY, USA, 2001. ACM.

[56] Erhvervs-og Vækstministeriet. Stærkstrømsbekendtgørelsen, EK nr 9146 af
22/03/2006 Gældende (SB - Afsnit 6A) Offentliggørelsesdato, March 2006.

[57] Eurostat. Construction by Employment Size Class (NACE Rev. 2, F).
http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=
sbs_sc_con_r2&lang=en, 2013. [Online; accessed 10.06.2016].

[58] Steven Fortune and Christopher J. VanWyk. Static Analysis Yields Efficient
Exact Integer Arithmetic for Computational Geometry. ACM Trans. Graph.,
15(3):223–248, July 1996.

[59] Oleg Fryazinov, Alexander Pasko, and Valery Adzhiev. BSP-Fields: An
Exact Representation of Polygonal Objects by Differentiable Scalar Fields
Based on Binary Space Partitioning. Computer-Aided Design, 43(3):265–277,
2011.

[60] Komei Fukuda and Alain Prodon. Double Description Method Revisited.
In Selected papers from the 8th Franco-Japanese and 4th Franco-Chinese Conference
on Combinatorics and Computer Science, pages 91–111, London, UK, 1996.
Springer-Verlag.

[61] Michael P.Gallaher, AlanC.O’Connor, Jr JohnL.Dettbarn, andLindaT.Gil-
day. Cost Analysis of Inadequate Interoperability in the U.S. Capital Faci-
lities Industry. http://fire.nist.gov/bfrlpubs/build04/art022.
html, August 2004.

[62] Michael T. Goodrich, Leonidas J. Guibas, John Hershberger, and Paul J. Ta-
nenbaum. Snap Rounding Line Segments Efficiently in Two and Three Di-
mensions. In Proceedings of the Thirteenth Annual Symposium on Computatio-
nal Geometry, SCG ’97, pages 284–293, New York, NY, USA, 1997. ACM.

[63] Daniel H. Greene. The Decomposition of Polygons into Convex Parts. Com-
putational Geometry, Adv. Comput. Res.(1):235–259, 1983.

[64] Marcus Gross and Hanspeter Fister, editors. Point-Based Graphics. The Mor-
gan Kaufmann Series in Computer Graphics. Morgan Kaufmann, 1st edi-
tion, June 2007. ISBN-13: 978-0123706041.

[65] Branko Grünbaum, Volker Kaibel, Vcitor Klee, and Günter M. Ziegler. Con-
vex Polytopes. Graduate texts in mathematics. Springer-Verlag New York,
Inc., 2 edition, 2003.

http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=sbs_sc_con_r2&lang=en
http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=sbs_sc_con_r2&lang=en
http://fire.nist.gov/bfrlpubs/build04/art022.html
http://fire.nist.gov/bfrlpubs/build04/art022.html

BIBLIOGRAPHY 181

[66] John L. Gustavson. The End of Error: Unum Computing. Chapman and Hall,
1st edition, 2015.

[67] Jacques Hadamard. Sur les problèmes aux dérivés partielles et leur signifi-
cation physique. Princeton University Bulletin, 13:49–52, 1902.

[68] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002.

[69] Sven Havemann. Generative Mesh Modeling. PhD-Thesis, Technische Uni-
versität Braunschweig, Germany, 1:1–303, 2005.

[70] Sven Havemann and Dieter W. Fellner. Generative Mesh Modeling. Techni-
cal Report TUBS-CG-2003-01, 1:1–11, 2003.

[71] Sven Havemann and Dieter W. Fellner. Generative Parametric Design of
Gothic Window Tracery. Proceedings of the 5th International Symposium on
Virtual Reality, Archeology, and Cultural Heritage, 1:193–201, 2004.

[72] SvenHavemann, Volker Settgast, René Berndt, andØyvid Eide. The Arrigo
Showcase Reloaded – towards a sustainable link between 3D and semantics.
Proceedings of the 9th International Symposium on Virtual Reality, Archaeology
and Cultural Heritage (VAST), 9:125–132, 2008.

[73] Daniel Heckenberg, JosephHegarty, and Jean Pascal leBlanc. RepTile: How
to Skin a Dinosaur. In ACM SIGGRAPH 2014 Talks, SIGGRAPH ’14, pages
31:1–31:1, New York, NY, USA, 2014. ACM.

[74] J. L. Heiberg, editor. Euclid’s Elements of Geometry. Fitzpatrick, Richard,
2007.

[75] Peter Henderson. Functional Geometry. Higher Order Symbol. Comput.,
15(4):349–365, December 2002.

[76] Dominikus Herzberg and Tim Reichert. Concatenative Programming - An
Overlooked Paradigm in Functional Programming. In Boris Shishkov, José
Cordeiro, and Alpesh Ranchordas, editors, ICSOFT 2009 - Proceedings of the
4th International Conference on Software and Data Technologies, Volume 1, Sofia,
Bulgaria, July 26-29, 2009, pages 257–263. INSTICC Press, 2009.

[77] N. Hichri, C. Stefani, L. De Luca, and P. Veron. Review of the "as-built BIM"
Approaches. ISPRS - International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, XL-5/W1:107–112, 2013.

[78] Younis Hijazi, Hans Hagen, Charles D. Hansen, and Kenneth I. Joy. Why
Interval Arithmetic is so Useful. In Visualization of Large and Unstructured
Data Sets: Second workshop of the DFG’s International Research Training Group

182 BIBLIOGRAPHY

"Visualization of Large and Unstructured Data Sets - Applications in Geospa-
tial Planning, Modeling, and Engineering", September 9-11, 2007 Kaiserslautern,
Germany, pages 148–163, 2007.

[79] Christoph M. Hoffmann. The Problems of Accuracy and Robustness in Ge-
ometric Computation. Computer, 22(3):31–40, March 1989.

[80] Christoph M. Hoffmann. Robustness in geometric computations. Journal of
Computing and Information Science in Engineering, 1(2):143–155, 2001.

[81] Bernhard Hohmann, Sven Havemann, Ulrich Krispel, and Dieter W. Fell-
ner. A GML Shape Grammar for Semantically Enriched 3D Building Mo-
dels. Computers & Graphics, 34(4):322–334, 2010. Procedural Methods in
Computer Graphics; Illustrative Visualization.

[82] BernhardHohmann, UlrichKrispel, SvenHavemann, andDieterW. Fellner.
CityFit: High-Quality Urban Reconstructions by Fitting Shape Grammars
to Images and Derived Textured Point Clouds. Proceedings of the ISPRS In-
ternational Workshop 3D-ARCH, 3:61–68, 2009.

[83] DanielHuber. TheASTME57 File Format for 3D ImagingData Exchange. In
Proceedings of the SPIE Vol. 7864A, Electronics Imaging Science and Technology
Conference (IS&T), 3D Imaging Metrology, volume 7864A, January 2011.

[84] J.-F. Hullo, G. Thibault, and C. Boucheny. Advances in Multi-Sensor Scan-
ning and Visualization of Complex Plants: The Utmost Case of a Reactor
Building. ISPRS - International Archives of the Photogrammetry, Remote Sen-
sing and Spatial Information Sciences, XL-5/W4:163–169, 2015.

[85] Robin Hunicke and Vernell Chapman. AI for Dynamic Difficulty Adjust-
ment in Games. Proceedings of the Challenges in Game AIWorkshop / Conference
on Artificial Intelligence, 19:91–96, 2004.

[86] Ali R. Hurson and Krishna M. Kavi. Dataflow Computers: Their History and
Future, chapter 1, pages 1–12. John Wiley & Sons, Inc., 2007.

[87] JohnHutchinson. Fractals and Self-Similarity. IndianaUniv.Math. J., 30:713–
747, 1981.

[88] F. K. Hwang and Dana S. Richards. Steiner Tree Problems. Networks,
22(1):55–89, 1992.

[89] LaurentHyafil andRonald L. Rivest. ConstructingOptimal BinaryDecision
Trees is NP-complete. Information Processing Letters, 5(1):15–17, 1976.

[90] IEEE Task P754. ANSI/IEEE 754-1985, Standard for Binary Floating-Point
Arithmetic. IEEE, New York, NY, USA, August 1985.

BIBLIOGRAPHY 183

[91] ISO 10303-1:1994 Industrial Automation Systems and Integration – Product
Data Representation and Exchange – Part 1: Overview and Fundamental
Principles, 1994.

[92] ISO 16739:2013 Industry Foundation Classes, Release 2x, Platform Specica-
tion (IFC2x Platform), 2013.

[93] Martin Jennings-Teats, Gillian Smith, andNoahWardrip-Fruin. Polymorph:
A Model for Dynamic Level Generation. Proceedings of the AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment, 6:138–143, 2010.

[94] C. Kaklamanis, Miroslav Chlebík, and Janka Chlebíková. The Steiner
Tree Problem on Graphs: Inapproximability Results. Theoretical Computer
Science, 406(3):207–214, 2008.

[95] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson Surface
Reconstruction. In Konrad Polthier and Alla Sheffer, editors, Proceedings of
the Fourth Eurographics Symposium onGeometry Processing, SGP ’06, pages 61–
70, Aire-la-Ville, Switzerland, Switzerland, 2006. Eurographics Association.

[96] Tom Kelly and Peter Wonka. Interactive Architectural Modeling with Pro-
cedural Extrusions. ACM Transactions on Graphics, 30:141–15, 2011.

[97] Lutz Kettner. Using Generic Programming for Designing a Data Structure
for Polyhedral Surfaces. Computational Geometry: Theory and Applications,
13(1):65–90, May 1999.

[98] Patrick Knöbelreiter, René Berndt, Torsten Ullrich, and Dieter W. Fellner.
Automatic fly-through Camera Animations for 3D Architectural Reposito-
ries. Proceedings of the International Joint Conference on Computer Vision, Ima-
ging andComputer Graphics Theory andApplications (GRAPP 2014), 9:335–341,
2014.

[99] Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and Al-
gorithms. Springer Publishing Company, Incorporated, 4th edition, 2007.

[100] L. Kou, G. Markowsky, and L. Berman. A Fast Algorithm for Steiner Trees.
Acta Informatica, 15(2):141–145, 1981.

[101] Lars Krecklau, Janis Born, and Leif Kobbelt. View-Dependent Realtime
Rendering of Procedural Facades with High Geometric Detail. Comput.
Graph. Forum, 32(2):479–488, 2013.

[102] Lars Krecklau and Leif Kobbelt. Procedural Modeling of Interconnected
Structures. Computer Graphics Forum, 30(2):335–344, 2011.

184 BIBLIOGRAPHY

[103] Lars Krecklau, Darko Pavic, and Leif Kobbelt. Generalized Use of Non-
Terminal Symbols for Procedural Modeling. Computer Graphics Forum,
29(8):2291–2303, 2010.

[104] Ulrich Krispel, Henrik Leander Evers, Martin Tamke, and Torsten Ullrich.
An Automatic Hypothesis of Electrical Lines from Range Scans and Photo-
graphs. In Nobuyoshi Yabuki and Koji Makanae, editors, Proceedings of the
16th International Conference on Computing in Civil and Building Engineering,
pages 815–822, July 2016.

[105] Ulrich Krispel, Henrik Leander Evers, Martin Tamke, and Torsten Ullrich.
Data completion in building informationmanagement: electrical lines from
range scans and photographs. Visualization in Engineering, 5(1):4, March
2017.

[106] UlrichKrispel, Henrik Leander Evers,Martin Tamke, Robert Viehauser, and
Dieter W. Fellner. Automatic Texture and Orthophoto Generation from Re-
gistered Panoramic Views. ISPRS - International Archives of the Photogramme-
try, Remote Sensing and Spatial Information Sciences, XL-5/W4:131–137, 2015.

[107] Ulrich Krispel, Sven Havemann, and Dieter W. Fellner. FaMoS – A Visual
Editor for Hierachical Volumetric Modeling. In Tagungsband 05. Kongress
Multimediatechnik Wismar, pages 1–6, 2010.

[108] Ulrich Krispel, Christoph Schinko, and Torsten Ullrich. The Rules Behind
– Tutorial on Generative Modeling. Proceedings of Symposium on Geometry
Processing / Graduate School, 12:21–249, 2014.

[109] Ulrich Krispel, Christoph Schinko, and Torsten Ullrich. A Survey of Algo-
rithmic Shapes. Remote Sensing, 7(10):12763, 2015.

[110] Ulrich Krispel, Martin Tamke, Martin Hecher, Jakob Beetz, Stefan Dietze,
and Dieter W. Fellner. Geometric Enrichment of Digital Building Data in the
DURAARK Project, chapter European Project Space on Intelligent Techno-
logies, Software engineering, Computer Vision, Grahics, Optics and Photo-
nics. SCITEPRESS, 2016.

[111] Ulrich Krispel, Torsten Ullrich, and Dieter W. Fellner. Fast and Exact Plane-
based Representation for PolygonalMeshes. In Katherine Blashki andYing-
cai Xiao, editors, Proceedings of the 8th International Conference on Computer
Graphics, Visualization, Computer Vision and Image Processing 2014,, Lisbon,
Portugal, 2014. International Association for Development of the Informa-
tion Society, IADIS Press.

BIBLIOGRAPHY 185

[112] Zhengzheng Kuang, Bin Chan, Yizhou Yu, andWenpingWang. ACompact
Random-access Representation for Urban Modeling and Rendering. ACM
Trans. Graph., 32(6):172:1–172:12, November 2013.

[113] Daniel Ladenhauf, René Berndt, Eva Eggeling, Torsten Ullrich, Kurt Bat-
tisti, and Markus Gratzl-Michlmair. From Building Information Models to
Simplified Geometries for Energy Performance Simulation. Proceeding of the
International Academic Conference on Places and Technologies, 1:669–676, 2014.

[114] Daniel Ladenhauf, René Berndt, Ulrich Krispel, Eva Eggeling, Torsten Ull-
rich, Kurt Battisti, and Markus Gratzl-Michlmair. Geometry Simplification
According to Semantic Constraints. Computer Science – Research and Deve-
lopment, 11:to appear, 2014.

[115] L. Ladický, C. Russell, P. Kohli, and P. H. S. Torr. Associative Hierarchical
CRFs for Object Class Image Segmentation. In 2009 IEEE 12th International
Conference on Computer Vision, pages 739–746, September 2009.

[116] John Lee. Introduction to Topological Manifolds, volume 940 of Graduate Texts
in Mathematics. Springer-Verlag New York, 2nd edition, 2011.

[117] Pascal Lienhardt. Topological Models for Boundary Representation: A
Comparison with N-dimensional Generalized Maps. Computer-Aided De-
sign, 23(1):59–82, February 1991.

[118] Michelle Lindlar. Building InformationModeling –AGameChanger for In-
teroperability and a Chance for Digital Preservation of Architectural Data?
In Serena Coates, Ross King, Steve Knight, Christopher (Cal) Lee, Peter
McKinney, Erin O’Meara, and David Pearson, editors, Proceedings of the 11th

International Conference on Digital Preservation. IPres, 2014.

[119] Markus Lipp, Peter Wonka, and Michael Wimmer. Interactive Visual Edi-
ting of Grammars for Procedural Architecture. ACM Transactions on Gra-
phics, 27(3):1–10, 2008.

[120] Markus Lipp, Peter Wonka, and Michael Wimmer. Parallel Generation of
Multiple L-Systems. Computers & Graphics, 34:585–593, 2010.

[121] Mikola Lysenko, Roshan D’Souza, and Ching-Kuan Shene. Improved Bi-
nary Space Partition Merging. Computer-Aided Design, 40(12):1113–1120,
2008.

[122] Benoit B. Mandelbrot. The Fractal Geometry of Nature. W. H. Freeman and
Co., 1982.

186 BIBLIOGRAPHY

[123] Martti Mäntylä. An Introduction to Solid Modeling. Principles of Computer
Science Series. Computer Science Press, Inc., New York, NY, USA, 1987.

[124] David Marcheix and Guy Pierra. A Survey of the Persistent Naming Pro-
blem. Proceedings of the ACM Symposium on Solid Modeling and Applications,
7:13–22, 2002.

[125] George E. Martin. Geometric Constructions. Springer, 1998.

[126] Jean-Eudes Marvie, Cyprien Buron, Pascal Gautron, Patrice Hirtzlin, and
Gaël Sourimant. GPU Shape Grammars. Computer Graphics Forum,
31(7pt1):2087–2095, September 2012.

[127] Wim Meeussen, Melonee Wise, Stuart Glaser, Sachin Chitta, Conor
McGann, Patrick Mihelich, Eitan Marder-Eppstein, Marius Muja, Victor
Eruhimov, Tully Foote, et al. Autonomous Door Opening and Plugging in
With a Personal Robot. In International Conference on Robotics and Automation
(ICRA), 2010 IEEE, pages 729–736. IEEE, 2010.

[128] Guillaume Melquiond and Sylvain Pion. Formally Certified Floating-point
Filters for Homogeneous Geometric Predicates. Theoretical Informatics and
Applications, 41(1):57–69, 2007.

[129] Paul Merell. Model Synthesis. PhD thesis, University of North Carolina at
Chapel Hill, 2009.

[130] Paul Merrell and Dinesh Manocha. Model Synthesis: A General Procedu-
ral Modeling Algorithm. IEEE Transactions on Visualization and Computer
Graphics, 17:715–728, 2010.

[131] Andreas Meyer and Sylvain Pion. FPG: A Code Generator for Fast and
Certified Geometric Predicates. In Real Numbers and Computers, pages 47–
60, Santiago de Compostela, Espagne, 2008.

[132] William J. Mitchell. The Logic of Architecture: Design, Computation, and Cog-
nition. MIT Press, 1990.

[133] Pascal Müller, Tijl Vereenooghe, Andreas Ulmer, and Luc Van Gool. Auto-
matic Reconstruction of Roman Housing Architecture. Recording, Modeling
and Visualization of Cultural Heritage, 1:287–298, 2006.

[134] PascalMüller, Tijl Vereenooghe, PeterWonka, Iken Paap, and LucVanGool.
Procedural 3D Reconstruction of Puuc Buildings in Xkipche. Proceedings of
Eurographics Symposium on Virtual Reality, Archaeology and Cultural Heritage
(VAST), 1:139–146, 2006.

BIBLIOGRAPHY 187

[135] Pascal Müller, Peter Wonka, Simon Haegler, Ulmer Andreas, and Luc
Van Gool. Procedural Modeling of Buildings. Proceedings of 2006 ACM Sig-
graph, 25(3):614–623, 2006.

[136] National Institute of Building Sciences. Frequently Asked Questions About
the National BIM Standard, 2014.

[137] Bruce Naylor, John Amanatides, and William Thibault. Merging BSP Trees
Yields Polyhedral Set Operations. In Proceedings of the 17th annual conference
on Computer graphics and interactive techniques, SIGGRAPH ’90, pages 115–
124, New York, NY, USA, 1990. ACM.

[138] W. Nef. Beiträge zur Theorie der Polyeder: mit Anwendungen in der Compu-
tergraphik. Beiträge zur Mathematik, Informatik und Nachrichtentechnik.
Lang, 1978.

[139] Mark J. Nelson, Calvin Ashmore, and Michael Mateas. Authoring an In-
teractive Narrative with Declarative Optimization-Based Drama Manage-
ment. Proceedings of the Artificial Intelligence and Interactive Digital Entertain-
ment Conference, 2:127–129, 2006.

[140] NVidia. NVidia CUDA C Programming Guide, 2010.

[141] Sebastian Ochmann, Richard Vock, Raoul Wessel, and Reinhard Klein. Au-
tomatic Reconstruction of Parametric Building Models from Indoor Point
Clouds. Computers & Graphics, 54:94–103, 2016. Special Issue on CAD/-
Graphics 2015.

[142] Sebastian Ochmann, Richard Vock, Raoul Wessel, Martin Tamke, and Rein-
hard Klein. Automatic Generation of Structural Building Descriptions from
3D Point Cloud Scans. InGRAPP 2014 - International Conference on Computer
Graphics Theory and Applications. SCITEPRESS, January 2014.

[143] Review Board OpenGL Architecture. OpenGL Reference Manual. Addison-
Wesley Publishing Company, 1993.

[144] ErichOssa. Topologie : eine anschauliche Einführung in die geometrischen und al-
gebraischen Grundlagen. Aufbaukurs Mathematik. Studium. Vieweg + Teub-
ner, Wiesbaden, 2., überarb. aufl edition, 2009.

[145] John K. Ousterhout. Scripting: Higher Level Programming for the 21st Cen-
tury. IEEE Computer Magazine, 31(3):23–30, 1998.

[146] Mine Özkar and Sotirios Kotsopoulos. Introduction to Shape Grammars.
International Conference on Computer Graphics and Interactive Techniques ACM
SIGGRAPH 2008 (course notes), 36:1–175, 2008.

188 BIBLIOGRAPHY

[147] Yogi Parish and Pascal Müller. Procedural Modeling of Cities. Proceedings
of the 28th annual conference on Computer graphics and interactive techniques,
28:301–308, 2001.

[148] Terence Parr. Language Implementation Patterns: Create Your Own Domain-
Specific and General Programming Languages. Pragmatic Bookshelf, 2010.

[149] Alexander Pasko and Valery Adzhiev. Function-based Shape Modeling:
Mathematical Framework and Specialized Language. Lecture Notes in Com-
puter Science, 2930:132–160, 2004.

[150] Gustavo Patow. User-Friendly Graph Editing for Procedural Buildings.
Computer Graphics and Applications, IEEE, PP(99):1, 2012.

[151] Christopher Pedersen, Julian Togelius, and Georgios N. Yannakakis. Mo-
deling Player Experience for Content Creation. IEEE Transactions on Com-
putational Intelligence and AI in Games, 2:54–67, 2010.

[152] P. J. Petkova and U. Rüppel. A Graph-based Prediction Method for Electri-
cal Wiring in Old Residential Buildings as a Part of BIM for Urban Mining
Purposes. eWork and eBusiness in Architecture, Engineering and Construction,
pages 109–113, 2014.

[153] Tomas Polgar. FREAX: The Brief History of the Computer Demoscene. CSW-
Verlag, Winnenden, 2005.

[154] Michael J. Pratt. Introduction to ISO 10303—the STEP Standard for Product
Data Exchange. Journal of Computing and Information Science in Engineering,
1(1):102–103, 2001.

[155] Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The Algorithmic
Beauty of Plants. Springer-Verlag, 1990.

[156] R. Quattrini, E. S. Malinverni, P. Clini, R. Nespeca, and E. Orlietti. From
TLS to HBIM. High Quality Semantically-aware 3D Modeling of Complex
Architecture. ISPRS - International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, XL-5/W4:367–374, 2015.

[157] Casey Reas, Ben Fry, and John Maeda. Processing: A Programming Handbook
for Visual Designers and Artists. The MIT Press, 2007.

[158] William Reilly. Crossing the Curatorial Chasm - Lessons from the FACADE
Project. In 4th International Conference on Open Repositories, 2009.

[159] Dirk Reiners, Gerrit Voss, and Johannes Behr. OpenSG: Basic Concepts.
Proceedings of OpenSG Symposium 2002, 1:1–7, 2002.

BIBLIOGRAPHY 189

[160] Hayko Riemenschneider, Ulrich Krispel, Wolfgang Thaller, Michael Dono-
ser, Sven Havemann, Dieter W. Fellner, and Horst Bischof. Irregular Latti-
ces for Complex Shape Grammar Facade Parsing. In 2012 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 1640–1647, 2012.

[161] Hayko Riemenschneider, Sabine Sternig, Michael Donoser, Peter M. Roth,
and Horst Bischof. Hough Regions for Joining Instance Localization and Seg-
mentation, pages 258–271. Springer Berlin Heidelberg, Berlin, Heidelberg,
2012.

[162] N. Ripperda. Grammar Based Facade Reconstruction using RjMCMC. In
Photogrammetrie Fernerkundung Geoinformation (PFG), pages 83–92, 2008.

[163] Aitor Santamaria-Ibirika, Xabier Cantero, Sergio Huerta, Igor Santos, and
Pablo G. Bringas. Procedural Playable Cave Systems based on Voronoi Dia-
gram and Delaunay Triangulation. Proceedings of the International Conference
on Cyberworlds, 12:15–22, 2014.

[164] Christoph Schinko, Ulrich Krispel, Torsten Ullrich, and Dieter W. Fellner.
Built by Algorithms - State of the Art Report on Procedural Modeling. In
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., volume XL-5/W4, pages
469–479. International Society for Photogrammetry and Remote Sensing,
2015.

[165] Christoph Schinko, Martin Strobl, Torsten Ullrich, and Dieter W. Fellner.
Scripting Technology for Generative Modeling. International Journal On Ad-
vances in Software, 4:308–326, 2011.

[166] Christoph Schinko, Torsten Ullrich, and Dieter W. Fellner. Minimally In-
vasive Interpreter Construction – How to reuse a compiler to build an in-
terpreter. Proceedings of the International Conference on Computational Logics,
Algebras, Programming, Tools, and Benchmarking (Computation Tools), 3:38–44,
2012.

[167] Michail I. Schlesinger, Savchynskyy Bogdan, andM.A.Anochina. Grammar
Approach to Printed Notes Recogition. In Control Systems and Computers,
2003.

[168] Dan Sheerin. Procedural Tentacle Bundles in "Edge of Tomorrow". In ACM
SIGGRAPH 2014 Talks, SIGGRAPH ’14, pages 33:1–33:1, New York, NY,
USA, 2014. ACM.

[169] Jonathan Richard Shewchuk. Robust Adaptive Floating-Point Geometric
Predicates. In Proceedings of the Twelfth Annual Symposium on Computational
Geometry, pages 141–150. Association for ComputingMachinery, May 1996.

190 BIBLIOGRAPHY

[170] J. Shotton, M. Johnson, and R. Cipolla. Semantic Texton Forests for Image
Categorization and Segmentation. In 2008 IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 1–8, June 2008.

[171] Vaclav Skala and Vit Ondracka. A Precision of Computation in the Pro-
jective Space. In Proceedings of the 15th WSEAS international conference on
Computers, pages 35–40, Stevens Point, Wisconsin, USA, 2011. World Scien-
tific and Engineering Academy and Society (WSEAS).

[172] John M. Snyder and James T. Kajiya. Generative Modeling: A Symbolic
System for Geometric Modeling. Proceedings of 1992 ACM Siggraph, 1:369–
378, 1992.

[173] Celestino Soddu and Enrica Colabella. The 19th Generative Art Conference.
In Proceedings of the 19th Generative Art Conference, 2016.

[174] O. Stava, S. Pirk, J. Kratt, B. Chen, R. Měch, O. Deussen, and B. Benes. In-
verse Procedural Modelling of Trees. Computer Graphics Forum, 33(6):118–
131, 2014.

[175] Ondrej Stava, Bedrich Benes, Radomir Mech, Daniel G. Aliaga, and Pe-
ter Kristof. Inverse Procedural Modeling by Automatic Generation of L-
systems. Proceedings of EUROGRAPHICS, Computer Graphics Forum, 29:665–
674, 2010.

[176] Markus Steinberger, Michael Kenzel, Bernhard Kainz, Jörg Müller, Wonka
Peter, and Dieter Schmalstieg. Parallel Generation of Architecture on the
GPU. Computer Graphics Forum, 33:73–82, 2014.

[177] Markus Steinberger, Michael Kenzel, Bernhard Kainz, Peter Wonka, and
Dieter Schmalstieg. On-the-fly Generation and Rendering of Infinite Cities
on the GPU. Comput. Graph. Forum, 33(2):105–114, 2014.

[178] George Stiny and James Gips. Shape Grammars and the Generative Speci-
fication of Painting and Sculpture. Best computer papers of 1971, 1:125–135,
1971.

[179] K. Sugihara and M. Iri. A Solid Modelling System Free from Topological
Inconsistency. J. Inf. Process., 12(4):380–393, April 1990.

[180] Kokichi Sugihara. Robust Geometric Computation Based on Topological
Consistency. In Vassil Alexandrov, Jack Dongarra, Benjoe Juliano, Renė
Renner, and C. Tan, editors, Computational Science - ICCS 2001, volume 2073
of Lecture Notes in Computer Science, pages 12–26. Springer Berlin / Heidel-
berg, 2001.

BIBLIOGRAPHY 191

[181] Ivan E. Sutherland and Gary W. Hodgman. Reentrant Polygon Clipping.
Communications of the ACM, 17(1):32–42, January 1974.

[182] Richard Szeliski. Image Alignment and Stitching: A Tutorial. Technical
Report MSR-TR-2004-92, Microsoft Research, October 2004.

[183] Jerry O. Talton, Yu Lou, Steve Lesser, JaredDuke, RadomirMech, andVlad-
len Koltun. Metropolis ProceduralModeling. ACMTransactions on Graphics,
30:111–14, 2011.

[184] Martin Tamke, Ina Blümel, Sebastian Ochmann, Richard Vock, and Raoul
Wessel. FromPoint Clouds toDefinitions of Architectural Space - Potentials
of Automated Extraction of Semantic Information from Point Clouds for
the Building Profession. In Emine Mine Thompson, editor, Proceedings of
the 32nd eCAADe Conference, volume 2, pages 557–566, 2014.

[185] O. Teboul, I. Kokkinos, L. Simon, P. Koutsourakis, and N. Paragios. Shape
Grammar Parsing via Reinforcement Learning. In CVPR 2011, pages 2273–
2280, June 2011.

[186] O. Teboul, L. Simon, P. Koutsourakis, and N. Paragios. Segmentation of
Building Facades Using Procedural Shape Priors. In 2010 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pages 3105–
3112, June 2010.

[187] W. Thaller, U. Krispel, S. Havemann, and D. Fellner. Implicit Nested Repe-
tition in Dataflow for Procedural Modeling. Proceedings of the International
Conference on Computational Logics, Algebras, Programming, Tools, and Bench-
marking (Computation Tools), 3:45–50, 2012.

[188] Wolfgang Thaller, Ulrich Krispel, SvenHavemann, Ivan Redi, Andrea Redi,
and Dieter Fellner. Developing Parametric Building Models - the GANDIS
Use Case. In Fabio Remondino and Sabry El-Hakim, editors, Proceedings of
the 4th ISPRS International Workshop 3D-ARCH 2011. ISPRS, 2011.

[189] Wolfgang Thaller, Ulrich Krispel, René Zmugg, Sven Havemann, and Die-
ter W. Fellner. A Graph-Based Language for Direct Manipulation of Proce-
dural Models. International Journal on Advances in Software, 6:225–236, 2013.

[190] Wolfgang Thaller, Ulrich Krispel, René Zmugg, Sven Havemann, and Die-
ter W. Fellner. Shape Grammars on Convex Polyhedra. Computers & Gra-
phics, 37:707–717, 2013.

[191] Wolfgang Thaller, René Zmugg, Ulrich Krispel, Martin Posch, Sven Ha-
vemann, and W. Fellner Dieter. Creating Procedural Window Building

192 BIBLIOGRAPHY

Blocks using the Generative Fact Labeling Method. Proceedings of the ISPRS
International Workshop 3D-ARCH, 5:235–242, 2013.

[192] The CGALProject. CGALUser and ReferenceManual. CGAL Editorial Board,
4.7 edition, 2015.

[193] Robert F. Tobler, Stefan Maierhofer, and Alexander Wilkie. A Multireso-
lution Mesh Generation Approach for Procedural Definition of Complex
Geometry. Proceedings of the Shape Modeling International, 6:35–44, 2002.

[194] Robert F. Tobler, Stefan Maierhofer, and Alexander Wilkie. Mesh-Based Pa-
rametrized L-Systems and Generalized Subdivision for Generating Com-
plex Geometry. International Journal of Shape Modeling, 8:173–191, 2002.

[195] Julian Togelius, Renzo De Nardi, and Simon M. Lucas. Making Racing Fun
Through Player Modeling and Track Evolution. Proceedings of the Works-
hop on Adaptive Approaches for Optimizing Player Satisfaction in Computer and
Physical Games, 6:61–70, 2006.

[196] Julian Togelius, Renzo De Nardi, and Simon M. Lucas. Towards Automa-
tic Personalised Content Creation for Racing Games. IEEE Symposium on
Computational Intelligence and Games, 11:252–259, 2007.

[197] Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley, and Came-
ron Browne. Search-Based Procedural Content Generation: A Taxonomy
and Survey. IEEE Transactions on Computational Intelligence and AI in Games,
3:172–186, 2011.

[198] W. T. Tutte. Combinatorial Oriented Maps. Can. J. Math, XXXI(5):986–1004,
1979.

[199] TorstenUllrich. ReconstructiveGeometry. PhD-Thesis, Technische Universität
Graz, Austria, 1:1–322, 2011.

[200] Torsten Ullrich, Ulrich Krispel, and Dieter W. Fellner. Compilation of Pro-
cedural Models. Proceeding of the 13th International Conference on 3D Web
Technology, 13:75–81, 2008.

[201] TorstenUllrich, Volker Settgast, Ulrich Krispel, Christoph Fünfzig, andDie-
terW. Fellner. Distance Calculation Between a Point and a Subdivision Sur-
face. In VMV, pages 161–170, 2007.

[202] Torsten Ullrich, Nelson Silva, Eva Eggeling, and Dieter W. Fellner. Genera-
tive Modeling and Numerical Optimization for Energy Efficient Buildings.
Proceedings of IEEE / OCG Energy Informatics, 2:123–128, 2013.

BIBLIOGRAPHY 193

[203] Gino van den Bergen. Efficient Collision Detection of Complex Deformable
Models Using AABB Trees. J. Graph. Tools, 2(4):1–13, January 1998.

[204] George Vaněček. BREP-INDEX: A Multidimensional Space Partitio-
ning Tree. International Journal of Computational Geometry & Applications,
01(03):243–261, 1991.

[205] Paul Viola andMichael Jones. Rapid Object Detection Using a Boosted Cas-
cade of Simple Features. In Computer Vision and Pattern Recognition, 2001.
CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on, vo-
lume 1, pages I–511. IEEE, 2001.

[206] Gerrit Voß, Johannes Behr, Dirk Reiners, and Marcus Roth. A Multi-thread
Safe Foundation for Scene Graphs and its Extension to Clusters. Proceedings
of the Fourth EurographicsWorkshop on Parallel Graphics andVisualization, 4:33–
37, 2002.

[207] Charlie C.L. Wang and Dinesh Manocha. Efficient Boundary Extraction of
BSP Solids Based on ClippingOperations. IEEE Transactions on Visualization
and Computer Graphics, 99(PrePrints), 2012.

[208] Kevin Weiler. Edge-Based Data Structures for Solid Modeling in Curved-
Surface Environments. IEEE Computer Graphics and Applications, 5(1):21–40,
January 1985.

[209] Eric Weisstein. MathWorld – A Wolfram Web Resource. Wolfram Research,
2009.

[210] TimWeyrich, JasonLawrence, Hendrik P.A. Lensch, SzymonRusinkiewicz,
and Todd Zickler. Principles of Appearance Acquisition and Representa-
tion. Found. Trends. Comput. Graph. Vis., 4(2):75–191, February 2009.

[211] Robin J Wilson. Introduction to Graph Theory. John Wiley & Sons, Inc., New
York, NY, USA, 1986.

[212] Eric Wing. Autodesk Revit Architecture 2016: No Experience Required. Sybex,
1st edition edition, 2015. ISBN-13: 978-1119059530.

[213] Peter Wonka, Michael Wimmer, Francois Sillion, and William Ribarsky. In-
stant Architecture. International Conference on Computer Graphics and Inte-
ractive Techniques, ACM SIGGRAPH 2003, 22(3):669–677, 2003.

[214] C.K. Yap. Robust Geometric Computation. In O’Rourke J. Goodman
J. E., editor,Handbook of Discrete and Computational Geometry, pages 927–952.
Chapman and Hall/CRC, 2004.

194 BIBLIOGRAPHY

[215] René Zmugg, Ulrich Krispel, Wolfgang Thaller, Sven Havemann, Martin
Pszeida, and Dieter W. Fellner. A New Approach for Interactive Procedu-
ral Modelling in Cultural Heritage. In Proceedings of the 40th Conference of
Computer Applications and Quantitative Methods in Archaeology, 2012. to ap-
pear.

[216] René Zmugg, Wolfgang Thaller, Ulrich Krispel, Johannes Edelsbrunner,
Sven Havemann, and Dieter W. Fellner. Deformation-Aware Split Gram-
mars for Architectural Models. Proceedings of the International Conference on
Cyberworlds, 11:4–11, 2013.

[217] René Zmugg, Wolfgang Thaller, Ulrich Krispel, Johannes Edelsbrunner,
Sven Havemann, and Dieter W. Fellner. Procedural Architecture using
Deformation-Aware Split Grammars. The Visual Computer, 12:1–11, 2013.

	Contents
	Introduction
	Generative Modeling
	Contribution
	Overview

	Background
	Introduction to the Generative Paradigm
	Languages and Grammars
	Shape Representations and Building Blocks
	Syntactic Pattern Recognition and Inverse Generative Modeling
	Building Information Modeling
	The Robustness Problem
	Summary

	Robust Generative Shape Composition using Convex Polyhedra
	Basic Structure
	Shapes: Half Spaces and Convex Polyhedra
	Rule based volumetric shape modeling
	Robust Evaluation
	Generative Architecture
	FaMoS - Interactive Façade modeler
	Summary

	Inverse Generative Modeling
	Inverse Generative Modeling of Building Façades
	Inverse Generative Modeling of Electrical Wiring in Building Interiors
	Summary

	Applications and Results
	Generative Forward Modeling of Building Facades
	Inverse Generative Modeling: The CITYFIT project
	Inverse Generative Modeling in the DURAARK Project
	GANDIS: Forward Modeling of Generative Buildings
	Forward Modeling of Constructive Roof Geometry
	GMLCompositor: A User Interface for Generative Forward Modeling
	Generative Forward Modeling of Parametric Houses for Driving Simulations
	Summary

	Discussion
	Shape Grammars on Convex Polyhedra
	Discussion on Inverse Generative Modeling

	Conclusion
	Contributions
	Outlook and Future Work

	Appendix
	Selected Publications
	All Publications
	Parsing Example
	Example Grammar for Electrical Installation Zones

	Bibliography

