TU

Grazm

Christoph Schinko, Dipl.-Ing.

Shape Processing for Content Generation

DOCTORAL THESIS

to achieve the university degree of

Doktor der technischen Wissenschaften

submitted to

Graz University of Technology
Supervisor

Dieter W. Fellner, Univ.-Prof. Dipl.-Ing. Dr.techn.

Institute of Computer Graphics and Knowledge Visualization

Graz, October 2017

AFFIDAVIT

| declare that | have authored this thesis independently, that | have not used other
than the declared sources/resources, and that | have explicitly indicated all material
which has been quoted either literally or by content from the sources used. The text

document uploaded to TUGRAZonline is identical to the present doctoral thesis.

Date Signature

Kurzfassung

In seiner Dissertation ,,Shape Processing for Content Generation“ behandelt
CHRISTOPH SCHINKO generative Modellierung, neuartige Anwendungen der in-
versen generativen Modellierung sowie Visualisierungssysteme. Diese Bereiche
werden als Bestandteile der Formverarbeitung betrachtet, daher richtet sich der
Aufbau der Dissertation danach.

Nach der Definition des Begriffs ,, Form* befasst sich der erste Teil der Disser-
tation mit verschiedenen Moglichkeiten der Formbeschreibung. Wahrend einige
Formbeschreibungen von abstrakter Natur sind, konnen andere direkt verwendet
werden — beispielsweise auf dem Gebiet der computergestiitzten geometrischen
Gestaltung. Das Thema ,Formmodellierung® (kurz: Modellierung) ist breit
gefidchert und umfasst die Modellierung mit Primitiven unter Zuhilfenahme
von 3D-Modellierungssoftware oder Szenenbeschreibungssprachen, semantische
Modellierung mit Metadaten sowie generative Modellierung mit doméanenspezi-
fischen Informationen.

Am Beispiel von Trauringen wird mit Hilfe der Generative Modeling Lan-
guage (GML), einer doménenspezifischen Sprache fiir die generative Model-
lierung, ein Design einer ganzen Produktfamilie erstellt. Bei der Auslieferung
des Designs iiber das Web sind unterschiedlichste Plattformen beteiligt. Dieser
Umstand lieferte die Idee zu einem innovativen Metamodellier-Ansatz namens
,Euclides“. Das innovative Konzept kombiniert die Unterstiitzung verschiedener
Zielplattformen mit einer anfangerfreundlichen Syntax. Damit wird die Grund-
lage fiir die plattformunabhéngige Generierung von generativen Bausteinen ge-
schaffen. Dieser Ansatz reduziert den Aufwand fiir die Implementierung und
Pflege generativer Beschreibungen fiir verschiedene Plattformen erheblich.

Aufbauend auf Arbeiten der inversen generativen Modellierung wird die
Analyse von digitalisierten Objekten hinsichtlich Verénderungen und Abnutzung
moglich. Das vorgestellte System kombiniert generative Beschreibungen mit re-
konstruierten Objekten und fiihrt einen Soll-Ist-Wert-Vergleich durch. Durch
Anwendung auf einen anderen Parametersatz der generativen Beschreibung
konnen somit neue Formen erzeugt werden. Mit diesem neuartigen Ansatz ist
die Gestaltung von Formen unter gleichzeitiger Verwendung hochfrequenter De-
tails sowie High-Level-Form-Parametern moglich.

Der letzte Schritt im Rahmen der Formverarbeitung befasst sich mit Visu-
alisierungssystemen zur Wahrnehmung und Interaktion mit Formen. In diesem
Zusammenhang wird eine neuartige Methode zur Projektion eines koharenten,
nahtlosen und perspektivisch korrigierten Bildes von einem bestimmten Gesichts-
punkt aus vorgestellt. Der Ansatz zeichnet sich vor allem durch seine Effizienz
aus. Der letzte Beitrag zu diesem Thema beschreibt eine optimierte, autostereo-
skopische Visualisierung auf Basis von Parallaxbarrieren.

Abstract

The thesis “Shape Processing for Content Generation” by CHRISTOPH SCHINKO
presents work on generative modeling, novel applications for inverse generative
modeling, and visualization systems. These areas are regarded as steps in the
context of shape processing, hence the thesis is structured that way.

After defining the term shape, the first part of the thesis is concerned with
shape descriptions. While some shape descriptions are of abstract nature, oth-
ers can be directly used, for example, in the field of computer aided geometric
design. The process of working with shape descriptions is called shape mod-
eling. This topic includes primitive modeling using 3D modeling software or
scene description languages, semantic modeling dealing with meta data, and
generative modeling using domain specific information.

An application for generative modeling in the context of wedding rings is
implemented using a domain specific language for generative modeling — the
Generative Modeling Language (GML). The multitude of involved platforms
(the GML is implemented in C++, the postfix notation of the language itself
is similar to Adobe Postscript, the application is targeted for the web) has in-
spired the idea to create an innovative meta-modeler approach called “Euclides”.
Its innovative concept of using a beginner-friendly syntax in combination with
translation back-ends for various different platforms presents a foundation for
the platform-independent creation of generative building blocks. This approach
significantly reduces the effort for implementing and maintaining generative de-
scription for different platforms.

Building up on previous work on finding the best generative description
of one or several given instances of an object class, an application to analyze
digitized objects in terms of changes and damages is presented. The system
automatically combines generative descriptions with reconstructed objects and
performs a nominal/actual value comparison. By applying the variances of the
reconstructed objects to a different parameter set of the generative description,
new shapes can be created. With this novel approach, the design of shapes
using both low-level details and high-level shape parameters is possible.

The last step in the context of shape processing is concerned with visualiza-
tion systems for humans to perceive and interact with shapes. In this context, a
novel method to project a coherent, seamless and perspectively corrected image
from one particular viewpoint using an arbitrary number of projectors is pre-
sented. The approach distinguishes itself by being quick and efficient. The last
contribution to this topic is describing an optimized stereoscopic display based
on parallax barriers for a driving simulator.

Acknowledgments

First of all, I would like to use the opportunity and express thanks to my super-
visor Prof. Dr. DIETER W. FELLNER and my colleagues at Fraunhofer Austria
and the Institute of Computer Graphics and Knowledge Visualization at Graz
University of Technology. Especially, I would like to thank TORSTEN ULLRICH
for providing valuable feedback during many discussions around the contents
of this thesis. His ideas had a significant impact on the direction of my work.
Furthermore, I would like to thank all the coauthors of the scientific articles
published in the context of our work.

Finishing this thesis would not have been possible without the support, en-
couragement and quiet patience of my beloved wife ANNEMARIE. She often had
to endure my absence, especially during her pregnancy.

This is for ANNEMARIE and our daughter SOPHIA.

TTD!

Publications

Parts of this thesis have been created with the support of the Austrian Research
Promotion Agency, the Forschungsférderungsgesellschaft (FFG), in the context
of the research project AEDA (K-Projekt “Advanced Engineering Design Au-

tomation”).

The work in this thesis has been published in the following articles and con-
ference contributions:

[SVP+17]

[KSU16]

[SPH*16]

[KEL*15¢]

[KSU15]

[KSH*15]

Christoph Schinko, Thomas Vosgien, Thorsten Prante, Tobias
Schreck, and Torsten Ullrich. Search and Retrieval in CAD
Databases — A User-Centric State-of-the-Art Overview. Proceed-
ings of the 12th International Joint Conference on Computer Vi-
sion, Imaging and Computer Graphics Theory and Applications
(GRAPP), 12:306-313, 2017.

Ulrich Krispel, Christoph Schinko, and Torsten Ullrich. A Sur-
vey of Algorithmic Shapes. Remote Sensed Data and Processing
Methodologies for 3D Virtual Reconstruction and Visualization of
Complex Architectures, 219:498-529, 2016.

Christoph Schinko, Markus Peer, Daniel Hammer, Matthias
Pirstinger, Cornelia Lex, Ioana Koglbauer, Arno Fichberger,
Jirgen Holzinger, Eva Eggeling, Dieter W. Fellner, and Torsten
Ullrich. Building a Driving Simulator with Parallax Barrier Dis-
plays. Proceedings of the 11th International Joint Conference on
Computer Vision, Imaging and Computer Graphics Theory and Ap-
plications (GRAPP), 11:283-291 2016.

Ioana Koglbauer, Arno Eichberger, Cornelia Lex, Jiirgen Holzinger,
Christoph Schinko, and Torsten Ullrich. Evaluation of driving ma-
neuvers in reality and in an autostereoscopic 3D simulation with
integrated eye-tracking. Proceedings of the Human Factors and Er-
gonomics Society Europe Chapter 2015 Annual Conference, 2015.

Ulrich Krispel, Christoph Schinko, and Torsten Ullrich. A Survey
of Algorithmic Shapes. Remote Sensing, 7:12763-12792, 2015.

Hyosun Kim, Christoph Schinko, Sven Havemann, Ivan Redi, An-
drea Redi, and Dieter W. Fellner. Tiled Projection Onto Deform-
ing Screens. Computer Graphics and Visual Computing (CGVC),
1:35-42 2015.

[KEL*+15a]

[SKU15]

[KEL*15b)]

[SKUF15]

[SSSS14]

[SBEF14]

[SUF14]

[KSU14]

[USSF13]

[US13]

Toana Koglbauer, Arno Eichberger, Cornelia Lex, Norbert Bliem,
Anton Sternat, Jiirgen Holzinger, Christoph Schinko, and Mario
Battel. Bewertung von Fahrerassistenzsystemen von nicht pro-
fessionellen Fahrerinnen und Fahrern im Realversuch. Human-
wissenschaftliche Beitrge zur Verkehrssicherheit und Okologie des
Verkehrs, mehr sicheres Verhalten im Strassenverkehr, 5:86-102,
2015.

Christoph Schinko, Ulrich Krispel, and Torsten Ullrich. Know
the Rules - Tutorial on Procedural Modeling. Proceedings of the
10th International Joint Conference on Computer Vision, Imaging
and Computer Graphics Theory and Applications (GRAPP Tuto-
rial Notes), 10:27ff, 2015.

Ioana Koglbauer, Arno Eichberger, Cornelia Lex, Jiirgen Holzinger,
Christoph Schinko, and Torsten Ullrich. A Model for Subjective
Evaluation of Automated Vehicle Control. Proceedings of the In-
ternational Symposium on Aviation Psychology, 18:PW12, 2015.

Christoph Schinko, Ulrich Krispel, Torsten Ullrich, and Dieter W.
Fellner. Built by Algorithms — State of the Art Report on Procedu-
ral Modeling. Proceedings of the 6th International Workshop on 8D

Virtual Reconstruction and Visualization of Complex Architectures
(3D-ARCH), 6:469-479, 2015.

Helmut Schrom-Feiertag, Christoph Schinko, Volker Settgast, and
Stefan Seer. Evaluation of Guidance Systems in Public Infrastruc-
tures Using Eye Tracking in an Immersive Virtual Environment.
Proceedings of the 2nd International Workshop on Eye Tracking
for Spatial Research co-located with the Fighth International Con-
ference on Geographic Information Science, 2:62—66, 2014.

Christoph Schinko, René Berndt, Eva Eggeling, and Dieter W. Fell-
ner. A Scalable Rendering Framework for Generative 3D Content.
Proceedings of the 19th International ACM Conference on 3D Web
Technologies, 19:81-87, 2014.

Christoph Schinko, Torsten Ullrich, and Dieter W. Fellner. Model-
ing with High-Level Descriptions and Low-Level Details. Proceed-
ings of the 8th International Conference on Computer Graphics,
Visualization, Computer Vision and Image Processing, 8:328-332,

2014.

Ulrich Krispel, Christoph Schinko, and Torsten Ullrich. The Rules
Behind — Tutorial on Generative Modeling. Proceedings of the 12th
Symposium on Geometry Processing / Graduate School, 12:2:1-2:49
2014.

Torsten Ullrich, Christoph Schinko, Thomas Schiffer, and Dieter W.
Fellner. Procedural Descriptions for Analyzing Digitized Artifacts.
Applied Geomatics, 5:185-192, 2013.

Torsten Ullrich and Christoph Schinko. Bibliotheksdienste und se-
mantische Auszeichnungen fiir digitale Artefakte. Kulturelles Erbe
in der Cloud — Fachtagung “Digitale Bibliotheken”, 4:68ff, 2013.

[KSHF13)]

[SUF12]

[BSK*12]

[SSUF11b)]

[SUF11]

[SSUF11a]

[SUSF11]

[SSUF10b)]

[SSUF10a]

[USF10]

Hyosun Kim, Christoph Schinko, Sven Havemann, and Dieter W.
Fellner. Tiled Projection onto Bent Screens using Multi-Projectors.
Proceedings of the 7th IADIS International Conference on Com-
puter Graphics, Visualization, Computer Vision and Image Pro-
cessing, 7:67-74, 2013.

Christoph Schinko, Torsten Ullrich, and Dieter W. Fellner. Mini-
mally Invasive Interpreter Construction — How to reuse a compiler
to build an interpreter. Proceedings of the 3rd International Con-
ference on Computational Logics, Algebras, Programming, Tools,
and Benchmarking (Computation Tools), 3:38-44, 2012.

René Berndt, Christoph Schinko, Ulrich Krispel, Volker Settgast,
Sven Havemann, Eva Eggeling, and Dieter W. Fellner. Ring’s
Anatomy — Parametric Design of Wedding Rings. In Proceedings of
the 4th International Conference on Creative Content Technologies,
4:72-78, 2012.

Christoph Schinko, Martin Strobl, Torsten Ullrich, and Dieter W.
Fellner. Scripting Technology for Generative Modeling. Interna-
tional Journal On Advances in Software, 4:308-326, 2011.
Christoph Schinko, Torsten Ullrich, and Dieter W. Fellner. Simple
and Efficient Normal Encoding with Error Bounds. Proceedings of
Theory and Practice of Computer Graphics, 29:63-66, 2011.
Thomas Schiffer, Christoph Schinko, Torsten Ullrich, and Dieter W.
Fellner. Real-World Geometry and Generative Knowledge. The
European Research Consortium for Informatics and Mathematics
(ERCIM) News, 86:15-16, 2011.

Christoph Schinko, Torsten Ullrich, Thomas Schiffer, and Dieter W.
Fellner. Variance Analysis and Comparison in Computer-Aided De-
sign. Proceedings of the 4th International Workshop on 3D Virtual
Reconstruction and Visualization of Complex Architectures (3D-
ARCH), 4:21-25, 2011.

Martin Strobl, Christoph Schinko, Torsten Ullrich, and Dieter W.
Fellner. Euclides — A JavaScript to PostScript Translator. Proceed-
ings of the 1st International Conference on Computational Logics,
Algebras, Programming, Tools, and Benchmarking (Computation
Tools), 1:14-21, 2010.

Christoph Schinko, Martin Strobl, Torsten Ullrich, and Dieter W.
Fellner. Modeling Procedural Knowledge — A Generative Modeler
for Cultural Heritage. Proceedings of the 3rd International Euro-
Mediterranean Conference, (EuroMed), 6436:153-165, 2010.
Torsten Ullrich, Christoph Schinko, and Dieter W. Fellner. Pro-
cedural Modeling in Theory and Practice. Poster Proceedings of
the 18th WSCG International Conference on Computer Graphics,
Visualization and Computer Vision, 18:5-8, 2010.

Contents

1 Introduction

1.1 Digital Technology
1.1.1 3D Content Processing
1.2 Generative Modeling L oL oL
1.2.1 Mass Customization of Products
1.3 Visualization
Note: DAVE e
1.3.1 Virtual Reality
1.4 Open Problems and Contributions
1.5 Overview L

Shapes
2.1 Definition and Perception
2.2 Textual Shape Descriptions
Note: Search & Retrieval in CAD Databases
2.3 Image-based Shape Descriptions
2.4 Surface-Based Shape Descriptions
2.4.1 Point Sets
2.4.2 Polygonal Faces.
2.4.3 Parametric Surface Representations
Note: Parametric and Geometric Continuity
2.4.4 Implicit Surface Representations
2.5 Volumetric Shape Descriptions
251 Voxels L
2.5.2 Convex Polytopes
2.5.3 Constructive Solid Geometry
2.6 Algorithmic Shape Descriptions
2.6.1 Characterization o0
2.7 SUmMmary e e e

Modeling

3.1 Primitive Shape Modeling
3.1.1 3D Modeling Software
Note: Data Acquisition and Shape Reconstruction
3.1.2 Scene Description Languages

3.2 Semantic Modeling L

3.3 Generative Modeling oL oL
3.3.1 Ruler and Compass,

0O~ O b WwWwWwNn N -

10
11
12
13
13
14
15
16
21
22
22
23
24
27
28
29

3.3.2 Architecture o
3.3.3 Civil Engineering L.
3.34 Nature.
3.3.5 Entertainment, .
3.4 Generative Modeling Language (GML)
3.4.1 Language Elements
3.4.2 Shape Modeling
3.4.3 Application: Wedding Rings
Note: Displacement Mapping
3.4.4 Application: Serverside Rendering for Generative Content
Note: Hybrid Rendering v
3.5 Summary e

Meta Modeler: Euclides

4.1 Overview
4.2 Architecture
Note: Transpiler i i e
4.3 Language Elements L 0L
4.4 Target Platforms o oo
4.4.1 Documentation Target
4.42 GMLtarget
443 Javatargeto
4.4.4 HTML5 & WebGL target
4.4.5 Differential Java target,
4.5 Provided Libraries 0000
4.6 IDE
4.7 Interpreter.
4.7.1 Compilers and Interpreters
4.7.2 Interpreter Design
4.7.3 Implementation Details
4.8 Exampleso
4.8.1 Amphitheatero
4.8.2 Cathedral Construction Kit
4.8.3 Lorenz Attractor
4.9 SUMmMAaryo e
Inverse Modeling
5.1 Examples
5.1.1 Parsing Shape Grammars
5.1.2 Model Synthesis oL
5.1.3 Inverse Procedural Modeling of Trees
5.1.4 Parameter Fitting and Shape Recognition
5.2 Real-World Comparison
5.2.1 Architecture o
5.2.2 Registration oo o
523 Analysis
Note: Simple and Efficient Normal Encoding
5.2.4 Visualization 0L,
525 Examples

5.3 Shape Modeling

67
68
68
70
(0]
(0]
76
(s
91
95
97
99
101
102
102
103
103
104
104
106
107
108

5.4 Summary e e 127

6 Visualization 129
6.1 Non-Planar Projections 130
6.1.1 Exhibition Setup 131
6.1.2 Reconfigurable Projection Geometry 132
6.1.3 User Interaction 136
6.1.4 Test Setup and Results 137

6.2 Parallax Barrier Displays, 138
6.2.1 Driving Simulator 0oL 140

6.3 SUMMAry e e e 150
7 Conclusion & Future Work 151
7.1 Generative Modeling L o 152
7.2 Inverse Modeling o 153
7.3 Visualization Technologies 153
7.4 Future Work 154
7.4.1 Generative Modeling 0oL 155
7.4.2 Inverse Modeling 155
7.4.3 Visualization Technologies 156
Appendices 159
A Euclides Language Elements 161
Al Comments oL 162
A2 Statements 162
A.2.1 Empty Statement L 163
A.2.2 Block Statement 163
A.2.3 Function Declaration Statement 164
A.2.4 Variable Declaration Statement 165
A.2.5 Expression Statement 165
A2.6 IfStatement 165
A.2.7 For Statement 166
A.2.8 For-In Statement 167
A.2.9 While Statement 167
A.2.10 Do-While Statement 168
A.2.11 Switch Statement 168
A.2.12 Continue Statement 169
A.2.13 Break Statement L. 170
A.2.14 Return Statement L. 170
A.2.15 Throw Statement 171
A.2.16 Try Statement 172
A.2.17 Annotation Statement L. 172
A.2.18 Native Code Statement 173

A3 Expressions 173
A.3.1 Unary Operators v 173
A.3.2 Binary Operators 174
A.3.3 Tertiary Operators 176
A3.4 Identifiers 176

A.3.5 This Reference 176

A3.6
A3.7
A38
A39

Constants 177
Arrayso 177
Objects o 177
Functions 178

Chapter 1

Introduction

Digitally represented 3D content is used in a wide variety of fields. In the movie
industry, digital characters and objects are used for the creation of motion pic-
tures. 3D content is used as assets for games by the video game industry. There
are also numerous applications in the architectural and engineering commu-
nity to visualize buildings or construct components using 3D printers or CNC
machines.

The many applications for 3D content underline the importance of the need
to answer questions in the context of its processing. After an overview of the
involved steps, the following chapter introduces the idea behind generative mod-
eling and its connection to the current trend towards product mass customiza-
tion. Together with a brief introduction to the topic of visualization and virtual
reality, these two aspects of 3D content processing form the thematic framework
for the contributions presented within this thesis.

Contents

1.1 Digital Technology
1.2 Generative Modeling oL oL
1.3 Visualization
1.4 Open Problems and Contributions
1.5 Overview oo

0 N b W

2 CHAPTER 1. INTRODUCTION

1.1 Digital Technology

Digital technology has changed modern society in many different ways. It has
entered into every aspect of our daily lives. Smartphones are a good example
to illustrate this development. They can be used to communicate with other
people, access the internet, take photographs, track our daily fitness activities,
navigate us from one place to another, play games, watch videos, just to name a
few tasks. While we used to have different ways to process some of these tasks,
many of them only emerged because of the new possibilities. As a side effect,
not only smartphones, but all kinds of different devices, sensors and activities
create data. Since a lot of our activities are directly related to — if not depending
on — the internet, we have created a digital footprint of our lives online.

The term data is closely related to the terms information and knowledge.
While data is just a set of values, it becomes information by interpretation.
Knowledge, on the other hand, can be seen as experience derived from dealing
with information on a specific subject. The data created by (or through) our
activities can be associated with a context, and without focusing on aspects like
privacy, security, or ownership, offers an immense value, when processed. Our
online browsing behavior can be used to identify users, for advertising purposes,
to improve the quality of search results, or even by intelligence agencies to
identify potential security threats.

A lot of this data is created by different kinds of sensors in our digital devices.
The desire to preserve special moments in live is being addressed by sensors try-
ing to capture reality. Sensors capturing 2D information like images or videos
have been used before the advent of digital technology and have not lost their
importance. On the contrary, they are more and more used (and also accom-
panied by new sensors) to make devices aware of their surroundings. Tango!
from Google is an augmented reality computing platform using computer vision
to enable new user experiences for mobile devices. Apart from augmented real-
ity, environmental recognition or physical space measurements, this technology
can be used to create a 3D representation of our surroundings (also called 3D
reconstruction).

But the devices are not only capable of 3D reconstructing our surroundings,
they are also powerful enough to create immersive virtual experiences. Sam-
sung Gear VR? is a mobile virtual reality headset using smartphones as display
and processing unit. Some head-mounted devices, like Microsoft HoloLens?,
even combine both, awareness of our surroundings and virtual reality, to create
mixed reality experiences. Many applications will benefit from virtual and mixed
reality, like indoor and outdoor navigation, support for maintenance tasks, or
product configurators.

1.1.1 3D Content Processing

Especially the developments in the fields of virtual and mixed reality emphasize
the importance of 3D content and how to answer questions in the context of its
processing. This task resembles a pipeline and is concerned with representation,
modeling, delivery and visualization.

Lhttps://developers.google.com /tango/
2https://www.samsung.com/global /galaxy/gear-vr/
3http://hololens.com/

1.2. GENERATIVE MODELING 3

Depending on context and use, there are different ways to represent 3D content.
However, the choice of representation has a direct effect on possible modeling
paradigms. Modeling operations heavily depend on their underlying represen-
tation. While conversions between many representations are possible (and nec-
essary), they do not always yield satisfying results. Thus, many problems can
be avoided by choosing a suitable representation first.

After modeling, 3D content has to be prepared for delivery to and visual-
ization on the target platform. Encoding and decoding of 3D content needs to
be adapted to possible limitations of the platform, like available bandwidth and
hardware resources. The size of a model — both, spatially and in file size — plays
an important role regardless of the platform. Typically, a trade-off between file
size and computational effort has to be found, keeping in mind that graphics
hardware expects 3D content to be available in the form of triangles.

At this point, it is important to emphasize, that this processing pipeline
(henceforth called shape processing pipeline) establishes a thematic framework
for all contributions presented in this thesis — it does not claim to be compre-
hensive.

1.2 Generative Modeling

While describing 3D content on the geometric level is a problem that has been
researched reasonably well, it is still an open question how to describe its struc-
ture on a higher, more abstract level [LZQO06]. In that sense, generative modeling
offers a possibility to represent 3D content with a sequence of generating oper-
ations, and not just with a list of low-level geometric primitives, like triangles
or surface patches. Large scale models and scenes can therefore be represented
and delivered efficiently.

Generative modeling resembles encoding information in some form of pro-
gramming language. Depending on the specific task, special purpose languages
and tools are used. Such languages and tools are good at solving narrowly de-
fined, domain-specific problems (e.g., procedural architecture [LWWO8], or the
creation of natural branching structures [LD98]). However, their embedding
into larger systems can be challenging due to dependencies to scripting and
rendering engines.

A major benefit of generative modeling techniques is, that they make com-
plex 3D content manageable by allowing to identify its inherent high-level pa-
rameters. This property is especially important in the context of product mass
customization.

1.2.1 Mass Customization of Products

The current trend towards computerization in manufacturing originates from a
project of the German government called Industrie 4.0 [Bunl7]. A main focus
is to create smart factories consisting of cyber-physical systems, the internet
of things and cloud computing. The idea behind cyber-physical systems is to
virtually represent physical processes to allow automatic controlling and mon-
itoring. Creating virtual representations has only become possible by fitting
small computers and sensors into objects, thus creating the internet of things.
The potential mass of data created by an ever growing number of smart devices

4 CHAPTER 1. INTRODUCTION

can be coped with cloud computing approaches. Not only do they provide the
power and flexibility to process data, but they also allow internal and external
services to be offered in the context of the value chain.

At the same time, a trend towards mass customization of products can be
observed, for example, polyethylene terephthalate (PET) bottles with individual
motifs, or cars that can be configured to the level of choosing color and material
of buttons on the dashboard. While certain products, like wedding rings, have
always been very individual, factories designed for mass production of products
face a problem. So far, batch sizes of at least a few thousand identical products
still allow for manual scheduling and intervention. With the trend towards batch
size one scenarios in production, this is no longer feasible. Smart factories are
becoming a key element for this development.

While manufacturers are adapting to this trend, the possibilities for cus-
tomers to configure or design products also play an important role. Since a
huge amount of configuration options cannot be communicated satisfactorily in
a brochure, other means of representation have to be found. The advent of na-
tive 3D support for web browsers laid the technical foundation for the creation
of online 3D product configurators.

A generative description of a product offers the advantage to not only cover
possible configuration options, but also allows to change its shape by altering
high-level parameters. Thus, it is possible to steer the customization process
into meaningful directions, while still offering creative freedom. In contrast
to more primitive shape manipulations, this paradigm enables the designer to
ensure important properties like manufacturability or meaningfulness. A simple
example illustrates these properties: a configurator for channeled sheet. The
configurator allows the sheet to be resized to individual extent. For this purpose,
the resize operation has to take into account, that the pattern of the sheet
needs to retain its size. A simple scaling operation is not sufficient — the resize
operation needs to be more “intelligent”. These aspects can be covered with
generative modeling techniques.

The generative encoding of 3D content enables the representation of whole
product families. Single instances are evaluated with a specific set of parameters.
This flexibility comes at the cost of more computational effort for visualization.

1.3 Visualization

Visualization, in general, is concerned with creating images to transport abstract
and concrete ideas. It has been used to present information in the form of
drawings and maps for over thousand years. An early example of a visualization
is the map by CHARLES JOSEPH MINARD (see Figure 1.1).

The map is representing the successive losses in men of the French army
in their Russian campaign (1812-1813). The illustration depicts the size of the
army departing at the Polish-Russian border up until their retreat. Additional
information about distance and direction traveled, temperatures, as well as lo-
cation is incorporated into the map. Due to the fact that the map incorporates
a lot of data while still being easily comprehensible, it is regarded as a good
example of information visualization.

Apart from the invention of the central perspective in the Renaissance pe-
riod, the advent of computer graphics marked an important development in the

1.3. VISUALIZATION)

Carle Figuralive aes poes rasing o bois 3 0 Vi s oy o compegue o Russie 18121813,
Deessie. . Mimazd, T enérall 2es Towts o1 Chanssies eon. o
A eyt Gl 2l A i, Ao 20 Mlovordbee. 1369,

will

4MOSCOU
%

s s] 3 % 5
§ g & - | P
% st % (/
[okon
i ot A | ‘
‘ N TABLEAU CRAPHIQUE dela température en degrés d‘l thermamétre de Réaunur au dessous A‘k 260
1 I [T [e =
M-t [| e — T
,,,,,,, B 2 oy

i 7 R 1 TR SO IR T B R Bl

Figure 1.1: The figurative map of the French Russian campaign (1812-1813)
shows the successive losses in men of the French army.

(Source: CHARLES J. MINARD, 1869
http://en.wikipedia.org/wiki/File:Minard.png)

field of visualization. Together with the development of moving images (ani-
mation), it was now possible to exploit new ways of digitally producing and
interacting with images.

Depending on the application, there are two main paradigms for creating
images: the interactive creation in real-time (i.e., within a tight timeframe),
and the creation of animations. The difference is that a user can control an in-
teractive visualization, whereas an animation is a sequence of already produced
images (or just a single image). The tight timeframe for interactive visualiza-
tions limits the degree of realism compared to animations. This is due to the
fact that all images need to be created (rendered) within this timeframe.
Generally, two techniques for creating images are used in computer graphics,
although a distinction between ray casting and ray tracing can be made (ray
casting algorithms never spawn secondary rays [Wei07]):

e Rasterization is the task of converting 3D content (or, more general,
vector information) into (raster) images by geometrical projection onto
an image plane.

e Ray tracing is a technique to create an image by tracing the path (re-
garded as a ray) of light through pixels in an image plane while taking
into account the physical interaction with the 3D content.

Ray tracing is capable of producing a very high degree of realism, but at the
cost of high computational effort, making it best suited for animation purposes.
For interactive visualizations, rasterization techniques offer the necessary per-
formance. The creation of images, whether it be interactive or not, is the pre-
requisite for presenting them to the user. This is typically done using displays or
projection systems. Depending on the area of application, these techniques can
be used to create a broad range of experiences using simple computer displays,
or complex virtual reality installations.

http://en.wikipedia.org/wiki/File:Minard.png

DAVE

In an effort to reduce the costs
of cave automatic virtual environ-
ments (CAVE) installations, the In-
stitute of Computer Graphics and
Knowledge Visualization (CGV) at
the University of Technology in
Graz, Austria built the DAVE.
DAVE stands for definitely af-
fordable virtual environment. It
achieves its goal of being affordable
by mostly using standard hardware
components compared to other sys-
tems. MARCEL LANCELLE and
VOLKER SETTGAST thoroughly de-
scribe various aspects of the DAVE
in their PhD theses [Lan11] [Set13].
The DAVE itself resembles the
shape of a box with 3.30m wide
walls consisting of three back-
projected screens (left, right, front),
and one front-projected screen at
the bottom (see Figure 1.2).

Large mirrors are used to fold
the light paths from the projec-
tors to the screens to minimize the
required room size. Eight com-
puters are connected to four pro-

jectors responsible for the active
stereo projection. An optical sys-
tem with four cameras is respon-
sible for tracking a single user in-
side the DAVE. Due to the fact
that standard hardware is used for
computers and graphics cards, the
only relatively expensive parts of
the DAVE are its projectors.

Figure 1.2: The DAVE in Graz re-
sembles the shape of a box with
3.30m wide walls and consists of
four projection walls (left, right,

front, bottom) and four active
stereo projectors being driven by
eight computers.

1.3.1 Virtual Reality

The term virtual reality stands for a technology used to digitally replicate a real
environment for a user to interact with. Apart from realistic renderings, special-
ized screens, projectors, devices like headsets, or even large CAVE installations
are used to create immersive, interactive experiences. JASON JERALD [Jerl6]
defines virtual reality as “ [...] a computer-generated digital environment that
can be experienced and interacted with as if that environment were real.” How-
ever, virtual reality is not limited to visual experiences, but can include audio,
haptic, and, potentially also, olfactory feedback. A general distinction can be
made between (more or less mobile) head-mounted devices and static systems
using displays or projectors surrounding the user. For head-mounted devices,
correct rotation of the virtual camera is ensured using motion sensors, or an ex-
ternal tracking system. The user can experience a full 360 degree view or even
walk around in the virtual world. Head-mounted device are cheaper, smaller,
and mobile in contrast to static systems, like CAVE installations, where stereo-
scopic projection and head tracking are used to display the correct perspective
per eye. CAVE systems are multi-user friendly and generally offer a more im-
mersive experience due to the fact that users can see themselves.

1.4. OPEN PROBLEMS AND CONTRIBUTIONS 7

For a long time, virtual reality used to only be possible through CAVE instal-
lations and was therefore more of a niche product due to high costs and space
requirements. As mentioned earlier, this changed rapidly with the advent of
mobile virtual reality headsets. In general, advances in displays and projection
systems are the driving force for new visualization techniques tailored towards
specific use cases.

1.4 Open Problems and Contributions

There are still many open questions in the context of the shape processing
pipeline. Choosing a proper representation for 3D content heavily depends
on the use case. However, the majority of shape representations are tailored
towards describing a shape at the geometric level and do not incorporate its
inherent structure. This is especially important in the context of manufactur-
ing and product configuration, where an effective representation of a design
space of a product together with its numerous configuration options can be of
great benefit. While generative aspects of a product are starting to be exploited
by manufacturers during the construction process, they need to also be con-
sequently implemented for customers using configurators. Different tools and
platforms are typically used at these two stages of the product cycle to represent
similar (if not the same) aspects. The effort to implement and maintain several
generative descriptions is significant.

To address this problem, a novel meta-modeling approach called Fuclides
is presented within this thesis. It addresses the problem of implementing and
maintaining generative descriptions on different platforms. From a single im-
plementation of all necessary construction rules, Euclides generates executable
code for a variety of different target platforms. Its high-level representation of
the input code allows to preserve the level of abstraction when translating to
a target platform. The system creates target code with a clear correspondence
to the input code, thus simplifying debugging and reuse. Additionally, its easy-
to-use language based on JavaScript helps lowering the inhibition threshold for
non-computer experts to use this system.

When generative descriptions are used to resemble real-world objects, dif-
ferences between the generative description and the real-world object can be a
result of a lack of detail in the generative description. These deficiencies are
addressed within this thesis by introducing a method to offset possible fine de-
tails of a real-world object onto the generative description. This technique can
be used to design shapes using both low-level details and high-level shape pa-
rameters at the same time. The additional template transfer step enables the
generation of new shapes by altering the parameters of the generative descrip-
tion.

The shape processing pipeline is also concerned with proper visualization
of 3D content tailored towards specific use cases. An abstract visualization
of artistic nature has different requirements than a realistic visualization for a
driving simulator. This not only has an impact on the choice of shape repre-
sentation, but also on the visualization hardware. Covering the artistic aspect
of visualization (not necessarily limited to 3D content), a system to seamlessly
project onto non-planar surfaces is presented within this thesis. It is used to
create dynamic, reconfigurable spaces influencing the behavior of groups and in-

8 CHAPTER 1. INTRODUCTION

dividuals. In contrast, this thesis also presents an immersive, autostereoscopic
visualization system for a driving simulator. Both systems heavily differ in their
requirements showing the diverse application fields for visualization.

1.5 Overview

This thesis is structured following the shape processing pipeline. It is divided
into seven main parts. The next chapter is focused on shape representations.
It is followed by a chapter on different modeling paradigms and delivery of
generative content. The meta-modeler framework Euclides is presented in the
fourth chapter. Inverse modeling and techniques for modeling with low-level
details and high-level shape parameters are the main topic of the fifth chapter.
The sixth chapter presents a system for non-planar, tiled projections as well
as an autostereoscopic visualization system for a driving simulator. The last
chapter is concerned with future work and concludes this thesis.

Furthermore, grey boxes (so-called Notes) can be found throughout the the-
sis. The rationale behind using these special areas is to give additional infor-
mation related to the content they are embedded in. Incorporating these areas
into the text would have required additional sections, or even chapters resulting
in an unnecessary bloating of the thesis.

Chapter 2

Shapes

After giving a general definition of the term shape, this chapter focuses on pro-
viding a structured introduction to different ways of describing and represent-
ing shapes. The intent behind this chapter is to point out differences between
lower-level descriptions relying on more geometric primitives, and higher-level
descriptions being of more abstract nature.

Starting with two brief sections about textual and image-based descriptions,
the following section gives a more detailed overview of point sets, polygonal
faces, as well as parametric and implicit surface representations. The section
about volumetric shape descriptions is concerned with voxels, convex polytopes
and constructive solid geometry. Finally, algorithmic shape descriptions are
introduced and characterized.

The following sections do not claim to be an exhaustive collection of possible
shape descriptions, but a sufficiently complete set for all further considerations.

Contents

2.1 Definition and Perception 10
2.2 Textual Shape Descriptions 10
2.3 Image-based Shape Descriptions 12
2.4 Surface-Based Shape Descriptions 13
2.5 Volumetric Shape Descriptions 22
2.6 Algorithmic Shape Descriptions 27
2.7 SUmmary o. e e e e e e 29

10 CHAPTER 2. SHAPES

2.1 Definition and Perception

“A shape is a limited arrangement of straight lines defined in a Cartesian coordi-
nate system with real axes and an associated Euclidean metric.” This definition
of shape has been used by GEORGE STINY in his work on shape and shape gram-
mars [Sti80]. While this definition may be sufficient enough for working with
two-dimensional shapes and shape grammars, it lacks a generic nature to be
applied to more complex shapes in higher dimensions. In this thesis the term
shape is defined by a more general formulation, thus including a larger selection
of geometric primitives like Bézier curves, triangles, subdivision surfaces:

Definition A shape is the particular physical form or appearance of an object.

This definition is following the more general definition of shape from:
http://dictionary.cambridge.org/

Many different ways of shape descriptions are available, tailored to the require-
ments in their respective areas of research. In the context of Computer-Aided
Design (CAD), the model description of a digital counterpart of a real object is
called a shape description.

At this point, it is important to emphasize that there are differences in the
process of shape perception between human beings and computers. On the one
hand, there are sensory differences. In their natural surrounding, human beings
can rely on their five senses to perceive a shape. Consequently, it is often a
combination of these senses that makes up the sensation of a shape. While
computers can be fitted with many different sensors, adding up to far more
different senses compared to human beings, it usually boils down to a specific
sensor being used to perceive a shape. The reason for that circumstance is
directly related to the second aspect in this context — the reasoning itself. The
human brain is yet to find a matching rival in the world of computer science.
While computers are programmed to outperform the human brain in various,
but rather specific tasks like number crunching, the computer is no thinking
machine. Interdisciplinary developments in all fields of computer science over
the recent years bring us ever closer to creating the thinking machine. However,
especially for a computer, the task of shape classification heavily depends on the
underlying description. Even after successfully classifying shapes, a computer
is yet not aware of the meaning of shape, as discussed by SVEN HAVEMANN,
ToORSTEN ULLRICH and DIETER W. FELLNER in their work [HUF12]. For the
description of shape, it is important to be aware of these differences, even if
shape classification is not in the context of this thesis.

2.2 Textual Shape Descriptions

In dictionaries, shapes are described by words forming a textual definition:

ring a typically circular band of metal or other durable material, especially one
of gold or other precious metal, often set with gems, for wearing on the
finger as an ornament, a token of betrothal or marriage, etc.

http://dictionary.reference.com

http://dictionary.cambridge.org/
http://dictionary.reference.com

Search & Retrieval in CAD Databases

It is an algorithmic challenge to
perform search and retrieval tasks
on different shape respresentations.
The various approaches to tackle
this problem stem from differ-
ent research domains (e.g., ge-
ometry processing, computer vi-
sion, pattern matching, knowl-
edge management). In the arti-
cle “Search & Retrieval in CAD
Databases — A User-Centric State-
of-the-Art Overview” [SVPT17] by
CHRISTOPH SCHINKO et al., we
present a state-of-the-art overview
on shape, information and design
retrieval systems in the context of
CAD engineering.

Unlike retrieval systems for
multimedia databases, 3D shape
repositories in an engineering
context are facing several chal-
lenges [JKIRO6]:

1. Engineering shapes are char-
acterized by features such as
holes, tunnels, cavities, etc.
The relative position of these
features are more important
for a part’s functionality than
its overall shape.

2. The classification of parts in
the engineering context has a
low level of abstraction; e.g.
a category “airplanes” is not
very reasonable in the con-
text of CAD, as an airplane
would be considered as an as-
sembly of many much smaller
objects.

3. In the CAD context, parts are
often classified according to
their functionality and not ac-
cording to their shape.

The classification of shape and in-
formation retrieval systems from a
CAD application user’s point of

view consists of four categories in-
specting different aspects of a digi-
tal library application:

e Data and meta data rep-
resentation The first cat-
egory analyzes the design
retrieval approaches accord-
ing to supported input data.
This criterion does not ad-
dress file formats but the ge-
ometric entities (point clouds,
polygonal meshes, ...) and
the non-geometric entities
(annotations, material prop-
erties, ...) which can be han-
dled natively without conver-
sion.

e Queries and results This
category is concerned with
the types of queries that are
supported (by example, by an
image, by a sketch, ...), as
well as the possibility to per-
form subpart matching.

e Technology readiness le-
vel The availability level
of the presented approach
(only article published, ref-
erence implementation avail-
able, ...), as well as how an
available implementation can
be integrated into an existing
CAD environment is covered
by this category.

e Technology The last cat-
egory is concerned with an
analysis of the search method
and its performance. A pri-
mary search method uses
the (geometric and non-
geometric) content. A sec-
ondary search method relies
on a primary search method
and uses additional sources
not contained in the content.

12 CHAPTER 2. SHAPES

From a computer science point of view, this definition is of a rather abstract
nature representing a difficult basis for creating detectors. A computer program
relies on more formal, mathematical definitions.

For a human being this description is sufficient enough to easily recognize the
very shape of a ring when seeing it. The precondition for this accomplishment
is a basic understanding of the terms and definitions used in the description.
Bootstrapping of the basic concepts on a textual basis alone is hardly possible.
All available senses are used to create a mental image of the surrounding en-
vironment, making it possible to establish a connection between sensory input
and concepts of shapes. Then, a single sensory input is enough for the brain to
be made aware of the related concepts. As an example, the human visual system
is capable of identifying and categorizing objects. Not only real-world objects,
but also schematic drawings, pictures, paintings, etc. can serve as input. The
description itself can also be available in the form of an image.

2.3 Image-based Shape Descriptions

Representation and description of shapes in images is one of the basic methods
to describe image content. However, similar to textual descriptions, image-
based descriptions are a rather informal definition of shape, thus representing
a difficult basis for creating algorithmic detectors. This is due to the loss of
one dimension of object information when projecting an object onto the image
plane. Shape information in images is often also affected by noise, distortion
and occlusion. As a result, the shape extracted from the image only partially
represents the real world object. Figure 2.1 shows a pair of wedding rings.

Figure 2.1: The pair of wedding rings is easily identifiable for a human even
though there is not enough information to fully describe the shape of both
rings. It is a considerably harder problem for a computer to describe, or even
identify the rings.

2.4. SURFACE-BASED SHAPE DESCRIPTIONS 13

Due to the limited amount of information in this image it is impossible to fully
describe the shape of both rings. For a human, the amount of information is
sufficient enough to identify the pair of rings. However, it is a considerably
harder problem for a computer to describe, or even identify the rings.

Semantic scene understanding is concerned with finding a connection be-
tween pixels of an image and what is considered to be the meaning, or the
contents of an image [SEFR14]. Descriptors play an important role in this
context. Because of the large number of descriptors for visual features in im-
ages, a classification of the descriptors related to shape is sufficient for this the-
sis. DENGSHENG ZHANG AND GUOJUN LU classify these descriptors into two
classes of methods: contour-based methods and region-based methods [ZL04].
Shape features extracted from the contour only belong to a different class than
shape features extracted from the whole shape region. These methods can be
further divided into structural approaches and global approaches reflecting the
difference of shapes being represented as a whole or by primitives or sub-parts.
A final distinction into space domain and transform domain is based on whether
the shape features are derived from the spatial domain or from the transformed
domain.

2.4 Surface-Based Shape Descriptions

The surface of a shape is the part that is forming its boundary and thus is
visible. In many applications the surface is a sufficient description of a shape,
e.g., collision detection. Describing a shape through its surface is also a common
practice in computer graphics.

Surface-based shape descriptions are generally more formal than textual
shape descriptors. Depending on the specific details of the description, the
algorithmic detection of shapes has to rely on identifying features, e.g., salient
points, or relies on using skeletal or topological graph structures. A recent
survey by Bo L1 et al. describes different techniques and compares current
approaches [LLLT15]. Proper visualization is important for human beings to
perceive a surface-based shape description.

2.4.1 Point Sets

Points are a basic primitive to describe the surface of a shape [ZPKG02]. A
point set is a list of points defined in a coordinate system. While points are
not the primitive of choice when using 3D modeling software to create shapes,
they are widely used by 3D scanners due to the nature of their measurements.
A point set is the outcome when measuring a large number of points on an
object’s surface. The data set in Figure 2.2 shows the laser scan of a plastic
duck consisting of 177264 points. The number of points in this example poses
no problem for rendering on modern hardware.

High resolution scans of larger objects require special techniques due to the
huge amount of data. For different rendering approaches the literature survey of
MARKUS GROSS and HANSPETER PFISTER offers in-depth explanation [GPOT].
Point sets are seldom directly usable in 3D applications. The creation of a shape
from point set data is called shape reconstruction.

14 CHAPTER 2. SHAPES

Figure 2.2: The laser scan of a plastic duck consisting of 177 264 points poses
no problem for rendering on modern hardware. Additional details like texture
or normal information would greatly increase the expressiveness of the visual-
ization.

2.4.2 Polygonal Faces

A very common representation to describe a shape’s surface is to use a mesh
of polygonal faces. The accuracy of the representation heavily depends on the
shape’s outline and is directly affected by the number of faces. A cylinder,
for example, cannot be accurately represented by planar faces — it can only be
approximated, see Figure 2.3. Curved surfaces, in general, cannot be represented
exactly, whereas objects having planar boundaries obviously can be.

Figure 2.3: The quality of the polygonal approximation of a cylinder highly
depends on the number of primitives. By increasing the number of primitives a
better approximation of a cylinder can be created. These examples have n-gonal
prisms, where n is 4 (left), 8 (middle), 64 (right).

This limitation is often outweighed by its advantages in the field of CAD:

2.4. SURFACE-BASED SHAPE DESCRIPTIONS 15

e Computer graphics hardware is tailored towards processing polygonal faces
— especially triangles. This is the reason why many of the other shape rep-
resentations are converted into polygonal meshes prior to rendering.

e A lot of tools and algorithms exist to create, process and display polygonal
objects [BK10], [AGFF09].

The data structures for storing polygonal meshes are manifold. In a very simple
form, a list of coordinates (z, y, z) representing the vertices of the polygons
can be used. The de-facto standard data interface between CAD software and
machines (e.g., milling machines, 3D printers, etc.), which is the STereoLithog-
raphy (STL) file format, is based on this data structure. In an STL file, the
simplest polygon, namely the triangle, is used.

While this data structure is sufficient for manufacturing purposes, it may
not satisfy the needs of a 3D modeler in terms of attribution, traversal and
editing. More sophisticated data structures reproducing hierarchical structures
(groups, edges, vertices) and adding additional attributes like normals, colors
and texture coordinates provide a remedy. The problem of traversing a mesh
can be tackled by introducing iterators. They are typically, but not exclusively,
used in combination with the concept of half-edges. The idea is to represent an
edge between two vertices by two half-edges of opposite direction. A half-edge
is a directed edge with references to its opposite half-edge, its incident face,
vertex and next half-edge. By defining operations using this data structure, it
is possible to conveniently traverse a mesh [BSBK02].

2.4.3 Parametric Surface Representations

A parametric representation of a shape’s surface is defined by a vector-valued
parameterization function f : Q — S mapping a 2D parameter domain C IR?
to the surface S = f(€) € IR®. This representation is a general way to specify
a surface. A simple 3D example of a parametric surface is the torus with major
radius R and minor radius r defined by the range of the parametric function

cos(u) (R + rcos(v))
f:0,27] x [0,27] = R?, (u,v) — sin(u)(R.Jr(r)cos(v))

The following theorem by KARL WEIERSTRASS states, that finding an explicit
formulation with a single function approximating a more complex function
(shape) can be achieved by using polynomials.

Theorem (Weierstrass Approximation Theorem). Let f be a continuous real-
valued function on the closed interval [a,b]. Then f can be uniformly approxi-
mated by polynomials.

Parametric and Geometric Continuity

The smoothness of a surface is a
very important aspect for many dif-
ferent applications, for example in
car design. It can be formalized ac-
cording to the properties of a sur-
face’s derivatives. For parametric
continuity, the surface is treated as
a function rather than a shape, be-
cause it cannot be defined given
only the shape of the surface — a pa-
rameterization is needed. The vari-
ous orders of parametric continuity
for curves can be described as fol-
lows:

e C9 continuous The junction
of two curves is C° contin-
uous, if the coordinates (the
x, y, z values of the two
curves) agree — the curves are
joined. This is called zero or-
der parametric continuity.

e C! continuous The junc-
tion of two curves is C!
contin-uous, if the coordi-
nates (the z, y, z values of
the two curves) agree, and
all their first derivatives also
agree at their junction — the
first derivatives are continu-
ous. This is called first order
parametric continuity.

o C2 continuous The junction
of two curves is C? contin-
uous, if the coordinates (the
x, y, z values of the two
curves) agree, and all their
first and second derivatives
agree at their junction — the
first and second derivatives
are continuous. This is called
second order parametric con-
tinuity.

The definition of the n'M-order
parametric continuity C™ requires
all derivatives up to n'"-order to
agree at the junction.

Geometric continuity, on the other
hand, can be defined on the shape
of the curve alone:

o GO continuous The junction
of two curves is G° contin-
uous if the coordinates (the x,
y, z values of the two curves)
agree. This is called zero or-
der geometric continuity and
is exactly the same as C° con-
tinuity.

e G! continuous The junction
of two curves is G' contin-
uous if the coordinates (the
x, y, z values of the two
curves) agree, and all their
first derivatives are propor-
tional at their junction (the
tangent vectors are parallel).
The curves also share a com-
mon tangent direction at the
junction. This is called first
order geometric continuity.

e G2 continuous The junction
of two curves is G? contin-
uous if the coordinates (the z,
y, z values of the two curves)
agree, and all their first and
second parametric derivatives
are proportional at their junc-
tion. The curves also share
a common center of curvature
at the junction. This is called
second order geometric conti-
nuity.

The junction of two curves is G"
continuous if their arc length pa-
rameterizations meet with C™ con-
tinuity.

Continuity measurements have
practical use. In the previously
mentioned example of car design,
G? continuity assures smooth re-
flections in the car body.

2.4. SURFACE-BASED SHAPE DESCRIPTIONS 17

A constructive proof of the theorem is given by SERGI BERNSTEIN through
his work on Bernstein polynomials (see Section 2.4.3). As a consequence, the
concept of surface patches has gained currency in the CAD domain [Far90],
[PL0O2]. The idea is to split the function domain into smaller regions. Each
surface patch, henceforth called patch, is described by a distinct parametric
function approximating the local geometry of the patch. To obtain a good
overall approximation of the surface, it is necessary to carefully chose the layout
of the patches (form, size, number) and to deal with possible discontinuities on
patch borders depending on the representation [HL89).

Bézier Surfaces

A Bézier surface is a three-dimensional surface generated from the Cartesian
product of two Bézier curves [PBP02]. A Bézier surface of degree (m,n) is
defined as

flu,0) = by B (u) By (v).

i=0 j=0

It is evaluated over the unit square (u,v) € [0, 1] x [0, 1] with the control points
b;; and the Bernstein polynomials

n
1

Bi(t) = < >ti(1 —)n~i

of degree n, for t € [0,1]. In CAD, Bézier surfaces are often used in the form of
bicubic Bézier patches. In this case, a set of 4 X 4 points represents the control
mesh and is responsible for the shape of the surface of a bicubic Bézier patch.
In all cases, Bézier surfaces have important properties:

e A Bézier surface can be seen as a Bézier curve moving along another Bézier
curve creating a surface.

e A Bézier surface fulfils the partition of unity property;
Le., D00 > —o B"(u)B}(v) = 1, thus the relationship between a Bézier
surface and its control mesh is invariant under affine transformations.

e A Bézier surface is contained within the convex hull of its control mesh
and the four corner points of the control mesh are interpolated by the
Bézier surface. A point set S is convex, if for any pair of points x,y € S,
the line segment Ax + (1 — A)y with 0 < A < 1, lies entirely in .S. For any
set S, the smallest convex set containing S' is called the convex hull of S.

e A Bézier surface exhibits four boundary curves being Bézier curves them-
selves and their control points are the boundary points of the control
mesh.

e The control points do not exert local control alone. When moving a single
control point, the whole surface of the patch is affected, even magnitude
and direction of the tangents. Higher order geometric continuity (e.g., G,
G?) between patch segments can only be achieved by satisfying constraints
when moving boundary control points.

18 CHAPTER 2. SHAPES

Rational Bézier Surfaces

The idea behind rational Bézier surfaces is to add adjustable weights to extend
the design space of shapes [AS93]. In contrast to a Bézier surface, which can
only approximate spheres and cylinders, the rational Bézier srfaces can describe
them exactly — a very important property in CAD. A rational Bézier surface of
degree (m,n) is defined as

Dm0 2 j—o wijbiy B (w) BY (v)
Dito 2o Wi B (w) B} (v)

with the control points b;;, the weights w;;, and the Bernstein polynomials
B["(u) and B} (v). Rational Bézier surfaces are a special case of non-uniform,
rational B-spline (NURBS) surfaces, which are a generalization of B-Spline Sur-
faces.

f(u,v) =

B-spline Surfaces

B-spline surfaces exhibit advantages when joining patches under continuity re-
quirements. Let k,1,m,n € IN with m > k and n > [. Then, a B-spline surface
of degree (k,1) is defined as

flu,v) =3 " digNF (u)Nj(v),
i=0 j=0
with the basis functions N2(t) = 1, if t; <t < t;31 (and 0, otherwise) and
t—t; _ tigiqr — 1t _1
NI(t) = —— NI (t) + —H = N7l
) = N+ N

for 1 <r < n and a nondecreasing sequence of knots, a so-called knot vector,

T={tg< <ty < < tpimpit)

It can be evaluated over (u,v) € [ug, Um+t1[X[v, Vnt1] with the control points
di; and the polynomials NF(u) and N Jl (v). The control points d;; forming
the control polygon are called de Boor points. In computer graphics, B-spline
surfaces are typically used in the form of bicubic B-spline patches. A single cubic
B-spline curve segment is defined by four control points; as a consequence, 4 x 4
control points define a bicubic B-spline patch segment. B-splines with knots ¢;
satisfying the condition tg = 0 and ;41 =t; or t;41 =t1+1, (i =0,...,n+m)
are called uniform B-splines.
B-spline surfaces satisfy properties similar to Bézier surfaces [PBP02]:

e The relationship between a B-spline surface and its control mesh is invari-
ant under affine transformations.

e A B-spline surface is contained within the convex hull of its control mesh.

e In contrast to Bézier surfaces, the control points exert local control — if a
control point is moved, only the local neighborhood is affected.

e By choosing appropriate knot vectors, a B-spline surface can become a
Bézier surface.

2.4. SURFACE-BASED SHAPE DESCRIPTIONS 19

Higher order geometric continuity (e.g., G, G?) when combining B-spline patches
can be achieved by satisfying constraints when moving boundary control points
and by appropriate choice of knot vectors. In contrast to Bézier surfaces, moving
control points to achieve certain continuity conditions only affects the surface
locally.

NURBS Surfaces

The combination of rational Bézier techniques and B-Spline techniques leads to
non-uniform, rational B-Splines; NURBS for short [PT97]:

Let k,I,m,n € IN with m > k and n > [. Additionally, let wqg, ..., Wnn €
R, u= (U Unirr1)’ and v = (vg...vn4i41)T be two knot vectors and
doo, - - - dpmn € IR3. Then, a non-uniform rational B-spline (NURBS) surface of
degree (k,1) is defined as

S g wijdi NF(u)N(v)
Do 2 i—o wii N (u)Ni(v)

over (u,v) € [Ug, Unm+1[X[V1, Un41[With the control points d;;, the polynomials
NF(u) and N]l»(v), the knot vectors v and v for the de Boor points dgg, . . ., dmn
and the weights wqg, . . . , Wmn. Similar to B-spline patches, NURBS surfaces are
commonly used in computer graphics in the form of bicubic NURBS patches.

Both B-spline surfaces and Bézier surfaces are special cases of NURBS sur-
faces [FLS04]. If all weights are equal, a NURBS surface becomes a B-spline
surface. Additionally, when all knot vectors are chosen appropriately, the B-
spline surface becomes a Bézier surface.

NURBS surfaces are a generalization of B-Spline and Bézier surfaces. Affine
transformations are applied to the surface by applying them to the control
points. A NURBS surface is generally not contained within the convex hull of
its control mesh. Depending on the choice of knot vectors, the control points
exert local control.

A common way to model arbitrarily complex smooth surfaces is to use a mesh
of bicubic NURBS patches. Regular meshes consisting of bicubic patches formed
by vertices of valence four can be seen as connected planar graphs. A direct
consequence of the Euler characteristic for connected planar graphs with the
aforementioned properties is that such meshes must be topologically equivalent
to an infinite plane, a torus, or an infinite cylinder - all other shapes cannot
be constructed unless using trimming or stitching. The resulting surfaces offer
precise feature control at the cost of computational complexity due to trimming
and stitching [Far99).

f(’LL,’U) =

Subdivision Surfaces

Subdivision surfaces are the generalization of spline surfaces to arbitrary topol-
ogy. Instead of evaluating the surface itself, the refinement of the control
polygon represents the subdivision surface. There are many different subdi-
vision schemes, e.g., Catmull-Clark [CC78], Doo-Sabin [DS78], Loop [Loo87],
Kobbelt [Kob96], etc.

The subdivision scheme presented by EDWIN CATMULL and JiM CLARK is
a generalization of bicubic B-Spline surfaces to arbitrary topology [CCT78]. The
set of 4 x 4 control points p;; forms the starting mesh for an iterative refinement

20 CHAPTER 2. SHAPES

process where each step results in a finer mesh. The following steps explain the
procedure in the local neighborhood of the control points in the regular case
(see also [Far02] and [Ull11]):

1. Face point For each face in the control mesh, the centroid of its vertices
forms a new face point

fi; = 1/4(pij + pit1j + Pij+1 + Pit1j4+1)

2. Edge point For each edge in the control mesh, the average of its endpoints
and the adjacent face points on either side of the edge form a new edge
point

€ij = 1/4(fij71 + fij + pij +pi+1j)

or

eij = 1/4(fi—1; + fij + pij + pij+1)

3. Vertex point The average

forms a new vertex point v;;, where @;; is the average of the face points of
the faces adjacent to the vertex point, R;; is the average of the midpoints
of the edges incident on the vertex point, and S;; is the corresponding
vertex point.

4. Create face A new face consists of a loop of the form

fij — eij — vij — €ij — fij
with f;; closing the loop.

In the regular case, with vertices of valance n = 4, the sequence of subdivision
steps converges to a limit surface, which is a B-spline patch — irregular cases
have no matching B-spline patch.

Subdivision surfaces are invariant under affine transformations. They offer
the benefit of being easy to implement and computationally efficient (see the
work of JOs STAM on exact evaluation of the limit surface [Sta98]). Only the
local neighborhood is used for the computation of new points. Efficiency is not
lost even when dealing with arbitrary control meshes along with extraordinary
vertices (see Figure 2.4). A major advantage of subdivision surfaces is their re-
peated refinement process — algorithms can therefore adapt to limited hardware
resources often found in mobile devices.

2.4. SURFACE-BASED SHAPE DESCRIPTIONS 21

Figure 2.4: A regular mesh of bicubic patches consists of vertices with valance
four and is topologically equivalent to an infinite plane, a torus, or an infinite
cylinder. To construct different shapes, extraordinary vertices are introduced
to the mesh - in this example, a vertex of valence five.

2.4.4 Implicit Surface Representations

In contrast to the parametric surface representations described in Section 2.4.3,
implicit surfaces are defined as isosurfaces by a function IR* — IR [Sul04]. There-
fore, similar to voxels, a surface is only indirectly specified. A simple 3D example
of an implicit surface is the following definition of a torus with major radius R
and minor radius r

f@,y,2) = (2" +y° + 22 + R* —1*)> —4R* (2 + %) = 0.

Inside and outside of the surface are defined by f(z,y,2) < 0, respectively
f(x,y,z) > 0. While a parametric description of the torus exists, many implicit
surfaces do not have a closed, parametric form. In terms of expressiveness,
implicit surfaces are more powerful than parametric surfaces [KHHT07].

Drawbacks of implicit surfaces are the inherent difficulty of describing sharp
features (unless trimming is used) or finding points on the surface. However,
this representation has several advantages. Efficient checks whether a point is
inside a shape or not are possible. Surface intersections, as well as Boolean
set operations (see Section 2.5.3) can also be implemented efficiently. Since the
surface is not represented explicitly, topology changes are easily possible.

Implicit surfaces can be described in algebraic form (see the example of
the torus), as a sum of spherical basis functions (so called blobby models),
as convolution surfaces (skeletons), procedurally, as variational functions, or
by using samples. The latter approach directly relates to volumetric shape
descriptions and Section 2.5.1.

22 CHAPTER 2. SHAPES

2.5 Volumetric Shape Descriptions

Volumetric approaches can be used to indirectly describe a shape’s surface. In
contrast to surface-based descriptions, they define the surface to be a boundary
between the interior and the exterior of a shape. However, the idea behind these
approaches is not so much a description of a shape’s surface, but a description
of the entire volume. Such representations are frequently used in visualization
and analysis of medical and scientific data.

Algorithmic shape detection on volumetric shape descriptions can be per-
formed similar to what is done for surface-based shape descriptions (see Sec-
tion 2.4). A surface-based representation can always be obtained from volumet-
ric approaches, and often vice versa.

2.5.1 Voxels

Data sets originating from measurements do not have continuous values and
are limited to the points in space where measurements have been collected. It
is very common that data points have a uniform regular grid structure. Such
data points in 3D are known as voxels, a name related to their 2D counterparts:
the pixels. Since a voxel represents only a single point on the grid, the space
between voxels is not represented at all. Depending on the area of application,
the data points can be multi-dimensional, for example, a vector of density and
color. Due to the fact that position and size of a voxel are pre-defined, voxels
are good at representing regularly sampled spaces. However, the approxima-
tion of free-form shapes suffers from this inherent property. The artwork of
GEORG SEIBERT called “Der Kéfer - Ein Deutsches Wunder” (see Figure 2.5) is
an artistic combination of free-form surfaces and discrete volumetric elements.

Figure 2.5: “Der Kéifer - Ein Deutsches Wunder” from GEORG SEIBERT is a
memorial for a german miracle - the Volkswagen Beetle. In the context of this
thesis it demonstrates the inherent differences of free-form surfaces and discrete
volumetric elements.

(Source: TORSTEN ULLRICH, 2011)

2.5. VOLUMETRIC SHAPE DESCRIPTIONS 23

Voxel representations do not suffer from numerical instabilities as they are typ-
ically defined on an integer grid. A major drawback of voxel representations is
the amount of data needed for storage. For example, a 512 x 512 x 512 voxel
grid storing 32-bit floating point values occupies 512MB of memory. Depending
on the intended use, e.g., in the computer games industry, the memory footprint
may be too high and it may appear rather coarse.

Typical use cases are the visualization and analysis of medical data (medical
imaging) acquired from sources like Computed Tomography (CT), Magnetic
Resonance Imaging (MRI), or 3D ultrasonography. The purpose of these non-
invasive imaging techniques is to reveal internal structures of beings that are
hidden by skin and bones. High spatial resolution and less noisy data are forming
the basis of advances in diagnosis and treatment of diseases.

2.5.2 Convex Polytopes

Shapes can be approximated as geometric objects with flat sides — so called
polytopes. They are defined in any dimension as n-dimensional polytopes or
n-polytopes. Two-dimensional polygons are called 2-polytopes and three-di-
mensional polytopes are called 3-polytopes. A special case of a polytope is a
convex polytope having the additional property of being a convex set of points
in n-dimensional Euclidean space IE?. Convex polytopes can be defined over
their convex hull, or by the intersection of half-spaces.

BRANKO GRUNBAUM and GEOFFREY C. SHEPHARD define a convex poly-
tope as the convex hull of any finite set of points in Euclidean space IE"
(n > 0) [GS69]. A definition relying on the convex hull of a set of points is
called a vertex representation.

Convex polytopes can also be defined as the intersection of a finite number
of half-spaces [KUF14]. Because of the fact that the intersection of arbitrary
half-spaces need not be bounded, this property must be explicitly required.
An algebraic formulation for convex polytopes consists of the set of bounded
solutions to a system of linear inequalities. Hence, a closed convex polytope can
be written as a system of linear inequalities

a11%1+ ar2T2+ -+ a1, < by

a21%1+ G2T2+ -+ A2pTp < by

am1z1+am2x2+' : '+amn$n§bm

with m defining the number of half-spaces of the polytope. Open convex
polytopes are defined similarly with strict inequalities instead of non-strict
ones [TKZ*13b].

A limitation of convex polytopes is the inherent restriction to represent
convex geometry only. The representation of non-convex geometry is possi-
ble through composition of convex polytopes. Topologically, convex polytopes
are homeomorphic to a closed ball.

Convex polytopes are a subject of mathematical study since ancient Greek
times. There is a number of special polytopes in three-dimensional space ad-
mitting a particularly high degree of symmetry — the so called Platonic solids,

24 CHAPTER 2. SHAPES

tetrahedron, hexahedron, octahedron, dodecahedron and icosahedron (see Ta-
ble 2.1). They are bounded by congruent regular polygonal faces exhibiting a
consistent vertex valance over all vertices. The five Platonic solids are named
after their number of faces.

tetrahedron l 4 6 4
hexahedron ‘ 8 12 6
octahedron . 6 12 8
dodecahedron . 20 30 12
icosahedron . 12 30 20

Table 2.1: In three-dimensional space, five convex polytopes exhibit a partic-
ularly high degree of symmetry — the so called Platonic solids. Tetrahedron,
hexahedron, octahedron, dodecahedron, icosahedron (from top to bottom) are
constructed by congruent regular polygonal faces with the same number of faces
meeting at each vertex.

2.5.3 Constructive Solid Geometry

Constructive solid geometry (CSG) is a technique to create complex shapes
out of primitive objects. These CSG primitives typically consist of cuboids,
cylinders, prisms, pyramids, spheres and cones. Complex geometry is created
by instantiation, transformation, and combination of the primitives. They are
combined by using regularized Boolean set operations like union (denoted by
U), difference (denoted by \) and intersection (denoted by N) that are included
in the representation. The union of two sets A and B is the set of elements
which are in A, in B, or in both A and B:

AUB={z|(x € A)V (z € B)}

2.5. VOLUMETRIC SHAPE DESCRIPTIONS 25

The intersection of A and B is the set of elements which are in both A and B:

ANB={z|(x € A)A(z € B)}

The difference of A and B is the set of elements in B but not in A:

A\ B = {(z € B)|(z ¢ B)}

A CSG object is represented as a tree with operators as nodes and primitives
as leaves. In contrast to the example in Figure 2.6, not all nodes have to
be Boolean set operations, also transformation operations are possible. The
example shows the result of the consecutive union of three cylinders subtracted
from the difference of a cylinder and a sphere.

Figure 2.6: The construction of CSG objects can be represented as a binary
tree, with leaves as primitives, and nodes as Boolean set operations. Operations
are denoted under the nodes. In this example, the consecutive union of three
cylinders is subtracted from the difference of a cylinder and a sphere to create
the final shape.

In order to determine the shape described by a CSG tree, all operations have
to be evaluated bottom-up until the root node is evaluated. Depending on the

26 CHAPTER 2. SHAPES

representation of the leaf geometry, this task can vary in complexity. Some im-
plementations rely on representations that require the creation of a combined
shape for the evaluation of the CSG tree, others do not create a combined rep-
resentation. In that sense, CSG is not as much a representation as it is a set
of operations that need to be implemented for the underlying shape represen-
tation [HKST10].

However, CSG can also be performed on other shapes and shape represen-
tations. Two different approaches can be used to create CSG objects: Object-
space approaches and image-space approaches. The main difference between the
two approaches is that object-space approaches create shapes, while image-space
approaches “only” create correct images.

Image-space CSG

Image-space CSG is concerned with creating correct images, used for visual-
ization purposes only. Due to its nature, image-space methods are all view
dependent resulting in a re-evaluation of the CSG operations per frame. Since
these approaches are generally applicable to be executed on graphics hardware,
real-time applications are possible (see Section 3.4.3). Common approaches for
image-space CSG are based on scan-line, ray-casting or depth-buffer algorithms.

Scan-line algorithms Scan-line algorithms for CSG are related to classic
scan-line algorithms in computer graphics. JAMES D. FOLEY et al. presented a
scan-line algorithm for displaying polyhedral models [FvDFH90]. In principle,
the algorithm consists of two parts: a pre-processing part for sorting and a
display part. Scan-line algorithms to determine the visibility of a face follow
that principle by classifying faces against a CSG tree.

Ray-Casting algorithms CSG can be evaluated in image-space using ray-
casting algorithms. For a ray defined by eye position and image plane, the
closest visible surface has to be found using intersection tests. This amounts
to evaluating the CSG tree for each ray, i.e., on one-dimensional intervals. For
each ray, all calculations can be processed in parallel on graphics hardware.
Depending on the representation of the objects, the intersection tests can be
more or less complex — intersection tests on implicit surfaces (see Section 2.4.4),
for example, can be performed efficiently.

Depth-buffer algorithms JACK GOLDFEATHER et al. presented an algo-
rithm, that uses the depth-buffer for evaluating CSG operations [GMTF89].
The algorithm converts a CSG tree to a normalized form. Bounding-box prun-
ing is then performed to allow for an efficient rendering for most CSG objects.
In order for this algorithm to work, the parity of a pixel needs to be calculated
— it indicates, whether a pixel is inside, or outside a given volume. This can
be determined, when all boundaries are closed and all surfaces do not intersect
themselves. The depth-buffer is used to detect the pixels that satisfy the CSG
logic of the normalized tree.

2.6. ALGORITHMIC SHAPE DESCRIPTIONS 27

Object-space CSG

Object-space CSG approaches using primitives described implicitly can be cal-
culated accurately. Performing CSG on other shape representations (like polyg-
onal meshes) typically introduces accuracy problems, due to the finite precision
of floating-point numbers. A common representation used for CSG operations
are binary space partitioning (BSP) trees. BSP is a method for subdividing
a space into convex cells yielding a tree data structure. This data structure
can be used to perform CSG operations using tree-merging as described by
BRUCE NAYLOR, JOHN AMANATIDES and WILLIAM THIBAULT [NAT90]. The
algorithm is relying on accurate information of inside and outside of a shape
(or, in case of planes, above and below). Another representation used for CSG
operations are half-spaces (see Section 2.5.2).

2.6 Algorithmic Shape Descriptions

Algorithmic shape descriptions are also called generative, procedural, or para-
metric descriptions. However, there are differences between the three terms.
Parametric descriptions are loop-computable programs (the functions it can
compute are the primitive recursive functions), and therefore always termi-
nate [Sch08]. On the other hand, procedural descriptions offer additional fea-
tures, like infinite loops (the functions it can compute are computable functions),
are structured in procedures, and are not guaranteed to terminate. Compared
to procedural descriptions, generative descriptions are a more general term, in-
cluding, for example, functional languages.

In the context of this thesis, algorithmic descriptions are generally referred
to as generative descriptions. The process of creating such descriptions is re-
ferred to as generative modeling. In contrast to many other descriptions, which
are only describing a shape’s appearance, generative shape descriptions repre-
sent inherent rules related to the structure of a shape. In simple terms, it is
a computer program for the construction of the shape. It typically produces a
surface-based or volumetric shape description for further use, e.g., for visualiza-
tion purposes. In the article “Modeling Procedural Knowledge — A Generative
Modeler for Cultural Heritage” [SSUF10a] by CHRISTOPH SCHINKO et al., we
state that all objects with well-organized structures and repetitive forms can be
described in such a way. Many researchers enforce the creation of generative
descriptions due to its many advantages [KSU15].

Its strength lies in the compact description compared to conventional ap-
proaches, which does not depend on the counter of primitives but on the model’s
complexity itself [BFHO05]. Particularly large scale models and scenes — such as
plants, buildings, cities, and landscapes — can be described efficiently. Genera-
tive descriptions make complex models manageable as they allow identifying a
shape’s high-level parameters.

Another advantage is the included expert knowledge within an object de-
scription, e.g., classification schemes used in architecture, archaeology, civil en-
gineering, etc. can be mapped to procedures. For a specific object only its type
and its instantiation parameters have to be identified. This identification is re-
quired by digital library services: markup, indexing, and retrieval [FH05]. The
importance of semantic meta data becomes obvious in the context of electronic

28 CHAPTER 2. SHAPES

product data management, product lifecycle management, data exchange and
storage or, more general, of digital libraries.

Generative descriptions have been developed in order to generate highly
complex shapes based on a set of formal construction rules. They represent a
whole family of shapes, not just a single shape. A specific exemplar is obtained
by defining a set of parameters, or a sequence of processing steps: Shape design
becomes rule design [KSU14].

Because such descriptions already belong to a specific class of shapes, there
is no need for detectors. However, with a generative description at hand, it
is interesting to enrich other descriptions and representations. What is the
best generative description of one or several given instances of an object class?
This question is regarded as the inverse modeling problem and is discussed in
Chapter 5.

2.6.1 Characterization

Generative descriptions are typically characterized using techniques for the de-
scription of formal languages and compiler construction [Par10]. The range of
different language concepts used to create generative shape descriptions is very
wide and consists of different linguistic concepts [Cho56]. In the article “Built
by Algorithms — State of the Art Report on Procedural Modeling” [SKUF15] by
CHRISTOPH SCHINKO, ULLRICH KRISPEL, TORSTEN ULLRICH and DIETER W.
FELLNER, we follow a structured approach. The main categories to describe a
shape are

e rule-based: using substitutions and substitution rules to build complex
structures out of simple starting structures [OKO08], [KPK10], [SK92].

e imperative and scripting-based: using a scripting engine and tech-
niques used in predominant programming languages [Hav05], [SSUF11b],
[KK11], or

e GUI and dataflow-based: using new graphical user interfaces (GUI)
and intelligent GUIs to detect structures in modeling tasks, which can be
mapped onto formal descriptions [TKHF12].

The general principles of formal descriptions and compiler construction are the
same in all cases, independent of ahead-of-time compilation, just-in-time com-
pilation or interpretation (see Chapter 4).

Rule-based Systems

Rule-based systems are using a representation that has proven to be useful
for generative modeling. Such systems provide a declarative description of the
construction behavior of a model by a set of rules. In the context of shape de-
scriptions, shape grammars and especially split grammars are applicable. Shape
grammars use a generation engine to select and process shape rules. Shape rules
define how an existing shape can be transformed. A particular kind of shape
grammar, called a split grammar consists of split operation, which decompose
a shape into a set of smaller shapes. Systems using these kind of grammars are
primarily used to construct buildings or facades.

2.7. SUMMARY 29

Imperative Systems

In many cases, classical programming paradigms are used for generative de-
scriptions: Commands to generate a specific shape are written in a program-
ming language using a library that utilizes some sort of geometry description
and operations to perform changes. The commands are issued in the form of
statements forming the program. Typically a program is built from one or more
procedures. Note that the resulting geometry is often produced as a side effect.
Furthermore, any modeling software that is scriptable by an imperative lan-
guage or provides some sort of Application Programming Interface (API) falls
into this category.

Dataflow-based Systems

In dataflow-based systems, the program is represented by a directed graph of
the data flowing between operations. The movement of data is emphasized and
programs are modeled as a series of connections - implying the use of a graphical
representation. These systems are called Visual Programming Languages (VPL)
and allow to create a program by linking and modifying visual elements. Al-
though many VPL’s are based on the dataflow paradigm, also other paradigms
like flow charts are suitable.

2.7 Summary

This chapter focused on defining the term shape and providing a structured in-
troduction to different ways of describing and representing shapes. Depending
on the actual description, the perception (or detection) of shapes shows differ-
ences between human beings and computers. While textual and image-based
descriptions are of more abstract nature (for a computer), geometry-based de-
scriptions of shapes offer a more formal, low-level approach. Algorithmic shape
descriptions try to combine the advantages of a high-level approach (being more
suitable for humans) with the benefit of not being too abstract for computers.
The choice of description, however, also has direct effects on possible shape
modeling paradigms. These will be discussed in the next chapter with a special
focus on generative modeling.

30

CHAPTER 2. SHAPES

Chapter 3

Modeling

Based on the shape descriptions presented in the previous chapter, this chapter
focuses on modeling paradigms. The computer graphics term shape modeling
stands for the process of developing a mathematical representation of an object
using specialized software. Shape modeling can be done in many ways, however
the traditional ways of shape modeling (e.g., clay modeling, sculpting) are not
in the focus of this this chapter.

The next three sections give insight into primitive modeling using 3D mod-
eling software or scene description languages, semantic modeling dealing with
meta data, and generative shape modeling using domain specific information.
Then, an application for generative modeling — wedding rings — is presented
using the Generative Modeling Language (GML). Finally, an approach for de-
livering this generative content over the web in a controlled environment with
a focus on intellectual property protection concludes this chapter.

Contents

3.1 Primitive Shape Modeling 32
3.2 Semantic Modeling oL oL 34
3.3 Generative Modeling 0oL 37
3.4 Generative Modeling Language (GML) 46
3.5 Summary 64

31

32 CHAPTER 3. MODELING

3.1 Primitive Shape Modeling

Many shape descriptions mentioned in Chapter 2 are used in software products
for primitive shape modeling (e.g., surface-based and volumetric shape descrip-
tions). Modeling software greatly differs in the level of abstraction — depending
on the domain — as well as in the user interface.

3.1.1 3D Modeling Software

Dedicated programs like Autodesk Maya, Autodesk 3DS Max, or Blender work
with virtual workspaces (scenes). Scene elements are node-based with each node
having its own attributes. Components for different tasks like polygonal mod-
eling, fluid effects or particle systems are accessible through a visual workflow.
The user interface is typically adapted to the specific task, however the overall
screen layout seldomly changes. Figure 3.1 shows the default screen layout of
Blender offering five editors.

OB Default

User Persp

Figure 3.1: The default window of Blender appears. It offers five editors: Info
(1), 3D View (2), Outliner (3), Properties (4) and Timeline (5).
(Source: Blender Foundation, 2015)

These dedicated programs are typically equipped with scripting possibilities.
Apart from the accessibility of features through the user interface, some func-
tionality may not yet be equipped with an appropriate interface, or is more
conveniently used programmatically (in fact, the user interface is often directly
built upon the scripting language). A scripting language may also provide ad-
ditional functionality not available through the user interface. The spectrum of
scripting languages ranges from simple and highly domain-specific languages to
general-purpose programming languages.

Powerful scripting languages offer means to customize and add functionality,
as well as to speed up complicated or repetitive tasks. Common languages used
in modeling software are Python (Blender, Maya), MaxScript (3DS Max), and
Maya Embedded Language (Maya).

Data Acquisition and Shape Reconstruction

The reconstruction of shapes from
sensor data (often also called scan-
ning) is necessary, wherever real-
world designs (e.g., clay models)
are used as part of an otherwise
digital workflow. Especially in the
context of automotive design, real-
world models are still an integral
part, due to the possibility for de-
signers to use their tactile senses,
rather than sight alone.

Range imaging techniques pro-
duce images with pixel values that
correspond to the distance from a
specific point. Data acquisition is
concerned with generating a point
set out of a number of range images.
The possibilities to acquire range
images are manifold. These tech-
niques are typically associated with
some sort of sensor device (cam-
eras). Some common approaches
for capturing range images are:

e Stereo triangulation: The
depth values of pixels are de-
termined from data acquired
using a stereo or multiple-
camera setup. This method
relies on corresponding points
in the multitude of images.
Since it is a difficult prob-
lem to solve in homogeneous
regions, quality and quantity
of the acquired points heavily
depends on “good” images.

e Structured light: Different
light patterns can be used to
determined depth using only
a single image of the reflected

light. Reflective or transpar-
ent surfaces cause problems
during detection. However,
research by MOHIT GUPTA et
al. to handle optically com-
plex scenes by redesigning
illumination patterns shows
promising results [GAVN11].

e Time-of-flight: By measur-
ing the time a light pulse
takes to get reflected by an
object, it is possible to cap-
ture range images. Back-
ground light, reflections from
specular surfaces, and inter-
ference can cause problems
for time-of-flight cameras.

e Triangulation: Triangula-
tion-based approaches use
laser light to capture the en-
vironment. Depending on the
distance to the object, the
laser point appears at differ-
ent points in the field of view
of the the measuring device.
This approach is called tri-
angulation because the laser
spot, the camera and the laser
emitter form a triangle.

The creation of a shape from point
set data is called shape reconstruc-
tion. However, scanned data often
contains a wide variety of defects,
like missing parts, or points from
incorrectly matched features. The
survey of MATTHEW BERGER et al.
provides an overview of the current
state of the art [BTS™14].

3.1.2 Scene Description Languages

In contrast to the visual workflow, or the scripting possibilities of dedicated
programs used for scene modeling, scene description languages offer a text-based
approach to describe a scene. The nature of scripting languages is imperative,
or procedural, whereas the nature of scene description languages is declarative.

34 CHAPTER 3. MODELING

Some scene description languages include variables, constants, conditional state-
ments, and loops. These descriptions are used in modeling software to store
scenes. While there are many vendor-specific binary formats available for stor-
ing scenes space-efficiently, a scene stored in a description language offers the
advantage to be both human-readable and machine-readable — for this purpose
the Extensible Markup Language (XML) is commonly used.

Extensible 3D (X3D) is a royalty-free XML-based declarative approach to
describe scenes [Web08]. It is successor to the Virtual Reality Modeling Lan-
guage (VRML) and includes a large number of new and extended features and
components (e.g., Humanoid Animation, NURBS, GeoVRML, ...) [VRM97].
The X3D specification includes numerous APIs and a full runtime, event and
behavior model. Several sets of components for various levels of capability in-
clude X3D Core, X3D Interchange, X3D Interactive, X3D CADInterchange,
X3D Immersive, and X3D Full.

As X3D is designed to be integrated into HyperText Markup Language
(HTML) pages, two projects propose plugin-free implementations. The XML3D
project proposes an extension to HTML5 for describing interactive 3D scenes
allowing seamless integration of 3D content into HTML5 pages [SKRT10]. On
the other hand, the X3DOM project allows including X3D elements as part of
any HTML5 Document Object Model (DOM) tree [BEJZ09]. The goal here is
to have a live X3D scene in the HTML5 DOM, which allows manipulation of the
3D content by adding, removing, or changing DOM elements. In an attempt
to integrate interactive 3D graphics capabilities into the World Wide Web Con-
sortium (W3C) technology stack, members of both projects formed the W3C
community group “Declarative 3D for the Web Architecture”!.

Scene description languages are also directly used in tools like POV-Ray —
without a scripting layer, or visual workflow — to generate images. For example,
Figure 3.2 (left) shows a POV-Ray script defining a simple scene: background
color, camera, light source and geometry. The resulting output is a green torus,
as can be seen on the right side of the figure.

3.2 Semantic Modeling

Generally, meta data is a summary of basic information about data, simplifying
the process of finding and working with particular instances of data. Basic ex-
amples for document meta data are author, date created and date modified. With
the ability to filter through meta data, it is much easier to locate documents.
This semantic information is not limited to textual documents, but documents
in general (images, videos, web pages, shapes, ...). Semantic modeling — in this
context — is concerned with enriching shapes with meta data.

Primitive modeling as well as automatic shape reconstruction suffer from a
lack of semantic information. A collection of any primitives inherently offers a
small amount of meta data. The enrichment with (and the explicit representa-
tion of) semantic information is vital in the context of digital library services:
indexing, archival, and retrieval. In the article “Semantic Enrichment for 3D
Documents: Techniques and Open Problems” [USB10] by TORSTEN ULLRICH,
VOLKER SETTGAST and RENE BERNDT, they classify meta data according to
the following criteria:

Thttps://www.w3.org/community /declarative3d/

00~ O U W N

NN N = = e e e e e e
N = O © o0 U Wik~ OoO o

3.2. SEMANTIC MODELING 35

#version 3.7;

#include "colors.inc"

// background color

background {color rgb <1, 1, 1>}

// camera

camera {location <0.0, 0.0, -5.0>
direction 1.5%z
right x*ximage_width/image_height
look_at <0.0, 0.0, 0.0>}

// light source
light_source {<0, 0, 0>

color rgb <1, 1, 1>
translate <-10, 10, -10>}
// torus
torus {1, 0.5
rotate -45%x

texture {pigment {Green}
finish {specular0.6}}}

Figure 3.2: The text-based description on the left is a POV-Ray script defining a
simple scene: background color, camera, light source and geometry. A rendering
of the resulting scene — a green torus — is on the right.

Data Type The data type of the object can be of any elementary data struc-
ture (e.g., Polygons, NURBS, Subdivision Surfaces, ...).

Scale of Semantic Information This property describes, whether meta data
is added for the entire data set or only for a sub part of the object.

Type of Semantic Information The type of meta data can be descriptive
(describing the content), administrative (providing information regarding
creation, storing, provenance, etc.) or structural (describing the hierar-
chical structure).

Type of creation The creation of the semantic information for an object can
be done manually (by a domain expert) or automatically (e.g., using a
generative description).

Data organization The two basic concepts of storing meta data are storing
the information within the original object (e.g., EXIF data for images),
or storing it separately (e.g., using a database).

Information comprehensiveness The comprehensiveness of the semantic in-
formation can be declared varying from low to high in any gradation.

Having classified different types of meta data, many concepts for encoding se-
mantic information can be applied to 3D data. Despite the large number of
3D data formats, only a few are standardized, non-proprietary and support
semantic markup [Set13]:

36 CHAPTER 3. MODELING

COLLAborative Design Activity (Collada) The XML-based Collada for-
mat is an ISO standard and allows storing meta data like title, author, re-
vision etc. not only on a global scale but also for parts of the scene [Int12a].
This file format can be found in Google Warehouse where meta data is,
for example, used for geo-referencing objects.

Initial Graphics Exchange Specification (IGES) IGES is an ANSI stan-
dard since 1980 and allows the definition of annotations including dimen-
sioning data as well as labels and notes [U.S06]. This file format is used
as a vendor-neutral exchange format among CAD systems.

Jupiter Tesselation (JT) The JT file format is an ISO standard since 2012
and is used for product visualization and data exchange in CAD sys-
tems [Int12b]. Annotations in the form of attributes and properties as
well as filters are supported by this format. It is accompanied by the
XML-based format PLMXML to represent product structure hierarchy.

Portable Document Format (PDF) 3D PDF 3D is an ISO standard and
allows to store annotations separated from the 3D data even allowing
annotating the annotations [Int08]. An advantage is that the viewer ap-
plication is widely spread and PDF documents are the quasi standard for
textual documents.

Standard for the Exchange of Product model data (STEP) STEP, an
ISO standard since 1994, is divided into different parts, data models
and environments [Int94]. The current Application Protocol 242 supports
product data and non-geometrical meta data.

Extensible 3D Graphics (X3D) The X3D file format is an XML-based ISO
standard for representing 3D computer graphics [Int13]. It supports a
number of different meta data nodes providing arrays of strongly typed
data.

While a standard has advantages for accessibility, long-term archival, and many
other aspects, it does not solve inherent problems; i.e., due to the persistent
naming problem, a modification of the 3D model can break the integrity of the
semantic information. Any change of the geometry can cause the referenced
part of the model to no longer exist or being changed. Nevertheless, there are
a lot of examples for semantic modeling in various contexts.

ALEXANDRE BOULCH et al. propose an approach to automatically enrich
complex objects in a 3D scene with semantic information [BHMT13]. A con-
strained attribute grammar is used to automatically compute a shared parse
forest of all interpretations. As a parse tree reflects the structure of a 3D scene,
it enriches scene primitives with semantic labels and relations.

In their generative modeling approach, SIMON HAEGLER, PASCAL MULLER
and Luc VAN GooL produce multiple models to sample the space of possi-
bilities introduced by uncertainty in the context of digital cultural heritage
[HMVGO09]. Missing knowledge about the past appearance of archaeological
sites is typically only visualized using transparency, or different textures. The
inherent structural description encoded in generative models explicitly expresses
the uncertainty.

3.3. GENERATIVE MODELING 37

ERICK MENDEZ et al. present a generative modeling pipeline to create interac-
tive 3D visualizations of underground infrastructure [MSH™08]. The 3D models
are encoded in a scene-graph representing visual models with semantic markup.
It is used for interactive filtering and styling of the models in an augmented
reality setup.

In their work, LIU YONG et al. identify three challenges of generative model-
ing in an architectural context: complex architecture, efficient manual creation,
automatic semantic enrichment [YMYH12]. They address these challenges with
a general framework to construct large-scale 3D models of digital architectural
heritage.

3.3 Generative Modeling

Generative modeling techniques are used to generate highly complex shapes
based on a set of formal construction rules. In Section 2.6 we have established,
that this modeling paradigm describes a shape by a sequence of processing steps,
rather than just the end result of applied operations. Since generative modeling
is a very general approach, it can be applied to any domain and to any shape
description that provides a set of generating functions. Another advantage is
the included expert knowledge, e.g., classification schemes used in architecture,
archaeology, civil engineering, etc. can be mapped to generating functions. For
a specific object only its type and instantiation parameters have to be iden-
tified. As mentioned in Section 3.2, this semantic information is required by
digital library services. In the article “Know the Rules — Tutorial on Pro-
cedural Modeling” [SKU15] by CHRISTOPH SCHINKO, ULRICH KRISPEL, and
ToORSTEN ULRICH, we describe the following fields of application for generative
modeling techniques.

3.3.1 Ruler and Compass

The construction of lengths, angles, and other geometric figures using only an
idealized ruler and compass are called ruler-and-compass constructions. The
idealized ruler is assumed to be of infinite length, offering only one edge with no
markings on it. The compass, on the other hand, is not able to be directly used
to transfer distances. Ancient Greek mathematicians placed great emphasis on
problems of constructing various geometric figures using only ruler and compass.
Ruler-and-compass construction problems that they could not overcome, and
that were later shown to be impossible to perform, were thought to be hard,
not unsolvable. However, the ancient Greek knew how to solve many of these
problems without the constraints of working only with ruler and compass.

All ruler-and-compass constructions consist of repeated application of five
basic constructions based on EucCLID’s axioms [Euc07] relying on the points,
lines and circles that have already been constructed. An example of a ruler-and-
compass construction is illustrated in Figure 3.3. These geometric primitives in
combination with a fixed set of operations are the first algorithmic descriptions
of generative models.

Since Greek geometric constructions are prominently described in EUCLID’s
Elements [Euc07], these constructions are sometimes also referred to as Eu-
clidean constructions. Many geometric problems of antiquity like circle squaring,

38 CHAPTER 3. MODELING

cube duplication, and angle trisection are closely related to these constructions.
Although the Greeks were unable to solve these problems, constructions for
regular triangles, squares, pentagons, and their derivatives had been given by
EucLip.

Construction of a pentagon:

1. Draw a circle in which to inscribe
the pentagon and mark the center
point O.

2. Construct a pair of perpendicu-
lar lines, which intersect in O and
mark their intersection with the
circle A and B.

3. Let D be the midpoint of BO.
The circle with center D and ra-
dius | DA | intersects the line de-
fined by the points B and O.
Mark the intersection point as F'.

4. The length of sectio@ is equal
to the edge length AG of an in-
scribed pentagon (red).

Figure 3.3: The construction of a pentagon can be performed using ruler and
compass alone. The construction algorithm is based on EUCLID’s axioms.

As an interesting side note, GEORG MOHR stated that all constructions possible
with a compass and ruler can be done with a compass alone, as long as a line is
considered constructed when its two endpoints are located. The reverse is also
true. The Swiss mathematician JAKOB STEINER proved that all constructions
possible with ruler and compass can be done using a ruler alone, as long as a
fixed circle and its center have been drawn beforehand. Such a construction is
known as a Steiner construction.

The long history of geometric constructions [Mar98] is also reflected in the
history of civil engineering and architecture [Mit90]. In Gothic architecture, for
example, quite complex geometric shape configurations can be exhibited. Even
if the perception of these shapes leads to believe in a high degree of complex-
ity, it is achieved by combining a relatively small number of basic geometric
patterns. SVEN HAVEMANN and DIETER W. FELLNER present some princi-
ples of this long-standing domain. They show how the constructions of a few
prototypical Gothic windows can be formalized using generative modeling tech-
niques [HF04]. Complex configurations can be obtained through a combination
of elementary constructions by using a modularization of inherent properties of
Gothic windows. Different combinations of specific parametric features can be
grouped together, leading to the concept of styles. They enable to differentiate
between the basic shape and its appearance, i.e., in a particular ornamental
decoration (see Figure 3.4) [TKZ"13a]. This concept leads to an extremely
compact representation for a whole class of shapes [BFH05].

3.3. GENERATIVE MODELING 39

L

B

Figure 3.4: Compass and ruler operations have long been used in interactive gen-
erative modeling. This Gothic window construction was created in the frame-
work presented by WOLFGANG THALLER et al. relying on direct manipulation
of the construction alone, without the use of code or graph editing [TKZ'13a.

3.3.2 Architecture

The possibilities of including expert knowledge within a generative object de-
scription can, for instance, be exploited by using a mapping from classification
schemes to procedures. Depending on the intended use of the description, the
degree of abstraction can vary. Building blocks can be created at different levels
of abstraction starting at a very low level defining intricate details and culmi-
nating at a very coarse level exhibiting parameters with large-scale effect. For a
specific object, only its type and its instantiation parameters have to be identi-
fied. The generative building blocks themselves are static and do no change. As
a consequence, only their parameters have to be specified: Figure 3.5 illustrates
combinations of the same building blocks of Gothic architecture.

LA | .//

4
|

!kg
ik

Figure 3.5: These building blocks of Gothic architecture have been combined
in various ways to create churches and cathedrals. The generative description
takes a few high-level parameters to generate a family of Gothic buildings.

Building blocks by MICHAEL CURRY, http://www.thingiverse.com/thing:2030.

http://www.thingiverse.com/thing:2030

40 CHAPTER 3. MODELING

The building blocks of Gothic architecture have been combined in various ways
to create churches and cathedrals. The generative description of Gothic cathe-
drals encodes these building blocks and the rules on how to combine them.
The result is an algorithm that takes a few high-level parameters. The usage
of generative modeling techniques in architecture is not limited to buildings of
the past where the purpose of such techniques is to reconstruct, not to con-
struct. Over the last few decades, many architects have used a new class of
design tools with support for generative design. Generative modeling software
enables new design paradigms and extends the design abilities of architects by
harnessing computing power in new ways. Computers have long been used to
capture and implement the design ideas of architects by means of CAD and,
more recently, 3D modeling. But generative design actually helps architects by
using computers to extend human abilities.

A very impressive example for generative design is the National Stadium
in Beijing (see Figure 3.6). Its main structure is an elliptic steel structure
extending 333m from north to south and 294m from east to west, with a height
of 69.2m. The stadium has two independent structures, a concrete seating bowl
and the outer steel frame around it at about 15m distance. The unconventional
structure was designed by Herzog & De Meuron Architekten, ArupSport and the
China Architecture Design and Research Group applying generative techniques
to speed up the design process.

Figure 3.6: The Beijing National Stadium staged the 2008 Olympic Games
from 8 August to 24 August 2008. The generative design of its interwoven
facade helped saving time in resolving iterations compared to conventional CAD
techniques.

(Source: CHEN ZHAO, 2008 https://flic.kr/p/5iQilp).

https://flic.kr/p/5iQi1p

3.3. GENERATIVE MODELING 41

LARS HESSELGREN explains generative design with the following words: “Gen-
erative design is not about designing a building. It’s about designing the system
that designs a building.”

CGA Shape, CityEngine

Despite the fact that the concept of L-systems (see Section 3.3.4) has been in-
troduced a few decades ago, it is still used nowadays in a more or less unaltered
form. In combination with shape grammars, L-systems find their application
in procedural modeling of cities [PM01]. YoaGI PaRIsH and PascAaL MULLER
presented a system that generates a street map including geometry for buildings
given a number of image maps as input. The input consists of, but is not lim-
ited to elevation maps, land/water/vegetation boundary maps and population
density. To allow the definition of global objectives as well as local constraints,
L-systems have been extended. Setting and modification of parameters is trans-
ferred to external functions so that every time a rewrite rule is applied, the result
of the L-System has no assigned parameters. They are assigned and modified
according to global goals and local constraints in subsequent steps leading to
reduced complexity and easy extensibility of the rules.

Once the street map is generated, the system creates the allotments for
placing the buildings and then generates the geometry as well as a procedu-
ral texture. However, the use of procedurally generated textures to represent
facades of buildings often results in a limited level of detail.

In later work, PASCAL MULLER et al. describe a system [MZWVGO07] to
create more detailed facades based on single facade images and a split grammar
called CGA shape. The fagade images are subdivided into high-level elements
like floors and tiles by detecting repetitions. Low-level structures like windows
and doors are detected by a subdivision scheme using algorithms based on knowl-
edge of the architecture of the facades. As a last step, shape grammar rule sets
are automatically inferred to allow interactive fine-tuning of the facades.

A framework called the CityFEngine provides the modeling environment for
CGA shape. The framework is seen as useful add-on to accelerate modeling
of facades. Yet there are some limitations in the automatic processing stage
used to detect the structure of the facades. It does have difficulties with varying
quality of the input images, as well as with buildings composed of non-repetitive
structures.

MARrkuUS Lipp, PETER WONKA and MICHAEL WIMMER present another
procedural modeling approach for architecture [LWWO08] following the notation
of MULLER [MWH06] that emphasizes on real-time interactive visual editing of
the underlying grammar. A set of visual operators for rule and building editing
as well as tools for local modifications and semantic selections are introduced.
The system allows to store local changes persistently over global modifications
by using semantic annotations. A visual editing approach has proven to be
much more intuitive compared to textual editing of split rules by combining
procedural modeling techniques and standard 3D modeling paradigms. Some
deficiencies of the system arise from CGA shape itself. The approach is limited
to modeling buildings and there is no direct support for curved surfaces.

42 CHAPTER 3. MODELING

Model Graphs

BJORN GANSTER and REINHARD KLEIN propose a procedural modeling ap-
proach [GKO07] based on structure trees. They describe an integrated framework
relying on a visual language. The infix notation of the language requires the use
of variables, which are stored on a heap to circumvent implementing pipelines
to transport data. As a consequence, directed edges define the order of ex-
ecution and special nodes perform variable assignments. The graph structure
represents the rules used to create an object. Special nodes allow the creation of
geometry, the application of operators as well as the usage of control structures.
Various attributes can be set for nodes used in a graph. However, since model
graphs are an interpreted language, their performance is not comparable to a
compiled application. With increasing complexity, it becomes difficult to keep
an overview of the graph, even if model graphs can be distributed into smaller
modules. This framework can be used to model trees, buildings and landscapes.

Hierarchical Description

DIETER FINKENZELLER presented an approach for detailed building fagades
based on a parameterization of the whole facade called ProcMod [Fin08]. It
features a hierarchical description for an entire building. In order to create
a building, the user provides a coarse outline by defining floor plans for each
level of the building. Important parts of the building like balconies, cornices
and oriels must be defined in this stage. After selecting the basic style of the
building, the system generates a graph representing the building. The style is
not related to the building outline and can be set independently. In the next
step, the system combines building outline with style and creates a hierarchical
description represented by a typed graph. This graph is traversed and geometry
for every element of the graph is generated. The result is a detailed scene graph,
in which each element can be modified afterwards. However, there are some
limitations in this approach. Only common building structures and styles are
supported. Organic structures and inclined walls cannot be modeled.

3.3.3 Civil Engineering

The generative modeling approach can be applied to any domain and is not re-
stricted to shape representations [CSS*11]. In the context of 3D computer-aided
design (CAD), design processes involving repetitive tasks are perfectly suited
for a generative approach. In the field of engineering processes can be differen-
tiated in repetitive and creative processes. While all processes are often limited
by imposed constraints (e.g., interfaces to other parts, structural soundness),
repetitive ones consist of nearly identical tasks and are therefore independent
of creative decisions. This condition is necessary for modeling them in a system
of rules as demonstrated by GERALD FRANK [FH12]: Liebherr manufactures
and sells an extensive range of products including ship-, offshore and harbor
mobile cranes as well as hydraulic duty cycle crawler cranes and lift cranes (see
Figure 3.7).

Each crane has to be partially or fully customized to a customer’s needs, but
the design process of ascent assemblies is based on a set of invariant rules that
can be modeled and stored. In numerous interviews with engineering experts

3.3. GENERATIVE MODELING 43

-

Figure 3.7: The design of ascent assemblies for offshore cranes (colored in red)
results in high efforts and causes a major part of the overall engineering costs of
a crane. Because of repetitive and nearly identical design processes, the product
development processes has been optimized by software driven design automa-
tion: the reduction of engineering efforts by modeling design knowledge [Frall].

at Liebherr the repetitive design processes have been analyzed and a generative
model has been designed. Integrated into the existing CAD pipeline, a construc-
tion engineer now only has to determine the defining parameters of an assembly
and fill out the corresponding input fields in a user interface. The engineering
of ascent assemblies of an offshore crane required up to 150 hours. Using the
procedural approach, the efforts have been reduced down to ten percent.

3.3.4 Nature

The creation of natural phenomena such as trees, bushes, or flowers is a chal-
lenging task. Despite their structural complexity, many organic forms develop
following simple rules. On the one hand, the development of plants is determined
by their environment (e.g., limited water supply, exposure to the elements, sun-
light coming from a specific direction). Plants have different strategies to deal
with these limitations. On the other hand there is a plant’s inherent hierarchical
structure describing its geometric properties. These two aspects (and probably
many more, e.g., development over time) have to be combined in a procedural
system for the creation of plants.

L-Systems

In today’s procedural modeling systems, scripting languages and grammars are
often used as a set of rules to achieve a description. From a historical point
of view, the first procedural modeling systems date back to the year 1968.
At that time, Lindenmayer systems [PL90], or L-systems for short were in-
troduced and developed by the Hungarian theoretical biologist and botanist
ARISTID LINDENMAYER. These systems were conceived to establish a formal

44 CHAPTER 3. MODELING

description of the development of simple organisms as well as to illustrate neigh-
borhood relationships between cells of such organisms. While describing rather
simple structures in the beginning, these systems were successfully applied to
modeling more complex organisms.

An L-system is best-described as a variant of a formal grammar. An alphabet
of symbols can be used to create simple strings. More complex strings are cre-
ated by using a set of string rewriting rules. A predefined set of rules is applied
to an initial string forming a new, possibly larger string. The recursive nature
of the L-systems approach reflects its biological motivation. However, since a
grammar only describes the syntax of a string, not its semantical meaning, an
interpretation of the generated strings is necessary in order to generate images
or to model geometry. The modeling power of these early geometric interpre-
tations of L-systems was limited to creating fractals and plant-like branching
structures (see Figure 3.8).

L-System:
e Axiom: FX
e Angle: 28°

e Rules:
Fl—)C()FF—[Cl—F—f—F]
+[02+F—F]

X = CoFF +[Cy + F]
+[C3 — F]

whereas F' denotes “draw forward”
and +/— denote “turn left”/“turn
right”. The square bracket | cor-
responds to saving the current val-
ues for position and angle, which
are restored when the corresponding
square bracket | is executed. Cy, C1,
C5 switch colors and X does not cor-
respond to any drawing action.

Figure 3.8: Lindenmayer systems are a simple but elegant “turtle rendering”
platform. The recursive nature of L-system rules lead to self-similarity and
thereby fractal-like forms. Plant models and natural-looking organic forms
“grow” and become more complex by increasing the iteration level i.e., the
number of substitutions.

This example can be executed online by KEVIN ROAST’s L-Systems-Demo,
http://www.kevs3d.co.uk/dev/lsystems

http://www.kevs3d.co.uk/dev/index.html

3.3. GENERATIVE MODELING 45

Later on, parametric L-systems were introduced out of the necessity to over-
come issues when dealing with continuous phenomena. For example, discretizing
continuous values may require a large number of quantization levels and would
lead to a large number of symbols, or even worse, it may not be possible at
all. The idea of parametric L-Systems is to associate numerical parameters
with L-system symbols and thus allowing parameters to control the output -
the generative aspect is introduced.

Combined with additional 3D modeling techniques, L-systems can be used to
generate complex geometry [TMWO02a], [TMWO02b]. In order to generate models
of plants, terrains, and other natural phenomena that are convincing at different
scales, ROBERT F. TOBLER, STEFAN MAIERHOFER and ALEXANDER WILKIE
introduce a combination of subdivision surfaces, fractal surfaces, and parame-
terized L-systems making it possible to choose, which of them should be used
at each level of resolution. Since the whole description of such multi-resolution
models is procedural, their representation is very compact and can be exploited
by level-of-detail renderers that only generate surface details that are visible.

This kind of data amplification can be found in various fields of computer
graphics — e.g., curved surfaces specified by a few control points are tessel-
lated directly on the GPU. This results in low storage costs and allows gener-
ating the complex model only when needed, while also reducing memory trans-
fer overheads. Although L-systems are parallel rewriting systems, derivation
through rewriting leads to very uneven workloads. Furthermore, the interpre-
tation of an L-system is an inherently serial process. Thus, L-systems are not
straightforwardly amenable to parallel implementation. In 2010, MARKUS LipPP,
PETER WONKA and MICHAEL WIMMER presented a solution to this algorith-
mic challenge [LWW10].

Model Graphs

Structure trees, as described in the section about architecture, can also be ap-
plied to create natural patterns. BERND LINTERMANN and OLIVER DEUSSEN
proposed a procedural modeling method as well as a graphical user interface
for the creation of natural branching structures based on this concept [LD98].
The system represents the modeling process with a structure tree, which can be
altered using specialized components describing geometry as well as structure.
Components can also be used for defining global and partial constraints. These
components are described procedurally using creation rules, which may include
recursion. The modeling workflow basically consists of combining components
in a structure tree. Geometric data is generated according to the structure tree
via a tree traversal, where the components generate their geometrical output
themselves. Problems in the modeling process arise through the large amount
of parameters and through insufficient understanding of their influence in the
component hierarchy.

3.3.5 Entertainment

The demoscene is a computer related subculture that specializes in producing
demos, which are programs that perform audio-visual presentations. Individuals
are actively participating in the scene since the advent of personal computers
(see the book of TOMAS POLGAR for a brief history [Pol05]).

46 CHAPTER 3. MODELING

The creation of such programs is often tied to various constraints, as memory
and general hardware capabilities of the early personal computers were quite
limited. Nowadays, these constraints are mostly of self-imposed nature, e.g.,
creating a demo using only a file size of 4096 bytes (or 4 KB). Naturally, these
constraints facilitate the usage of procedural methods for any type of presenta-
tion content: 3D geometry (meshes), textures [EMPT02], sound, etc.

Even without these limitations, content creation [TYSB11] has always been
the main field of application for procedural techniques: from game design [AA14],
[CMO6], [JTSWF10], [PTY10], [TDNLO7], and virtual worlds [SICHT14], to
non-geometry aspects such as story-telling and drama management [NAMO6],
camera movements [KBUF14] and player [TDNLOG6] / artificial intelligence mod-
eling [ATAPvL11], [HCO04].

From a historical point of view, although procedural methods arose in the
field of early video game development, their use was not common in the special
effects and feature animation community.

While computer-generated content made first appearance in movies in the
late 70s, it was not until the 90s, most notably with the movies Terminator 2
and Jurassic Park, that the film industry started using 3D computer graphics for
content authoring and animation. Nowadays, procedural effects for 3D games
are similar to procedural effects for movie productions. Differences can be found
in the degree of visual fidelity, but these are mainly caused by the real-time
demands of 3D games.

3.4 Generative Modeling Language (GML)

SVEN HAVEMANN proposes a stack based language written in C++ called Gen-
erative Modeling Language (GML), which allows, but is not limited to, creating
polygonal meshes [Hav05]. The postfix notation of the language is very similar
to that of Adobe Postscript. A stack is used to exchange parameters between
functions. The GML interpreter has to ensure that results from previous oper-
ators or function calls become input parameters of subsequent functions. Thus,
high-level shape operators are created from low-level shape functionality.

3.4.1 Language Elements

GML code is interpreted as a stream of tokens, which can either be a literal,
or executable. In case of it being a literal, it is pushed onto the stack. An
executable is executed using the stack to provide input.

A literal can be one of the atomic data types: integer values (42), floating
point values (13.37), strings ("string"), vectors ((1.2,3.4), or (1.2,3.4,5.6)),
markers ([, {, }) and literal names (/name). The type set can be extended on
C++ level to create additional literals. Operators (pop) and path names (.name),
for example, are always executable.

Operators An operator pops its inputs from the stack, processes them, and
pushes the results back on the stack. It consumes, respectively produces an
arbitrary number of input and output elements. Apart from GML’s core op-
erators (similar to Adobe Postscript), new operators are organized in libraries
(dictionaries).

3.4. GENERATIVE MODELING LANGUAGE (GML) 47

Dictionaries and scoping The concept of a dictionary resembles a list of
key/value pairs with the key being a literal name, and the value being any type
of token. In the GML, a stack of dictionaries — the dictionary stack — is used for
look-up purposes. Flexible scoping is possible, because the topmost dictionary
on the dictionary stack that contains a requested name as a key also defines its
value. The dictionary stack always contains the global dictionary for looking-
up the atomic operators. Dictionaries can be pushed onto, and popped from
the dictionary stack with the operators begin and end. Navigation in dictionary
hierarchies is performed with path names. The dot prefix of a path name (.name)
triggers its execution — a dictionary is popped from the stack and the token name
is pushed back onto the stack.

Arrays and Functions Arrays in the GML can either be literals, or exe-
cutables. When the operator] is interpreted, all elements on the stack until
the marker [are consumed to form an array. Thus, arrays can consist of ele-
ments of different types (also nested arrays are possible). In contrast to literal
arrays, the markers { and } are used to create executable arrays (or functions).
While literal arrays are pushed onto the stack, executable arrays are executed
token by token. The { marker enables the interpreter to treat all following to-
kens as literals, and to push them back onto the stack. In case of operators,
their respective executable name is pushed. The enclosing } marker ends this
interpreter mode and pushes the resulting executable array back onto the stack.
Executable arrays can therefore be used as functions taking inputs from the
stack.

Registers Due to difficulties in keeping track of the stack, the GML offers a
convenient, yet efficient way to store values for later use. The main purpose of
registers is to have fast local variables, that are valid only in the scope, they
are defined in. The usage of registers can be enabled with the operator usereg.
Values are stored within a register by using ! followed by a name. Retrieving
values is possible with ; or : followed by the name. The difference between ;
and : is that by using ;, the value is just pushed onto the stack. When using
:, the token stored within the register is also executed. It is good practice to
begin a function by popping all needed parameters into registers.

Flow control Looping and conditional branching are imperative features of
programming languages. The GML-way of implementing these features is to use
special flow control operators (see Table 3.1). While the map operator pushes a
return value (an array) back onto the stack, any function can leave values on
the stack.

3.4.2 Shape Modeling

In the GML, three-dimensional shapes can be generated by means of Euler
Operators. They are topological operators that modify incidence relationships
and are not related to geometric operations. Mesh manipulation and navigation
is also possible on a half-edge level since Euler Operators are not suitable as
end-user interface. A powerful mesh data structure is the foundation for the
modeling operations. It allows interactive mesh modeling and supports semantic

48 CHAPTER 3. MODELING

Flow control Description

flag func if func is executed if flag # 0

flag funcl func2 ifelse | funcl is executed if flag # 0, func2 other-
wise

func loop continues to execute func until the exit
operator is called from within func

num func repeat executes func num times

init inc to func for starting at i = 0, the values init + i X

inc are pushed onto the stack until these
values are < to (for inc > 0), or > to (for
increment < 0); func is executed each time

array func forall pushes each element of array onto the
stack and executes func each time
array func map pushes each element of array, executes

func, and pops the element; the resulting
elements form a new array

Table 3.1: Conditional branches and loops are implemented in the GML as op-
erators. The token representing the function does not need to be an executable
array — it can be any kind of token.

level-of-detail. The GML serves as a platform for a number of applications,
because it is extensible and comes with an integrated visualization engine.

The GML uses so-called combined B-Reps as its low-level shape represen-
tation. It is a combination of a half-edge datastructure (see Section 2.4.2)
with Catmull-Clark subdivision surfaces (see Section 2.4.3). The flexibility of
composing models of free-form and polygonal parts is achieved by attaching a
sharpness flag to every edge in the mesh, to distinguish between sharp edges
and smooth edges. Regions with sharp edges are rendered using polygons, while
regions with smooth edges are regarded as a control mesh for subdivision sur-
faces.

Euler Operators are used at the very core of GML’s modeling functionality.
Their theoretical foundations are discussed in the work of SVEN HAVEMANN.
In the GML, five Euler operators (along with their respective inverse ones) are
used:

e makeVFS (killVFS): This operator is used to initially create a shell
(connected component) with one face and one vertex. The inverse operator
is used to delete a shell together with its last vertex and face.

e makeEV (KillEV): A single vertex and an edge are created by this opera-
tor. It splits an already existing vertex into two, and creates a connection
(edge) between the two new vertices. The inverse operator removes an
edge and merges the two vertices.

e makeEF (killEF): This operator is used to split a face into two faces,
introducing an edge. The inverse operator joins two faces into one.

e makeEkillR (killEmakeR): This operator is used to replace an edge-
ring with an edge. The inverse operator creates a ring within a face.

3.4. GENERATIVE MODELING LANGUAGE (GML) 49

e makeFkillRH (killFmakeRH): This operator enables topological chan-
ges of an object. By using this operator, a face is created out of a ring-hole.
The inverse operator takes a face and turns it into a ring of another face.

While these operators form a complete set of modeling operations, it is a tedious
task to directly work with them to create a shape. Thus, the GML offers built-in
high-level shape operators that allow a more convenient way of modeling.

Throughout its many years of existence, many generative models have been
created using the GML. Figure 3.9 shows two examples from the automotive
sector.

Figure 3.9: This figure shows two examples of generative models created using
the GML. The top row shows different configurations of an engine that can be
changed by interacting with the black gizmos. Different designs of rims are
depicted in the bottom row. Using the gray and orange gizmos, it is possible to
cycle through the different designs and further customize diameters and style
elements.

The top row schematically depicts the functional principles of different engine
types. Several parameters of the engine can be changed by interacting with the
black gizmos. It is possible to change the number of cylinders, the angle between
cylinder banks in V-engines and the position of the cylinders. By choosing an
angle of zero degree, the V-engine becomes a straight engine. The bottom row
shows different designs for rims. It is possible to cycle through different designs
and to further customize diameters and style elements using the gray and orange
gizmos.

The following section presents a use case that demonstrates the effective-
ness of generative modeling for mass customization of consumer products using
wedding rings.

50 CHAPTER 3. MODELING

3.4.3 Application: Wedding Rings

The wedding day is one of the most important days in most people’s lives. Many
couples choose a wedding ring to dignify this special event (see Figure 3.11).
Since a wedding is tailored towards a couple, there is an inherent demand to
customize their wedding ring as well. Customization is easily possible when
products are made by hand, but due to modern production facilities allowing
parameters to be varied with every single produced item, it is nowadays also
feasible for automated production. This is the basis for mass customization
where designers no longer create a static product (a design), but a whole product
family (a metadesign).

While a metadesign is obtained by generative modeling techniques (see Sec-
tion 3.3), various ways exist for realizing designs for wedding rings: There are
flexible solutions like 3D Modeling Software (see Section 3.1.1), but also spe-
cialized jewelry and ring design software:

o Firestorm CAD offers the ability to create solid jewelry designs by ex-
truding paths [Bab17]. These paths can be obtained by tracing images,
or projecting images onto different surfaces. A large number of diamond
layouts are available for use.

e The tools CounterSketch and Matriz allow designers to customize pre-
defined styles, or even create customizable styles for jewelry [Higl7]. Free-
form designs can be created using T-Splines and a large array of tools for
laying out and adjusting gems.

o JewelCAD is a specialized 3D freeform modeler with modeling tools that
allow much freedom in creating artistic and stylish designs [Lil7]. It fa-
cilitates the import of profile paths from 2D sketches for path extrusions
defining patterns and lattices.

e 3Design combines a library of design elements with freeform modeling
of artistic jewelry designs [Guyl7]. Tracing images to create paths for
extraction enables an easy workflow from 2D to 3D.

In the article “Ring’s Anatomy — Parametric Design of Wedding Rings” [BSK™*12]
by RENE BERNDT et al., we present an encoding of the metadesign of weddings
rings from the design space of the Ringmanufaktur JohannKaiser? in the GML.

Ring features

To create a metadesign, the features of the product family have to be identified.
An obvious feature of wedding rings, or rings in general, is to fit on human
fingers — thus they resemble the shape of a circle on the inside. There are
various other distinct features. The profile is a very characteristic one defining
the shape of the ring. Some common profiles are shown in Figure 3.10.

The flat section profile is the traditional wedding ring profile, which is flat
on the inside and on the outside. D-shaped profile rings have a flat profile on
the inside and a bent profile on the outside. Rings with halo profile have a
perfectly round cross section. Oxford court is an oval profile with flat rounded
internal and external facets, typically resembling the shape of an ellipse.

2http://www.johannkaiser.de

3.4. GENERATIVE MODELING LANGUAGE (GML) 51

(a) Flat section profile (b) D shaped profile

(c) Halo profile (d) Oxfort court

Figure 3.10: A ring’s profile is a very characteristic feature. Common ring
profiles are: flat section profile (a), D-shaped profile (b), halo profile (c) and
Oxford court (d).

Another characteristic property of a wedding ring is the material it is made
of. Various metals like gold, silver, platinum, but also palladium, stainless
steel, or titanium are typically used for wedding rings. Also a combination of
different materials is possible. The surface structure of the material can be
varied from polished, highly specular surfaces, over glossy, to different kinds of
abraded (“brushed”) surfaces. Like with different material combinations, also
combinations of different surface structures are possible (and rather common).

The surface of a wedding ring can be further garnished using engravings and
gemstones. Engravings include artistic strokes and patterns, but also simple
text, typically the names of the couple and the date of the wedding on the inside.
By applying gemstones, a wedding ring’s character becomes even more noble.
Typical gemstones used are diamonds, sapphires, rubies, emeralds, amethysts
and aquamarines. While gems also add value, their distribution pattern often
also has a symbolic meaning.

A last feature of wedding rings is directly related to the placement of gem-
stones. In order for gemstones to be kept in place, a fixed connection with the
ring has to be established in the form of a socket. These sockets have to be
incorporated into the surface of the ring.

Some of the aforementioned properties can be seen on the wedding rings in
Figure 3.11.

Parameterization

Following the observations made regarding a ring’s features, RENE BERNDT
used the following parameters to create a metadesign for the basic shape of
wedding rings:

e a non-self-intersecting profile polygon,

e the angular step size defined by the number of supporting profiles to be
placed around a ring’s center,

e the radius,

e a vertex transformation function.

52 CHAPTER 3. MODELING

Figure 3.11: Apart from noble materials (here: platinum), the surface of a
wedding ring can be garnished with material finishes (here: “brushed” surface),
engravings (here: names and dates), as well as gemstones (here: diamonds).

Further design variations can be created by applying a set of transformation
functions (e.g., sine transformations) to vertices of the profile polygons. These
transformation functions can be combined to cover the variations of a design
space.

Figure 3.12 shows the different stages of creating the basic shape of a wedding

ring. Starting with a profile polygon, a number of copies are placed radially
around the origin. These polygons are connected using the bridgerings operator
to form the control mesh for a subdivision surface (see Section 2.4.3). It expects
two halfedges of corresponding vertices of two polygons (faces).
The initial control polygon defining the ring’s surface is defined by a function
taking the profile polygon and the rotation angle as parameters. In order to
further customize the ring, an additional set of parameters are needed. These
custom parameters depend on the particular transformation used — a sine trans-
formation, for example, requires three parameters: frequency, amplitude, and
the indices of the points of the profile polygon to which the transformation is
to be applied to. The transformation function can transform the profile points
arbitrarily.

Materials and Engravings

After creating the basic shape of a ring, materials and engravings are added
using different techniques. Depending on their impact on the ring’s geometry,
we separate engravings (the so-called meso-structure) from the material and its
surface structure (the micro-structure). Engravings are defined and applied as
(per-vertex) displacement maps, with the idea to create a micro-tessellation of
the surface only in regions with displacement. Material and surface structure

3.4. GENERATIVE MODELING LANGUAGE (GML) 53

54 32
76 10

9 10

(a) the profile polygon (b) radial placement (c) connecting pro- (d) subdivision sur-
around center files face

(e) identity (f) sine trans- (g) decora- (h) different
transforma- formation tive wave coloring
tion

Figure 3.12: The basic shape of most wedding rings can be constructed in a
few stages: A number of copies of the profile polygon (a) are placed radially
around the center (b). Consecutive profiles are connected to form a control
mesh (c) to define a subdivision surface forming the actual ring shape (d).
Exchanging the default identity profile transformation function (e) to a selective
sine transformation (f) creates a decorative wave on the surface (g). In a post-
processing step the wave faces can be colored differently.

are regarded as micro-structure. They are applied as a combination of material
(consisting of: ambient, diffuse, and specular color, illumination and shininess)
and normal maps for different surface structures.
Assigning materials to parts of the ring is done in a few lines of code:
1 :edges
2 [3]
3 /silver
4 RING.Tools.colorize
The parameters for RING. Tools.colorize are an array of half-edges (line 1), the
indices of the affected faces, and the material name. Figure 3.12 (h) shows the
result of applying this code snippet. The material is applied in the final ren-
dering stage using the standard Blinn-Phong shading model combined with an
approximation of the Fresnel reflection term that can model anisotropic high-
lights. To make the surface look metallic, the specular highlight is modified by
the color of the material. We use a static cube map to reflect the environment.
The material’s surface structure can be controlled by applying several pre-
defined structures, like “brushed”, or “sand” to the surface (see Figure 3.13).

Displacement Mapping

The basic idea of displacement
mapping is to take sample points
from a surface, and displace in the
direction of the surface normal in a
distance corresponding to the gray
value in a supplied height map. The
normal vector of the displaced ver-
tices is calculated by combining the
surface normal with the supplied
normal map.

Displacement mapping tech-
niques can generally be classified
in per-vertex and per-pixel tech-
niques. Some techniques only af-
fect surface normals and, thus, the
lighting calculation — points are vir-

texel centers. Consequently, per-
pixel displacement is carried out
by the texture unit of the frag-
ment shader. Per-vertex displace-
ment changes the positions of the
of the original mesh vertices, and
is therefore implemented in the
vertex or geometry shader. So
per-vertex displacement mapping
creates actual geometry, whereas
per-pixel displacement only cre-
ates the visual effect of a displace-
ment. LASZLO SZIRMAY-KALOS
and TAMAS UMENHOFFER give an
overview of current displacement
mapping techniques [SKUO0S].

tually displaced corresponding to

o LJ

(b) surface structure: “brushed, coarse”

“ice”

(a) surface structure:

Figure 3.13: The operator nmp-material creates different surface structures, for
example: “ice” (a), or “brushed, coarse” (b).

In order to achieve the desired effects, the nmp-material operator relies on pre-
defined normal maps. The parameters for nmp-material are a material id, a
starting half-edge, an extend (in two dimensions), as well as scaling.

The material id defines the type of surface structure — Table 3.2 gives an
overview of all currently available surface structures.
Engravings can be created in a few lines of GML code using the operator
dsp-displacetexture. The operator’s parameters are the file names of displace-
ment and normal maps, a scale factor, a starting half-edge, and an extent.

The rationale behind using per-vertex displacement mapping is that the
metadesign is not only used for visualization, but also for rapid-prototyping
purposes — the per-vertex approach allows exporting of displaced geometry.
While per-vertex displacement requires a rather dense tessellation for detailed
displacement maps, a view-dependent tessellation scheme overcomes this issue.
Depending on the distance between camera and geometry, as well as on ren-

3.4. GENERATIVE MODELING LANGUAGE (GML) 55

Material id | Material description

ice

brushed, 45 degree, coarse
brushed, 45 degree, fine
brushed, coarse

brushed, fine

sand, coarse

sand, fine

brushed, concentric

N O UL W= O

Table 3.2: A total of eight different surface structures are currently available
via the nmp-material operator in the GML.

dering speed, several levels of subdivision are available. Another advantage of
per-vertex approaches is a correct visualization at the silhouette. The rings in
Figure 3.14 illustrate the visual superiority of per-vertex displacement mapping.

(a) normal mapping (b) displacement mapping

Figure 3.14: The comparison of normal mapping (a) and displacement mapping
(b) reveals visual deficiencies at the silhouette as well as a lack of “depth” when
using normal mapping.

Gemstones

Wedding rings are often decorated with gemstones to emphasize their character.
Our metadesign features gemstones of the round brilliant cut type, due to its
dominant position in the market [HRJS98]. Similar to SCOTT T. HEMPHILL et.
al, ULRICH KRISPEL’s mathematical model consists of a convex polyhedron, a
3D convex polytope (see Section 2.5.2), representing the surface of the gemstone.
A convex polyhedron is defined by the planes of its facet — three 3D points. The
orientation of these points is important and allows to distinguish between below
and above the plane.

Figure 3.15 (a and b) shows the five parameters used to define the shape of
a diamond: total diameter, table diameter, crown height, pavilion height and
girdle height.

56 CHAPTER 3. MODELING

T U
.
! s
fE : oA
i 4
D \ /
L e -
(a) side view (b) top view (c) rendering

Figure 3.15: Five parameters are used to define the shape of a diamond. The pa-
rameters are total diameter (A), table diameter (B), crown height (C), pavilion
height (D) and girdle height (E).

The system differentiates between the instantiation of a diamond, given a pa-
rameter set, and the placements of instances of this diamond. The evaluation
of the convex polyhedron in the GML creates the instance geometry of a gem-
stone as can be seen in Figure 3.15 (c). Gemstone instances can be placed by
specifying the apex point, an up-vector, and a scale factor. The apex point is
typically determined by a ray-mesh intersection with the ring’s surface.

Sockets

Sockets for gemstones, or other sharp features, are insufficiently handled by dis-
placement mapping techniques. A typical circular socket for a single gemstone
requires a very fine tessellation in order to create a visually appealing result.
Through the use of Constructive Solid Geometry (see Section 2.5.3), complex,
sharp surface features can be realized.

With my help to integrate this feature into the system, RENE ZMUGG real-
ized a image-space method for CSG. Since this method is limited to image-space
only, it does not alter a ring’s geometry. Therefore, it can not be used for rapid
prototyping, only for visualization purposes. The image-space method relies
on knowledge about the depth complexity of the plus-object (the ring) and the
minus-object (e.g., a cylinder). Figure 3.16 depicts the depth complexity as the
maximum number of times an arbitrary ray can intersect with a given object.

Figure 3.16: The left disc has a depth complexity of two, as an arbitrary ray
intersects the disc at a maximum of two points. Arbitrary rays can intersect a
ring at two points too, but at a maximum of four points (right).

3.4. GENERATIVE MODELING LANGUAGE (GML) o7

The algorithm proceeds by creating the specified amount of depth-peels for the
two objects and combines the necessary parts to create the final image. If the
amount of depth-peels is chosen too low it might not be possible to see the back
part of a ring through a subtracted cylinder as illustrated in Figure 3.17.

C || ©
—_—

(a) two depth-peels (b) four depth-peels

Figure 3.17: Using the correct number of depth-peels shows the back part of
the ring as visible through a hole cut into the front part (b). With the number
of depth-peels set too low, the back part of the ring is not visible (a).

Too many depth-peels do not affect the visible result, but affect the execution
time. Examples for rings created through the use of Boolean operations with
cylinders and boxes are shown in Figure 3.18.

(a) round cut (b) square cut (c) multiple round cuts

Figure 3.18: Rings with round (a), square (b) and multiple (c) cuts can be
created. Boolean operations using image-space CSG greatly enhance the possi-
bilities of the metadesign.

58 CHAPTER 3. MODELING

Examples

With all components at hand, our system is capable of generating a variety of
ring designs (see Figure 3.19). The implementation of a the metadesign took
about six weeks, with a resulting GML code size of about 100 KB. JohannKaiser
are using this system for their wedding ring configurator REx.

Figure 3.19: The output of the parameterization process is a metadesign that
can generate a variety of ring designs.

3.4. GENERATIVE MODELING LANGUAGE (GML) 59

3.4.4 Application: Serverside Rendering for Generative
Content

The presented metadesign of wedding rings in Section 3.4.3 efficiently encodes
the whole product family in about 100 KB GML code. Apart from textures (in-
cluding normal and displacement maps), this solution is ideal for low-bandwidth
applications. However, due to greater demands on the graphics hardware (for
per-vertex displacement mapping and image-space CSG), it is not suitable for
low-cost client computers, or tablets and smartphones. Supporting the variety
of different platforms (especially mobile platforms) would also require a large
amount of development work for a C++ application, like the GML. Addition-
ally, there is the question of intellectual property protection (IPP), in the case
of the wedding rings.

The problem of supporting different platforms can be solved by delivering the
visualization through a web browser. RENE BERNDT, DIETER W. FELLNER
and SVEN HAVEMANN describe a browser plug-in based approach that (nowa-
days) has several disadvantages [BFHO5]:

e It is not possible to protect the IP of a generative description, since ev-
erything is processed by the plug-in and therefore has to be transferred to
the client.

e There is a significant inhibition threshold to install a plug-in, if even pos-
sible on the target platform.

e The quality of the visualization heavily depends on the capabilities of the
client’s hardware and thus cannot be guaranteed.

e Maintenance and deployment of a plug-in are time- and labor-intensive
and often cannot be financed over a longer period.

A possible step could be the implementation of GML using JavaScript and
WebGL [Khrl4] technologies. While the problem of IPP would still persist, it
would require a rebuild of the GML ecosystem in a web browser — which is a
time-consuming task without the help of tools like Emscripten [Zak11].

A main advantage of the browser-only approaches is the elimination of server-
side infrastructure to the greatest possible extent since only the generative de-
scriptions need to be transferred to the client.

In the article “A Scalable Rendering Framework for Generative 3D Content”
[SBEF14] by CHRISTOPH SCHINKO et al., we present a hybrid solution to over-
come the IPP problem. In our scenario, server-side hardware is used to allow the
rendering to be shifted away from the client. The client uses X3DOM [BEJZ09]
technology to display a combination of simple proxy geometry and rendered im-
ages. This way the interactivity of navigation is preserved, the rendering quality
is independent of the client’s hardware and the IPP problem is solved. A draw-
back is the need of powerful server hardware, but due to the business model for
this application being tailored towards jewelers and wedding ring studios, the
amount of customers is manageable.

Hybrid Rendering

Hybrid rendering approaches create
images by combining parts gener-
ated both on the client and on the
server. The workload is typically
shifted between the components to
achieve different goals, like for ex-
ample: a maximum of rendering
performance or a minimum of data
transferred.

RealityServer from Mige-
nius [Migl7] is a software product
for producing photo-realistic ren-
derings of 3D models. A server
component takes care of produc-
ing rendered images from a given
3D model using NVidia Iray tech-
nology [Nvil7b]. The images are
streamed to the client without the
requirement of plug-ins. Further-
more, cloud computing enables the
server component to scale with re-
gards to rendering performance and
concurrent users.

Scientific visualization tools like
ParaView from Kitware [Kitl7a]
are suited for remote vi-
sualization, as described by
JAMES AHRENS, BERK GEVECI
and CHARLES Law [AGLO05] and
ANDY CEDILNIK et al. [CGM™06].
Because of its component-based
structure, data processing and data
rendering can be done on the same
machine or can be run separately on
different computational resources.
Thus, a client can receive either
rendered images coming from the

rendering resource or pre-processed
3D content. ParaView uses the Vi-
sualization Toolkit [Kit17b] as the
data processing and rendering en-
gine.

Interactive server-side render-
ing approaches are also successfully
applied to cloud gaming. Popu-
lar services like Playstation Now
from Sony [Sonl7] and Geforce Now
from NVidia [Nvil7a] offer cloud-
based gaming platforms. The game
application runs on a remote server
and can be accessed over the in-
ternet by various devices. The
user’s input is sent to the server and
then passed to the game applica-
tion. The output is encoded as a
video stream and sent to the client.

The web Vis/instant3Dhub plat-
form from Fraunhofer IGD [Beh17]
combines a web-components based
framework (webVis) with a visual
computing as a service infrastruc-
ture (instant3Dhub). By combin-
ing the two components, a pow-
erful and comprehensive solution
for interactive 3D visualization is
available. The system adapts to
a given environment by providing
client, server and hybrid visualiza-
tion techniques to optimize the de-
livery of complex data sets. Fur-
thermore, it provides services like
data transcoding and mesh opti-
mization.

System Architecture

The system architecture consists of four different layers (as can be seen in Fig-
ure 3.20):

e Client layer The client layer represents the web application within a
browser, which runs on a laptop, desktop, tablet or mobile device.

e Application layer The application layer represents all information and
constraints of the domain. In the context of wedding rings, it contains the
metadesign.

3.4. GENERATIVE MODELING LANGUAGE (GML) 61

e Hardware Accelerated SErver-side Rendering (cHASER) layer
The cHASER layer is responsible for session management and distribution
of the workload to the available GML Rendering Units (GRU).

e GRU layer A GML Rendering Unit encapsulates a single GML inter-
preter to create a rendering. The GRUs can either be located on the
same server, which is running the cHASER or distributed on an arbitrary
number of machines.

&
Client =

Application Layer

Application
cHASER

cHASER

Figure 3.20: The system architecture consist of four layers. Clients are com-
municating with an application layer representing the generative domain. The
main component of the architecture is the cHASER layer for controlling the
workload for the GRUs, which are responsible for rendering.

The interfaces between client and cHASER layer, as well as cHASER and GRU
layer are implemented as RESTful web services [FT00].

GML Rendering Unit (GRU) The GML Rendering Unit exposes a GML
interpreter using a small RESTful API. Table 3.3 shows the functions to execute
GML code, request a rendering, and restart a specified GRU.

Resource path Method | Description
/GRU/{id} /interpreter POST Executes the provided
GML code on the specified
GRU.
GET Requests a rendering from

the specified GRU.
DELETE| Restarts the specified
GRU.

Table 3.3: The RESTful APT of a GML Rendering Unit (GRU) is small due to
the possibility to post and execute GML code on the remote interpreter.

Potential harm to a GRU due to the execution of arbitrary GML code is pre-
vented by the cHASER layer. Direct exposure of the GRUs to a client is not
possible.

62 CHAPTER 3. MODELING

Hardware Accelerated SErver-side Rendering (cHASER) As a central
part of the system, the cHASER layer is responsible for the session management,
for delivering renderings through the cHASER cache, as well as for distributing
the incoming requests to the available GRUs via a GRU dispatcher.

The GRU dispatcher is responsible for distributing the requests from a ses-
sion to the available GRUs. While a GRU initially gets assigned to a session,
it is not exclusively occupied (e.g., after a certain timeout period, a GRU is
free to be used by other sessions). In case the application layer requests the
execution of GML code for a given session, the GRU dispatcher checks, whether
the GRU has not been used otherwise. If so, the operation can be executed
on this GRU. Otherwise, a so-called “GRU fault” happens and the dispatcher
looks for the GRU, which has been idle for the longest time and attaches it to
that session. The state of the session has to be restored to the GRU by re-
playing all GML commands and restoring the latest versions of the modelview-
and projection matrix. This task can be rather time consuming, but should not
happen too often, since the typical use case after initially requesting a rendering
are consecutive requests to changing the camera.

The cHASER cache is used by the GRUs to store renderings — a file-watcher
synchronizes the GRUs with the cHASER layer. For delivery, renderings are
not sent through the RESTful interface, but are accessed directly by the clients.
Table 3.4 gives an overview of the available functions of the RESTful API.

Resource path Method | Description

/api/session POST Creates a new GML ses-
sion and returns the corre-
sponding session id.

Japi/{sId} POST Executes the provided
GML code on the assigned
GRU.
DELETE| Ends the GML session.
/api/{sld} /rendering GET Renders the given GML

session to an image and re-
turns the URL to the im-
age.

/api/{sld}/x3dom GET Requests an X3DOM rep-
resentation and returns the

URL to the model.

/api/{sld}/modelviewmatrix PUT Sets the modelview matrix
for the given session.

/api/{sld}/projectionmatrix PUT Sets the projection matrix
for the given session.

/api/{sld} /rendering/size PUT Sets the size of the render-
ing.

Table 3.4: The RESTful API of the cHASER layer covers all requests from the
application layer regarding session management and rendering. Please note that
sld is short for sessionld.

The functions are described in detail:

e Start session (POST) When stating a session, the session management

3.4. GENERATIVE MODELING LANGUAGE (GML) 63

allocates and returns a Universally Unique IDentifier (UUID), which is
used by all subsequent API calls. The session stores the history of all
GML calls in order to restore the state for a GRU.

e Execute GML code (POST) The GML code to be executed is sent to
the assigned GRU.

¢ End session (DELETE) The session is terminated and the respective
renderings in the cHASER Cache are removed.

¢ Request rendering (GET) If the client requests a rendering, the request
is forwarded to its attached GRU. The response is sent when the rendering
is complete and contains a URI for the rendered image served from the
cHASER cache.

¢ Request X3DOM (GET) If the client requests the X3DOM represen-
tation of the model (a low-polygon model), the request is forwarded to its
attached GRU. The response is sent when the representation is created
and contains a URI for the model served from the cHASER cache.

e Setting modelview-/projectionmatrix (PUT) In order to keep the
view of the X3DOM proxy and the parametric model in sync, modelview
and projection matrices can be set. The current view of the X3DOM
representation is applied to the GRU for the next rendering request.

e Setting rendering size (PUT) The size of the next rendering can be
controlled by setting its dimensions.

Client-side Visualization and Navigation

Visualization and navigation on the client are done in a web browser using
X3DOM Technology [BEJZ09]. For the visualization proxy geometry for direct
3D manipulation of the scene is displayed in combination with rendered images
when no scene manipulation is happening.

A typical rendering task consists of creating a new session on the cHASER
layer and selecting (or parameterizing) a GML model for rendering. Proxy ge-
ometry is requested and sent to the client to provide the user with convenient
and immediate manipulation feedback, see Figure 3.21 (a). The requested proxy
geometry consists of a low-polygon version of the requested GML model. Ini-
tially, the proxy geometry is not shown to the user; it is set to be transparent.
The next step is to request an initial rendering: modelview and projection ma-
trices are passed to the cHASER layer and the corresponding rendered image is
sent to the client. A mouse-click on the X3DOM canvas (i.e., on the rendered
image) activates (displays) the navigation proxy geometry. During mouse in-
teraction the proxy geometry is directly manipulated and stays visible until the
mouse button is released. Then, the proxy geometry is deactivated (by setting
it to be transparent) and a new rendering is requested.

In case the client does not support X3DOM (e.g., due to lacking browser
support or insufficient hardware) a fallback solution is provided. Since it is
not possible to display proxy geometry, navigation is achieved by using three
sliders for pitch, roll and zoom as can be seen in Figure 3.21 (b). In this mode,
renderings are requested permanently to supply the needed feedback for the
user.

64 CHAPTER 3. MODELING

(a) proxy geometry (b) fallback with sliders

Figure 3.21: Different modes of interaction with the geometry are available. A
proxy object is used to directly manipulate the object in the X3DOM canvas
(a). As a fallback solution (for browsers not supported by X3DOM) sliders can
be used for zooming, translating and rotating (b).

Performance and Evaluation

In order to find a trade-off between the number of clients concurrently handled
by a server and the rendering time needed, the performance of the system has
been evaluated. On the one hand, rendering requests from clients need to be
processed as fast as possible to minimize waiting time, since it is unsuitable for
a client to wait more than a few seconds to receive a rendering. On the other
hand, it is not reasonable to maintain a dedicated server for every client.

Tests with dedicated client and server show that the average rendering time
for a predefined model with a different number of threads and GRUs increases
almost linearly. The delivery time, from a server point of view, shows that a
single GRU is not able to produce as much throughput as two or more GRUs.
When testing an identical number of clients and GRUs (n clients for n GRUs), an
almost linear increase in rendering time as well as an almost constant throughput
on the server is observable. These observations allow for an easy dimensioning
of server hardware, based on an expected number of concurrent clients.

The wedding ring demonstrator shown in Figure 3.22 is providing an in-
teractive high-quality user experience, even on devices without out-of-the-box
WebGL support. On WebGL-enabled devices, proxy geometry offers a more
intuitive navigation.

3.5 Summary

This chapter focused on primitive modeling, semantic modeling, and generative
modeling. The subsequent section was used to introduce the Generative Model-
ing Language (GML) together with an application: a generative description (a
so-called metadesign) of a wedding ring design space for a web-based product

3.5. SUMMARY 65

Figure 3.22: Configuring a wedding ring using an Apple iPad 2. The image
based approach can still provide an interactive high-quality user experience,
even devices without out-of-the-box WebGL support.

configurator. While this application satisfied all requirements for the defined
use case, it also demonstrated problems arising from using a platform-specific
language on unsupported platforms (a web browser). In the case of the wed-
ding ring configurator, this problem transformed into a feature and served the
purpose of intellectual property protection. However, there are many scenarios,
where it is necessary to implement and maintain several generative descriptions
on different platforms. The next chapter will present a system capable of sup-
porting many different platforms.

66

CHAPTER 3. MODELING

Chapter 4

Meta Modeler: Euclides

The results presented in the previous chapter demonstrate the potential of gen-
erative modeling techniques. Independent of the beauty that lies within the
creation of highly complex shapes based on a set of formal construction rules, it
also shows a major drawback. The potentially general approach to use construc-
tion rules has to be re-implemented on every single platform. This is problematic
in larger systems where different domain-specific languages and tools come into
play. The effort to implement and maintain several generative descriptions is
significant.

The novel approach presented in the following chapter addresses this prob-
lem by introducing the concept of generative meta-modeling. A single imple-
mentation of all necessary construction rules in an easy-to-use language can
be translated to different target platforms. Even though there is only a lim-
ited amount of target platforms available to date, the potential of the approach
becomes visible.

Contents

4.1 Overviewo e 68
4.2 Architectureo 68
4.3 Language Elements 75
4.4 Target Platforms o oL 75
4.5 Provided Libraries 0L 99
4.6 IDE 101
4.7 Interpreter. L 102
4.8 Examples e 104
4.9 SUumMmary e e e e e 108

67

68 CHAPTER 4. META MODELER: EUCLIDES

4.1 Overview

The novel meta-modeler approach called Fuclides is introduced in the article
“Procedural Modeling in Theory and Practice” [USF10] by TORSTEN ULLRICH,
CHRISTOPH SCHINKO and DIETER W. FELLNER.

It is a major problem that the need to use a programming language is a sig-
nificant inhibition threshold especially for domain experts like archaeologists,
architects, designers, etc. who are seldom experts in computer science and pro-
gramming. The introduction of a new dimension of complexity and additional
dependencies by a programming language further contribute to that problem.

Additionally, the problem of file format conversion is not solved with gener-
ative modeling techniques. If a shape does not only contain static geometry but
algorithmic descriptions, the file format also depends on the languages and the
interpreter that is able to execute the script. Our meta modeler approach pre-
sented in this chapter represents a new possibility to create procedural models
in a beginner-friendly way. Additionally, we address the file format problem by
using a consistent intermediate representation serving as a basis for back-end
exporters to different languages and different platforms. Thereby, we reduce
the dependencies to scripting and rendering engines. Due to its high-level rep-
resentation of the input code, the level of abstraction can be preserved after
translation to target code. The clear correspondence between input and trans-
lated code simplifies debugging and reuse.

Potential execution of arbitrary code represents a significant security threat,
especially in service-oriented environments. In Euclides this threat can be re-
duced by security features of the Java virtual machine and by exercising control
over the use of libraries and native code. Many security relevant aspects of pro-
gramming require access to system resources. This functionality can be made
available in Euclides via native code of the target platform. By restricting the
use of native code to trusted libraries, security risks can be reduced.

4.2 Architecture

When trying to combine different generative modeling approaches, a question
arises: Is it possible to achieve a conversion between file formats, respectively
languages? The simple answer is: Yes, but only with considerable expendi-
ture. Because of differences in the intended purpose of the languages as well as
paradigmatic variations it is a rather difficult task. In order to be able to cover a
variety of approaches it would be necessary to implement converters that differ
in the source as well as in the target language.

Our meta-modeler solution represents a common ground for generative mod-
eling approaches, thus avoiding the necessity to create converters to and from
all languages. It enables the user to create generative models represented by
a single language, but allows a variety of output representations (targets) to
be generated by following the principles of a transpiler. Figure 4.1 gives an
overview of architecture and available targets.

The choice of language fell on JavaScript since it is a beginner-friendly, yet
powerful language. JavaScript and its dialects are widely used in applications
and on the Internet: in modern web development frameworks, when working
with 3D content in the web browser, in the Adobe Creative Suite, in interactive

4.2. ARCHITECTURE 69

_>

ey

standard XML for sustainable
i documentation and long-term
The Euclides archival

Framework:

T

- lexical —>» | IIIII. i
scanner L imy §

commonly used 3D formats

_»

- grammar and viewers (GML, Java, etc.)
parser for visualization
Generative knowledge
and procedural 3D - compiler 2
model in a syntax and —>» J
similar to JavaScript interpreter k \,_J
for / to internet file formats (HTML5 &
various WebGL) for publishing and
platforms distribution

- 2

differentiated code (for numerical
optimization)

Figure 4.1: The meta modeler approach offers compiler and interpreter for many
platforms, a XML target for archival, Java and GML as exemplary 3D target
platforms, a HTML/WebGL target, and a target for numerical optimization.

PDF files, in Apple’s Dashboard Widgets, in Microsoft’s Active Scripting tech-
nology, etc. Consequently, there is a large pool available of documentation and
tutorials to introduce the language [VV04], [Flall], [Joh16]. Often needed data
structures, algorithms and routines for geometric modeling (such as vectors and
matrices) are either available as first class citizens, or as libraries. JavaScript in-
corporates features like dynamic typing and first-class functions. But the most
important feature of JavaScript is: it is already in use by non-computer sci-
entists - namely designers and creative coders. To further simplify the syntax
we decided to omit language features not needed for generative modeling like
prototypes and classes and add vectors and matrices as first class citizens.
The meta-modeler approach adopted for Euclides differs from other model-
ing environments in the aspect of target independence. Usually, a generative
modeling environment consists of a script interpreter and a 3D rendering engine.
A generative model is interpreted directly to generate geometry, which is then
visualized by the rendering engine. As described in the article “Modeling Pro-
cedural Knowledge — A Generative Modeler for Cultural Heritage” [SSUF10a]

Transpiler

A transpiler is a type of compiler
that takes source code written in
one programming language as in-
put and creates equivalent source
code in the target programming
language as output, whereas a com-
piler typically creates an executable
program. Looking at the generated
output, differences in the levels
of abstraction between a transpiler
and a compiler are evident. While
a transpiler translates between pro-
gramming languages operating at
roughly the same level of abstrac-
tion, a typical compiler creates low-
level machine code. Both, tran-
spiler and compiler, initially per-
form similar tasks, like lexical anal-
ysis, parsing and semantic analy-
sis. The creation of an interme-
diate representation marks the dif-
ference. For a compiler, this rep-
resentation usually is of a lower
level of abstraction with respect to
the source code as it is for a tran-
spiler. After an optional optimiza-
tion step, source code in the target
programming language is created.
Transpilers may either create code
in a target programming language
with a focus on being as close to
the source code as possible (e.g., to
ease debugging of the input source

%http://coffeescript.org/
bhttp: //www.typescriptlang.org/

code), or focus on different things,
like execution speed, or file size. In
general, transpilers are also not lim-
ited to a single target language.

BJARNE STROUSTRUP de-
scribes an early transpiler called
Cfront translating C++ to C (first
commercial release in 1985), which
is known as the original compiler
for C++ [Str07]. In recent years,
a focus on increasing brevity and
readability of JavaScript produced
the programming language Coffee-
Script®. It is a good example of
translated code that corresponds
very clearly to the input source
code. An effort to ease the devel-
opment of large applications with
JavaScript lead to the birth of
the programming language Type-
Script’. Both languages are tran-
spiled to JavaScript. A different
kind of translation is performed by
EMScripten, a LLVM to JavaScript
compiler [Zakl1]. LLVM is a com-
piler infrastructure project with
an intermediate representation for
code compiled from languages such
as C, C++ or Objective-C. LLVM
output used by EMScripten is simi-
lar to assembly language — the gen-
erated JavaScript code is not meant
to be human-readable.

by CHRISTOPH SCHINKO et al., source code is not interpreted but parsed into an
intermediate representation, an abstract syntax tree (AST). After a validation
process it is translated into a target language. The process of

parsing = validating = translating

offers many advantages. The basic steps are mentioned in the article “The
Rules Behind — Tutorial on Generative Modeling” [KSU14] by ULRICH KRISPEL,
CHRISTOPH SCHINKO and TORSTEN ULLRICH.

Figures 4.3 and 4.4 outline the compilation process and show the main data
structures — especially the AST. First, the input source code is passed to lexer
and parser. The sequence of characters is converted into a sequence of tokens by
special grammar rules forming the lexical analysis. For instance, some languages

4.2. ARCHITECTURE 71

only allow a limited number of characters for an identifier. In Euclides, all
characters A-Z, a-z, digits 0-9 and the underscore _ are allowed with the condition
that an identifier must begin with a character, see Figure 4.2.

e —] A aed }__H__¢ TR R TR) }JT

Figure 4.2: The lexer rule identifier allows characters A-Z, a-z, digits 0-9 and
the underscore _ with the restriction that it must begin with characters.

These lexer rules are embedded in another set of rules — the parser rules. They
are used to analyze the resulting sequence of tokens in order to determine their
grammatical structure. A complete grammar consists of a hierarchical structure
of rules for analyzing all possible statements and expressions that can be created
with a language, thus forming the syntactic analysis.

For each construct of the language a set of rules is validating syntactic cor-
rectness. At the same time actions within these rules create the intermediate
AST structure representing the input source code, as mentioned in the arti-
cle “Minimally Invasive Interpreter Construction — How to reuse a compiler
to build an interpreter” [SUF12] by CHRISTOPH SCHINKO, TORSTEN ULLRICH
and DIETER W. FELLNER. Within these actions, an abstract factory, like de-
scribed in [FFBS04], called ASTFactory is used to create necessary instances of
statements and expressions for the AST. The listing

public interface ASTFactory {

1

2

3 public static interface Tree {

4 // tree traversal methods; e.g.
5 public Tree getUp();

6 public Tree[] getDown();

7 }

8

9

public static interface Expression extends Tree {
10 // validation

11 public void validate(ErrorHandler errorHandler);
12 }

13

14 public static interface Statement extends Tree {
15 // validation

16 public void validate (ErrorHandler errorHandler);
17 // original source code ref.

18 public int getLine();

19 public String getFileName ();

20 }

21

22 public static interface TryCatchBlock {

23 // This pure markup interface

24 // is used to ensure type

25 // compatibility.

26 }

27

28 // the factory methods; e.g.

29 public Statement statementTry(String filename, int line, Scope

scope, Statement statement, TryCatchBlock catchBlock,
TryFinallyBlock finallyBlock);
30
31 // the factory utility methods

72 CHAPTER 4. META MODELER: EUCLIDES

32 // to create optional terms; e.g.

33 public TryCatchBlock utilTryCatchBlock (Expression identifier,
Statement statement);

34}

shows an excerpt of the abstract factory including selected inner interfaces.
The statements and expressions mentioned in the ASTFactory are defined as
static, inner interfaces Statement and Expression within the definition of the
factory. Both interfaces extend a common interface called Tree. The use of a
factory has the advantage to be able to replace their implementations without
touching the grammar. Additionally, mark-up interfaces are used to ensure
type compatibility, because during AST construction, sub-parts of the AST are
created bottom-up via utility methods. These parts are collected and passed to
the corresponding parent rule. For example, the AST of the Euclides code

1 try {

2 doSomething () ;

3 1} catch(exception) {

4 repairSomething () ;
5

6

print ("caught exception " + exception);

}

is created via the following factory calls. The optional catch block is parsed by
a sub-rule with actions, which call the factory method utilTryCatchBlock. This
method returns an instance of the mark-up interface TryCatchBlock, which can
only be passed to a statementTry method. This method itself is called in the
corresponding rule to match a try statement. In this way, complex grammar
rules are split up into several simpler rules while using the abstract factory
pattern and maintaining type safety.

The signature of the statementTry call reveals some properties that are
passed to the factory by all statements: the source code’s file name and line
together with the current scope. In case of statementTry, the statement to try,
the optional catch block as well as the optional finally block are also passed to
the factory. Note that at least one optional block must be non-null.

The resulting AST is the main data structure for the next stage: semantic
analysis. Once all statements and expressions of the input source code are
represented in the AST, a tree walker analyzes their semantic relationships, i.e.,
errors and warnings are generated, for instance, when symbols are used but not
defined, or defined but not used.

Having performed all compile-time checks, a translator uses the AST to
generate platform-specific files. In other words, this task involves complete and
accurate mapping of the AST to constructs of the target platform.

The example shown in Figures 4.3 and 4.4 shows a compilation process of
JavaScript. In JavaScript, the top-level rule of an AST is always a simple
list of statements — no enclosing class structures, no package declaration, no
inclusion instructions, etc. Each statement contains all included substatements
and expressions as well as associated comments. During the validation step,
this tree structure is extended by reference and occurrence links; e.g., each
method call references the method’s definition and each variable definition links
to all its occurrences. Having assured that all compile-time checks are carried
out, symbols are stored in a so called namespace. During validation, this data
structure is used to detect name collisions (e.g., redefinition of variables) and
undefined references (e.g., usage of undeclared variables).

4.2. ARCHITECTURE 73
1. The first step in a compiler
pipeline is performed by a lexi-

var pi = 3.14159; cal analyzer. It converts source

function circle_area(radius) { code (top left) into a sequence
return pi 7 radius of tokens, i.e., a string of one

for(uar i=1; i<10; ++i) { or more characters that is sig-
\\;2: gig;us z é(i)ltgizlaiarea(radius); nificant as a group. Tokens are
B e L identified based on specific rules
L of the leaer

2. The stream of to- [Z] [3:14159] [;] [function] [circle area]

kens (middle right) is pro-

cessed by the syntactic an- H G E Gl [
alyzer based on the gram- H i Bl
mar rules of the language. [[El

This example is written [:] [var =

in JavaScript. Its entry i

point into the grammar [em, 7] FA="] em2.7] [5]

rules is a statement-rule. [l H

statement

——{_empty_:
= block_:

| function declaration_statement

I
T

|—={(variable_declaration statement

[—={__break_:
> return_.
—={_throw
ey

3. The result of the parsing step is an abstract
syntax tree (AST) (see Figure 4.4 right). Af-
terwards, the semantic analyzer constructs the
table of symbols (see Figure 4.4 left) and gen-
erates all references for resolving names (see
Figure 4.4 red pointers).

4. In an optional step, an optimizer makes
changes to the AST to speed up the final code;
in this example, the variable pi and the func-
tion circle_area are only assigned once and
can be resolved and inlined in order to reduce
the number of look-ups and function calls.

5. In the final step a code generator produces
object code of the target platform.

Figure 4.3: A compiler consists of three main components: a front-end reads in
the source code and constructs a language-independent representation — a so-
called abstract syntax tree (AST). The middleware performs normalization and
optimization steps on the AST. Finally, the back-end generates platform-specific
object code, i.e., executables, libraries, etc.

74 CHAPTER 4. META MODELER: EUCLIDES

Table of symbols:

variable declaration

name: value:

,G LO BAL,.IO pi 3.14159
[-]

_GLOBAL _.area
L]

_GLOBAL _.circle_area
o]

_GLOBAL _.circle_area.msg

[] value@**
_GLOBAL _.circle_area.radius ’
L]
for-loop
,G LO BA L,.i declared iterator: value:

[. .] conditional
expression:

_GLOBAL _.pi -
declaration statement:
var pi = 3.14159;

declaration file & line: variable declaration

example.ecs:1

name:
radius

references:
1. example.ecs:1
var pi = 3.14159;
2. example.ecs:4

return pi * radius * radius;

_GLOBAL _.radius A i W)
-] a5
_GLOBAL _.text .‘
[. .] expressiol
b

Figure 4.4: A very important data structure within a compiler is the abstract
syntax tree (AST), which represents the input source code in a language-
independent way. It consists of a tree structure to encode the hierarchical,
nested statements (right) enriched by references to resolve symbols (visualized
in red). Additional data structures — such as a table of symbols (left) — simplify
the work performed by the compiler’s middleware.

4.3. LANGUAGE ELEMENTS 75

4.3 Language Elements

In favor of an easy to use language we decided to omit unnecessary language
features of the JavaScript specification (ECMAScript 262 [Int15]). For exam-
ple, the concepts of prototypes, iterators, arrow function definitions, modules
or classes are not needed in the context of generative modeling. Regarding data
types, the ECMAScript 262 standard lists undefined, null, boolean, string,
symbol, number, or object (Please note that arrays are treated as regular ob-
jects) [Int15]. Euclides has direct support for the following data types as first
class citizens (while maintaining compatibility): undefined, boolean, number,
string, array, object, or function.

While it is our aim to be compliant to the standard, we try to not to add
new language constructs and features, which would result in errors when using
a standard JavaScript engine. During the development process the compiler’s
conformance with the JavaScript standard is tested with JavaScript engines of
various web browsers.

Due to the nature of the meta-modeling approach we have to differ from
the standard in two aspects (but do not create errors with standard JavaScript
engines). The first difference is related to the fact that our system is relying on
a runtime environment in the target language. In order to enable the execution
of platform specific functionality — like text output — it is necessary to include
native code within the Euclides syntax. This is done via a special statement
called native code statement (see Appendix A.2.18). A native code statement
looks like a normal JavaScript multi-line comment with the difference that it is
starting with /#Y instead of /* followed by the native code of the target platform
and ending with */ like in JavaScript. For ECMAScript 262 compliant compilers
native code statements still look like JavaScript’s multi-line comments.

The second difference affects comments. While short comments start with //
(like in JavaScript), multi-line comments start with /#* instead of JavaScript’s
/*. This is a necessary adaptation to be able to distinguish between comments,
native code statements and another language feature that is currently unused
— annotations (see Appendix A.2.17). Similar to native code statements, for
ECMAScript 262 compliant compilers multi-line comments and annotations still
look like JavaScript’s multi-line comments.

A complete description of all language elements of Euclides can be found in
Appendix A.

4.4 Target Platforms

Several targets (target platforms) — each with a different purpose — are available
in Euclides (see Figure 4.1):

e The documentation target offers a standard XML representation for long-
term archival.

e The modeling power of the GML (see Section 3.4) can be used within
Fuclides. This target is especially interesting because of the solutions to
overcome the major differences in the programming paradigm between
Euclides and GML.

76 CHAPTER 4. META MODELER: EUCLIDES

e The Java target with 3D output is a sophisticated platform due to the
fact that Euclides itself is mainly written in Java.

e A publishing and distribution platform is available with the HTML5 &
WebGL target

e A target generating differentiated code is used for numerical optimization,
e.g., fitting generative models to real-world data (scanned surfaces).

4.4.1 Documentation Target

The Euclides documentation target (see Figure 4.5) aims to make an impor-
tant step towards sustainability in procedural modeling by providing a XML
representation. The included expert knowledge within an object description
(see Section 2.6) is required, for example, in the context of cultural heritage,
engineering and manufacturing, or, more generally, by digital library services.
For that purpose JavaScript source code is represented as XML structure. Key
advantages of the XML format are that it is well-organized, searchable and hu-
man readable [Nic02]. Meaningful information needed to perform a source code
analysis is also generated during the translation.

@ Cathedral - Mozilla Firefox.
File Edit View History Bookmarks Tools Help

2 Most Visited 4 Getting Started 5.

athedral_fct.htm! v

Cathedral

Cathedral

Variables Functions Statements Files

Globally Defined addSide

explanation
 buildit (Cathedral ecs:403)
¢ cbiEast (Cathedral ecs:389) o st i
* cbiNorth (Cathedral ecs:377) h iy s
« chiSouth (Cathedral ece.383) function addSide(vBuf, iBuf, mBuf ..z + 3.01): } }
* CbiWest (Cathedral ec5:395) geciaration file name / line number
* cbpEast (Cathedral ecs:391) relesse/library-StdLib/GEO_SHAPE.ecs:130
« cbpNorth (Cathedral ecs:379)
« cbpSouth (Cathedral ecs 385, name including scope

5)
2 5 GLOBAL,
West (€ _ _
SO0 . i i [release/library/StdLib /GEQ_SHAFE ecs: 124 FUDE:14229]

« createBuildingBlock [release/library StdLib GEO_SHAPE:ecs:124:EICK:14238]
(Cathedral ecs65) addSide
* createCrossing

(Cathedral.ecs:86) references
« createFrontFacade #
(Cathedral ecs:298)
* createNave (Cathedral.ecs:145)
« createSanctuary 2

release/library,StdLib/GEO_SHAPE .ecs:130
function addSide(vBuf, iBwf, nBuf...x + 3.01); 3 }

/. 7z A
{Cathedimlece J47) S ae(vbetron, imattor. mhaties D). sanpling):
* createTransept
(Cathedral ecs:196) 3
* crsTower (Cathedral ecs:400) releases1ibrary/StdLib GEO_SHAFE ecs: 174
« geo_camera (ielease/ibrary addSide(vBuifer, iBuffer, nBuffer...]). sampling);

[StdLib/GEQ ecs:151)
« geo_foreground (releasellibrary

release/librarv/StdLib GEO SHAPE.ecs:181 T
Done

Figure 4.5: The Euclides documentation target, which represents JavaScript as a
sustainable, standard-conform XML document can be displayed in an arbitrary
web browser.

Four integrated views on the source code are available: Variables, Functions,
Statements and Files. All variables (global and local) are listed in the Variables
view. For each variable, the following additional information is available:

4.4. TARGET PLATFORMS 7

e Comments: Any comments associated with a variable are preserved and
included.

e Location: The line of code (source, its line number and file name) where
the variable is declared.

e Visibility: The name together with the scope, in which the variable is
available.

o References: All references and uses of the variable in the source code
including file name, line number and declaration statement.

In the style of the Variables view, the Functions view is a collection of all
functions defined in the source code and also offers the additional information
mentioned above. The Statements view is a collection of all statements of the
source code together with file name and line number. This view allows, for
example, identifying duplicate code snippets. Also it gives a nice overview of
the complexity of the source code. In the files view, the source code is available
as XML document.

4.4.2 GML target

In the articles “Euclides — A JavaScript to PostScript Translator” [SSUF10b] by
MARTIN STROBL, CHRISTOPH SCHINKO, TORSTEN ULLRICH and DIETER W.
FELLNER and “Scripting Technology for Generative Modeling” [SSUF11b] by
CHRISTOPH SCHINKO, MARTIN STROBL, TORSTEN ULLRICH and DIETER W.
FELLNER, we describe the translation mechanism to the GML (see Section 3.4).

The GML target significantly reduces the inhibition threshold of using the
GML. Even advanced GML users, who already know how to program in PostScript
style, can use Euclides to translate algorithms, which are often presented in a
imperative, procedural (pseudo-code) style [CSLRO1].

Data Types

Variables in Euclides (and JavaScript) have a particular, but dynamic type.
Euclides supports the following data types: undefined, boolean, number, string,
array, object, or function. The GML also offers a dynamical type system.
Unfortunately, both type systems are incompatible to each other. Therefore, a
direct mapping of Euclides data types to GML data types poses problems. On
the one hand, the dynamic types must be inferred at run time. On the other
hand, GML’s native data types lack distinct features needed by Euclides. GML
strings, for example, cannot be accessed character-wise, like Euclides strings.
We solved this, and similar problems by implementing Euclides variables as
dictionaries [Hav05] in the GML system translation library (GML runtime).
Dictionaries are objects that map unique keys to values. We use these dictio-
naries to hold needed meta data and type information as well as methods, which
emulate Euclides behavior. We utilize GML’s dictionaries for scoping as well.

The GML runtime used by a translated Euclides program contains the func-
tion sys_init_data, which defines an anonymous data value in the sense of Eu-
clides data.

78 CHAPTER 4. META MODELER: EUCLIDES

1 /sys_init_data {
2 dict begin

3 /content dict def
4 content begin
5 /type edef
6 /value edef
7 /length { value length } def
8 end

9 content
0 end
1 } def

1
1
The function sys_init_data opens a new variable scope by defining a new, anony-
mous dictionary and opening it. In this new scope, another newly created dic-
tionary is defined by the name content. This content dictionary receives three
entries: type, value and the method length. Each entry value is taken from
the top of the GML’s stack. The newly created dictionary is then pushed back
onto the stack and the current scope is destroyed by closing the current dic-
tionary, leaving the anonymous dictionary on the stack. In the GML notation,
the content of a Euclides variable is defined by pushing the actual value and a
pre-defined constant to identify the type of the variable (such as Types.number,
Types.array, etc.) onto the stack, and calling sys_init_data. Consequently, the
Euclides statement

1 var foo = 42;

translates to

1 /usr_foo 42.0 Types.number sys_init_data def

The translator prefixes all Euclides identifiers with usr_ (in order to ensure that
all declarations of identifiers do not collide with predefined GML objects) and
uses the following translations:

Undefined: Variables of type undefined result from operations that yield an
undefined result or by declaring a variable without defining it. The Euclides
statement

1 var x;

leads to x being of type undefined. It is translated to

1 /usr_x Nulls.Types.undefined
2 Types.undefined sys_init_data def

Boolean: In Euclides, Boolean values are denoted by the keywords true and
false. The translation simply maps these values to equivalent numerical val-
ues, since the GML does not explicitly support Boolean values. The Euclides
statement

1 var x = true;

becomes

1 /usr_foo 1 Types.bool sys_init_data def

4.4. TARGET PLATFORMS 79

Number: All Euclides numbers (including integers) are represented as 32-bit
floating point values. As the GML stores numbers as 32-bit floats internally as
well, we simply map them to GML’s number representation. A Euclides variable
x holding a number

1 var x = 3.14159;

is translated to

1 /usr_x 3.14159 Types.number sys_init_data def

String: Although the GML does support strings, they cannot be accessed
character-wise, like in Euclides. We cope with this limitation by defining strings
as GML arrays of numbers. Each number is the Unicode of the respective
character. As the GML allows to retrieve and to set array elements based
on indexes, this approach is a sufficient translation of Euclides strings. The
statement

1 var x = "Hello World";

becomes

1 /usr_x
2 [72 101 108 108 111 32 87 111 114 108 100 1]
3 Types.string sys_init_data def

Array: FEuclides arrays allow to hold data of different types — the array’s
contents may be of mixed types. This behavior can be observed in the GML as
well. The Euclides example

1 var x = [true, false, "maybe"];

is translated to

1 /usr_x [1 Types.bool sys_init_data

2 0 Types.bool sys_init_data

3 [109 97 121 98 101]

4 Types.string sys_init_data]
5 Types.array sys_init_data def

Object: In Euclides, an object consists of key-value pairs, e.g.,
1 var x = {
2 x : 1.0,
3 y : 2.0,
4 z : 42

5 };

This structure is mapped to nested GML dictionaries, since the value of a vari-
able’s content is a dictionary of its own. This dictionary contains the entries
corresponding to entries of the Euclides object, which are also defined as variable
contents.

The example above defines a Euclides object of name x with key-value pairs
x to be 1, y to be 2, and z to be 42:

80 CHAPTER 4. META MODELER: EUCLIDES

/usr_x dict begin
/obj dict def obj begin
/usr_x 1.0 Types.number sys_init_data def
/usr_y 2.0 Types.number sys_init_data def
/usr_z 42.0 Types.number sys_init_data def
end obj

Types.object sys_init_data end def

N OO W N

Opening an anonymous dictionary in the GML creates a new scope. In this
scope, a dictionary is created and bound to the name /obj. It is then opened
and its members are defined, just like anonymous variables would be. The object
dictionary is then closed, put on the stack, and used to define an anonymous
variable. The enclosing anonymous scoping dictionary is then closed and simply
discarded.

Euclides objects can hold functions as well. The translator handles Euclides
object functions like ordinary functors (referenced functions stored in variables)
and assigns their internal name to a key-value pair.

Function: Since Euclides has first-class functions, it is possible to assign func-
tions to variables, which can be passed as parameters to other functions. In this
example,

1 function do_nothing() {

2 // ... definition of function omitted
3}

4 var x = do_nothing;

a function do_nothing is declared and defined. Afterwards, the function is as-
signed to a variable x. Disregarding the translation of the function do_nothing,
the assignment is translated to:

/usr_do_nothing Types.function
sys_init_data def

1 /usr_do_nothing {

2 %% ... definition of function omitted
3} def

4

5 /usr_x

6

7

In Euclides, x can be used as a functor, which acts the same ways asdo_nothing.
Because such functors can be reassigned, it is necessary to handle functor calls
(x()) differently than ordinary function calls (donothing()). In this situation,
Euclides creates a temporary array, which contains the functor parameters and
passes this array, as well as the variable referencing the function name, to a
system function sys_execute_var. This system function resolves the functor and
determines the referenced function, unwraps the array and performs the function
call.

Functions

In the GML, functions are defined using closures, such as /my_add { add } def.
If the function my_add is executed, the closure { add } is pushed onto the stack,
its brackets are removed, and the content is executed.

To execute a GML function, its parameters need to be pushed onto the stack
prior to the function call: 1.0 2.0 my_add. The resulting number 3.0 will remain
on the stack. GML functions may, very well, produce more than one result (left

4.4. TARGET PLATFORMS 81

on the stack) at each function call. This allows to define functions with more
than one result value. In contrast to the GML, Euclides functions, by conven-
tion, only return one value. The number and names of function parameters are
known at compile time. Only functors may change at run time and cannot be
checked ahead of time.

Translated functions and parameters are named just like their Euclides coun-
terparts (except for their usr_ prefix to avoid namespace collisions).

Scopes: As Euclides uses a scoping mechanism that differs from the GML
mechanism, it has to be emulated. This is a rather complex task, taking into
account the following properties of Euclides scopes:

e FEuclides functions can call other functions or themselves.
e Called functions can declare the same identifiers as the calling functions.
e Within functions other functions can be defined.

e Blocks can be nested inside functions, redefining symbols or declaring
symbols of the same name.

The translator uses GML’s dictionary mechanism to emulate Euclides scopes. A
dictionary on the dictionary stack can be opened and it will take all subsequent
assignments to GML identifiers (variables). Since only the opened dictionary
is affected, this behavior is identical to opening and closing scopes in different
scoped programming languages, such as C or Java.

Because of that property, an assignment /x 42 def can be put into an iso-
lated scope by creating a dictionary (dict), opening it (begin), performing the
assignment, and closing the dictionary (end). The following example shows how
such GML scopes can also be nested:

1 dict begin

2 /x 3.141 def %hh x is 3.141

3 dict begin %

4 /x 4 def %% x is 4.0

5 end %%h x is 3.141

6 end %% x is unknown

As noted before, Euclides supports redefinition of identifiers that were declared
in a scope below the current one. The GML exhibits just the same behavior
when reading out the values of variables (keys) from dictionaries of the dictio-
nary stack. Consequently, the following example works as expected:

1 dict begin

2 /x 42 def

3 dict begin

4 /y x 1 add def %% y is now 43

5 end

6 end

However, assignments to variables have to be handled differently in the GML.
The GML does not distinguish between declaration and definition. Any decla-
ration must be a definition and vice versa.

To solve this problem, the translator uses a system function called sys_def,
which is automatically included in translated Euclides code. This function uses
the GML’s where operator, which, applied on the dictionary stack, finds the

82 CHAPTER 4. META MODELER: EUCLIDES

uppermost dictionary defining a searched name. The operator returns the ref-
erence to the dictionary, in which the name was found.

Control Flow for Functions: The GML, as well as all PostScript dialects,
lack a dedicated jump operation in control flow. Imperative functions often
require the execution context to jump to a different point in the program at any
time — and to return from there as well.

The GML’s exception mechanism can be used to emulate this behavior. A
GML exception is propagated down the GML’s internal execution stack until a
catch instruction is encountered. On its way it overrides any other control struc-
ture it encounters. We use the GML’s exception mechanism to jump outside a
function as illustrated in the following empty function skeleton:

1 /usr_foo {

2 dict begin

3 /return_issued O def

4 { dict begin

5 %% ... function body omitted
6 end }

7 { /return_issued 1 def }

8 catch

9

10 return_issued not

11 { Nulls.Types.undefined

12 Types.undefined sys_init_data } if
13 end

14 sys_exception_return_handler
15 } def

In this empty skeleton, the function opens a new anonymous scope. Inside
this scope dict begin ... end the local identifier /return_issued is set to 0.
Afterwards a GML try-catch statement { try_block } { catch_block } catch
contains the Euclides function implementation. In this translation, the catch
block redefines /return_issued to 1 to indicate that a Euclides return state-
ment has been executed in the function body. Euclides functions without any
return statement automatically return null, respectively Nulls.Types.undefined
Types.undefined sys_init_data. A corresponding Eculides return statement,
e.g.,

1 return 42;

is translated to

1 42.0 Types.number sys_init_data end throw

In this example, the number 42.0 is pushed onto the stack. The actual func-
tion body’s scope is closed with end, and the throw operator is applied. The
distinction of whether the end of the function body was reached by normal pro-
gram flow or via a return statement determines, if a return value needs to be
constructed (null) and pushed onto the stack.

Parameters to functions are simply pushed onto the stack. The function
body retrieves the expected number of parameters and assigns them to dictio-
nary entries of the outer scope defined in the function translation. A complete
example of a translated Euclides function shows the interplay of all mechanisms.
The simple Euclides function

4.4. TARGET PLATFORMS 83

1 function foo(n) {
2 return n;

3}

is translated to

1 /usr_foo {

2 dict begin

3 /usr_n edef

4 /return_issued 0 def

5 { dict begin

6 usr_n

7 end

8 throw

9 end }

10 { /return_issued 1 def }

11 catch

12

13 return_issued not

14 { Nulls.Types.undefined

15 Types.undefined sys_init_data } if
16 end

17 sys_exception_return_handler
18 1} def

A function call, for example foo(3), yields the translation 3.0 Types.number
sys-init_data usr_foo. If we assign the function foo to a variable foo_functor,
the calling convention in the GML changes significantly.

1 /usr_foo_functor
2 /usr_foo Types.function sys_init_data def

is called via

1 [3.0 Types.number sys_init_data]
2 usr_foo_functor sys_execute_var

and represents the Euclides call

1 foo_functor (3.0);

Exceptions

Euclides offers support for throwing exceptions as shown in the following exam-
ple:

1 throw "Error: unable to read file.";

Its syntax is similar to a return statement. To implement such behavior, we also
use the GML’s exception handling mechanism. The Euclides translator adds a
call to the predefined system function sys_exception return handler at the end
of each translated function (see example above).

Throwing an exception in Euclides translates into a global GML variable
exception_thrown being set to 1, closing the current dictionary and calling the
GML’s throw. The sys_exception return handler checks if an actual exception
is being thrown, and if so, calls throw again. A catch block inside a Euclides
program sets exception_thrown to 0.

84 CHAPTER 4. META MODELER: EUCLIDES

Operators

The evaluation of expressions demands variables to be accessed. While the
GML provides operators that operate on their own set of types, they obviously
cannot be used to access the translated Euclides variables. For this reason, the
Euclides translator automatically includes a set of predefined GML functions
that substitute operators defined in JavaScript.

Value Access: By performing the opposite operation to sys_init_data, the
operation sys_get_value will retrieve the data saved in a Euclides variable, re-
spectively its GML dictionary. For example, to retrieve v.value the function
sys_get_value is applied to v.

1 /sys_get_value { begin value end } def

Element Access: The system function sys_get implements string, array and
object access. Applied to a string or an array (Arr and index k), it will return
the element Arr[k]. If its parameters are an object Obj and an attribute name,
the function sys_get executes 0bj.name. This results in a value, which is pushed
onto the stack or in a function, which is called. In conformance with Euclides,
it returns Euclides undefined for any requested elements that do not exist.

1 /sys_get {

2 dict begin

3 /idx exch def /var exch def

4

5 var.type Types.string eq {

6 %% ... handling strings

7 } if

8

9 var.type Types.array eq {

10 %% ... handling arrays

11 } if

12

13 var.type Types.object eq {

14 var sys_get_value idx known 0 eq {
15 %% return null, if element

16 %% does not exist

17 Nulls.Types.undefined

18 Types.undefined sys_init_data
19 } if

20 var sys_get_value idx known O ne {
21 %% access element

22 var sys_get_value idx get

23 } if

24 } if

25 end

26} def

In analogy to sys_get, sys_put inserts data into strings and arrays, or defines
members of objects. If sys_put encounters an index k that is out of an array’s
range, the array is resized and filled with Euclides undefineds.

Functors: The already mentioned routine sys_execute_var inspects a given
variable. If it is a function, it retrieves the array supplied to hold all parame-
ters and executes the function. However, the dynamic binding of functions to

4.4. TARGET PLATFORMS 85

variables requires to consider two situations at run time: The functor receives
the correct amount of parameters for its function, or the number of parameters
does not correspond to the referenced function. In the latter case, the function
is not called and null is returned instead.

At compile time, a function is defined to expect a concrete number of pa-
rameters. This information is kept to perform parameter checks at run time. In
this way, the correct number of parameters for all functors can be determined
any time.

1 variable.type Types.function eq

2 {

3 %% count the stacksize prior to parameter unwinding

4 count /stacksize_old edef

5 100

6 { Nulls.Types.undefined Types.undefined sys_init_data }

7 repeat %% create excessive "dummy" parameters

8 params {} forall %% puts all parameters on the stack

9 variable.value cvx exec %% converts to executable literal and
executes

10

11 count /stacksize_new edef

12 %% Fix stack size, saving result and discarding any excessive
parameters

13 %% caller may have specified:

14 /res edef

15 stacksize_new stacksize_old sub

16 1 sub

17 { pop } repeat

18 res

19 3

20 if

To calculate the size of the stack prior to a function call, we push the param-
eters specified at runtime onto the stack, execute the function, and count the
stack size again. We can then calculate the number of parameters the function
expected. Afterwards, we save the function’s return value, pop any unconsumed
parameters off the stack, and push the return value onto the stack again.

The opposite case of insufficient specified parameters to a function is coun-
tered by pushing an arbitrary number of JavaScript undefineds onto the stack
prior to the actual function’s parameters.

JavaScript built-in Operators: The translation of relational, arithmetical
or bit-shift operators defined by Euclides, is demonstrated by using the equal
operator ==. It is — like all such operators — mapped to a corresponding rou-
tine sys_eq. Depending on the operands’ types, it delegates the comparison to
subroutines such as bool_eq, string_eq or array_eq that perform the actual com-
parison. If the types and the values match, sys_eq directly returns the Euclides
value true. If the types do not match, the variable is converted to the type of
the respective operand, as specified by Euclides, and then compared.

Control Flow

Since the Euclides if-then-else statement corresponds one-to-one to the same
GML statement, the conditional expression can be translated directly. Using the
expression mapping introduced in the previous Section (e.g., sys_eq implements
the equality operator), the Euclides statement

86 CHAPTER 4. META MODELER: EUCLIDES

1 if (a == b) {
2 c = a;

3 3} else {

4 c = by

5

}

is translated to

1 %% if (a==b)

2 usr_a usr_b sys_eq sys_get_value
3 { %% then:

4 dict begin {

5 dict begin

6 /usr_c usr_a sys_def
7 end

8 } exec end

9 }

10 { %% else:

11 dict begin {

12 dict begin

13 /usr_c usr_b sys_def
14 end

15 } exec end

16 1} ifelse

The exec statements (and their closures) stem from the fact that both sub-
statements, the then-part and the else-part, are statement blocks { ... }. These
blocks are executed within their own, new scopes.

Loops: The GML supports different types of looping control structures, which
are similar to Euclides loops (e.g., both languages have a for loop). However, the
GML counterparts have different semantics. For example, the GML’s for-loop
has a fixed, finite number of iterations, which is known before execution of the
loop body, whereas Euclides loops evaluate the stop condition during execution,
which may result in endless loops. The Euclides translator uses the GML loop
mechanism, which is an infinite loop that can be exited using the exit operator.

An important problem is that control structures such as for, while and do-
while loops are not only controlled by the loop’s stop condition, but also by
Euclides statements such as continue and break within the loop body (besides
return and throw as mentioned before). The statement break immediately stops
execution of the loop and leaves it, whereas continue terminates the execution
of the current loop iteration and continues with the next iteration of the loop.
Therefore, we translate an empty while loop

1 while (false) {

2 // ... loop body omitted

3}

to

1 { /continue_called 0 def

2 { O Types.bool sys_init_data

3 sys_get_value not { exit } if
4 { dict begin

5 %% ... loop body omitted

6 end

7 } exec

8 } loop

9 continue_called not { exit } if
10 1} loop

4.4. TARGET PLATFORMS 87

The GML’s exit keyword terminates the current loop. This behavior is lever-
aged by the Euclides translator to implement break and continue. The transla-
tion uses two nested loops that will run indefinitely.

Prior to the start of the inner loop, /continue _called is set to 0. Then, the
loop condition is tested. If the condition evaluates to false, the inner loop is
exited using the GML’s exit. Otherwise a new scope is created and the loop
statement executed within that scope.

During loop iterations, there are three scenarios under which a loop can
terminate:

1. If the loop condition is met: When the condition evaluates to false, the
inner loop is exited. Since continue_called is not set to true, the outer
loop will terminate as well.

2. If the loop body encounters JavaScript break (resp. GML exit): Again,
the inner loop is left. continue called will not be set to true, hence the
outer loop will also terminate.

3. If the function returns: The GML’s exception throwing mechanism will
unwind the stack until the catch-handler at the end of the function is
encountered.

If the loop body encounters a Euclides continue statement, continue_called will
be set to true and the GML exit command will immediately stop the inner loop.
Since continue_called is set, execution does not leave the outer loop, however.
As a consequence, continue_called becomes 0 again, and execution re-enters the
inner infinite loop.

The do-while statement is translated like the while statement. The only
semantic differences in Euclides are that execution will enter the loop regardless
of the loop condition and that the loop condition is tested after loop body
execution. Euclides translates an empty do-while statement

1 do {

2 // ... loop body omitted

3 } while (false)

as follows:

1 { /continue_called O def

2 { { dict begin

3 %% ... loop body omitted

4 end

5 } exec

6 0 Types.bool sys_init_data

7 sys_get_value not { exit } if
8 } loop

9 continue_called not { exit } if
10 0 Types.bool sys_init_data

11 pop

12 } loop

Due to a semantic difference of Euclides continue in do-while loops, this state-
ment needs to be handled differently. If continue is encountered, the loop con-
dition must still execute before the loop body is re-entered, because side effects
inside the loop condition may occur (such as incrementing a counter). Euclides
handles this problem by executing the condition expression a second time in the

88 CHAPTER 4. META MODELER: EUCLIDES

outer loop. Since expressions always return values, any value resulting from the
loop-expression has to be popped off the stack.

Although the GML has a for operator, it is semantically incompatible with
Euclides’ one. Its increment is a constant number, and so is the limit. In Eu-
clides, both, increment and limit, must be evaluated at each loop body execu-
tion. Therefore, we translate for just like the previous constructs by two nested
loops with the increment condition repeated in outer loop (due to continue
semantics). Euclides translates the statement

1 for (var i = 0; i < 1; i++) {
2 // ... loop body omitted
3}

to GML via

1 dict begin

2 %% initialization (i=0)

3 /usr_i 0.0 Types.number sys_init_data def
4 { /continue_called 0 def

5 { %% condition (i<1)

6 usr_i 1.0 Types.number

7 sys_init_data sys_1t

8 sys_get_value not { exit } if

9 { dict begin

10 %% ... loop body omitted
11 end

12 } exec

13 %% increment (i++)

14 usr_i

15 usr_i 1 Types.number

16 sys_init_data sys_add

17 /usr_i sys_edef

18 pop

19 } loop

20 continue_called not { exit } if
21 %% increment again (i++)

22 usr_i

23 usr_i 1 Types.number

24 sys_init_data sys_add

25 /usr_i sys_edef

26 pop

27 } loop

28 end

In Euclides, the following for-in statement

1 for (var x in array) {
2 // ... statement body omitted
}

is semantically equivalent to:

1 for (var i= 0; i < array.length; i++) {
2 var x = arrayl[il;

3 // ... rest of statement body omitted
4 %

This construction loops over the elements of an array and provides the loop body
with a variable holding the current element. Although the GML does provide
an operator forall, we decided to implement the for ... in operator analogous
to its for variant, because this translation is more safely constructible: forall
needs to be in the outer loop, which breaks the mechanisms laid out before.

4.4. TARGET PLATFORMS 89

Selection Control Statement: The translation of the Euclides switch state-
ment poses several difficulties:

e If a case condition is met, execution can “fall through” till the next break
is encountered.

e If a break is encountered, the currently executed switch statement must
be terminated.

e Of course, switch statements may be nested.

To develop a semantically consistent solution, we did not want to alter the
translation of Euclides break expression inside switch statements (compared to
loops). We solve the problem of breaking outside the switch statement by im-
plementing it as a loop that is run exactly once. In the GML it reads like 1 {
loop_instructions } repeat. This way our translation of break shows semanti-
cally correct behavior, it terminates the loop. Consider the following Euclides
program:

1 var x = 0;

2 var y = 0;

3

4 function bar () {

5 return 3;

6 }

7

8 function foo(i) {

9 switch(i) {

10 case O0:

11 case 1:

12 case 2: x = 1;
13 case 4: x = 3;
14 case bar(): x = 2;
15 break;

16 default: y = 5;
17 }

18 }

The function foo is translated to:

1 /usr_foo

2 { dict begin

3 /usr_i edef

4 /return_issued 0 def

5 { dict begin

6 /switch_cnd_metl O def

7 1 { usr_i 0.0

8 Types.number sys_init_data
9 sys_eq sys_getvalue

10 switch_cnd_metl 1 eq or {
11 /switch_cnd_metl 1 def
12 } if

13

14 usr_i

15 1.0 Types.number sys_init_data
16 sys_eq sys_getvalue

17 switch_cnd_metl 1 eq or {
18 /switch_cnd_metl 1 def
19 } if

20

21 usr_i

90

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

CHAPTER 4. META MODELER

2.0 Types.number sys_init_data
sys_eq sys_getvalue
switch_cnd_metl 1 eq or {
/switch_cnd_metl 1 def
hh x = 13
/usr_x 1.0 Types.number
sys_init_data sys_def
} if

usr_i
4.0 Types.number sys_init_data
sys_eq sys_getvalue
switch_cnd_metl 1 eq or {
/switch_cnd_metl 1 def
hh x = 3;
/usr_x 3.0 Types.number
sys_init_data sys_def
} if

usr_i usr_bar

sys_eq sys_getvalue

switch_cnd_metl 1 eq or {
/switch_cnd_metl 1 def
hh x = 2;
/usr_x 2.0 Types.number
sys_init_data sys_def
exit

} if

hh 'y = 5;

/usr_y 5.0 Types.number

sys_init_data sys_def

} repeat
currentdict /switch_cnd_metl undef end

{ /return_issued 1 def } catch
return_issued not {

Nulls.Types.undefined
Types.undefined sys_init_data

sys_exception_return_handler

: EUCLIDES

In this example we introduce an internal variable /switch_cnd metX for traversing
the case statements. When a case statement condition is met, /switch_cnd metX
is set to true, directing execution into every encountered case statement.

The Euclides translator takes into account that switch statements may be

nested. As it traverses the AST), it keeps book of all internal variables to ensure
a unique name (switch,cndmetl7 switch_cnd met2, ..., switchwcndJnetN)

The example translation shows that for foo(3) the cases 0, 1, 2, 4 and 3

(= bar()) will only execute case 3, where the 1 { } repeat statement will be
broken out of with the GML exit operator. The default block will be executed
in any case if execution is still inside the repeat statement, no further state is
checked for default.

4.4. TARGET PLATFORMS 91

4.4.3 Java target

In the article “Scripting Technology for Generative Modeling” [SSUF11b] by
CHRISTOPH SCHINKO, MARTIN STROBL, TORSTEN ULLRICH and DIETER W.
FELLNER, we introduce a translation mechanism to Java.

Although Java and JavaScript have some similarities, the concepts of both
languages show major differences. Java is a statically typed, class-based, general-
purpose programming language designed to have a minimum of implementation
dependencies to be able to run on many different platforms.

An important reason why we have chosen Java to be a target language is
because all front-end and framework components themselves are written in Java
making it easier to be embedded in an integrated development environment.

Data Types

Because of conceptual differences in the typing system, it is impractical to
project JavaScript data types onto built-in Java data types. For example,
JavaScript makes no difference between integer numbers or floating-point num-
bers. There is just one data type called number that may hold any type of
number. Additional differences can be found when comparing the remaining
data types. As a consequence, each JavaScript data type is re-built in Java to
match its functionality resulting in a total of seven data types (array, boolean,
function, number, object, string, undefined). These data types are wrapped in
a class called Var, which provides the properties:

e getType(): The method getType() returns an enum VarType with the type
of the variable.

e length(long ii): The method length(long ii) returns the length of the
variable as a variable.

The access functions are:

e accessArray(long ii, Var index): The method accessArray(long ii, Var
index) returns the element of an array with the position: index.

e accessObject(long ii, String attribute): This method returns the value
of an object with the key: attribute. Note that it is possible to obtain
the length of an array accessing its length key.

e execute(long ii, Var THIS, Var[] parameters): This method executes a
method passing the this reference (the current execution context) as well
as possible parameters in the form of an array.

Conversion methods are applicable to all JavaScript variables through the fol-
lowing methods:

e toArray()
® toBoolean()
® toFunction()

e toNumber ()

92 CHAPTER 4. META MODELER: EUCLIDES

® tolbject()
e toString()

o toUndefined()

These conversions are performed implicitly, but not all conversions yield a mean-
ingful result, e.g., a conversion to a function results in an empty function. Many
of the above methods expect a parameter called ii. It always refers to a table
entry, which references the corresponding line of JavaScript source code; e.g.,
each data type can be accessed like an array. In case of an array, the access
is “as supposed”, in case of a String it is character-wise, in all other cases an
implicit conversion creates a new, empty array. As the runtime environment
produces warnings if implicit conversions take place, the implementation of an
array access includes the statement Log.variableTypeChangeImplicit(ii);. In
the messages table entry, generated by the compiler, #ii references information
needed for a reasonable warning; e.g., during the execution of

1 var number = 42;
2 number = "Hello World";

the runtime environment produces the warning

assignment provoked a warning.

type : variable type change by assignment
file : C//Users/ullrich/warning.ecs
line : 2

details : number = "Hello World";

indicating the type change caused by the assignment of Hello World in line 2.

The implementation of the JavaScript data types in the Java runtime envi-
ronment eventually uses mappings to Java data types (in the Var classes of the
appropriate data types):

e Boolean: The boolean data type is mapped to the corresponding Java
data type boolean.

e Number: A JavaScript number is mapped to double.
e String: String in JavaScript can be mapped to String in Java.
e Array: A JavaScript array is realized using a collection: ArrayList<Var>.

e Object: An object in JavaScript is mapped to a map of key/value pairs:
HashMap<String,Var>

e Function: The corresponding object to a JavaScript functor is a function
pointer implementation in Java via abstract objects.

A consequence of these data type implementations is the necessity to use a
runtime environment in the translated Java code. Whenever a variable is created
or a value is assigned, a method-call is performed — thus significantly increasing
the execution time of the code. However, for creating variables, a factory pattern
is applied with the inherent advantage of exchangeability.

4.4. TARGET PLATFORMS 93

Concerning language constructs, a wide range can be translated easily, since they
are available in Java and have the same semantic meaning in both languages.
Sometimes, there is the need to utilize temporary variables, which implicate
a possible naming conflict with variable names used in the original JavaScript
source code. This problem is tackled by prefixing all original JavaScript names
and additionally creating unique names for temporary variables.

Functions

In Java, invokable routines are called methods and they are similar to, but not
quite like functions in JavaScript. The runtime environment provides a class for
JavaScript functions to mimic their behavior. An important property of func-
tions in JavaScript is that they can be undefined. Therefore, when instantiating
an empty function in Java, a dummy with the correct behavior is returned. Exe-
cuting a function in the Java runtime environment is done by calling the execute
method in the function class. In addition to function parameters, an environ-
ment reference is passed to the function in order to enable correct interaction
with the immediate environment. Functions extend an abstract class called Fct
defining all necessary methods:

e getID()

e getName ()

e getTranslatedName ()

® getAnnotations()

e getParam()

e getParams()

e execute(long ii, Var THIS, Var[] parameters)
e execute(long ii, Var THIS, Var usr_vecArray)

They reside in a public, final class called Function. Consequently, the function

1 function add(a,b) {
2 return a + b;

3}

gets translated to

1 @Override

2 public Var execute(long ii, Var THIS, Var usr_a, Var usr_b) {
3 try {

4 {

5 if (Main.AVOID_UNREACHABLE_CODE_ERROR)
6 return Op.ADD(O, usr_a, usr_b);

7 }

8 } catch (EuclidesRuntimeException exp) {

9 throw exp;

10 } catch (RuntimeException exp) {

11 Log.uncaughtException(ii);

12 System.err.println(exp);

13 System.exit (0);

14 }

15 return Factory.initUndefined () ;

16}

94 CHAPTER 4. META MODELER: EUCLIDES

The body of the function is embedded in a try-catch block in order to throw
runtime exceptions or halt execution in case of an unhandled exception. The
value undefined is returned in case of a runtime exception. Note that the static
constant Main.AVOID UNREACHABLE CODE_ERROR is always true and only needed to
avoid — as it says — “unreachable code errors” thrown by Java compilers, for
example, if a return statement is followed by further statements.

Translated functions and parameters are named just like their JavaScript
counterparts (except for the usr_ prefix).

Operators

Since JavaScript data types are not directly mapped to native Java data types,
all operators need to be recreated in the Java runtime environment as well.
A total of 35 operators grouped in unary, binary and tertiary operators are
available. Since each operator is applied via a method call, they can be easily
exchanged. Operators are collected as methods in a public, final class called Op.
As an example, the following operation

1 var ¢ = 19.0 + 23.0;

results in

1 Variable.usr_c.assign(1l, Op.ADD(0, Factory.initNumber (19.0),
Factory.initNumber (23.0)));

The result of the call to Op.ADD with the two numbers as parameters is
stored in a new variable, which is returned and then used as a parameter for
the assignment operation.

Control Flow

Control flow statements are widely identical in both languages. One of the dif-
ferences, however, is the switch-statement. For a switch statement in Java only
primitive data types are allowed, whereas JavaScript allows all types to be used,
attributable to dynamic typing. In order to obtain a correct translation, the
switch statement needs to be rewritten, which is done directly in the translated
code. The first step is to analyze the statement from back to front comparing
each case with the switching expression. Then the result is stored in a tem-
porary variable and the switch-statement is rebuilt in reverse order using the
temporary variable as switching expression. As a result

1 switch (favoritelanguage) {

2 case "Java':

3 io_stdout_write("Good choice!");

4 break;

5 case "C":

6 io_stdout_write("Bad choice");

7 break;

8 default:

9 io_stdout_write("I have no idea");
10 }

is translated to

1 int sys_42 = 0;
2 if (Op.EQ(9, Variable.usr_favoritelanguage, Factory.initString("
C")).toBoolean())

4.4. TARGET PLATFORMS 95

3 sys_42 = 1;
if (0Op.EQ(10, Variable.usr_favoritelanguage, Factory.initString(
"Java")).toBoolean())

W~

5 sys_42 = 2;

6 switch (sys_42) {

7 case 2:

8 Function.usr_io_stdout_write.execute(11, THIS, Factory.
initString("Good choice!"));

9 if (Main.AVOID_UNREACHABLE_CODE_ERROR)

10 break;

11 case 1:

12 Function.usr_io_stdout_write.execute (12, THIS, Factory.
initString("Bad choice"));

13 if (Main.AVOID_UNREACHABLE_CODE_ERROR)

14 break;

15 default:

16 Function.usr_io_stdout_write.execute (13, THIS, Factory.
initString ("I have no idea"));

17}

The corresponding translation in Java creates the temporary variable sys_42 for
comparisons and a switch statement in reverse order to rebuild the behavior of
the JavaScript counterpart.

Once all target files containing source code are generated, they are compiled
using the Java compiler included in the Java Platform, Standard Edition (Java
SE). The resulting class files are automatically packed into a single Java ARchive
(JAR) file for easy execution. As a last step, the JAR file is digitally signed to
be ready-to-use for Java Web Start. The signature information becomes part of
the embedded manifest file.

4.4.4 HTML5 & WebGL target

The following work has been implemented in the context of the bachelor thesis
Generative Modelling and HTML5 by FRANZ PAPST at Graz University of Tech-
nology under the supervision of TORSTEN ULLRICH and CHRISTOPH SCHINKO.
The HTML5 & WebGL target offers the ability to translate Euclides code
in a way that it is embedded in HTML5 output for execution in a web browser.
However, since HTMLS5 is a markup language it can only provide a framework
for interaction. For scripting purposes, it specifies APIs that can be used with
JavaScript. At first glance it may seem odd to write a Fuclides to JavaScript
translator, since Euclides code can be directly evaluated by a JavaScript inter-
preter. While this is the case when we just look at the language constructs
themselves, even simple examples need to interact with the environment they
are executed in, e.g., basically every generated output file needs basic function-
ality for input & output. As a result, a runtime environment must provide
this functionality. More complex code with graphical output needs a lot more
functionality provided by the runtime environment (e.g., the HTML5 canvas ele-
ment, functionality to handle mouse interaction, or fragment and vertex shaders,
...) before the generated output is able to render anything using WebGL.
Having established the fact that Euclides language constructs can be di-
rectly mapped onto JavaScript constructs, the translation process is simplified.
Without the need to put much effort into translating language constructs, the
translated code must be embedded into a suitable runtime environment.
An important step during translation is to avoid namespace collisions between

96 CHAPTER 4. META MODELER: EUCLIDES

the runtime environment and the translated code. Similar to other translation
targets, this is solved by adding the unique prefix usr_ to all the function and
variable names in the translated code. A function f(x) in Euclides code

1 function f(x) {

2 return x * 42;

3}

gets translated to

1 function usr_f (usr_x) {
2 {

3 return usr_x *x 42.0;
4 }

5 %

Apart from the prefixing of variable and function names, or the introduction
of additional blocks, the translation process offers no surprises. Note that also
the code of provided libraries (like GUI or MATH, see Section 4.5) is treated as
user-generated code and gets translated to JavaScript.

Runtime environment

The runtime environment consists of a HTML5 template that is used to create
an output file incorporating the translated user-generated code as well as all
included libraries. A main function is the starting point of the output file. It
gets called automatically using the onload functionality of the HTML5 <body>
element. The output is then populated with the translated statements of the
user-generated code as well as the library code.

Since Euclides’ main purpose lies in generative modeling, providing function-
ality to display 3D graphics is an important aspect of the runtime environment.

3D Graphics The visualization of 3D content is done using WebGL and
the HTML5 <canvas> element. The <canvas> element was introduced in the
HTMLS5 standard to display (interactive) multimedia content without the need
to use external plug-ins like Adobe Flash or Microsoft Silverlight. Apart from
its extensive 2D abilities, the <canvas> element can also be used to display 3D
content using WebGL. WebGL 1.0 is based on OpenGL ES 2.0 and provides an
API for 3D graphics. A major difference to OpenGL versions prior to 3.0 is the
mandatory usage of buffers — it is no longer possible to use the glBegin() and
glEnd) functions for drawing. Also the usage of vertex and fragment shaders is
mandatory in WebGL. The runtime environment reflects the need to use shaders
with the following vertex shader:

1 attribute vec4d aVertexColor;
2 attribute vec3 aVertexPosition;
3 attribute vec3 aVertexNormal;
4 attribute vec2 aTextureCoord;
5

6 uniform bool uHasTexture;

7 uniform bool uHasColor;

8

9 uniform mat4 uMVMatrix;

10 uniform mat4 uPMatrix;

11 uniform mat4 ulNMatrix;

12

13 varying vec2 vTextureCoord;

4.4. TARGET PLATFORMS 97

14 varying vec4 vColor;

15

16 void main(void) {

17 gl_Position = uPMatrix * uMVMatrix * vec4(aVertexPosition,
1.0);

18 if (uHasTexture) {

19 vTextureCoord = aTextureCoord;

20 } else if (uHasColor) {

21 vColor = aVertexColor;

22 } else {

23 vColor = vec4(1.0, 1.0, 1.0, 1.0);

24 }

25 }

Apart from all necessary matrices and vertex attributes, the vertex shader cal-
culates texture coordinates, or vertex colors, for the fragment shader stage:

1 precision mediump float;

2

3 varying vec2 vTextureCoord;

4 varying vec4 vColor;

5

6 uniform sampler2D uSampler;

7 uniform bool uHasTexture;

8

9 void main(void) {

10 if (uHasTexture) {

11 gl_FragColor = texture2D(uSampler, vec2(vTextureCoord.s,
vTextureCoord.t));

12 } else {

13 gl_FragColor = vColor;

14 }

15}

The code of the shaders is embedded in the output HTMLS5 file and gets compiled
and linked during the initialization of the 3D environment in the browser. Note
that these shaders are rather simple, but can be easily extended as new features
of the target become available.

However shapes are created (by using high-level libraries, or by directly cre-
ating low-level buffers), the runtime environment relies on buffers to display 3D
content. The function drawScene() iterates over all active shapes and binds the
buffers prior to issuing the WebGL draw command. The previously described
vertex and fragment shaders replace a fixed-function pipeline and deal with
texturing (or coloring) and lighting of the content.

On a side note, the JavaScript built-in function setInterval() is used to call
drawScene () every 15 milliseconds. This feature of JavaScript replaces the need
for an infinite loop.

4.4.5 Differential Java target

In the article “Scripting Technology for Generative Modeling” [SSUF11b] by
CHRISTOPH SCHINKO, MARTIN STROBL, TORSTEN ULLRICH and DIETER W.
FELLNER, we introduce a translation mechanism to Differential Java.

Besides the previously described targets, Euclides offers a Differential Java
target used to compute derivatives of functions. This is a necessary task in
many applications of scientific computing, e.g., validating reconstruction and
fitting results of laser scanned surfaces [SUSF11], [UF11]: In combination with

98 CHAPTER 4. META MODELER: EUCLIDES

variance analysis techniques (see Section 5.2), generative descriptions can be
used to validate reconstructions. Detailed mesh comparisons can reveal small-
est changes and damages. These analysis and documentation tasks (see Sec-
tion 4.4.1) are not only needed in the context of cultural heritage but also in
engineering and manufacturing. The Euclides framework is used to implement
generative models, whose accuracy and systematics describe the semantic prop-
erties of an object; whereas the actual object is a real-world data set (laser scan
or photogrammetric reconstruction) without any additional semantic informa-
tion.

This analysis task needs derivatives of the distance-based objective function
as well as the embedded generative descriptions. According to ROLF HAMMER
et al. [HHKR97], there are three different methods to obtain values of deriva-
tives:

e Numerical differentiation This method uses difference approximations
to compute approximations of the derivative values.

e Symbolic differentiation Explicit formulas for the derivative functions
are computed by applying differentiation rules.

e Automatic differentiation This method also uses the well-known dif-
ferentiation rules, but it propagates numerical values for the derivatives.

The Differential Java target uses automatic differentiation to obtain derivatives.
This is done by replacing variables and operators in the runtime environment,
which is an easy task, since variables and operators are created using the fac-
tory pattern. The following listing shows the differences between standard and
differential multiplication operator. As expected, the standard operator returns
a variable initialized with the result of the multiplication operation.

1 /*x*

2 * Binary operator multiply.

3 *

4 * Q@param ii Information index.

5 * Q@param vl The first operand.

6 * @param v2 The second operand.

7 * Q@return The result.

8 */

9 public static Var MUL(int ii, Var vi1, Var v2) {
10 if (!vl.getType().equals(Type.NUMBER)

11 |l 'v2.getType () .equals (Type.NUMBER)) {

12 Log.deviantOperatorCallNoNumber (ii);

13 }

14

15 return Factory.initNumber (vl.toNumber () * v2.toNumber ());
16}

The differential operator calculates the derivatives of the operands and stores
them in an array. A resulting array is constructed out of the calculated deriva-
tives and returned as a variable.

1 /xx

2 * Binary operator multiply.

3 *

4 * @param ii Information index.
5 * Q@param vl The first operand.
6 * @param v2 The second operand.

4.5. PROVIDED LIBRARIES 99

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

* Q@return The result.
*/
public static Var MUL(int ii, Var v1, Var v2) {
if (!'vl.getType().equals(Type.NUMBER)
|| 'v2.getType () .equals(Type.NUMBER)) {
Log.deviantOperatorCallNoNumber (ii);
}

double[] d1 = vi.toDifferential();
double[] d2 = v2.toDifferential();
double[] r = Factory.differential();
r[0] = d1[0] * d2[0];
for(int i=1; i<r.length; i++) {

r[i] = d1[i]l*d2[0] + d1[0]*d2[i];
}

return Factory.initNumber (r);

4.5 Provided Libraries

A lot of functionality needed in the context of generative modeling is not directly
available in Euclides (and often not even in the target language), like vectors
or matrices. This functionality is typically provided by means of libraries — and
Euclides handles it that way. Euclides offers the following libraries:

e 10: The standard Euclides library for input and output offers basic func-

tionality to read and write text and files.

e MATH: The standard Euclides library for math provides mathematical

functions typically needed in the context of generative modeling.

e MATH_LA: Matrices and vectors are available through the standard

Euclides library for linear algebra.

e UTL: The standard Euclides utilities library is a collection of convenience

functions for arrays and parsing of data types.

e GUI.: Basic functionality to create user interfaces is available in the stan-

dard Euclides GUI library.

e GEO: The standard Euclides library for geometry offers high-level func-

tionality to control 3D scene (e.g., camera, light, background, ...).

e GEO_SHAPE: Basic shapes, as well as the ability to create custom

shapes is available in the the standard Euclides GEO_SHAPE library.

¢ GEO_MATERIAL: The standard Euclides library GEO_MATERIAL

offers a collection of pre-defined materials.

The two different types of libraries are cross-platform libraries and libraries
using native code. While libraries like MATH_LA and GEO_MATERIAL are
cross-platform libraries, i.e., libraries not using platform-specific (native) code,
other libraries like GUI and IO rely on native code in order to provide their
respective functionality.

100 CHAPTER 4. META MODELER: EUCLIDES

I0 (Input & Output) Due to its platform-specific nature, the standard
Euclides 10 library is relying on native code. While IO operations can be
directly mapped to GML and Java functionality, IO is handled differently in
JavaScript. Text IO, in the sense of the Euclides library, is meant to be done
via a standard IO channel (stdin and stdout), but JavaScript offers no feature
for that. FRANZ PAPST tackles this problem by using prompt() and alert()
for stdin and stdout, resulting in a dialogue box every time these functions are
called. The browser console (i.e., console.log()) is used to output errors.

Reading and writing of files in a browser is done using the API provided by
HTML5. However, for security reasons, files are only kept within a sandbox.
Files can only be read from the same origin as the website that is trying to
access them. In our case we are displaying locally generated Euclides output
and thus it is not directly possible to arbitrarily access files on the hard disk.
So far no workaround has been implemented to solve this situation other than
changing the browser’s security options.

MATH The standard Euclides MATH library provides a number of basic
mathematical functions (e.g., trigonometric and logarithmic functions). Since
these functions are not platform-dependent, it is a cross-platform library.

MATH_LA (Linear Algebra) Vectors and matrices are implemented in
the MATH_LA library. Operations like adding, subtracting and multiplying
are implemented for both, vectors and matrices. Since these functions are not
platform-dependent, it is a cross-platform library.

UTL (Utilities) The standard Euclides utilities library is a collection of con-
venience functions for arrays (e.g., cloning of arrays or removing of elements)
and parsing of data types. Since these functions are not platform-dependent
(because they rely on Euclides data types), it is a cross-platform library.

GUI A basic set of functions to create a GUI is available through the standard
Euclides GUI library. It is possible to initialize a GUI (i.e., creating a frame,
respectively a window, with a title as well as a size defined by width and height).
The 2D part with elements like buttons and sliders is initialized by the function
gui_init_2D(), whereas the function gui_init_3D() initializes the 3D part. It
is also possible to group standard elements and label them. Any additional
styling is not part of the library. Due to the platform-specific nature of GUISs,
the standard Euclides GUI library is relying on native code:

e The GML directly offers no possibilities to create standard GUI elements,
thus this part of the library is omitted in the GML translator.

e Java offers direct mapping of all GUI functions using the javax.swing
package and thus fully supports the GUI library.

e In JavaScript, the GUI is created using HTML5 elements. They also offer
direct mappings for all functions of the GUI library.

4.6. IDE 101

GEO (Geometry) The standard Euclides GEO library enables the creation
and manipulation of a 3D scene by means of defining camera, light and other
parameters, as well as enabling, disabling and transforming shapes. It also
provides functionality for creating shapes and assigning materials or textures
to them. Users can create more complex shapes out of a collection of basic
shapes, or can directly create (or manipulate) low-level buffers. The buffers
are directly used by the GUI library for rendering, or to create output in the
form of geometry (OBJ files) and images (PNG files). Some of these functions
are platform-dependent (e.g., setting the camera), so the GEO library relies on
native code.

GEO_SHAPE (Shapes) The standard Euclides GEO_SHAPE library is a
collection of basic shapes (box, sphere, cylinder, ...) and transformation func-
tions. Furthermore, it is possible to create custom shapes by using the function
geo_shape build(...), which takes a number of parameters (buffers and trans-
formation). All functions of this library are not platform-dependent — it is a
cross-platform library.

GEO_MATERIAL (Materials) A collection of pre-defined materials, in
the form of OpenGL compatible definitions, is available in standard Euclides
GEO_MATERIAL library. It can be used to assign materials to shapes, when
defining shapes with the GEO_SHAPE library. All functions of this library are
not platform-dependent — it is a cross-platform library.

4.6 IDE

The integrated development environment (IDE) of Euclides together with its
syntax checker are shown in Figure 4.6.

Like the back-end and the targets, it is written in Java. The integrated editor
offers basic functionality for syntax highlighting, font settings, and displaying
line numbers to allow for an easy navigation. It is an aim of Euclides to reduce
the inhibition threshold in the context of generative modeling. Hence, mean-
ingful error messages are one of the most - if not the most - important aspect
of a beginner-friendly development environment. For this aspect, the syntax
checker plays an important role. It analyzes the source code and displays de-
tailed messages for warnings and errors in combination with suggestions for
resolving issues.

Euclides offers a lot of functionality through libraries (see Section 4.5). Due
to missing functionality to declare source code dependencies in ECMAScript
262 (and thus also in Euclides), the IDE offers compiler options for include files.
Platform-specific files and libraries can be included by denoting their target.

A total of three compilation targets are available in the IDE: Java, GML, and
the documentation target. The Java and GML targets produce executable out-
put, while the documentation target creates an XML-based view of the source-
code including variables, functions, statements and files. Settings for the Java
target include the definition of the output JAR file, and whether to execute the
output using a specific Java Runtime Environment. When compiling for the
GML target, the settings are limited to defining the output Extensible GML
(XGML) file. The settings for the documentation target offer the ability to

102 CHAPTER 4. META MODELER: EUCLIDES

(&) Euclides 1995 technology preview =8 %
File Edt_Options Jserpt Help
147] var shapeID; A
148 ing positions for =0, east= =2, vest=
129) var sosCross - [math_vector([0, 6
150 math_vector ([6.32 on,
151 math_vector ([0, -6.327, 01),
152 math_vector ([-6.326, 0, 01) 1;
153 / array of vectors to be added to g positions (length of a nave
158) var sPosNave - [math_vector ([0, 5.154, 01),
155 math_vector ([5.154, 0, 01),
156 math_vector ([0, -5.154, 01),
157 math_vector ((-5.15¢, 0, 01) 1;
159| var rangleNave - [3*MATH PI/2, MATH_PI, MATH_PI/2, O]
160 L
g caloulate starting position for the nave elements =
162| var startingPosition — math_add(sPosCross[direction], math_scale((position-1), sPosNaveldirection])); S
163 / caloul tion for nes
T6s| var scarcingRotation = rAngleNave(dizection]; L Ecldes sy checker o
165 =
166 offset array for left element
167) var offfeft - [math_vector([-2.390, 2.454, 01),
- roject 55
168 math_vector ([2.454, 2.3%0, 01), e 2
169 math_vector ([2.330, -2.454, 01),
170 math_vector (1-2.454, -2.390, 01) 1; [=] \
171 / ot righe - o
172| var offRight = [math_vector([2.330, 2.700, 01)
173 math_vector ([2.700, -2.350, 01)
171 math_vector ([-2.390, -2.700, 01), 66 | var criengles = importbuildingSlock(filename)
175 math_vector ([-2.700, 2.390, 01) 1;
s | 07][var vestices - 11, nommais = 11, snaices - 1, cotors - 117
177 sve left
178| block - createBuildingBlock (home + buildingBlock Nave, material) ;
175| geo_shape_scale (math_vector([0.1, 0.1, 0.11), block) The dectared variabl or funcion ‘materal has a name, which hides a variable or funcion ofthe same L
shape = o 0t 01D, i name n outer scope, o which s hidden by ane n inner scope. Please consider changing the nameto [
180| geo_shape_rotate (math_vector ([0, 0, 11), startingRotation, block) ; o confusion
181 geo_shape translate(math_add(startingPosition, offLeft[direction]), block); i
182) shapeID - geo shape init(openGL, block);
183| geo_shape_activate (openGL, shapeID) ;
184) shapeNaves(shapeNaves.length] = shapeID, -

Figure 4.6: The integrated development environment (IDE) consists of a syntax-
highlighted editor with line numbers for easy navigation, and a syntax checker
with detailed information of warnings and errors.

specify an output directory, and whether to directly open the output in the
default browser.

4.7 Interpreter

The simplicity of a programming language is only one factor of a successful de-
velopment environment. Reasonable feedback and an interactive experience are
also important aspects. To offer our users this kind of experience, we enhanced
our already existing compiler infrastructure to create an interpreter. In the ar-
ticle “Minimally Invasive Interpreter Construction — How to reuse a compiler
to build an interpreter” [SUF12] by CHRISTOPH SCHINKO, TORSTEN ULLRICH
and DIETER W. FELLNER, we present the interactive interpreter based on the
already existing Euclides architecture.

A similar approach to combine interpretation and compilation has been pre-
sented by ANTON ERTL and DAvID GREGG [EGO04], but in contrast to our
system, they start with an interpreter and end up with a compiler.

4.7.1 Compilers and Interpreters

Unfortunately, there is no commonly accepted definition of the terms “compiler”
and “interpreter”. The problem is the smooth transition between compilation
and interpretation techniques, which blur a clear distinction. On the one hand
many interpreters have integrated just-in-time compilers, on the other hand,
some compilers rely on an interpreter integrated into each compiled unit. In
combination with virtual machines [LY99], which have functionality not pro-
vided by any real machine, and CPUs, which can execute source code directly

4.7. INTERPRETER 103

[BSKG67], it is even more complicated to find a clear distinction.

In the context of Euclides, we differentiate between compiler and interpreter
by the number of times the ASTFactory (see Section 4.2) is called per JavaScript
application execution. If the factory is called every time, the system is called
interpreter, otherwise, it’s a compiler.

4.7.2 Interpreter Design

In order to design, realize, and implement an interpreter based on an AST,
current software engineering approaches recommend one of two main designs:
the interpreter pattern and the visitor pattern [HKvdSV11].

According to the interpreter pattern, each node of the AST should have a
specialized version of an evaluation, respectively, interpretation method; e.g.,
eval(...). The visitor pattern in contrast only needs some callback functional-
ity. In this way it can separate algorithms and actions from the data structure
it operates on. As the visitor pattern (in combination with an iterator pattern
for tree traversal) is already used by the Euclides compiler targets, it is also
used by the interpreter.

The main idea of the interpreter implementation is based on a property
found in many scripting languages. In contrast to, for example, Java, in which
each statement is enclosed (at minimum) by a class definition, enclosed by a
file definition, the scripting language JavaScript does not have this “overhead”.
As a consequence, the root node of the AST is simply a list of statements:
statementA, statementB, statementC and for each statement, the list of previ-
ous statements has to be a valid program. This linguistic property allows to
compile each top-level JavaScript statement as a unit of its own — a dynamic
library. While this is not sensible for regular compilations, it offers the possi-
bility to compile instructions statement by statement. Finally, if each unit is
executed directly after being compiled, the resulting back-end is an interpreter.
Even more, additionally included callback routines can be used for debugging
purposes [VBOT].

4.7.3 Implementation Details

Following the observation that even a single statement can be regarded as a
unit of its own, the original JavaScript compiler is extended to reflect this prop-
erty. Statements in the AST are no longer stored in a one-dimensional array,
but a two-dimensional array is used instead. This way it is possible to group
statements, i.e., all statements passed to the interpreter in a single evaluation
call form one group and are stored in a one-dimensional array. All groups are
stored in an array as well, thus as a consequence, the statements are stored in
a two-dimensional array. These groups can be accessed by a new set of access
functions while at the same time retain compatibility to the compiler, e.g., the
command getAllStatements() now simply copies the two-dimensional structure
in a one-dimensional one.

In addition to the changes in the AST, the namespace is also using a two-
dimensional array for storing all symbols the same way the AST does. It uses
the same mechanism to create units of symbols while being compatible to the old
compiler version. These changes are necessary to allow tracking of interpretation

104 CHAPTER 4. META MODELER: EUCLIDES

history as well as to speed up all operations relying on the AST such as validation
and code generation.

A small change in the runtime, not related to the interpreter redesign, was
carried out in the process of implementing the changes for AST and namespace.
Function pointers are now being omitted in the favor of using anonymous inner
classes.

4.8 Examples

Based on Euclides’ flexible libraries, the creation of models, or visualizations is
easily possible. Apart from further use of the translated code on the respective
target platforms, the generated geometry can easily be exported to be used in
other 3D modeling workflows (e.g., photorealistic rendering). Not only quick
examples can be created in just a few lines of code, but also more complex ones.
The following examples are translated to the Java target, due to the fact that
it is the most advanced and tested target.

4.8.1 Amphitheater

Amphitheaters are open-air venues mostly used for entertainment purposes. Due
to their highly regular structure, they represent an ideal use case for generative
modeling techniques. The amphitheater model and its visualization (shown in
Figure 4.7) have been created in Euclides.

- B [P
Ll erorcecc S —

Amphitheater

Select Subdivision Steps:

Select Layout:

Select Element Size:

Figure 4.7: The visualization of the amphitheater has been created using Eu-
clides and the Java target. Due to its generative nature and the provided li-
braries, only 355 lines of code are necessary for the complete example. It is
possible to distribute a generative model as an executable JAR file.

4.8. EXAMPLES 105

The complete example (without libraries) only consists of 355 lines of code. A
few high-level parameters are available through the (rather simple) user inter-
face: the size of the structure (a scaling factor), the number of subdivision steps
(the number of arcs), as well as different styles of the amphitheater. The whole
structure of the amphitheater consists of the primitive building blocks cylin-
ders, boxes and arches with respective materials. The following listing gives an
overview of the example and its use of the available libraries (parts of the source
code are omitted).

gui_init("Amphitheater", 800, 600);

var gui2d = gui_init_2D();
var gui3d gui_init_3D();

geo_perspective(guidd, 50.0, 1.0, 0.1, 100.0);

geo_camera(gui3d, [0, o0, 10], [0, O, 0], [0, 1, O], 1.0);

geo_light (gui3d, GEO_LIGHT_OCTAHEDRON, 1.0);

var skyTexID = geo_texture(gui3d, "release/examples/Amphitheater
/images/textures_environment/sky_dayclear_1024.png");

10 geo_skybox(gui3d, skyTexID);

11

12 var SIZE = 0.6;

13 var ROWS = 72;

© 0D U W N

14

15 function elementStairs(...) {

16 // ... definition of function omitted
17}

18

19 function elementColumn(...) {

20 // ... definition of function omitted
21 3}

22

23 function elementArch(...) {

24 // ... definition of function omitted
25 }

26

27 function main(openGL) {

28 // ... definition of function omitted
29 }

30

31 main(gui3d);

32

33 var guigroupl = gui_group(gui2d, "Amphitheater");
34 gui_label(guigroupl, "Select Subdivision Steps:");
35 gui_combobox(guigroupl, [36, 72, 144], 1, -1);

36 gui_label(guigroupl, "Select Layout:");

37 gui_combobox(guigroupl, ["Roman", "Greek"], 0, -1);
38 gui_label(guigroupl, "Select Element Size:");

39 gui_slider(guigroupl, 0.1, 1, 0.6, -1);

40 gui_label(gui2d, "");

41

42 gui_show();

After the GUI is initialized (lines 1-3), perspective, camera, and scene are set
up (lines 5-9). The functions elementStairs(...), elementColumn(...), and
elementArc(...) are used to create a single vertical slice of the amphitheater.
These functions directly create geometry based on its parameters. The slices
are grouped together and bent (circular, elliptical, ...) in the main(openGL)
function. The 2D GUI elements (sliders, combo boxes, ...) for interaction
with the parameters are defined afterwards (lines 32-39). Finally, the function

106 CHAPTER 4. META MODELER: EUCLIDES

gui_show() displays the example.
Using the Java target, it is possible to distribute the example as an exe-
cutable JAR file.

4.8.2 Cathedral Construction Kit

Using more complex building blocks than cylinders or boxes as a basis for mod-
eling reflects the idea of generative modeling. However, these blocks do not
necessarily have to be of generative nature. The cathedral construction kit in
Figure 4.8 is created in Euclides. It is based on static building blocks and thus
offers variability on a rather high level.

o]

| Cathedral Construction Kit

Build Cathedral

Figure 4.8: The cathedral construction kit has been created using Euclides and
the Java target. It offers the possibility to create custom cathedrals based on
high-level building blocks.

Its main building blocks have been created by thingiverse'. The following build-
ing blocks are available: crossing tower base, crossing, front fagade left, front
fagade right, sanctuary left, sanctuary right, nave, tower, transept facade left,
transept fagade right (see Figure 4.9, and Figure 3.5 in Section 3.3.2). They can
be arranged using a few lines of code, or, like in this example, by nine high level
parameters, which are exposed in the user interface. With these parameters,
it is possible to control the length of transept, sanctuary and the front of the
cathedral. Unusual configurations can be created by choosing different terminal
building blocks (e.g., a cathedral with three sanctuaries). An optional crossing
tower can be toggled on and off. The whole cathedral construction kit (without

Thttp://www.thingiverse.com/thing:2030

4.8. EXAMPLES 107

libraries) is realized in 456 lines of JavaScript code. Note that in contrast to
the amphitheater example, static building blocks are used.

Using the Java target, it is possible to distribute the example as an exe-
cutable JAR file.

Figure 4.9: The castle construction kit is based on the following ten building
blocks (from left to right and top to bottom): crossing tower base, crossing,
front facade left, front facade right, sanctuary left, sanctuary right, nave, tower,
transept facade left, transept fagade right.

The building blocks have been created by MICHAEL CURRY,
http://www.thingiverse.com/thing:2030

4.8.3 Lorenz Attractor

Another example created in Euclides, can be seen in Figure 4.10. It is a vi-
sualization of the Lorenz attractor first studied by EDWARD N. LORENZ in
1963 [Lor63]. It is a set of chaotic solutions of the Lorenz system which, when
visualized, resemble a figure eight.

The appearance of the attractor is controlled by five parameters, which are
exposed in the user interface: Prandtl number, Rayleigh number, Beta number,
Euler step size, and Euler iterations. In order to visualize its shape, the pre-
defined primitive shape tube is used. The whole example is realized in a little
over 100 lines of code, with a mathematical part occupying about half of the
program.

Commonly used values, as well as possible values, are defined in the begin-
ning (lines 1-14). The three coupled, non-linear differential equations are eval-
uated and visualized using the functions lorenz0ODE(point), lorenzStep(point),
and lorenzEuler().

http://www.thingiverse.com/thing:2030

108 CHAPTER 4. META MODELER: EUCLIDES

.
| £:| Lorenz Attractor = ‘ =)

Lorenz

Prandtl number

10.0 =
Rayleigh number
10 =
Beta number

2:6666666666666665 -

Euler

Step size

0.2 -

Iterations

5000.0 -

(C) cav, Fha 2010,

Figure 4.10: The Lorenz attractor (first studied by EDWARD N. LORENZ) is
visualized using Fuclides. Five parameters control the appearance of the at-
tractor.

4.9 Summary

This chapter focused on the novel meta-modeling approach called Euclides. It
consisted of sections describing the architecture, language elements, different
target platforms, provided libraries, the development environment, an inter-
preter based on the Euclides framework, and a small collection of examples.

Euclides addresses the problem of implementing and maintaining several
generative descriptions on different platforms by introducing the concept of gen-
erative meta-modeling. A single implementation of all necessary construction
rules in an easy-to-use language can be translated to different target platforms.
Its high-level representation of the input code allows to preserve the level of
abstraction when translating to a target platform. The system creates target
code with a clear correspondence to the input code, thus simplifying debugging
and reuse.

The presented differential Java target is a basic functionality of the param-
eter fitting and shape recognition approach. It is also an integral part of other
applications in the context of inverse generative modeling. These will be de-
scribed in the next chapter.

Chapter 5

Inverse Modeling

This chapter presents work based on solving the inverse modeling problem; i.e.,
what is the best generative description of one or several given instances of an
object class?

Related work on the topic is presented in the following section. Afterwards,
the parameter fitting and shape recognition technique of TORSTEN ULLRICH is
used to analyze digitized objects in terms of changes and damages. A reference
surface is constructed using a generative description, whereas the actual object
is a laser scan or photogrammetric reconstruction without any additional se-
mantic information. In this context, the meta-modeler approach presented in
the previous chapter serves as a basic technology.

Furthermore, this system can be used to perform a template transfer en-
abling the design of shapes using both low-level details and high-level shape
parameters at the same time. This is possible by transferring features from one
shape to another.

Contents

5.1 Examples 110
5.2 Real-World Comparison 114
5.3 Shape Modelingo 125
5.4 Summaryo 127

109

110 CHAPTER 5. INVERSE MODELING

5.1 Examples

The inverse problem can be interpreted in different ways. Probably the simplest
way is to create a generative model out of a given shape and to store it in a
geometry definition file format, as described in Section 2.4.2. A cube can be
described as an OBJ file:

cube

definition of vertices
v -1.0 -1.0 1.0

v 1.0 -1.0 1.0

v-1.0 1.0 1.0

v 1.0 1.0 1.0

v -1.0 1.0 -1.0

v 1.0 1.0 -1.0

v -1.0 -1.0 -1.0

v 1.0 -1.0 -1.0

efinition of faces

Fh bh kb kh Fh Fh Fh Hh kb kb Fh b 3
ANB N NN W W

fin
23
2 4
45
46
67
6 8
81
82
8 4
8 6
15
13

The notation of this file format can be interpreted as a simple language in Polish
prefix notation. Its distinguishing feature is that it places operators (v, f, ...)
to the left of their operands or parameters. Since this generative description
can only represent a single object, not a family of objects, it is not the desired
result.

We describe the following fields of application for inverse modeling tech-
niques in the article “A Survey of Algorithmic Shapes” [KSU15] by ULRICH
KRISPEL, CHRISTOPH SCHINKO, and TORSTEN ULRICH.

5.1.1 Parsing Shape Grammars

Shape grammars can be used to describe the design space of object classes, e.g.,
of buildings / facades. In the context of inverse modeling, an interesting appli-
cation is to find an application of rules to describe a given set of measurements
of a building. The applied rules can also be seen as parse tree of a given input.

HAYKO RIEMENSCHNEIDER et al. [RKT"12] utilize shape grammars to en-
hance the results of a machine learning classifier that is pre-trained to classify
pixels of an orthophoto of a facade into categories like windows, walls, doors
and sky. The system applies techniques from formal language parsing to parse
a two-dimensional split grammar that consists of horizontal and vertical splits,
as well as repetition and symmetry operations. To reduce the search space, an
irregular grid is derived from the classifications, and the parsing algorithm is ap-
plied to obtain the most probable application of rules that yields a classification

5.1. EXAMPLES 111

label per grid cell. Such a parse tree can easily be converted into a generative
description, as can be seen in Figure 5.1.

Window

(d) parsed structure (e) 3d rendering (f) reconstruction

Figure 5.1: A building fagade (a) is classified into pre-trained categories using
a classifier (b). From these classifications, an irregular grid is derived (c), and a
two-dimensional split grammar is parsed (d). It can be seen that the system was
able to detect repeated columns (red rectangles) and two side parts (connected
blue rectangles). The resulting parse tree can be transformed to a generative
description, which can be evaluated to geometry (e). Using this technique, parts
of the city of Graz were reconstructed from photographs and range scans (f).
(Source: HAYKO RIEMENSCHNEIDER et al., 2012)

FuzHANG WU et al. [WYD™14] also address the problem of how to generate a
meaningful split grammar explaining a given facade layout. Given a segmented
facade image, the system uses an approximate dynamic programming framework
to evaluate if a grammar is a meaningful description. Please note that the work
does not contribute to the problem of facade image segmentation.

5.1.2 Model Synthesis

The work of PAUL MERELL and DINESH MANOCHA [MMO8] deals with the au-
tomatic generation of a variation of shapes. Given an exemplary object and con-
straints, the task is to derive a locally similar object. The method was inspired
by texture synthesis methods. These methods generate a large two-dimensional
texture from a small input sample, where the result is locally similar to the input
texture, but should not contain visible regularities or repetitions. The method
computes a set of acceptable states, according to several types of constraints,
and constructs a set of parallel planes that correspond to faces orientations of
the input model. Intersections of these planes yield possible vertex positions
in the output model. The system proceeds by assigning an acceptable state to
a vertex and remove incompatible states in its neighborhood. It terminates, if
every vertex has been assigned a state. This process is illustrated in Figure 5.2.

112 CHAPTER 5. INVERSE MODELING

H
Ll I ?\
P g B ‘. ..
T | et | et i ;

i>e] e [.
I el e = !

o] S = |

1

3 T & T G TR & S 5 Y]

I ——®
a) input mode arallel lines c acceptable output
(a) inp del (b) parallel li (c) ptabl p
shape

(d) input model (e) generated variation

Figure 5.2: In their work, PAUL MERELL and DINESH MANOCHA [MMOS8] use
a mesh with constraints as input (a) to identify a set of identical lines. Parallel
translation of these lines yields a discretization of space (b), from which a new
model is synthesized, that locally satisfies the constraints of the input model
(¢). The bottom row shows an example in 3D, where many complex buildings
(e) are generated from four simple ones (d). The output contains vertices that
have been constrained to intersect in four faces, some of them are circled in red.
(Source: PAUL MERELL and DINESH MANOCHA, 2008)

5.1.3 Inverse Procedural Modeling of Trees

ONDREJ STAVA et al. [SPK™14] propose a method to estimate the parameters
of a stochastic tree model, given polygonal input tree models, such that the
stochastic model produces trees similar to the input. Finding such a set of pa-
rameters is a complex task. The parameters are estimated using Markov Chain
Monte Carlo (MCMC) optimization techniques. The method uses a statistical
growth model that consists of 24 geometrical and environmental parameters.
The authors propose a similarity measure between the statistical model and a
given input mesh that consists of three parts:

e shape distance, which measures the overall shape discrepancy,

e geometric distance, which reflects the statistics of geometry of its branches,
and

e structural distance, which encodes the cost of transforming a graph rep-
resentation of the statistical tree model into a graph representation of the
input tree model.

For some examples see Figure 5.3. The MCMC method has also been applied
to find parameters of a statistical generative model: [TLLT11], [VGDAT12],
[YYT*11].

5.1. EXAMPLES 113

(b) input model and variations generated from the procedural model

Figure 5.3: The method of ONDREJ STAVA et al. [SPK"14] uses a statistical
growth model of trees that is able to generate a variety of different tree species,
as can be seen in the top row (a). The system performs a statistical optimization
to find the parameters of the model, given an input exemplar. The bottom row
(b) shows an input model and three variations generated from the procedural
model using the parameters that resulted from the optimization process.
(Source: ONDREJ STAVA et al., 2014)

5.1.4 Parameter Fitting and Shape Recognition

The approach presented by TORSTEN ULLRICH and DIETER W. FELLNER uses
the generative modeling system presented in Chapter 4 to describe a class of ob-
jects and to identify objects in real-world data e.g., laser scans [UF11], [USF08],
[SUSF11]. The input data sets of the algorithm are a point cloud P and a
generative model M. Then, the algorithm answers the questions

1. whether the point cloud can be described by the generative model and if
S0,

2. what are the input parameters zy such that M (z¢) is a good description
of P.

The implementation uses a hierarchical optimization routine based on fuzzy
geometry. It simply regards a generative script as a function M with input
parameters z € R¥.

The example data set shown in Figure 5.4 consists of laser-scanned cups and
a generative cup description. It takes 15 parameters: (z,y, z) is the base point
of the cup and («, 3,7) define its orientation. Its shape is defined by an inner
fin(@) = 5=(x + 45)?T*h%P¢ and outer fou(z) = 23T5"P¢ shape function with
one free parameter shape. These functions are rotated around the cup’s main
axis and scaled with the parameters r and h. The handle is defined via six
parameters forming points in 2D (in the plane of the handle, which is defined
implicitly by its orientation 7); namely (h1, fout(h1)), (hoa,hop), (hsa,hsp),

114 CHAPTER 5. INVERSE MODELING

Figure 5.4: The scanned cup (rendered in semi-transparent gray) have been
identified as instances of the generative cup description. The color codes the
geometric distance from the generative instances to the scanned cups (green:
close, red: more deviation). In these cases the cups’ properties (position, orien-
tation, radius, height, handle shape) are determined successfully.

(Source: TORSTEN ULLRICH, 2011)

and (hy, fout(ha)). They are the control points of a Bézier curve. Its tube with
a fixed diameter (10mm) defines the cup’s handle.

The algorithm is able to detect an instance of the generative cup. In these
cases the cups’ properties (position, orientation, radius, height, handle shape)
are determined with a small error.

5.2 Real-World Comparison

The parameter fitting and shape recognition technique described in Section 5.1.4
can be used to analyze digitized objects in terms of changes and damages. In the
articles “Procedural Descriptions for Analyzing Digitized Artifacts” [USSF13]
by TORSTEN ULLRICH et al., “Real-World Geometry and Generative Knowl-
edge” [SSUF11la] by THOMAS SCHIFFER et al., and “Variance Analysis and
Comparison in Computer-Aided Design” [SUSF11] by CHRISTOPH SCHINKO et
al., we propose a work flow, which automatically combines generative descrip-
tions with reconstructed objects and performs a nominal/actual value com-
parison. The reference surface is a generative description whose accuracy and
systematics describe the semantic properties of an object, whereas the actual
object is a real-world data set (laser scan or photogrammetric reconstruction)
without any additional semantic information. These analysis and documenta-
tion tasks are needed not only in the context of cultural heritage but also in
engineering and manufacturing.

5.2. REAL-WORLD COMPARISON 115

5.2.1 Architecture

The system consists of three main parts: registration, analysis, and visualization
(see Figure 5.5).

Input: digitized object & generative model

v

Registration

v

Analysis

v

Visualization

V

Result

Figure 5.5: The architecture of the system consists of three parts: registration,
analysis, and visualization. A generative model is registered against a digitized
object. The difference between them is calculated and finally visualized.

Registration The registration part fits, respectively registers, a generative
model, which can be regarded as a function M with parameters x, to the real-
world data set (see Section 5.1.4). The registration step takes M and determines
a parameter set 20, such that M (z0) fits a given object S.

Analysis The analysis part computes the difference between the generative
model M (zp) and the object S using state-of-the-art ray tracing techniques.

Visualization The results of the analysis are visualized using X3D technology.
An X3D file is generated containing the generative model M (zg), a texture of
distance values and shader code for applying the difference as displacements.
This allows selective switching between the two models or displaying both of
them simultaneously.

116 CHAPTER 5. INVERSE MODELING

5.2.2 Registration
The processing pipeline starts with the registration step. During this step a
generative model with its free parameters is registered (fitted) against an in-
put data set. As example, we use a digital object of the Museum FEggenberg
collection and a corresponding generative description shown in Figure 5.6. It
shows a digitized object (left) and a generative description (right), which will
be registered to each other in a first step.

T(tm,ty,tz) dg
ds

dy

ds

Il

dy

Gy

R(ry,my,72) “do

Figure 5.6: A digitized object is often represented by a list of triangles with
additional information such as textures (to describe the visual appearance) and
meta data (to describe its context); e.g., the vase on the left hand side is a
digitized object of the Museum Eggenberg collection. It consists of 364774
vertices and 727 898 triangles.

The generative model to describe a vase takes 13 parameters: R(rg,ry,7.) is
the base reference point of the vase in 3D and T'(¢;,1,,t.) is its top-most point.
The points R and T define an axis of rotational symmetry. The remaining
seven parameters define the distances dg,...,dg of equally distributed Bézier
vertices to the axis of rotation. The resulting 2D Bézier curve defines a surface
of revolution — the generative vase.

The registration step regards a generative script as a function with input
parameters. These parameters may have a semantic meaning (width, height,
etc.). Each set of parameters describes a member of the family of objects defined
by the generative description. For example, changing the parameters dy, ...,
dg of the generative vase shown in Figure 5.6 (right) creates different variations
of vases as illustrated in Figure 5.7.

The registration estimates these free parameters; i.e., it determines the best-
fit parameter vector p*(ry, 7y, rs, tr,ti,ts, dg,di,ds,d5, d}, d5, df).

This step is performed using numerical analysis techniques to minimize the
distance between the geometry of the digitized object on the one hand side and
the geometry of a member of a generative family [Ull11].

A numerical optimization evaluates the generative script up to several thou-
sand times. The Differential Java target (see Section 4.4.5) is used to perform

the gradient-based optimization routines.

5.2. REAL-WORLD COMPARISON 117

[

T

ANl
YA

|
NN

VAVIY

Figure 5.7: The generative vase is defined by two reference points of an axis
of rotation (top and bottom) and seven distances dy, dots, dg, which define a
surface of revolution. Changing only the parameters dy, dots, dg, keeps the
vases’ height fixed and modifies the outer shape.

The result of the registration step is a particular generative vase out of a family
of vases. It is the best generative vase to describe the digitized object it has
been registered to. Figure 5.8 illustrates this result. Please note, the registration
algorithm can only modify the input parameters of the generative description. It
cannot modify the description itself. As a consequence, features, which cannot
be generated by the script, cannot be included in the generative result.

5.2.3 Analysis

State-of-the-art ray tracing techniques are used to compute the difference be-
tween generative and digitized geometry. For this distance computation, we
need to intersect a large amount of rays with the static triangles obtained from
the geometry acquisition step as described in Section 5.2.3. The ray tracing

118 CHAPTER 5. INVERSE MODELING

Figure 5.8: The digitized object (left) has been registered to a generative de-
scription of a vase. The result is the best-fitting vase of the complete family
of vases defined by the generative description — i.e., the generative vase (right;
rendered in red) is very similar to the digitized object (right; rendered in beige).

library is composed of acceleration structure construction and efficient parallel
ray tracing.

Acceleration Structure Construction

To accelerate the ray intersection queries, we organize the triangulated, static
geometry in a particular data structure. In a first step, we enclose each trian-
gle with an axis-aligned bounding box (AABB). By grouping them recursively,
a tree-like structure is obtained. This kind of hierarchy is called bounding
volume hierarchy (BVH) and is a very popular acceleration structure for ray
tracing [WMG™T07]. The BVH construction can be performed fully automati-
cally by partitioning the geometry according to a cost function and updating the
bounding volume of each node. The recursive, top-down algorithm is outlined
in the following listing.

1 procedure BuildBVH(BVHNode node)

2 if needSplit () then

3 splitGeometry ()

4 BuildBVH(LeftChild)

5 BuildBVH(RightChild)

6 computeAABB(LeftChild, RightChild)
7 else

8 computeAABB (objects)

9 end if

0 end procedure

Ju—

We use a binary bounding volume hierarchy BVH, which means that each node
has a maximum of two child nodes (called left and right child). The construction
is performed recursively and starts at the root node of the BVH, which initially

5.2. REAL-WORLD COMPARISON 119

contains all triangles of the input mesh. If the geometry belonging to a node
needs to be split, it gets partitioned among the child nodes, where construction
proceeds recursively. Consecutively, each node’s axis-aligned bounding box has
to be updated, either combining the AABBs of its children or the contained
triangles (if no split has been performed).

In our implementation, a node is split whenever it contains more than four
triangles. Splitting itself is guided by the commonly used surface area heuristic
(SAH) cost function.

surfaceArea(C.AABB)
sur faceArea(P.AABB)’

It states that, assuming uniformly distributed rays, the probability of a ray
intersecting a child node C' given that its parent node P is intersected is pro-
portional to the ratio of the surface areas of the bounding boxes. We use a
formula proposed in [Wal07], which is based on the SAH, to guide our object
partitioning step.

Prob(ray hits C' | ray hits P) (5.1)

COSt(L, R) = NLAL + NRAR (52)

Ny, and Npg represent the number of primitives and Ay, and Ag the surface area
of the AABB for a given partition LW R of geometric objects. This function tries
to minimize the overall intersection costs of a ray with the BVH by grouping
suitable AABBs. To reduce the search space for partitions, the centroids of the
A ABBEs are projected along each coordinate axis and sorted in ascending order.
The partition with minimal costs can then be found by “sweeping” a split plane
along the axis (see also [WMGT07]). This is done for all three coordinate axes
selecting the split with minimal costs.

Parallel Ray Tracing

A previously constructed BVH can be traversed in depth-first order. The recur-
sive approach visits all nodes that are intersected by a ray in strict front-to-back
order. To maintain this node ordering, each ray requires a stack to store some
intersected nodes for later use. The algorithm is outlined in the following listing.

1 procedure IntersectBVH(Ray ray, BVHNode node)
2 if node is a leaf then

3 intersectTriangles (ray)

4 else

5 t_left = intersectAABB(LeftChild, ray)

6 t_right = intersectAABB(RightChild, ray)
7 if t_left and t_right then

8 if t_left < t_right then

9 pushNode (RightChild)

10 IntersectBVH(ray, LeftChild)

11 else

12 pushNode (LeftChild)

13 IntersectBVH(ray, RightChild)

14 end if

15 else

16 if t_left then

17 IntersectBVH(ray, LeftChild)

18 else if t_right then

19 IntersectBVH(ray, RightChild)

20 else

120 CHAPTER 5. INVERSE MODELING

21 node = popNode ()

22 if (node)

23 IntersectBVH(ray, node)
24 end if

25 end if

26 end if

27 end if

28 end procedure

The traversal is started from the root node using the ray as parameter. If the
node is a leaf, the contained geometry is intersected with the ray and the ray
parameters are updated. An inner node has two child nodes, which are both
intersected with the ray. If both children are intersected, the child that is closer
to the ray’s origin is traversed recursively first, while the farther one is pushed
onto the stack. If just one of the children is intersected, traversal proceeds to this
child immediately. When no child node was intersected, a node is popped from
the stack and traversal continues. The intersection search stops, if the stack gets
empty and no more nodes are left for traversal. This depth-first order traversal
can be used to find a ray intersection in O(log(n)) time on average, instead of
the naive O(n), where n denotes the number of triangles.

To handle millions of intersection queries in parallel, we implemented the
depth-first traversal on the GPU using NVidia’s CUDA technology [LNOMO0S],
[Nvil7c]. As mentioned before, the constructed BVH is transferred to GPU
memory, where it is subsequently traversed in massively parallel fashion. We
use the approach of TiMO AILA and SAMULI LAINE, which maps one ray to
one thread [AL09]. All threads execute our implementation of the presented
algorithm to find their intersection points.

Distance Calculation and Encoding

The ray casting library is embedded into the distance calculation, which takes
the generative reference model from the registration step as well as the real-
world model as input data sets. Both models are now static geometry, as the
registration only returns the best-fit solution and not the complete family of
models. Once the mesh data is available, the ray casting library is initialized
with the real-world model.

The main idea is now to calculate to offset between generative reference
model and digitized object and to store it in the reference model’s texture. In
this way both models are combined in one data set. The generative model
describes the nominal/ideal surface whereas the geometric offset in its texture
stores the real-world model.

The first step is to find sample points and corresponding normals on the
registration model to obtain rays used for distance calculation. A trivial ap-
proach would be to just use the vertices and normals defined by the supplied
mesh. However, this approach may lead to a rather coarse sampling resolution.
Texture coordinates seldom degenerate to one single (u,v) coordinate for all
vertices defining a primitive — may it be a triangle or a quad. Therefore it is
meaningful to find a finer sampling resolution for the distance calculation. This
can be achieved by taking into account the texture resolution of the generative
model.

Simple and Efficient Normal Encoding

Compressing normal information
can be achieved by texture- or
vector-based algorithms. Texture
compression algorithms are image-
based approaches, which use ww-
space coherence for efficiency. Vec-
tor compression algorithms only re-
gard a single (normal) vector at
a time without any context. An
overview of compression techniques
can be found in the article “Fast
normal vector compression with
bounded error” [GKPO7].

In the article “Simple and Effi-
cient Normal Encoding with Error
Bounds” [SUF11] by CHRISTOPH
SCHINKO, TORSTEN ULLRICH and
DIETER W. FELLNER, we regard
the problem of normal vector com-
pression as an optimization prob-
lem. It answers the question “How
can n points be distributed on a
unit sphere such that they max-
imize the minimum distance be-
tween any pair of points?” [Weil7].
This maximum distance is called
the covering radius, and the con-
figuration is called a spherical code.
With n = 2°, the points represent
an optimal encoding of normalized
vectors in b bits.

For a resolution of b bits, 2° nor-
mals on a unit sphere can be rep-
resented. Our approach subdivides
the unit sphere into six congruent
sides with a regular square pattern
on each side. We generate m = 6 X

s x s points with s = [\/2”/6 J All

points are numbered consecutively,
and only a point’s ordinal numeral
is stored. This scheme has a cut-
ting loss, but due to its regularity,
the compression and decompression
step can be performed with a fixed
number of arithmetic operations.
As the projection of a bound-
ing box grid onto a sphere results in
unequally distributed patches con-

cerning their size, we use a spher-
ical, angle-based parameterization,
which delivers much better results.
Figure 5.9 visualizes the spherical
codes.

The

Figure 5.9: compression
scheme can represent only a limited
number of normals for a fixed reso-
lution. These configurations are vi-
sualized using 24 vertices (5 bits,
top-left), and up to 7776 vertices
(13 bits, bottom-right).

The results can be measured in an-
gular distance between any pair of
points. Table 5.1 shows the values
for different resolutions with corre-
sponding error bounds.

bits | normals | point distances
avg. err. lim.

4 6 | 90.00 45.00

8 216 | 13.08 6.541

12 4056 | 3.030 1.515

16 64896 | 0.760 0.380

20 | 1048344 | 0.189 0.095

Table 5.1: The algorithm generates
spherical codes depending on the
given resolution (bits). Each con-
figuration consists of a fixed num-
ber of normals, whose distance to
each other (measured in degree) is
limited (error limit).

122 CHAPTER 5. INVERSE MODELING

The idea is to not only use the texels associated with the vertices defining the
primitives, but to use all texels inside a primitive. These additional sampling
points have unique corresponding texel values to be used to store distance values.
To fill these texels with distance values it is necessary to obtain their position
and normal direction in object coordinates. This is an easy task at the border
texels of the primitive — since these values are available directly, but involves
calculating object coordinates out of texel values for all other texels.

With all texels and their the corresponding object coordinates on the gener-
ative reference model, these coordinates together with two vectors (in positive
and in negative normal direction) represent rays to be tested against the scanned
model. The ray casting library calculates the intersection points — if there are
any — up to a predefined maximum distance.

These distance values are encoded into an image/texture, following a pre-
defined scheme. We store the distance of a hit in positive and negative direction
as unsigned byte in the red, respectively green channel of the texture. The blue
channel is used to encode the available distance information:

e A value of 0 means that there is no hit in positive or negative direction.
o If there is a hit in negative direction, the value of 64 is added.

e In case there is a hit in positive direction, the value of 128 is added.

A schematic illustration of a distance texture is shown in Figure 5.10 (left).

Figure 5.10: The distance texture (right) of our example vase is used in a
displacement shader to create an output mesh, which ideally matches the target
mesh. Three color channels are used to encode distance values (left). The red
and green channels are used to store distance values, whereas the blue channel
is used to store additional information. Please note, contrast and brightness
have been adjusted for illustration purposes.

It shows the three channels RGB in a slightly shifted manner. Furthermore,
the distance channels red (positive direction) and green (negative direction) are
visualized as heightfields. Furthermore, Figure 5.10 (right) shows the distance
texture of our example vase: high distance values are encoded in brighter colors,

5.2. REAL-WORLD COMPARISON 123

low distance values are encoded in darker colors, missing parts are encoded in
black.

The texture encoding allows to carry out a selective displacement in the
geometry shader incorporated in the output X3D file. A built-in exporter creates
the X3D file.

5.2.4 Visualization

The last step combines the generative model, the input data set and its offset
description in an X3D file including shader code capable of applying the differ-
ence as displacements. This allows switching selectively between the two models
or displaying both of them simultaneously. The generated X3D file incorporates
the following components:

e the geometry of the generative, best-fit reference mesh as indexed face set,
e a texture storing distance values to the digitized object,

e as well as vertex, geometry and fragment shaders for displacement and
lighting purposes.

The reference mesh and the distance texture are the input for the shader stages.
The vertex shader primarily acts as a pass-through stage. Position, normal and
texture coordinates of the input vertex are handed over to the geometry shader
for further processing. The geometry shader accepts triangles as input and out-
put type. For each input vertex, a texture lookup reveals whether the vertex
needs to be displaced. In case there is a distance value in the texture, the dis-
placement of the three vertices is calculated and an output triangle is generated.
When distance values in positive and negative direction are available, two tri-
angles are emitted. In all other cases there is no output at all. Additionally, the
shader allows to recursively subdivide input triangles to meet the desired out-
put resolution of one vertex for almost every texel. This way we obtain a good
representation of the digitized object. As a last stage, Blinn-Phong lighting is
carried out on a per pixel basis in the fragment shader.

5.2.5 Examples

To demonstrate the workflow, we use an example data set, which consists of
vases and pottery of the Museum Eggenberg collection. A selection of the ob-
jects is shown in Figure 5.11. These objects have been reconstructed using the
photogrammetric service Arc3D!, which returns triangle meshes.

The registration and optimization routines take one of the input data sets
(see Figure 5.11) and the generative description and automatically determines
the best-fit parameter vector. The next step performs the analysis and stores
its result in a texture map. The per-texel-distances are encoded using the RGB
channels of an image.

During the optimization process and the analysis step further details are
determined automatically:

e direct shape parameters such as height and radius,

Thttp://www.arc3d.be

124 CHAPTER 5. INVERSE MODELING

oy

Figure 5.11: The example data sets are photogrammetric reconstructions of
objects of the Museum FEggenberg collection. They consist of 344516 (left),
364 774 (middle), 405838 (right) vertices and 687767 (left), 727898 (middle),
810749 (right) faces respectively triangles.

e derived shape parameters such as volume,

e analysis values such as maximum deviation and irregularity (assuming the
generative model can represent the digitized object adequately).

Figure 5.12 visualizes some results. Each rendering shows the clean generative
model (light red) for parts, which do not have a counterpart in the input data set,
and the geometric offset (light brown) for parts, which do have a corresponding
part in the input data set.

Figure 5.12: Using the pipeline presented in this article, digitized objects and
their corresponding generative descriptions can be combined automatically and
visualized interactively. The generative parts (light red) are drawn only if no
corresponding counterpart in the input data set (light brown) exists.

5.3. SHAPE MODELING 125

5.3 Shape Modeling

The pipeline to analyze digitized objects described in Section 5.1.4 can also
be used to modify existing 3D shapes. In the article “Modeling with High-
Level Descriptions and Low-Level Details” [SUF14] by CHRISTOPH SCHINKO,
TORSTEN ULLRICH and DIETER FELLNER, we show that high-level descriptions
can be used to resemble real-world objects or create new ones. In this way, we
can design shapes using both low-level details and high-level shape parameters
at the same time.

Similar to the architecture described in Figure 5.5, the system relies on
registration, analysis and visualization. The additional template transfer step
enables the generation of new shapes by altering the parameters of the generative
description (see Figure 5.13).

Input: digitized object & generative model

-«

Registration

-«

Analysis

-«

Template Transfer

-«

Visualization

<

Result

Figure 5.13: The architecture of the system consists of four main parts: reg-
istration, analysis, template transfer, and visualization. A generative model is
registered (fitted) against a digitized object. The difference between them is
calculated and can be used to generate new shapes.

126 CHAPTER 5. INVERSE MODELING

To demonstrate this workflow, we use a laser-scanned cup and the generative
cup description from Section 5.1.4. The laser scan of the cup has 66243 vertices
and 130973 faces (triangles). Because the real cup has a clean and glossy surface,
it has been difficult to scan. The scan result is noisy and it is not cleaned-up
(i.e., mesh repairing, hole filling, mesh smoothing has not been done) has many
holes (see Figure 5.14 (a)). The registration and optimization routines of the
shape recognition determine the best-fit parameters automatically. The result is
shown in Figure 5.14 (b). The combined representation is shown in Figure 5.14

(c).

(a) laser-scanned model (b) reference model (¢) combined representa-
tion

(d) new model (e) transferred combined repre-
sentation

Figure 5.14: This figure shows the scanned model (a), the procedural reference
model (b), as well as the output of the combined representation (c). The com-
bined version consists of a static instance of the reference model. It has been
defined by a set of parameters obtained in the fitting process. Having modi-
fied the parameters of the generative description, new procedural cups can be
generated (d). If one of these new cups is combined with an already existing
texture, previously captured details can be transferred (e).

As the geometric offset is applied to the generative model on-the-fly, it can be
exchanged as long as the texture coordinates are generated consistently. In this
way, it is possible to modify the cup’s high-level parameters (height, radius,

..) while its low-level details are preserved. For demonstration purposes we
designed a Cappuccino cup; i.e., we chose appropriate parameters of the gen-
erative model (a smaller height A and radius r and a slightly different shape
parameter). Having replaced the “big mug” by our new Cappuccino cup, we
obtained an octagonally shaped version. Figure 5.14 (d, e) shows the generated
Cappuccino cup and its noisy, octagonally shaped version.

5.4. SUMMARY 127

5.4 Summary

The beginning of this chapter focused on introducing inverse generative model-
ing. The section about related work was concluded with the parameter fitting
and shape recognition technique of TORSTEN ULLRICH relying on the differ-
ential Java target of the Euclides meta-modeling approach presented in the
previous chapter.

This technique was subsequently used to analyze digitized objects in terms of
changes and damages. Since a generative description resembling an ideal object
often lacks wear and tear effects of real-world objects, the fine details of real-
world objects were therefore applied onto the generative description. Thereby,
deficiencies of the real-world object can be identified and analyzed.

The system can also perform a template transfer from one object to an-
other. Having a generative description with applied offset at hand, it is possible
to create new objects by changing the initial parameters of the generative de-
scription. This enables the design of objects using both low-level details and
high-level parameters at the same time.

After covering different modeling paradigms, a final step in the shape pro-
cessing pipeline discussed within this thesis is concerned with proper visualiza-
tion of 3D content. The next chapter will focus on this aspect describing two
visualization techniques tailored towards specific use cases.

128 CHAPTER 5. INVERSE MODELING

Chapter 6

Visualization

In order for humans to perceive and interact with shapes, a vital part of shape
processing is visualization. For that purpose, computer graphics provides means
to create, manipulate, and interact with the different representations, especially
within a virtual world, either in virtual reality or in a simulation environment.
Depending on the use case, specialized software and hardware may be required.
A scientific visualization of an abstract scientific process has different require-
ments regarding, for example, degree of realism, interactivity, or expressiveness
than video games. This not only has an impact on the choice of shape repre-
sentation, but also on the visualization hardware. While work from previous
chapters focuses on describing and modeling shapes (a necessary prerequisite),
the focus of the following chapter lies on visualization techniques.

The first section presents a system to seamlessly project onto non-planar
surfaces. It is used to create dynamic, reconfigurable spaces influencing the
behavior of groups and individuals. In contrast to the rather artistic use-case of
this projection system, an immersive, autostereoscopic visualization system for
a driving simulator is presented in the next chapter. Both systems heavily differ
in their requirements showing the diverse application fields for visualization.

Apart from virtual representations, models can also be physically created us-
ing 3D printing devices. JULIAN GARDAN gives an overview of current additive
manufacturing technologies [Garl6].

Contents

6.1 Non-Planar Projections 130
6.2 Parallax Barrier Displays 138
6.3 Summary 150

129

130 CHAPTER 6. VISUALIZATION

6.1 Non-Planar Projections

An exciting idea for future visual installations is to use a deforming space as
“passe-partout” for stunning responsive audiovisual experiences. Dynamic, re-
configurable spaces are an exciting possibility to influence the behavior of groups
and individuals. They may have the potential of stimulating various different
social interactions and behaviors in a user-adapted fashion. Projecting on larger
surfaces can be a problem for a single projector. Problems might be the limited
light intensity of the projector, or limited distance to the projection surface.
Composing a projection of multiple projectors solves these problems at the cost
of a more complex visualization setup. While this works well on a static surface,
the tiling becomes visible when the surface dynamically moves and deforms.

The use of tiled displays on non-planar screens has become feasible through
the availability of high-resolution cameras for calibration. The idea of the cal-
ibration is to allow for geometric alignment of the projectors by capturing and
analyzing structured patterns projected onto the unknown, deformed, projec-
tion surface. In order to deal with moving and deforming display surfaces, the
calibration process must allow for real-time operation. To achieve this goal, it
is desirable to process the geometric correction only on a single captured image.

The calibration of dynamically deforming surfaces resembles shape recon-
struction. Some techniques, like stereo algorithms, can be used in both cases
(for example, by DANIEL SCHARSTEIN and RICHARD SZzELISKI [SS03], or by
ANDREAS GRIESSER and Luc VAN GooL [GGO06]), or point cloud reconstruc-
tion (e.g., by PATRICK QUIRK et al. [QJST06]).

When using a tiled projection display, projectors are used both for geomet-
ric correction and to display content. This can be done beforehand, in case of
a non-deforming projection surface. In order to accomplish both display and
measurement simultaneously, imperceptible structured light techniques were de-
veloped. RAMESH RASKAR et al. present a combination of multiplexing and
light cancellation techniques to hide patterns in a series of white-light projections
with a synchronized camera [RWC98]. With this method, seamless panoramic
display systems with multiple cameras and projectors can be built [RBY199].
However, there is a trade-off between updating the patterns in such a frequency,
that changes in the display geometry can be captured fast enough, and not dis-
turbing the content projection too much.

The method proposed by DANIEL COTTING et al. embeds arbitrary binary
patterns into images displayed by unmodified Digital Light Processing (DLP)
projectors [CNGF04], [CZGF05]. Images encoded in that way are visible only
to the cameras synchronized with the projectors.

The continuous display surface auto-calibration method by RUIGANG YANG
and GREG WELCH does not require dedicated hardware. It uses a camera to ob-
serve the display and match image features with the corresponding features that
appear on the display [YWO01]. This method relies on corresponding geometric
features in consecutive frames, which highly depends on the content.

JIN ZHOU et al. present a continuous self-calibration method for planar sur-
faces using a camera attached to a projector [ZWAYO08]. Necessary re-scanning
in case the surface geometry is changed, disturbs the content projection.

The method proposed by JOHNNY C. LEE embeds a small set of optical
sensors in the display screen to discover the projection area in combination with

6.1. NON-PLANAR PROJECTIONS 131

the projection of a series of gray-coded binary patterns [LDMAT04]. However,
this technique works only for front projections, since the sensors are embedded
in the screen.

Despite much research and development in the context of tiled projections,
several challenges remain. In most of the existing work, well-calibrated projec-
tors and sensors in a permanently installed environment are used. In practice, a
large tiled projection system is typically needed only temporarily, e.g., for short
term events like stage performances and exhibitions. In these case, a reduction
of the required hardware and calibration effort is an important aspect. An-
other aspect is the robustness and adaptability of the calibration. In a rented
exhibition location, equipment, such as stage lighting or the sound system, is
stationary and hardly movable. This imposes special requirements on hardware
and software.

In the articles “Tiled Projection Onto Bent Screens Using Multi-Projectors”
[KSHF13] by HyosuN Kium et al., as well as “Tiled Projection Onto Deforming
Screens” [KSH™15] by HyosuN KiM et al., we present a quick and efficient
method to project a coherent, seamless and perspectively corrected image from
one particular viewpoint using an arbitrary number of projectors. The method
has been developed in the context of a project called Responsive Open Space
initiated by ORTLOS Space Engineering Graz/London?.

6.1.1 Exhibition Setup

At the location Dom im Berg (Graz, Austria), a large projection surface (the size
of 8 X 6 m) was suspended between electric telescope cylinders (see Figure 6.1).

Figure 6.1: The projection setup consists of four projectors projecting onto a
movable fabric used as projection surface. It is suspended between electronically
controlled actuators (marked by red circles) that can move vertically.

Thttp://www.ortlos.com/space_engineering/

132 CHAPTER 6. VISUALIZATION

An interactive visualization was triggered by visitors interacting under the pro-
jection surface — the interaction was captured by a Microsoft Kinect sensor.
A total of four projectors, connected to a single computer, were used for rear-
projection visuals from a team of creative artists who participated in the project.
The projection surface was heavily deformed by its own weight, and the move-
ment of the electric telescope cylinders.

6.1.2 Reconfigurable Projection Geometry

An overview of the framework consisting of offline preparation, online adapta-
tion, corrected projection, and user interaction is shown in Figure 6.2.

Offline preparation

Camera calibration

v

Geometry measurement

Actuator manipulation

User interaction

Display reconfiguration

Geometry interpolation

v

Projection compensation |[———3» Corrected projection

v

Intensity blending

Visual feedback

Online adaptation

Figure 6.2: The framework consists of offline preparation, online adaptation,
corrected projection, and user interaction.

After calibrating the camera, the offline phase proceeds by projecting a sequence
of checkerboard patterns on the display surface. The actuators are in an initial
position. Pattern recognition is performed for each actuator configuration, to
extract the grid positions of the feature points in the image captured for each
projector. When using fewer configurations, more interpolation has to take
place between the number of key positions. The produced checkerboard grid
describes the geometric shape distortion of the display surface with respect to

6.1. NON-PLANAR PROJECTIONS 133

the configuration. The grid can be directly used as (u, v) texture coordinates
to undistort the projected images.

In the online adaptation, the tiled images of the multi-projector display
must appear (from a specific point of view) as if they were produced by a
single projector. The procedure to determine and compensate the geometric
relationship between the overlapping projectors is the key component of the
framework and consists of three parts (see Figure 6.2):

e Estimating the surface deformation
e Compensating the deformations

e Blending the image intensities (soft edge blending)

Offline Preparation

The geometry of the display surface can be estimated using pixel references
between the projected image and the camera image. By using a checkerboard
pattern, the geometric registration considers the surface as an arrangement of
piece-wise planar tiles, since the feature points are exactly located at the corners
of the tiles. The estimation of the surface using a checkerboard pattern depends
on the complexity (frequency) of the surface, thus a checkerboard with a certain
density is required. A suitable checkerboard density is chosen manually.

The robust checkerboard recognition method consists of two steps: intra-
corner point detection and outermost corner point estimation (see Figure 6.3 on
the left).

Ooog
ooao
Oe e P o

0 00O0popoooooooooooog
®®%cces0s0000000000s

Figure 6.3: A quad mesh is generated out of the detected intra-corner points.
Three classes of corners with different numbers of intra-neighbors are marked
by pink (two neighbors), yellow (three neighbors) and green (four neighbors)
dots (left). Two vectors passing through the convex hull points (blue) intersect
where the corner of the checkerboard pattern is likely to be located (right).

Intra-corner points are approximated by using the method proposed by WEIBIN SUN
et al. [SYXHO08]. Adjacent candidate pixels with four alternating dark and
bright neighbors are merged into clusters using connected component labeling.
The cluster centers are extracted and refined through an iterative process. After

134 CHAPTER 6. VISUALIZATION

all intra-corners are detected, the pre-defined checkerboard pattern geometry
(i.e., its size) is used to match the grid from the potentially large number of
results that were found.

Detecting corner points on the boundary of checkerboard pattern requires a
different approach due to vanishing contours of dark tiles. The contour around
the pattern boundary is generated to extract the convex hull as a set of candidate
outermost corner points. Two vectors passing through the convex hull points
intersect where the corner of the checkerboard pattern is likely to be located
(see 6.3 on the right).

Geometry Interpolation

A detailed view of the measured grid data is illustrated in Figure 6.4.

D e)

LILLLIIIIG .

NN I

W

NNV AR

ML

INNNYINNYYY .

St

A AN -

L AV %/ .

PURRRIY ARG ¢

AN ARNTY § AN

AR A A

AT A AT ANy
..... TN N ARARA \ \
..... wanpp AR \ \
..... R I AR ARA \ :
a5

LIS

(b) top left projection (c) top right projection

(d) bottom left projection (e) bottom right projection

Figure 6.4: A combined view (a) of the linear grid variance shows the config-
uration (1,0,1,¢,1,0). By reducing ¢ (i.e., moving one of the actuators), the
grid points move towards the top right corner. The dots represent the grids
for ¢t = 0.5, whereas the black line segments denote the connection between the
values t = 0 and ¢t = 1. Viewing the individual grids (b,c,d,e) reveals that the
points travel linearly on their segments.

6.1. NON-PLANAR PROJECTIONS 135

The effect on the grid points when varying a single rod parameter shows a linear
correlation. The shape of the flexible surface is determined by six parameters
that can be seen as a six-dimensional vector, e.g., (1,0,1,0,1,0) € [0,1]5. By
varying one parameter, e.g., (1,0,1,¢,1,0) for ¢ € [0,1], it turns out that the
grid points travel linearly between the two grids for ¢ = 0 and ¢ = 1. Figure
6.4 (b,c,d,e) shows the points for ¢ = 0.5 lying in the middle of their respective
line segments. Despite the fact that the shape of the surface is deformed in
a nonlinear way, the grid points move along a straight line. The reason for
this linearity are the light rays of the projector. Figure 6.5 shows that the
intersections of the deformed, moving surface with the light rays of the projector
P all lie on a straight line.

Figure 6.5: A ray from projector P (red) intersects the deforming surface on a
straight line; locally, the displacement is linear with respect to the displacement
of the rod, which explains the linearity observed by the camera C (green).

When seen from the camera C, this linearity is preserved. Although each of
the six parameters pulls the grids in different directions, all grid points move
linearly with respect to the variation of any single parameter. A specific config-
uration (1, ta,ts,t4,15,ts) can be obtained by six successive changes:

(0,0,0,0,0,0) — (tl,0,0,0,0,0) — ... (tl,lfg,tg,t4,t5,t6)

Due to the fact that each change is linear, and that they can be carried out
in any order, they must be the result of multi-linear — in this case hexalinear —
interpolation.

To obtain the function value for a given parameter vector, linear interpola-
tion along the first coordinate yields 32 interpolants, then 16 along the 2", 8
along the 3", 4 along the 4*"', 2 along the 5'", and finally one along the direc-
tion of the last coordinate. A total of 63 linear interpolations are needed. Even
thought the interpolation has to be performed between grids, this can be easily
accomplished in real time.

Projection Compensation

Projection compensation is carried out in the programming language and devel-
opment environment Processing to be able to easily incorporate visualizations
(scripts) from creative artists [RF07]. For each projector, the texture coor-
dinates from the respective grid are handed over to the Processing script for
displaying a part of the viewport. The viewport is defined in pixel coordinates

136 CHAPTER 6. VISUALIZATION

of the camera. A framebuffer object in the size of the viewport is used for
off-screen rendering of the visualizations. The framebuffer object is then used
as a texture for a pre-defined planar quad mesh whose vertex positions are the
previously calculated texture coordinates. This step compensates the deforma-
tion of the projection surface from the viewpoint of the camera, as illustrated
in Figure 6.6.

Projector 1 Camera
\ u=0,38
pattern

projection
A surface

Figure 6.6: A camera acquires the checkerboard pattern that is projected on
the screen. For each grid point of the pattern, the u-coordinates (in the one-
dimensional example) can be measured in the camera image. These coordinates
can be directly used as texture coordinates to generate an undistorted projection
from the viewpoint of the camera.

Intensity Blending

Since the projections have to overlap in order to cover the whole screen, these
areas look brighter than the areas covered by a single projector. To obtain a
consistent brightness over the whole surface, the pixel intensities in the overlap
regions have to be attenuated using alpha blending.

The overlap area can be exactly determined from the grids. The pixel attenu-
ation is proportional to the shortest distance to the boundary of the overlapping
region. The sum of the attenuation rates at corresponding projector pixels has
to sum up to one. Then the alpha weight a(p,,.) at a given pixel p,, can be
calculated using the function

a(pus) = (1= B)
where [is the attenuation rate and ~ is the adjustment factor accounting for
projector gamma (see Figure 6.7).
The alpha map for each projector is generated using the inverse mapping of the
distance map to the boundary of the overlap regions. Note that for obtaining
seamless color transitions a radiometric calibration of the projectors would have
to be performed.

6.1.3 User Interaction

The test setup incorporates user interaction (i.e., movement under the projection
surface) in the form of displacement of the screen. Movement is captured by
a Microsoft Kinect sensor. The transfer of this data into movement of the
projection surface is done by a 34 party software. The software provides the
input data to control the position of the actuators, e.g., to lower the screen
above a detected group of persons. After establishing a corrected projection

6.1. NON-PLANAR PROJECTIONS 137

Figure 6.7: Choosing the appropriate projector gamma is essential. From left
to right: No blending, blending with v = 0.1, v = 0.3, v = 0.6, v = 0.8. The
correct choice in this case is v = 0.6.

setup, the positions of the actuators serve as input for the online adaptation of
the projection environment.

6.1.4 Test Setup and Results

To test and improve the accuracy of our system, and because of limited avail-
ability for testing with the projection setup at the event, we built a scaled-down
version of the suspended screen with a size of 1.2 x 0.90 meters (see Figure 6.8).

Figure 6.8: The test setup consists of a suspended sheet held in place by six
rubber tapes that can be adjusted manually (top part). Vertical displacement
of the scaled-down setup corresponds to two meters of the exhibition setup (see
Figure 6.1). The four projectors and the wide-angle camera are located below
the sheet (bottom part)

138 CHAPTER 6. VISUALIZATION

In contrast to the setup at the event, we used front-facing projectors, a front
facing camera, and manual modification of the suspended projection surface
with rubber bands. The camera is a ten megapixel industrial camera (3840 x
2748) with a wide angle lens.

To obtain reliable data for validating the online projection compensation,
and to evaluate the accuracy of the estimation, we have measured all combina-
tions of the values ¢1 ¢ € {0,1/2,1}, 729 in total. Due to the setup with four
projectors, 2916 images had to be processed by the checkerboard extraction.
This took about 40 seconds per image, adding up to less than three minutes per
configuration. Only 2 - 4 = 256 grids resulting from the 64 extreme positions
were used for the online interpolation. The other grids were used for validation.
The 2D distance between the interpolated and the measured grid points is only
about 3-4 pixels in average, which is about 0.1 percent of the camera image
resolution. This error is hardly noticeable, as shown in Figure 6.9.

=
=

Figure 6.9: Geometric correction of overlapping images removes severe pro-

jection artifacts (left) using the hexalinear interpolation of 64 measured grids
(right).

Our method is effective in avoiding severe projection artifacts by dynamically
adjusting the tiled projection to the deforming surface.

The work on non-planar projections is tailored towards dynamic visual in-
stallations. A visualization system for a different scenario — a driving simulator
— is presented in the next section.

6.2 Parallax Barrier Displays

A parallax barrier can be used to create an autostereoscopic display, i.e., a
display creating stereoscopic images without the need to use special headgear.
It is a device placed in front of a display to create stereoscopic, or multiscopic
images. While stereoscopy enables the binocular perception of depth, multiscopy
displays multiple angles at once, allowing a viewer to see the content from
different angles — not just a left-eye / right-eye angle.

Parallax barriers can be created in different ways. It can be a material with a
set of precision slits, or a translucent material with an opaque pattern. Despite
the chosen realization, it allows each eye to see a different set of pixels. When
a labeling is available for every pixel (i.e., seen by left eye, seen by right eye,

6.2. PARALLAX BARRIER DISPLAYS 139

seen by both eyes, not seen), it is possible to synthesize a stereoscopic image
consisting of pixels taken from renderings of two viewpoints. The functional
principle of a parallax barrier is illustrated in Figure 6.10.

Figure 6.10: The parallax barrier is located between the eyes (visualized in blue
and red) and the pixel array of the display. Opaque parts block certain pixels
for each eye, while others are visible for one eye only. This results in the eyes
seeing only disjoint pixel columns (at least in an optimal setting). If the display
is fed with correct image data, the user sees a stereoscopic image.

The principle of the parallax barrier was independently invented more than hun-
dred years ago by AUGUSTE BERTHIER and FREDERIC EUGENE IVES. Almost
a century later, in the early 1990s, Sharp? and Dimension Technologies (DTT)?3
(amongst others) developed products using this technology. Sharp was briefly
selling laptops and mobile phones with 3D LCD screens [JMW 03], while DTT
was selling lightweight backlights for LCDs that generate a special illumination
pattern to create autostereoscopic 3D images [Eic98].

Recent developments show that the technology is harder to apply for larger
screens (like television sets), because of the requirement for a wider range of
possible viewing angles. It is easier to apply for smaller displays, like the Nin-
tendo 3DS hand-held game console and various smart phones [BWST07]. Apart
from its use for 3D displays, the technology can be applied in a different area:
to enable a single screen to display two different views at the same time. These
dual-view displays are, for example, used for the entertainment system in the
2010-model Range Rover allowing driver and passenger to view different content.

Parallax barrier displays have the limitation that a user’s position needs
to be fixed or at least constrained to a few viewing spots for the effect to
work. This drawback can be eliminated by virtually adjusting the pixel columns
such that the separation remains intact, as presented by DANIEL J. SANDIN et
al. [SMD™01] and by ToMm PETERKA et al. [PKGT07]. To accurately adjust the
pixels, some kind of user tracking is needed, which also limits the number of
possible users. In order to eliminate the need for user tracking, most consumer
products rely on parallax barriers with lenticular lenses. This approach does not
put any constraints on the number of possible users at a time, but is relatively

2http:/ /www.sharp-world.com/
Shttp://dti3d.com/

140 CHAPTER 6. VISUALIZATION

restricted concerning the possible viewing position(s).

Additional drawbacks of parallax barrier displays are the loss of display
resolution (down to about a half), and the loss of brightness due to the barrier
itself. DOUGLAS LANMAN et al. presented an approach for content-adaptive
parallax barriers to overcome this issues by using an adaptive mask in a dual-
stacked LCD [LHKR10]. However, the real-time application for dynamic content
in a driving simulator is ruled out due to the involved computational complexity.

6.2.1 Driving Simulator

In the article “Building a Driving Simulator with Parallax Barrier Displays”
[SPHT16] by CHRISTOPH SCHINKO et al., we present an optimized stereoscopic
display based on parallax barriers for a driving simulator to create an immer-
sive virtual environment. The driving simulator is built around a modified MINI
Countryman (R60) chassis. Eight liquid-crystal displays (LCDs) are mounted
around windscreen and front side windows. Four 55inch LCDs are placed ra-
dially around the hood of the car in a slanted angle. Four 23inch LCDs are
used for the two front side windows. The four LCDs in the front are equipped
with parallax barriers made of 2cm thick acrylic glass to minimize strain caused
by the slanted angle. Each acrylic glass (the parallax barrier) is printed with
a custom-made striped pattern, which is the result of an optimization process.
The displays are connected to a cluster of four computers with powerful graph-
ics cards. In order to account for movement of the driver’s head inside the car,
an eye-tracking system from SmartEye* consisting of two cameras with infrared
flashes is installed on the dashboard of the car. One camera is mounted on the
left a-pillar, the other camera is hidden in a ventilation nozzle of the center con-
sole. The position-depended rendering of the simulation scenario is performed
on the cluster using the InstantReality framework®.

During the design of the driving simulator, the display configuration has
been optimized for maximum coverage of the driver’s field of view, in a two-step
procedure.

Display Arrangement

The first optimization step determines the best position of each display taking
into account the chassis of the MINI Countryman. Furthermore, the displays
should cover as much of the driver’s field of view as possible, in order to avoid
distracting parts of the non-simulation environment being visible. An additional
constraint is the maximum angle of inclination of the LCDs in order to function
properly.

The optimization uses a cylindrical rendering as a cost function, with the
cameras placed at the position of the driver’s eyes. Occluding geometry of the
vehicle’s chassis is supplied with a black, non-visible material, the displays are
black as well. The whole scene is placed in a surrounding, illuminated sphere in
cyan and yellow — for each eye separately. The geometric setting is illustrated
in Figure 6.11 (left), while the result of the optimization is shown in Figure 6.11
(right). The cost function can be minimized easily: Each non-black pixel is

4http://www.smarteye.se
Shttp://www.instantreality.org

6.2. PARALLAX BARRIER DISPLAYS 141

a disturbing view past the displays and should be removed. Minimizing the
number of such pixels improves the result.

Figure 6.11: In order to optimize the display arrangement, their visibility has
been analyzed using cylindrical renderings from the driver’s position (left). The
result of the optimization routine (right) consists of the occluding vehicle geom-
etry and displays (rendered in black), and the environment (rendered in cyan
and yellow for each eye separately). For ease of understanding the geometry
(left) is overlaid semi-transparently.

Pattern Optimization

The second optimization step uses the display position and the driver’s position
in order to optimize the barrier pattern (i.e., the pattern printed on the acrylic
glass). In our setup, the barrier pattern is a set of lines described by three
parameters; i.e., the line width [,,, the distance between two consecutive lines
lq measured between medial axes, and their deviation (angle) from a vertical
alignment [,. The cost function of this optimization routine depends on these
three parameters. In each evaluation, a geometric scene is generated (including
the vehicle, the displays, and the line of the barrier pattern). For each scene,
the intersections of rays, starting from the position of the driver’s eyes to each
display pixel, check the visibility of a display pixel. In other words, an intersec-
tion test is performed, for all scene, for both eyes, for all pixels. The result for
each pixel can be:

e visible by both eyes,
e visible by the left eye only,
e visible by the right eye only,

e not visible at all.

The objective function simply counts the number of pixels, which can be seen
by both eyes, or which cannot be seen at all (i.e., which are not separable).
Figure 6.12 shows plots for all four front displays seen from a driver’s perspective:
outer left (top left), inner left (top right), inner right (bottom left) and outer
right (bottom right).

The line distance in millimeters between two consecutive lines [; measured
between medial axes is plotted on the x-axis, while the line width [,, is plotted on
the y-axis as percentage of the line distance. A fixed angle measured from a zero
degree vertical orientation of 10 degrees for the left displays, and -10 degrees for
the right displays has been chosen empirically (if not too “extreme”, the angle

142 CHAPTER 6. VISUALIZATION

011 2 3 4 5 6 7 8 9 10 011 2 3 4 5 6 7 8 9 10
line width [mm] line width [mm]

011 2 3 4 5 6 7 8 9 10 011 2 3 4 5 6 7 8 9 10
line width [mm)] line width [mm]

color ramp

Figure 6.12: The optimization routine plots the cost function for the selected
range of barrier parameters for the outer left (top left), inner left (top right),
inner right (bottom left) and outer right (bottom right) displays. The line
distance /4 in millimeters is plotted on the x-axis, while the line width is plotted
on the y-axis as percentage of the line distance. For these plots, the angle is
at a fixed value of 10 degrees for the left displays, and -10 degrees for the right
ones. The color encodes the separability of the pixels (see color ramp at the
bottom). Blue denotes that 100 percent of all pixels are separable. Red denotes
that 0 percent of all pixels are separable.

6.2. PARALLAX BARRIER DISPLAYS 143

was found to have almost no influence). The color encodes the separability of the
pixels (see color ramp at the bottom). Blue denotes a 100 percent separability
of the pixels. Red denotes that 0 percent of all pixels are separable. It can be
seen that a “sweet spot” exists for all four displays.

While the optimization returns the optimal configuration, the manufactured
driving simulator differs significantly from this specification:

e As the displays and the barriers are arranged in an inclined plane, sagging
effects in the order of millimeters occur.

e The parallax barrier pattern has not been printed with the required pre-
cision; that is, the lines are up to 0.15mm (412.4 percent) wider than
specified.

e The refractive index of the acrylic glass has not been considered in the
planning stage.

While the first problem has been fixed with additional mountings, the second
and the third problem have been solved by consecutive calibration steps. More
details on this optimization process have been published by EvA EGGELING et
al. [EHFU13].

Display Calibration

We opted for a calibration solution on-site because of influences of the envi-
ronment, like lighting conditions and expansion due to heat development of
all participating components. A major problem are inaccuracies in the direct
measurement of display and parallax barrier parameters. It is not possible to
make exact measurements of the distance from the display’s pixel array to the
parallax barrier without disassembling the displays.

In order to obtain initial values for the calibration, we need accurate mea-
surements of a number of display and barrier parameters. Some parameters are
scalar values (like the distance between two consecutive lines of a parallax bar-
rier pattern), others are vectors (like the global position of the parallax barriers
and the displays) that need to be registered to a global coordinate system. Per-
forming direct measurements of vector valued parameters using a robotic arm
was soon discarded due to the intricate construction of the mounting frame for
the displays and the resulting inaccessibility of the corner points. Another idea
to use the eye-tracker in combination with a laser distance measuring unit was
discarded due to line of sight problems measuring display and barrier corner
points.

Our calibration solution for this problem is an indirect system using a digital
video camera. Since we already have initial values from direct measurements
(where possible) and the digital construction of the driving simulator, we can
optimize the parameters by evaluating a video feed from a camera. In this
way, we do not optimize and calibrate the display parameters directly, but we
calibrate the end result.

Since the calibration has to be performed for each display separately, it re-
quires a custom mounting for the camera to be able to account for horizontal
rotation around the optical center of the camera. The optical center of the
camera was measured using a Panosaurus device from Gregwired. After man-
ufacturing an appropriate mounting for the camera — the camera needs to be

144 CHAPTER 6. VISUALIZATION

rotated horizontally around it’s center (no vertical rotation is necessary) — it
was attached to the driving simulator. Since we already had a mounting for the
calibration pattern of the eye-tracking system, only minor modifications were
needed for the camera mount to be placed exactly in the position of left and
right eye (separated by 65mm).

The parallax barrier display calibration consists of several steps to be per-
formed consecutively: video mask determination, color calibration, and display
calibration.

Video Mask Determination As the first step, we let the display system
render two images and capture them with the video camera. One image is
completely black; the other one is completely white, as shown in Figure 6.13
(left). We perform this step in order to create a mask, which is used in all
subsequent steps to restrict the calibration to the display’s area and to ignore
irrelevant parts of the video images (e.g., interior parts, chassis parts, ...). For
each pixel of the mask, a value between zero and one is stored to indicating
whether the pixel shows a part of the display (1.0) or not (0.0 otherwise). The
resulting binary mask is shown in Figure 6.13 (right).

Figure 6.13: We are only using clipped / weighted video input for the parallax
barrier display calibration. The corresponding mask is generated in the first
step. Although the automatically generated mask is sufficient, we advise to use
a manually clipped mask as shown on the right hand side.

Color Calibration After video mask determination, the next step is to per-
form tests with a single color to compare input colors (sent to a display) with
output colors (captured by the video camera) while taking the generated video
mask into account. This step is performed for a configurable amount of colors
(256 per default) spread evenly in the RGB color space. An example with 16
colors is shown in Figure 6.14.

This step is necessary in order to account for color deviations. Color devi-
ations occur due to non-calibrated hardware (displays and camera) and due to
color shifting effects caused by capturing images at an angle. The video mask
allows us to directly compare the input color with every non-masked pixel from
the captured images. Thus, the error function of the color calibration is the
sum of per-pixel differences weighted with the normalized mask of the previous
step. In our setting the colors blue and red show exceedingly few shifting effects
(see Table 6.1).

6.2. PARALLAX BARRIER DISPLAYS 145

Figure 6.14: The color calibration step reduces color shifting effects caused
by displays and camera. These 16 images show the captured results of fully
saturated colors with varying hue spread evenly across the RGB color space.

Error
143602.015625
148489.671875

Input color (RGB) | Output Color (RGB)

(255,191,0) 171427.640625
(223,255,0) 178638.03125
(128,255,0) 157110.96875
(32,255,0) 161376.515625
(0,255,64) 163053.21875
(0,255,159) 171799.0625
(0,255,255) 194468.75
156308.0
130290.0
128080.859375
130436.625

154996.71875
153622.671875
142331.484375

Table 6.1: This table shows the error of the color calibration for the 16 images
of Figure 6.14. The error function is the sum of per-pixel differences weighted
with a normalized mask. The colors blue and red show the least shifting effects.

146 CHAPTER 6. VISUALIZATION

Display Calibration The next calibration steps are concerned with optimiz-
ing the barrier parameters. For this purpose, we start with sampling of the
parameter space by using a sufficiently large interval around the theoretical pa-
rameters — the barrier parameters according to the construction plan. Finally,
we use the best configuration of the previous step and perform a fine-tuning
using a minimizing optimization routine.

The display calibration is performed using the following routine. An initial
parameter vector consisting of all variables (barrier line width l,,, barrier line
orientation [, barrier line vertical offset [,, etc.) is created. A test image with
the provided barrier parameters is calculated. It shows a black pixel, if it is
visible from the eye position at which the camera is currently positioned. Oth-
erwise a colored pixel (using the color determined in the color calibration step)
is shown. The visibility is determined using an intersection test implemented in
a shader program. It basically intersects a ray defined between a pixel center
and the origin of the camera with the parallax barrier. In case the intersection
point is covered by a barrier line, the pixel is not visible.

Having calculated the test image, the calibration tool displays the image and
captures the video image to check the result. The goal is to have a completely
black image. Therefore, the error function simply counts the number of non-
black pixels weighted with the calibration mask.

This step is concerned with a sampling of the multidimensional parameter
space to obtain uniformly distributed samples (see Figure 6.15, left). The final
step uses the same error function and the best sample of the previous step to
fine-tune the settings with a conjugate direction search routine. Figure 6.15
(right) shows the result of the final optimization.

Figure 6.15: During display calibration, the multidimensional parameter space
is optimized to obtain a good starting configuration for a search routine. On
the left hand side the Figure shows a bad configuration captured during the
sampling stage. The right hand side shows a good, final configuration.

In the course of several calibrations we made some interesting observations:

e The parameters barrier line width l,, and barrier line distance lg are not
independent. If the optimization routine does not have additional con-
straints, it returns a parameter setting, which corresponds to a black

6.2. PARALLAX BARRIER DISPLAYS 147

test image. We solved this problem by introducing the linear constraint
21, = lg, which we identified heuristically in a manual optimization test.

e The optimization routine returns the same configuration for both eye po-
sitions (with the numerical precision of the termination condition used by
the optimization routine). Therefore, we have not been confronted with
the problem of handling two different parameter settings and how to merge
/ combine them.

e The complete calibration runs completely automatically and can be started
at any step, if previous results are available. In practice, the color cali-
bration is performed once, for one eye position only. It is also possible
to directly define a staring set of parallax barrier parameters to skip the
time consuming sampling step in the second stage and directly start with
the optimization routine.

Further Parameter Tuning First tests with real persons using the eye-
tracking data revealed problems with ghosting effects, thus the pixel separation
was not ideal. The initial idea to use an average color value for pixels classified
as to be seen by both eyes proved to be part of the problem. After disabling
these pixels, the ghosting effects almost disappeared, but not entirely.

Having ruled out any problems in the visualization pipeline, we encountered
two problems.

1. The size of a pixel with respect to the line width of the barrier is rather
large. Depending on the viewing angle, it is possible to have a pixel
classified as visible by one eye, while nearly half of the pixel is visible for
both eyes.

2. We also found the eye-tracking data to be the source of inaccuracy — the
two camera system is struggling with partial occlusion and/or bad lighting
conditions, resulting in errors in the magnitude of centimeters.

A solution to overcome these issues on the hardware-side would be to use
more accurate eye-tracking, and displays with a larger resolution. However, even
without upgrading the hardware, it is possible to further minimize the effect.
The idea is to virtually increase the parameter value of the barrier line width.
This way the virtual barrier becomes larger and more pixels are considered as
non-separable. They are visible by both eyes or not visible at all. This solution
reduces ghosting at the cost of resolution and brightness (as non-separable pixels
are rendered black). The reduced resolution was observable in driving scenarios
with detailed models and textures. Even though we did not encounter any
problems concerning brightness (since the environment in the driving simulator
is very dark), the situation can be improved by rendering non-separable pixel
in a brighter gray.

Results & Runtime Generating and evaluating a single sample during the
fully automatic display calibration takes about six seconds (including capturing
an image with the camera and running the optimization). Depending on the
parameter range, the whole process needs approximately 2% hours per display
per eye (however, no user interaction is needed). The final barrier parameters

148 CHAPTER 6. VISUALIZATION

returned by the calibration routine have led to an error of 14-16 percent; i.e.,
approximately one-seventh of all pixels may show a wrong color for at least one
eye (only in regions of non-uniform color).

The components to incorporate user tracking as well as autostereoscopic
rendering have already been described. In detail, the perspective projection
is directly handled by the InstantReality framework, while all parallax barrier
calculations are performed using a multi-pass shader pipeline. In a first step,
the images for left and right eye are rendered off-screen into two textures. A
fragment shader in the following pass performs intersection tests (viewing ray
+ parallax barrier) at runtime from both eyes to all display pixels for the
classification of the pixels. With the classification of the pixels at hand, the
corresponding values from the textures are used to create the final image.

For the simulation part of the driving simulator, the visualization is a black
box for visualizing a scene graph. All updates are sent using the External
Authoring Interface (EAI) of the InstantReality framework. The visualization
system on the other hand is not dependent on the simulation.

Evaluation

After finishing all calibration steps for the visualization system, the driving
simulator has been used in a final user study with 21 test persons. Each test
person was confronted with different, combined driving situations including in-
ner city scenarios, overland tours and high-speed motorway driving. Next to
a few specific questions after each driving maneuver, the participants had to
answer a questionnaire afterwards. It consisted of simulator sickness questions,
general questions about the overall system and specific questions on relevant
subsystems.

Visualization System The visualization system has a large influence on the
overall experience with the driving simulator. Parts of the user study have been
conducted using 2D visualization, but since it is not easily possible to remove
the parallax barriers, the participants had to deal with its visual influences. A
large part of the scenarios was tested in 3D. The following results summarize
the opinions of the participants.

On a scale from unrealistic to realistic, 16 out of 21 participants (about 76
percent) evaluated the visualization system as being rather realistic or realistic.
Three participants deemed the visualization system to be unrealistic. Two of
them had problems with ghosting effects and projection offsets, which are caused
by problems of the eye-tracking system. The last participant of the three was
not experiencing these effects, but suffered from general discomfort.

Using the same scale, 13 out of 21 participants (about 62 percent) expe-
rienced the representation of the environment (i.e., the modeled 3D scene) as
rather realistic or realistic. One of the participants voted with unrealistic. This
is likely due to problems with ghosting effects and projection offsets — the partic-
ipant was one of the three experiencing the visualization system as unrealistic.
From all 21 participants, 20 (about 95 percent) answered neutral or positive
when asked to rate the driving simulator towards usefulness — 15 of them rated
positive. The remaining participant was the one suffering from general discom-
fort.

6.2. PARALLAX BARRIER DISPLAYS 149

A total of 14 participants (about 67 percent) would definitely partake in another
study using this driving simulator — two participants would not. When asked
to recommend the driving simulator to other drivers, 17 (about 81 percent)
participants would do so. One participant answered negative when asked which
impression of the driving simulator other drivers would get.

Answering open questions, one participant deemed the 3D visualization as
being the most useful part of the driving simulator. On the other hand, partici-
pants had problems with dizziness, ghosting effects, the parallax barrier lines as
well as stifling air. One participant struggling with ghosting effects had difficul-
ties in perceiving speed with the 2D visualization, but had a better perception
in 3D. We also had a suggestion to change the color of the parallax barrier
lines from black to some color with less contrast. Regarding the choice of the
preferred visualization, we had an almost neutral result between 2D and 3D.

Simulator Sickness Questionnaire Simulator sickness and motion sickness
result in feelings of nausea, dizziness, vertigo, and sweating (among other symp-
toms). They are generally the result of the discrepancy between simulated
visual motion and the sense of movement stemming from the vestibular sys-
tem [BBI13]. In stationary simulators, the visual system receives information
that suggests movement (e.g., roadway scenes passing by the viewer), yet the
vestibular system interprets a stationary status. This discrepancy is the cause
of simulator sickness in many people.

ROBERT S. KENNEDY et al. proposed a Simulator Sickness Questionnaire
(SSQ) that is widely used to asses sickness in simulators [KLBL93]. This ques-
tionnaire is derived from a motion sickness questionnaire and asks participants
to score 16 symptoms (of three general categories: oculomotor, disorientation,
and nausea) on a four point scale (0-3). Weights are assigned to each of the
categories and summed together to obtain a single score.

The average values of the driving simulator are listed in Table 6.2. They are
evaluated according to the handbook of DONALD L. FISHER, MATTHEW R1zZ0O
and JEFF K. CAIRD [FRC11]. The table includes comparative values published
by JUKKA HAKKINEN et al. [HPTNO6], who investigated simulator sickness in
virtual display gaming in stereoscopic and non-stereoscopic situations.

Parallax Virtual Virtual

Barrier 2D 3D
nausea 34.9 11.8 29.9
oculomotor 49.8 14.0 26.9
disorientation 79.5 21.1 41.1

Table 6.2: The driving simulator has been evaluated using the Simulator Sick-
ness Questionnaire [KLBL93|. In order to interpret the scores comparative val-
ues for non-stereoscopic displays (Virtual 2D) and stereoscopic displays using
shutter techniques (Virtual 3D) are included [HPTNOG].

150 CHAPTER 6. VISUALIZATION

6.3 Summary

This chapter focused on the final step in the shape processing pipeline discussed
within this thesis: visualization techniques. In the first section, a system to
seamlessly project onto non-planar surfaces was presented. It can be used to
create dynamic, reconfigurable spaces influencing the behavior of groups and
individuals. The subsequent section focused on an immersive, autostereoscopic
visualization system for a driving simulator. Especially the aspect of compa-
rability between real driving and driving in a simulator represented the ratio-
nale behind using an autostereoscopic system without the need to wear special
glasses.

Since both systems heavily differ in their requirements, this chapter showed
the diverse application fields for visualization.

Chapter 7

Conclusion & Future Work

This thesis presents work in the field of shape processing for content generation.
It consists of shape descriptions, modeling paradigms, inverse modeling tech-
niques, software engineering, computer graphics, and visualization technologies.

The foundations of this thesis are several scientific articles and conference
contributions. Contributions have been made in the field of generative model-
ing, especially with the meta-modeler Euclides. A system to analyze digitized
objects in terms of changes and damages as well as a novel shape modeling
approach represent the contributions in the context of inverse modeling tech-
niques. Two contributions dealing with projections onto non-planar surfaces
and an autostereoscopic visualization system for a driving simulator conclude
the chapter on visualization technologies.

Finally, this chapter also focuses on future work in the fields of generative
modeling, inverse modeling techniques, and visualization technologies.

Contents

7.1 Generative Modeling L 152
7.2 Inverse Modeling L 153
7.3 Visualization Technologies 153
74 Future Work Lo 154

151

152 CHAPTER 7. CONCLUSION & FUTURE WORK

7.1 Generative Modeling

In the context of generative modeling, the contributions of this thesis are the
meta-modeler approach Euclides, and a generative description of wedding rings
together with a serverside rendering framework for the GML.

The general nature of the generative modeling paradigm to use formal con-
struction rules to create highly complex shapes has a drawback. A generative
description has to be re-implemented on every platform needed. This is prob-
lematic in larger systems, where different domain-specific languages and tools
come into play (e.g., in the context of product mass customization). The effort
to implement and maintain several generative descriptions is significant.

The meta-modeler approach Euclides helps to overcome this negative aspect
of generative modeling and its explicit analogy of 3D modeling and program-
ming [USF10]. The problem is solved by using a consistent intermediate rep-
resentation serving as a basis for back-end exporters to different languages and
different platforms. Due to its high-level representation of the input code, the
level of abstraction can be preserved after translation to target code. Addition-
ally, comments in the translated code (including statements of the input code)
greatly increase its readability and allow for easy reuse and debugging. Amongst
others, the compiler offers to output differentiated Java code to be used for in-
verse modeling tasks, and GML code. It is the first complete translator to a
PostScript dialect, covering all control flow statements [SSUF10b].

Another aspect is the significant inhibition threshold that arises from the
need to use a programming language. It introduces a new dimension of com-
plexity and further dependencies. This problem is tackled by using JavaScript
as a beginner-friendly, yet powerful language.

Based on Euclides’ flexible libraries, complex examples, like an amphithe-
ater or a cathedral, can be created with just a few hundred lines of code (see
Figure 7.1).

nannnnmmEnmnRnnnnnmn

Figure 7.1: The photorealistic renderings of Euclides’ amphitheater and cathe-
dral examples are produced by the Cycles render engine of Blender.

7.2. INVERSE MODELING 153

The photorealistic renderings of amphitheater and cathedral are produced by
the Cycles render engine of Blender.

Advantages of the presented approach can be observed in service-oriented
environments. The potential execution of arbitrary code represents a significant
security threat. In Euclides this threat can be reduced by security features
of the Java virtual machine and by exercising control over the use of native
code. Many security relevant aspects of programming require access to system
resources. This functionality can be made available in Euclides via native code
of the target platform. By restricting the use of native code to trusted libraries,
security risks can be reduced.

Another contribution is the interactive interpreter based on the already exist-
ing compiler [SUF12]. Instead of creating large proportions of new code, whose
behavior has to be consistent with the already existing compiler, an interpreter
reusing most parts of the compiler’s front- and back-end has been implemented.

The cHASER solution for the GML is a server-side rendering approach for
applications tailored towards jewelers and wedding ring studios [SBEF14]. It
allows the rendering to be shifted away from the client — it uses X3DOM tech-
nology to display a combination of simple proxy geometry and rendered images.
This approach offers the advantage of preserving the interactivity of naviga-
tion, while at the same time ensuring rendering quality, which is independent
of the client’s hardware. By using rendered images instead of geometry, the
intellectual property of the generative description is protected.

7.2 Inverse Modeling

This thesis presents two contributions in the area of inverse modeling. Analysis
operations for digitized artifacts can identify possible changes and damages. By
using this approach, new possibilities for shape modeling can be used to transfer
features from one shape to another.

Using the approach to identify instances of a generative description in real-
world data sets presented by TORSTEN ULLRICH and DIETER FELLNER, it is
possible to automatically combine generative descriptions with reconstructed
objects for nominal/actual value comparisons [SUSF11]. The reference surface
is constructed using a generative description whose accuracy and systematics
describe the semantic properties of an object, whereas the actual object is a
laser scan or photogrammetric reconstruction without any additional semantic
information.

The approach to analyze digitized objects allows to modify existing 3D
shapes. While high-level descriptions can be used to resemble real-world ob-
jects, they can also be used to create new ones [SUF14] by transferring features
from one shape to another. Shapes using both low-level details and high-level
shape parameters can be designed in this way.

7.3 Visualization Technologies

In the field of visualization technologies, the contributions of this thesis consist
of a method for tiled projections onto non-planar surfaces, and parallax barrier
displays for autostereoscopic visualizations.

154 CHAPTER 7. CONCLUSION & FUTURE WORK

The work on non-planar projections is concerned with an efficient method to
project a coherent, seamless and perspectively corrected image from one partic-
ular viewpoint using an arbitrary number of projectors [KSHF13]. Determining
and compensating the geometric relationship between the overlapping projectors
is the key component of the framework. Using a simple checkerboard pattern,
the geometric relationship between the projectors is measured. It can easily fil-
ter out minor irregularities of the screen surface, such as detailed winkles. The
detected corner point coordinates of the checkerboard pattern are passed to a
Processing script, and then used to create a uniform display area. The pro-
jection display system supports a quick calibration adapting to non-standard
configurations dealing with arbitrary projection environments.

The parallax barrier approach describes the construction, design, optimiza-
tion, calibration and evaluation of a parallax barrier visualization system for a
driving simulator [SPH*16]. Two main components of the system are concerned
with calibration of the parallax barrier and the runtime environment (the actual
visualization). After having optimized the pattern for each display, calibration
has to be performed due to deviations of the manufactured acrylic glasses (see
Figure 7.2) from the ideal ones.

The visualization including perspective projection and parallax barrier cal-
culations of a scene are handled using the InstantReality framework. The main
advantage of this approach lies in its autostereoscopic nature — no special glasses
are needed for the experience.

Figure 7.2: The individual parallax barriers for each display are manufactured
using acrylic glass. Mounted in precise distance in front of the displays, they
are used by the system to separate pixels for left and right eye.

7.4 Future Work

Concrete ideas to continue the work in the fields of generative modeling, inverse
modeling techniques, and visualization technologies are manifold. The following

74. FUTURE WORK 155

sections give a brief insight into what directions further work can take (or is
already taking).

7.4.1 Generative Modeling

In the context of the Euclides framework, further work can be carried out to
cover more target platforms. Especially CAD software used in the design pro-
cess of products can benefit from automation in the form of generative model-
ing. Additionally, future work should focus on performance of the created code.
Some of Euclides’ data types could be mapped to native data types of the target
languages. This may be implemented as a “performance mode” in addition to
a “debugging mode”. More high-level libraries for modeling operations, like the
creation of subdivision surfaces or CSG operations, would simplify the workflow
of creating expressive generative models and should be among the next develop-
ment steps. Another idea is to offer Euclides’ functionality directly in the Web
to create a generative modeling as a service infrastructure.

The cHASER server-side rendering approach for the GML is limited to the
included OpenGL rendering pipeline. Ongoing work on using the Cycles ren-
der engine of Blender to create photorealistic renderings already produced some
results (see Figure 7.3). A Blender exporter on the GML side exports all nec-
essary data (geometry, materials, displacements, ...) as a Python script. This
script is used by a custom library for Blender to import all data and creating
the renderings. It is planned to automatically pre-create renderings of a certain
parameter space to be used for a web-based ring configurator.

Figure 7.3: The photorealistic renderings of the JohannKaiser ring design space
are produced by the Cycles render engine of Blender. A Blender exporter on
the GML side exports all necessary data (geometry, materials, displacements,

..) as a Python script. On the Blender side, a custom library is capable of
importing all data and creating the renderings.

7.4.2 Inverse Modeling

Future work regarding the nominal/actual value comparison of digitized objects
should focus on two aspects. On the one hand, the deficiencies in the output
mesh caused by displacing vertices in normal direction should be addressed.
Depending on the curvature of the surface, this could be fixed by taking the
adjacent primitives into account and displacing vertices in averaged normal di-
rection — or even by using pre-computed (arbitrary) directions. On the other

156 CHAPTER 7. CONCLUSION & FUTURE WORK

hand, the whole process of exporting geometry to X3DOM could be made ob-
solete by implementing an X3DOM exporter for Euclides. In this way, the
generative description could be evaluated directly in X3DOM, greatly reduc-
ing the file size at the cost of more computational effort. Depending on the
resolution of the displacements, this approach could also be used for mesh com-
pression, or progressive mesh streaming purposes. The generative description
serves as a base mesh, while the details (stored in a displacement map) can be
progressively streamed to the client.

7.4.3 Visualization Technologies

The presented framework to seamlessly project onto bent surfaces can only deal
with limited (pre-defined) changes of the projection surface. Methods for rec-
ognizing the surface geometry and adapting the projection based on real-time
measurements of the quad mesh texture would further enhance the versatility of
the approach. While interrupting a visual installation with checkerboard pat-
terns is not feasible, a possibility would be to display the pattern only for a
very short time — imperceptible for the human visual system. With a synchro-
nized camera and an optimized runtime of the pattern detection algorithm, a
real-time adjustment to the deformed surface is possible.

Ongoing work to further develop the versatility of the driving simulator
includes the implementation of virtual side mirrors (see Figure 7.4), as well as
a rear-view mirror. The side mirrors are implemented using rendered textures
embedded into side mirror geometry on the side displays. In contrast to virtually
implementing the side mirrors, the rear-view mirror is the original mirror used
in conjunction with an additional display mounted in front of the rear window
inside the car. The side-mirrors react to movements of the driver, but it’s
geometry is static (it cannot be adjusted like in a real car).

=

e
Figure 7.4: The driving simulator is in the process of being equipped with virtual
side mirrors. They are implemented using rendered textures embedded into side
mirror geometry on the side displays.

(Source: PHILIPP QUINZ, 2017)

A question of future research is what to do with pixels that are visible by both
eyes. First tests using blended pixel values of both images for these pixels
resulted in significant ghosting effects. Since these effects are less noticeable in
homogeneous regions, an idea would be to use the pixels only for these areas
to obtain more overall brightness. Another option would be to use the gaze

74. FUTURE WORK 157

direction provided by the eye-tracking system to restrict the parallax barrier
calculation to a certain region. A two-dimensional rendering could be used
for peripheral areas, while performing intricate barrier calculations only in an
area around the gaze direction. While this kind of rendering may reduce the
simulator sickness, it would require a very accurate gaze direction at very high
update rates. In order to create more realistic driving scenarios, dazzling effects
play an important role. These effects are difficult to implement using standard
display hardware because of the low dynamic range of the light source. The
creation, or approximation of such High Dynamic Range (HDR) effects could
be further investigated.

158 CHAPTER 7. CONCLUSION & FUTURE WORK

Appendices

159

Appendix A

Euclides Language
Elements

Since the language Euclides is closely related to JavaScript, its source consists
of a sequence of statements consisting of expressions and comments.

Euclides supports short and long comments, similar to other languages.
Statements in Euclides are all constructs consisting of a line (or several lines) of
code. Where expressions produce a value and can be written wherever a value is
expected, a statement performs an action. Wherever FEuclides expects a state-
ment, also expressions can be used. Such a statement is called an expression
statement.

This chapter gives an overview of all comments, statements, and expressions
available in Euclides.

Contents

A1l Comments 162
A2 Statements 162
A3 Expressions 173

161

162 APPENDIX A. EUCLIDES LANGUAGE ELEMENTS

A.1 Comments

The language Euclides has two different kinds of comments, which can be at
arbitrarily positioned within the source code: short comments and long com-
ments. A short comment starts with // and ends at the end of the line in which
it started. A long comment starts with /**, can include several line breaks and
ends with */. In contrast to other languages that support a similar functionality
(such as C, C++, Java, etc.), Euclides does not support comments starting with
/* instead of /#x (see Listing A.1).

1 /*x*

2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License

4 * as published by the Free Software Foundation; version 2 of

5 * the License.

6 *

7 * This program is distributed in the hope that it will be

8 * useful, but WITHOUT ANY WARRANTY; without even the implied

9 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

10 * PURPOSE. See the GNU General Public License for more details.
1/

12

13 var x = 1.0; // Each of these comments ends at the end of
14 var y = x + 2.0; // the line in which it has started.

Listing A.1: A long comment starts with /#* and ends with */. It can
include several line breaks. Short comments in Euclides start with // and
end at the end of the line in which they started.

A.2 Statements

In Euclides, statements are everything that makes up a line (or several lines) of
code. The following statements are available in Euclides:

e cmpty statement

e block statement

e function declaration statement
e variable declaration statement
e expression statement

o if statement

e for statement

e for-in statement

e while statement

e do-while statement

e switch statement

e continue statement

A.2. STATEMENTS 163

e break statement

e return statement

e throw statement

e try statement

e annotation statement

e native code statement

Where an expression produces a value and can be written wherever a value is
expected, a statement performs an action.

A.2.1 Empty Statement

The empty statement is the simplest statement — it has no semantic meaning and
can be omitted. A rail-road-diagram of the statement is shown in Figure A.1.

— =

Figure A.1: The simplest Euclides statement is the empty statement. It consists
of a single semicolon.

A.2.2 Block Statement

The block statement combines an arbitrary number of statements (see Fig-
ure A.2.

statement T} |—>

Figure A.2: A block statement is used to place several statements at a place,
where only one statement is allowed to be placed.

The order of the statements within a statement block defines the order of ex-
ecution. Concerning the visibility of variables Euclides has the same scoping
rules as JavaScript; i.e., in contrast to other languages that support a similar
functionality of statement blocks (such as C, C++, Java, etc.), Euclides does
not start a new scope within a statement block; i.e., any identifier defined within
a statement block is semantically equivalent to an identifier defined outside. An
example of the statement block is shown in Listing A.2.

var X, Yy,

if (true) {

1

2

3 X 1;
4 y -1;
5

6

e

} else {
X -1;

1;

y

164 APPENDIX A. EUCLIDES LANGUAGE ELEMENTS

8 }

Listing A.2: A block statement is delimited by curly brackets and is used
to place several statements at a place, where only one statement is allowed
to be placed. In contrast to other languages it does not start a new scope.

A.2.3 Function Declaration Statement

The function declaration statement defines a new, non-anonymous function (see
Figure A.3).

block statement

Figure A.3: The function declaration statement defines a new function and
assigns it to a newly declared variable. The function / variable name has to be
a free identifier. A function may have an arbitrary number of parameters.

The function name has to be a valid identifier. A function declaration state-
ment can be replaced by a variable declaration statement and an assignment
statement that assigns an anonymous function to the newly declared variable
(see Listing A.3). In Euclides it is good practice to declare the functions of a
library globally using function declaration statements and to declare non-library
functions using variable declaration statements and anonymous functions.

1 function sqr(x) {

2 var y = X * X;

3 return y;

4 }

5

6 function cub(x) {

7 var y = X * X * X;
8 return y;

9 }

10

11 var pot = function(x,y) {
12 var i, z=1;

13 for (i = 1; i <= y; i++)
14 Z*=X;

15 return z;

16 %

17

18 var a, b, c, d;

19 a = sqr(4);

20 b = cub(6);

21 ¢ = pot(a,b);

22 d = pot(cub(3.7), 4);

Listing A.3: A function declaration statement defines a new, non-anonymous
function. It can be replaced by a variable declaration statement and an
assignment statement that assigns an anonymous function to the newly
declared variable.

A.2. STATEMENTS 165

A.2.4 Variable Declaration Statement

The variable declaration statement declares a new variable. The default value
of every, newly declared variable is null (see Figure A.4).

Figure A.4: The variable declaration statement declares a new variable. Fur-
thermore, it offers the possibility to define its value using an expression.

The variable name has to be a valid identifier. Variable assignments can be
performed in the same statement, or at a later point (see Listing A.4).

1 var a = 1, b = 2, ¢c = 4, d = 8;
2 var answer;

3 a = 12;

4 b = 52;

5 ¢ = 41;

6 d =a+ b *x c;

7 answer = "Result: " + d;

Listing A.4: A variable declaration statement declares a new variable.
Variable assignments can be performed in the same statement, or at a later
point.

A.2.5 Expression Statement

The expression statement serves as a wrapper statement to execute an expres-
sion (see Figure A.5).

—>[expression]—’l 'y |—>

Figure A.5: The expression statement executes an expression. If the expression
is missing, the statement becomes an empty statement.

The execution order of an expression statement is defined by the operator prece-
dence. Listing A.5 shows example expressions.

1 var x, y;

2 X 1;

3y 2xx*x + 4*xx + 5;

Listing A.5: An expression statement serves as a wrapper statement to
execute an expression. The execution order of an expression statement is
defined by the operator precedence.

A.2.6 If Statement

The if-statement controls conditional branching (see Figure A.6).

The conditional expression is expected to return a Boolean value. Any non-
Boolean value will be converted to a Boolean value according to the following
rules:

166 APPENDIX A. EUCLIDES LANGUAGE ELEMENTS

——I 'if' H (! |—>[expression]——I " l———[statement)—rﬁl 'else'l———[statement)T

Figure A.6: The if-statement is one of the control flow statements supported
within Euclides.

type conversion
array a false
numbern | n != 0.0

object o true
string s (s '= null) && (s.length > 0)

Listing A.6 shows a simple if-statement with an else clause.

1 var x, y;

2 if (true) {

3 x = 1;

4 y = 2;

5 } else {

6 x = "true";
7 y = false;
8

}

Listing A.6: The if-statement controls conditional branching. Any non-
Boolean value will be converted to a Boolean value.

A.2.7 For Statement

The for-statement consists of a mandatory assignment expression, an optional
condition expression, an optional loop expression and a loop body (see Fig-
ure A.7). The loop body is a single statement.

I Sasnritier) = }—~{(cpreseion

Figure A.7: The for-statement is one of the control flow statements supported
within Euclides. It can be used to construct loops that must execute a specified
number of times.

Prior to any other element of the for-statement, the assignment expression is
executed only once. Control then passes to the condition expression. The
condition expression is executed prior to each iteration of statement, including
the first iteration. The loop body statement is executed, only if the condition
expression evaluates to true. Any non-Boolean will be converted to a Boolean
value according to the following rules:

type ‘ conversion

array a false

numbern | n != 0.0

object o true

string s (s '= null) && (s.length > 0)

At the end of each iteration of the loop body statement the loop expression
is executed. A for loop terminates when one of these statements is executed

A.2. STATEMENTS 167

within the loop body: break statement, thrown statement, return statement. A
continue statement in a for loop terminates only the current iteration. A simple
for-statement is shown in Listing A.7.

1 var sum = 0;

2 for(var i = 1; i<=10; i++) {

3 sum += i;

4 }
Listing A.7: The for-statement can be used to construct loops that must
execute a specified number of times.

A.2.8 For-In Statement

The for-in statement executes the loop body statement repeatedly and sequen-
tially for each element in the range expression (see Figure A.8).

Figure A.8: The for-in statement can be used to construct loops that must
iterate through a range defined by an array.

A for loop terminates when one of these statements is executed within the
loop body: break statement, throw statement, return statement. A continue
statement in a for loop terminates only the current iteration. A simple for-in
statement is shown in Listing A.8.

var index;

var sum = 0;

for (index in [1, 2, 3, 4, 5, 6, 71) {
sum += index;

U W N

}

Listing A.8: The for-in statement executes the loop body statement
repeatedly and sequentially for each element in the range expression.

A.2.9 While Statement

The while statement executes a statement repeatedly until the condition ex-
pression evaluates to false (see Figure A.9).

—>| 'while' '——l T |—>[expression]—b' " |—>{ statement]—>

Figure A.9: The while statement is a control flow statement, which belongs to
the class of loop statements.

The test of the condition expression takes place before each execution of the loop
— a while loop executes zero or more times. It terminates when one of these
statements is executed within the loop body: break statement, throw statement,
return statement. A continue statement in a while loop terminates only the
current iteration. Simple examples of while loops are shown in Listing A.9.

168 APPENDIX A. EUCLIDES LANGUAGE ELEMENTS

1 while (false) {

2 // dead code
3}

4

5 var i = 1;

6 while (i < 100) {
7 io= ixi;

8 }

9

10 while (true) {

11 // infinite loop
12}

Listing A.9: The while statement executes a statement repeatedly until the
condition expression evaluates to false.

A.2.10 Do-While Statement

The do-while statement executes a statement repeatedly until the condition
expression evaluates to false (see Figure A.10).

Figure A.10: The do-while statement is a control flow statement, which belongs
to the class of loop statements.

The do-while statement exhibits properties similar to a while statement — a
simple example is shown in Listing A.10.

1 var i = 1;

2 do {

3 i = ix*i;

4 3} while (i < 100);

Listing A.10: The do-while statement executes a statement repeatedly until
the condition expression evaluates to false.

A.2.11 Switch Statement

The switch statement allows selection among multiple subsections of code, de-
pending on the value of an expression. It consists of a selection expression, zero
or more case blocks and an optional default block (see Figure A.11).

If a matching expression is found in a case block, control is not impeded by
subsequent case or default labels. The break statement is used to stop execution
and transfer control to the statement after the switch statement. Without a
break statement, every statement from the matched case label to the end of the
switch, including the default, is executed. An example of a switch statement is
shown in Listing A.11.
var small_numbers

var big_numbers = 0;
var zeros = 0;

0;

for(var i in [0, 1, 2, 3, 4, 5, 6])
{

TR W N

A.2. STATEMENTS 169

L oo core o
—>| 'case"—»{ expression } I ! I l l statement ;‘—r

Figure A.11: A switch statement (top) consists of a selection expression, zero
or more case blocks and an optional default block. The case block (middle)
starts with the keyword case followed by an expression, which is compared to
the selection expression, and optional statements, which are executed, if the
comparison reveals equality. The optional default block (bottom) at the end of
a switch statement is executed, if no case block has been executed before.

7 switch (i)

8 {

9 case O:

10 zeros++;
11 case 1:

12 case 2:
13 case 3:

14 small_numbers++;
15 break;

16 case 4:

17 case b5:

18 case 6:

19 break;
20 default:
21 big_numbers++;
22 b
23}

Listing A.11: The switch statement allows selection among multiple
subsections of code, depending on the value of an expression.

A.2.12 Continue Statement

The continue statement forces transfer of control to the controlling expression
of the smallest enclosing do-while, for, for-in, or while loop. A rail-road-diagram
of the statement is shown in Figure A.12.

——| 'continue' |—>| v |—>

Figure A.12: The continue statement belongs to the class of jump statements.

The continue statement can only be used within a loop (for, for-in, do-while,
while) or in a switch-statement. Any remaining statements in the current iter-
ation of the smallest enclosing loop are not executed. An example showing the
use of the continue statement within a while loop is shown in Listing A.12.

170 APPENDIX A. EUCLIDES LANGUAGE ELEMENTS

var i = 0;
while (i < 100) {
i++;
if (i < 50)
continue;

S UL W N

}

Listing A.12: The continue statement forces transfer of control to the
controlling expression of the smallest enclosing do-while, for, for-in, or while
loop.

A.2.13 Break Statement

The break statement ends execution of the nearest enclosing loop or case block
in which it appears. Control passes to the statement that follows the end of the
statement, if any. A rail-road-diagram of the statement is shown in Figure A.13.

oz -+]

Figure A.13: The break statement belongs to the class of jump statements.

The break statement can only be used within a loop (for, for-in, do-while, while)
or in a switch-statement. Within the switch statement a break statement is
used to stop execution and transfer control to the statement after the switch
statement. Without a break statement, every statement from the matched case
label to the end of the switch statement, including the default block, is executed.
In loops, the break statement ends execution of the nearest enclosing for, for-in,
do-while, while statement. Control passes to the statement that follows the
ended statement, if any. An example showing the use of the break statement
within a for loop is shown in Listing A.13.

1 for (var i = 1; i < 10; i++) {

2 if (1 == 4)

3 break;

4 }
Listing A.13: The break statement ends execution of the nearest enclosing
loop or case block in which it appears.

A.2.14 Return Statement

The return statement terminates the execution of a function and returns control
to the calling function. Execution resumes in the calling function at the point
immediately following the call. A rail-road-diagram of the statement is shown
in Figure A.14.

'return' expression)—r' A |_>

Figure A.14: The value of the expression is returned to the calling function. If
the expression is omitted, the return value of the function is undefined.

A.2. STATEMENTS 171

A function can have any number of return statements. Listing A.14 shows the
use of the return statement in different functions.

1 function sqr(x) {

2 var y = X * X;

3 return y;

4 %

5

6 function cub(x) {

7 var y = X * X * X;
8 return y;

9 }

10

11 var pot = function(x,y) {
12 var i, z=1;

13 for (i = 1; i <= y; i++)
14 Z*=X;

15 return z;

16 }

17

18 var a, b, c, d;

19 a = sqr(4);

20 b = cub(6);

21 ¢ = pot(a,b);

22 d = pot(cub(3.7), 4);

Listing A.14: The return statement terminates the execution of a function
(anonymous and non-anonymous) and returns control to the calling
function.

A.2.15 Throw Statement

Throw and try statement implement exception handling in Euclides. A rail-
road-diagram of the throw statement is shown in Figure A.15.

—>| 'throw' |—>[expression H it |_>

Figure A.15: The expression of a throw statement captures data for a catch
block of an exception handling mechanism.

A throw statement signals that an exceptional condition — often, an error — has
occurred in a try block. An example showing the use of the throw statement
within a try block is shown in Listing A.15.

1 try {

2 // some code

3

4 throw "an error appeared";

5

6 // the code after the throw statement is not executed
7

8 } catch (error) {

9

10 // mnow error contains the string "an error appeared";
11

12 }

Listing A.15: A throw statement signals that an exceptional condition has
occurred in a try block.

172 APPENDIX A. EUCLIDES LANGUAGE ELEMENTS

A.2.16 Try Statement

Try and throw statement implement exception handling in Euclides. A rail-
road-diagram of the try statement is shown in Figure A.16.

4" 'try'|—’[block_statement)—F’[try catch_block try finally block

——| 'catch"—b' (! |—>[identifier]——' DN |—>[block_statement]—>

—>| 'finally' |—>{ block statement]_>

Figure A.16: The statement block contains the “critical” code that may throw
an exception. Code after the throw statement will not be executed. The catch
block catches the thrown exception and assigns the thrown expression— often
data about an error, an error code, etc — to the identifier. The finally block is
always executed.

A throw statement signals that an exceptional condition — often, an error — has
occurred in a try block. An example showing the use of the try statement is
shown in Listing A.15.

A.2.17 Annotation Statement

The annotation statement in Euclides is a standardized way to define properties.
A rail-road-diagram of the annotation statement is shown in Figure A.17.

T

Figure A.17: The annotation statement is a formal comment; i.e., it is parsed
and has to conform to the grammar rules (therefore it is formal), but it is
not interpreted (as it is a comment). Each annotation within an annotation
statement looks like a key-value-pair.

Annotations are used by the compilation pipeline (in future releases). Currently,
no annotations are defined.

A.3. EXPRESSIONS 173

A.2.18 Native Code Statement

The native code statement can be used to include platform specific code. This
feature is necessary for including specific functionality of the platform. A rail-
road-diagram of the throw statement is shown in Figure A.18.

—-I '/*%'I—-l everything except Tk /0 }—-I '*/'}—>

Figure A.18: A native code statement looks like a normal JavaScript multi-line
comment. In Euclides it is a black box of code inlined into the compilation.

The Euclides compiler offers several compilation targets. The inclusion of native
code statements may compromise cross platform development. This feature is
intended to be used by designers of new libraries and compilation targets. An
example showing the use of the native code statement to output text is shown
in Listing A.16.

1 function print(msg) {
2 /*% System.out.println(usr_msg.toString()); */
3}

Listing A.16: The native-code statement is necessary for including platform
specific functionality like text output.

A.3 Expressions

Wherever Euclides expects a statement, an expression can also be used. Such
a statement is called an expression statement. The reverse does not hold: a
statement cannot be written where Euclides expects an expression. For exam-
ple, a for statement cannot become the argument of a function. This chapter
describes all Expressions supported by Euclides:

e Operators: Euclides, like JavaScript, has unary and binary operators, as
well as a single tertiary operator.

e Identifiers: Identifiers are used in statements and expressions to name
variables and functions.

e This: The This reference plays an important rule in Euclides.
e Constants: Constants are literals like true and false.

e Arrays: Euclides fully supports arrays.

e Objects: The concept of objects is supported in Euclides.

e Functions: Functions itself are also expressions.

A.3.1 Unary Operators

Unary operators can be divided in prefix (preceding an unary expression) and
postfix (after an unary expression) operators. Unary prefix operators are:

174

APPENDIX A. EUCLIDES LANGUAGE ELEMENTS

delete (delete)
void (void)
typeof (typeotf)
new (new)
increment (++)
decrement (--)
add (+)
subtract (-)
bitwise not ()

not (1)

Unary postfix operators are:

increment (++)

decrement (--)

A.3.2 Binary Operators

Binary operators can be divided in arithmetical, assignment, equational, logical,
multiplicative, relational, and shift operators with a specific precedence (and
even inner precedence). The following lists of binary operators starts with the
group of lowest precedence. Assignment operators are:

assign (=)

assign multiply (x=)

assign divide (/=)

assign modulo (%=)

assign add (+=)

assign subtract (-=)

assign bitwise left shift (<<=)
assign bitwise right shift (>>=)
assign zero fill bitwise right shift (>>>=)
assign bitwise and (&=)

assign bitwise xor (°=)

assign bitwise or (!=)

Logical operators are:

A.3. EXPRESSIONS 175

e or (1)

e and (&&)

e bitwise and (&)

e bitwise or (I)

e bitwise xor ()
Equational operators are:

e equal (==)

e not equal (=)

e strict equal (===)

e not strict equal (!==)
Relational operators are:

o less (<)

e greater (>)

o less equal (<=)

e greater equal (>=)

e instance of (instanceof)

e in (in)
Shift operators are:

e bitwise left shift (<<)

e bitwise right shift (>>)

e zero fill bitwise right shift (>>>)
Arithmetical operators are:

e add (+)

e subtract (-)
Multiplicative operators are:

e multiply (*)

e divide (/)

e modulo (%)

Please note that logical operators are not equal in precedence.

176 APPENDIX A. EUCLIDES LANGUAGE ELEMENTS

—P{ expression]—Pi '’ |—>[expression]—>| 't |—>{ expression]—>

Figure A.19: The conditional operator is the only operator in FEuclides that
takes three operands. This operator is frequently used as a short-cut for the if
statement.

A.3.3 Tertiary Operators

There is one tertiary operator available in Euclides — the conditional operator.
A rail-road-diagram of the conditional operator is shown in Figure A.19.

A.3.4 Identifiers

In Euclides, the first character of an identifier must be a letter (lower, or upper
case). Subsequent characters may be letters (again lower, or upper case), digits,
or underscores (see Figure A.20).

Figure A.20: Euclides allows the following characters in identifiers. Please note
the limitations for the first character.

A.3.5 This Reference

The this reference plays an important role in Euclides - it holds a reference to
the current execution context. This is important to keep in mind when using
objects and functions (see Listing A.17).

1 var x = 2;

2

3 function sqr () {

4 var y = this.x * this.x;
5 return y;

6 }

7

8 var o = {

9 x : 3,

10 sqr : function() {

11 var y = this.x * this.x;
12 return y;

13 }

14 3}

15

16 var a, b;

17 a = sqr(); // a is 4

18 b = o0.sqr(); // b is 9

Listing A.17: The this reference holds the current execution context — it is
used with functions and objects.

Since there is no outer environment context when using this globally, it holds
the global environment.

A.3. EXPRESSIONS 177

A.3.6 Constants

Constant expression are null, true, false, as well as strings and numbers. Rail-
road-diagrams of strings (top) and numbers (bottom) are shown in Figure A.21.

‘ ()| [] l
| DIGITS| 1 ST l DIGITS 1 EXPONENT

v £ -
. l DIGITS l EXPONENT

. ESCAPE_SEQUENCE .
CHARACTER

Figure A.21: Strings are enclosed with double quotes and can be of any character
or escape sequence (top). Numbers may consist of digits, a decimal dot, and an
exponent (bottom).

A.3.7 Arrays

In Euclides arrays are high-level, list-like objects and are used to store multiple
values in a single variable (see Listing A.18).

1 var names = [

2 "Magdalena",

3 "Julia'",

4 "Theresa",

5 42

6 1;

7

8 var favourite = names[0];

9

10 names[names.length-1] = "Letizia";

Listing A.18: Arrays in Fuclides can hold different data types and they
support the length property.

Some important properties of arrays are:
e Arrays can be created using the new keyword followed by a constructor.
e It is possible to have different data types in one array.

e Arrays support the length property.

A.3.8 Objects

In Euclides an object is a collection of properties (an association between a key
and a value) (see Listing A.19).

178 APPENDIX A. EUCLIDES LANGUAGE ELEMENTS

1 var car = {

2 type : "Fiat",

3 model : 500,

4 color : "white"

5 getPrice : function() {

6 // do something to calculate the price
7 return this.model * 2;
8 ¥

9 };

10

11 var price = car.getPrice();

Listing A.19: Objects in Euclides are a collection of properties (key-value
pairs).

Some important properties of objects are:
e Objects can hold any data types, also objects and functions.

e The this keyword in a function defined within an object refers to the
environment of the object.

A.3.9 Functions

Functions can be defined anonymously, e.g., within an object. The syntax differs
a bit from a function defined as a statement, as no identifier is used after the
function keyword. A rail-road-diagram of the conditional operator is shown in
Figure A.22.

IDENTIFIER

'function'

Figure A.22: Functions are defined anonymously (as an expression) without an
identifier.

An example of an anonymous function is shown in Listing A.19.

Bibliography

[AA14]

[AGFF09)]

[AGLO5]

[ALOY]

[AS93]

[ATAPVL11]

[Bab17]

[BBI13]

[Beh17]

[BEJZ09]

[BFHO5]

Marios C. Angelides and Harry Agius, editors. Handbook of Digital
Games. John Wiley & Sons, 2014.

M. Attene, D. Giorgi, M. Ferri, and B. Falcidieno. On converting
sets of tetrahedra to combinatorial and pl manifolds. Computer
Aided Geometric Design, 26:850-864, 2009.

James Ahrens, Berk Geveci, and Charles Law. Paraview: An End-
User Tool for Large-Data Visualization. Visualization Handbook,
1:717-731, 2005.

Timo Aila and Samuli Laine. Understanding the efficiency of
ray traversal on GPUs. Proceedings of the Conference on High
Performance Graphics, 3:145-149, 2009.

Giinter Aumann and Klaus Spitzmiiller. Computerorientierte Ge-
ometrie. BI-Wissenschafts-Verlag, 1993.

Phillipa Avery, Julian Togelius, Elvis Alistar, and Robert
Pieter van Leeuwen. Computational Intelligence and Tower De-
fence Games. Proceedings of IEEE Congress on FEvolutionary
Computation (CEC), 13:1084-1091, 2011.

Norayr Babikian. 3D Space Pro - Become a better jeweler. online:
http://www.3dspaceproinc.com, 2017.

Stacy A. Balk, Anne Bertola, and Vaughan W. Inman. Simulator
Sickness Questionnaire: Twenty Years Later. Proceedings of the
International Driving Symposium on Human Factors in Driver
Assessment, Training, and Vehicle Design, 7:257-263, 2013.

Johannes Behr. Instant3dhub. online: http://instant3dhub.org/,
2017.

Johannes Behr, Peter Eschler, Yvonne Jung, and Michael Zollner.
X3DOM: A DOM-based HTML5/X3D Integration Model. Pro-
ceedings of the 14th International Conference on 3D Web Tech-
nology, 14:127-135, 2009.

René Berndt, Dieter W. Fellner, and Sven Havemann. Generative
3D Models: a Key to More Information within less Bandwidth at
Higher Quality. Proceedings of the 10th International Conference
on 3D Web Technology, 1:111-121, 2005.

179

180

[BHMT13]

[BK10]

[BSBKO02]

[BSK67]

[BSK+12]

[BTS*14]

[Bunl7]

[BWS*07]

[COT8]

[CGM*06]

[Chob6]

[CMO6)]

BIBLIOGRAPHY

Alexandre Boulch, Simon Houllier, Renaud Marlet, and Olivier
Tournaire. Semantizing Complex 3D Scenes using Constrained
Attribute Grammars. Proceedings of Furographics Symposium on
Geometry Processing, 32:33-42, 2013.

Mario Botsch and Leif Kobbelt. Polygon Mesh Processing. A K
Peters, 2010.

Mario Botsch, Stefan Steinberg, Stefan Bischoff, and Leif Kobbelt.
Openmesh — a generic and efficient polygon mesh data structure.
Proceedings of OpenSG Symposium, 1:1-5, 2002.

Theodore R. Bashkow, Azra Sasson, and Arnold Kronfeld. Sys-
tem Design of a FORTRAN Machine. [EEFE Transactions on
Electronic Computers, 16:485-499, 1967.

René Berndt, Christoph Schinko, Ulrich Krispel, Volker Settgast,
Sven Havemann, Eva Eggeling, and Dieter W. Fellner. Ring’s
Anatomy — Parametric Design of Wedding Rings. Proceedings of
the 4th International Conference on Creative Content Technolo-

gies, 4:72-78, 2012.

Matthew Berger, Andrea Tagliasacchi, Lee M. Seversky, Pierre
Alliez, Joshua A. Levine, Andrei Sharf, and Claudio Silva. State
of the Art in Surface Reconstruction from Point Clouds. Furo-
graphics 2014 - State of the Art Reports, 1:161-185, 2014.

Bundesministerium fiir Bildung und Forschung (BMBF). Dig-
itale Wirtschaft und Gesellschaft: Zukunftsprojekt Industrie
4.0. online: http://www.bmbf.de/de/zukunftsprojekt-industrie-
4-0-848.html, 2017.

Philip Benzie, John Watson, Phil Surman, Ismo Rakkolainen,
Klaus Hopf, Hakan Urey, Ventseslav Sainov, and Christoph von
Kopylow. A Survey of 3DTV Displays: Techniques and Tech-
nologies. IEEE Transactions on Circuits and Systems for Video
Technology, 17:1647-1658, 2007.

Edwin Catmull and Jim Clark. Recursively generated B-spline
surfaces on arbitrary topological meshes. Computer-Aided Design,
10:350-355, 1978.

Andy Cedilnik, Berk Geveci, Kenneth Moreland, James P.
Ahrens, and Jean M. Favre. Remote large data visualization in the
paraview framework. Proceedings of the 6th Eurographics Confer-
ence on Parallel Graphics and Visualization, 6:163-170, 2006.

Noam Chomsky. Three models for the description of language.
IRE Transactions on Information Theory, 2:113-124, 1956.

Kate Compton and Michael Mateas. Procedural Level Design for
Platform Games. Proceedings of the Artificial Intelligence and
Interactive Digital Entertainment Conference, 2:109-111, 2006.

BIBLIOGRAPHY 181

[CNGFO04]

[CSLRO1]

[CSST11]

[CZGF05]

[DST78]

[EG04]

[EHFU13]

[Eic98]

[EMP+02]

[Euc07]

[Far90]

[Far99]

Daniel Cotting, Martin Naef, Markus Gross, and Henry Fuchs.
Embedding Imperceptible Patterns into Projected Images for
Simultaneous Acquisition and Display. Proceedings of the 3rd
IEEE/ACM International Symposium on Mized and Augmented
Reality, 3:100-109, 2004.

Thomas H. Cormen, Clifford Stein, Charles E. Leiserson, and
Robert L. Rivest. Introduction to Algorithms. B&T, 2001.

Amaresh Chakrabarti, Kristina Shea, Robert Stone, Jonathan Ca-
gan, Matthew Campbell, Noe Vargas-Hernandez, and Kirtsin L.
Wood. Computer-Based Design Synthesis Research: An
Overview. Journal of Computing and Information Science in En-
gineering, 11(2):1-10, 2011.

Daniel Cotting, Remo Ziegler, Markus Gross, and Henry Fuchs.
Adaptive Instant Displays: Continuously Calibrated Projections
Using Per-Pixel Light Control. Computer Graphics Forum,
24:705-714, 2005.

Daniel Doo and Malcolm Sabin. Behavior of Recursive Divi-
sion Surfaces near Extraordinary Points. Computer Aided Design,
10(6):356-360, 1978.

Anton M. Ertl and David Gregg. Retargeting JIT compilers by
using C-compiler generated executable code. Proceedings of the
International Conference on Parallel Architecture and Compila-
tion Techniques, 13:41-50, 2004.

Eva Eggeling, Andreas Halm, Dieter W. Fellner, and Torsten Ull-
rich. Optimization of an Autostereoscopic Display for a Driving
Simulator. Proceedings of the International Joint Conference on
Computer Vision, Imaging and Computer Graphics Theory and
Applications (GRAPP 2013), 8:318-326, 2013.

Jesse B. Eichenlaub. Lightweight compact 2D/3D autostereo-
scopic LCD backlight for games, monitor, and notebook applica-
tions. Stereoscopic Displays and Virtual Reality Systems, 5:180—
185, 1998.

David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Per-
lin, and Steve Worley. Texturing and Modeling: A Procedural
Approach. Morgan Kaufmann, 2002.

Euclid. FEuclid’s Elements of Geometry. Fitzpatrick, Richard,
2007.

Gerald Farin. Curves and Surfaces for Computer Aided Geometric
Design. Academic Press Professional, Inc., 1990.

Gerald Farin. NURBS for Curve and Surface Design from Pro-
jective Geometry to Practical Use. AK Peters, Ltd., 1999.

182

[Far02]

[FFBS04]

[FHO5]

[FH12]

[Fin08]

[Flall]

[FLS04]

[Frall]

[FRC11]

[FT00]

[FvDFHO0]

[Gar16]

[GAVN11]

BIBLIOGRAPHY

Gerald Farin. Curves and Surfaces for CAGD: A Practical Guide.
Morgan Kaufmann Publishers Inc., 2002.

Elisabeth Freeman, Eric Freeman, Bert Bates, and Kathy Sierra.
Head First Design Patterns. O’Reilly Media, Inc., 2004.

Dieter W. Fellner and Sven Havemann. Striving for an adequate
vocabulary: Next generation metadata. Proceedings of the 29th
Annual Conference of the German Classification Society, 29:13—
20, 2005.

Gerald Frank and Christian Hillbrand. Automatic support
of standardization processes in design models. Proceedings of
the International Conference on Intelligent Engineering Systems
(INES), 16:393-398, 2012.

Dieter Finkenzeller. Detailed Building Facades. IEEE Computer
Graphics and Applications, 28(3):58-66, 2008.

David Flanagan. JavaScript: The Definitive Guide. O’Reilly,
Beijing Sebastopol, CA, 2011.

John Fisher, John Lowther, and Ching-Kuang Shene. If you
know B-splines well, you also know NURBS! Proceedings of the
35th SIGCSE technical symposium on Computer science educa-
tion, 35:343-347, 2004.

Gerald Frank. Optimization of the Product Creation Process by
Automated Design to Cost. Proceedings of the International Con-
ference on Intelligent Engineering Systems (INES), 15:363-367,
2011.

Donald L. Fisher, Matthew Rizzo, and Jeff K. Caird, editors.
Handbook of Driving Simulation for Engineering, Medicine, and
Psychology. Crc Press Inc., 2011.

Roy T. Fielding and Richard N. Taylor. Principled design of the
modern web architecture. Proceedings of the 22nd International
Conference on Software Engineering, 22:407-416, 2000.

James D. Foley, Andries van Dam, Steven K. Feiner, and John F.
Hughes. Computer Graphics: Principles and Practice (2nd Ed.).
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1990.

Julien Gardan. Additive manufacturing technologies: state of the
art and trends. International Journal of Production Research,
54(10):3118-3132, 2016.

Mohit Gupta, Amit Agrawal, Ashok Veeraraghavan, and Srini-
vasa G. Narasimhan. Structured Light 3D Scanning in the Pres-
ence of Global Illumination. Proceedings of the 2011 IEEE Con-
ference on Computer Vision and Pattern Recognition, 1:713-720,
2011.

BIBLIOGRAPHY 183

[GGO6]

[GKO7]

[GKPO7]

[GMTFS9]

[GPO7]

[GS69]

[Guy17]

[Hav05]

[HC04]

[HFO04]

[HHKR97]

[Hig17]

[HKS*10]

[HKvdSV11]

Andreas Griesser and Luc Van Gool. Automatic Interactive Cal-
ibration of Multi-Projector-Camera Systems. 2006 Conference
on Computer Vision and Pattern Recognition Workshop, 1:8-15,
2006.

Bjorn Ganster and Reinhard Klein. An Integrated Framework
for Procedural Modeling. Proceedings of Spring Conference on
Computer Graphics 2007 (SCCG 2007), 23:150-157, 2007.

Eric J. Griffith, Michal Koutek, and Frits H. Post. Fast nor-
mal vector compression with bounded error. Proceedings of the
5th Eurographics symposium on Geometry processing, 5:263-272,
2007.

Jack Goldfeather, Steven Monar, Greg Turk, and Henry Fuchs.
Near Real-Time CSG Rendering Using Tree Normalization and

Geometric Pruning. IEEE Computer Graphics and Applications,
9(3):20-28, 1989.

Markus Gross and Hanspeter Pfister. Point-Based Graphics. Mor-
gan Kaufmann Publishers Inc., 2007.

Branko Griinbaum and Geoffrey C. Shephard. Convex Polytopes.
Bulletin of the London Mathematical Society, 1(3):257-300, 1969.

Grard Guyard. Type3, a brand of Gravotech Marking. online:
http://www.type3.com, 2017.

Sven Havemann. Generative Mesh Modeling. PhD-Thesis, Tech-
nische Universitat Braunschweig, Germany, 1:1-303, 2005.

Robin Hunicke and Vernell Chapman. Al for Dynamic Difficulty
Adjustment in Games. Proceedings of the Challenges in Game Al
Workshop / Conference on Artificial Intelligence, 19:91-96, 2004.

Sven Havemann and Dieter W. Fellner. Generative Parametric
Design of Gothic Window Tracery. Proceedings of the 5th Inter-
national Symposium on Virtual Reality, Archeology, and Cultural
Heritage, 1:193-201, 2004.

Rolf Hammer, Matthias Hocks, Ulrich Kulisch, and Dietmar Ratz.
C++ Toolbox for Verified Computing. Springer, 1997.

Jeff High. Gemvision corporation. online: http://gemvision.com/,
2017.

Younis Hijazi, Aaron Knoll, Mathias Schott, Andrew Kensler,
Charles Hansen, and Hans Hagen. CSG Operations of Arbitrary
Primitives with Interval Arithmetic and Real-Time Ray Casting.
Scientific Visualization: Advanced Concepts, 1:78-89, 2010.

Mark Hills, Paul Klint, Tijs van der Strom, and Jurgen Vinju.
A Case of Visitor versus Interpreter Pattern. Proceedings of the
International Conference on Objects, Models, Components and
Patterns (TOOLS’11), 49:1-16, 2011.

184

[HL8Y]

[HMVGO09)

[HPTNOG6]

[HRJS98)

[HUF12]

[Int94]

[Int08]

[Int12a]

[Int12b)

[Int13]

[Int15]

BIBLIOGRAPHY

Josef Hoschek and Dieter Lasser. Grundlagen der Geometrischen
Datenverarbeitung (english: Fundamentals of Computer Aided
Geometric Design). Teubner, 1989.

Simon Haegeler, Pascal Miiller, and Luc Van Gool. Procedural
Modeling for Digital Cultural Heritage. Journal on Image and
Video Processing, 9:1-11, 2009.

Jukka Hékkinen, Monika Po6lonen, Jari Takatalo, and Gote Ny-
man. Simulator sickness in virtual display gaming: a comparison
of stereoscopic and non-stereoscopic situations. Proceedings of the
conference on Human-computer interaction with mobile devices
and services, 8:227-230, 2006.

Scott T. Hemphill, Tlene M. Reinitz, Mary L. Johnson, and
James E. Shigley. Modeling the appearance of the round bril-
liant cut diamond: An analysis of brilliance. Gems & Gemology,
34:158-183, 1998.

Sven Havemann, Torsten Ullrich, and Dieter W. Fellner. The
Meaning of Shape and some Techniques to Extract It. Multimedia
Information Extraction, 1:81-98, 2012.

International Organization for Standardization (ISO) 10303-
1:1994. Industrial automation systems and integration — Prod-
uct data representation and exchange — Part 1: Overview and
fundamental principles, 1994.

International Organization for Standardization (ISO) 32000-
1:2008. Document management — Portable document format —
Part 1: Pdf1.7, 2008.

International Organization for Standardization (ISO) / Publicly
Available Specification (PAS) 17506:2012. Industrial automation
systems and integration — COLLADA digital asset schema speci-
fication for 3D visualization of industrial data, 2012.

International Organization for Standardization (ISO) 14306:2012.
Industrial automation systems and integration — JT file format
specification for 3D visualization, 2012.

International Oganization for Standardization (ISO) / Interna-
tional Electrotechnical Commission (IEC) 19775-1:2013. Infor-
mation technology — Computer graphics, image processing and
environmental data representation — Extensible 3D (X3D) — Part
1: Architecture and base components, 2013.

E. C. M. A. International. ECMA-262: ECMAScript 2015 Lan-
guage Specification. ECMA (European Association for Standard-
izing Information and Communication Systems), Geneva, Switzer-
land, sixth edition, 2015.

BIBLIOGRAPHY 185

[Jer16]

[TKIR06]

[IMW+03)]

[Joh16]

[JTSWF10]

[KBUF14]

[KEL*15a]

[KEL*15b)

[KEL*15¢]

[KHH*07]

Jason Jerald. The VR Book: Human-Centered Design for Virtual
Reality. Association for Computing Machinery and Morgan &
Claypool, New York, NY, USA, 2016.

Subramaniam Jayanti, Yagnanarayanan Kalyanaraman, Natraj
Iyer, and Karthik Ramani. Developing an engineering shape
benchmark for CAD models. Computer-Aided Design, 38:939—
953, 2006.

Adrian Jacobs, Jonathan Mather, Robert Winlow, David Mont-
gomery, Graham Jones, Morgan Willis, Martin Tillin, Lyndon
Hill, Marina Khazova, Heather Stevenson, and Grant Bourhill.
2D/3D Switchable Displays. Sharp Technical Journal, 4:1-5,
2003.

Andrew Johansen. JavaScript: The Ultimate Beginner’s Guide!
CreateSpace Independent Publishing Platform, 2016.

Martin Jennings-Teats, Gillian Smith, and Noah Wardrip-Fruin.
Polymorph: A Model for Dynamic Level Generation. Proceedings
of the AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, 6:138-143, 2010.

Patrick Knobelreiter, René Berndt, Torsten Ullrich, and Di-
eter W. Fellner. Automatic fly-through Camera Animations for
3D Architectural Repositories. Proceedings of the International
Joint Conference on Computer Vision, Imaging and Computer
Graphics Theory and Applications (GRAPP 2014), 9:335-341,
2014.

Toana Koglbauer, Arno Eichberger, Cornelia Lex, Norbert Bliem,
Anton Sternat, Jirgen Holzinger, Christoph Schinko, and Mario
Battel. Bewertung von Fahrerassistenzsystemen von nicht profes-
sionellen Fahrerinnen und Fahrern im Realversuch. Humanwis-
senschaftliche Beitrige zur Verkehrssicherheit und Okologie des
Verkehrs, mehr sicheres Verhalten im Strassenverkehr, 5:86-102,
2015.

TIoana Koglbauer, Arno FEichberger, Cornelia Lex, Jirgen
Holzinger, Christoph Schinko, and Torsten Ullrich. A Model
for Subjective Evaluation of Automated Vehicle Control. Pro-
ceedings of the International Symposium on Aviation Psychology,

18:PW12, 2015.

Toana Koglbauer, Arno Eichberger, Cornelia Lex, Jiirgen
Holzinger, Christoph Schinko, and Torsten Ullrich. Evaluation
of driving maneuvers in reality and in an autostereoscopic 3D
simulation with integrated eye-tracking. Proceedings of the Hu-
man Factors and Ergonomics Society Furope Chapter 2015 An-
nual Conference, 2015.

Aaron Knoll, Younis Hijazi, Charles Hansen, Ingo Wald, and Hans
Hagen. Interactive Ray Tracing of Arbitrary Implicits with SIMD

186

[Khr14]

[Kit17a]

[Kit17b]

[KK11]

[KLBL93]

[Kob96]

[KPK10]

[KSH*15]

[KSHF13]

[KSU14]

[KSU15]

[KSU16]

BIBLIOGRAPHY

Interval Arithmetic. Proceedings of IEEE Symposium on Interac-
tive Ray Tracing, 7:11-18, 2007.

Khronos WebGL Working Group. WebGL Specifcation. online:
https://www.khronos.org/registry /webgl/specs/1.0/, 2014.

Kitware, Inc. Paraview. online: http://www.paraview.org/, 2017.

Kitware, Inc. The Visualization Toolkit (VTK). online:
http://www.vtk.org/, 2017.

Lars Krecklau and Leif Kobbelt. Procedural Modeling of Inter-
connected Structures. Computer Graphics Forum, 30:335-344,
2011.

Robert S. Kennedy, Norman E. Lane, Kevin S. Berbaum, and
Michael G. Lilienthal. Simulator Sickness Questionnaire: An en-
hanced method for quantifying simulator sickness. International
Journal of Aviation Psychology, 7:203-220, 1993.

Leif Kobbelt. Interpolatory Subdivision on Open Quadrilat-
eral Nets with Arbitrary Topology. Computer Graphics Forum,
15(3):409-420, 1996.

Lars Krecklau, Darko Pavic, and Leif Kobbelt. Generalized Use
of Non-Terminal Symbols for Procedural Modeling. Computer
Graphics Forum, 29:2291-2303, 2010.

Hyosun Kim, Christoph Schinko, Sven Havemann, Ivan Redi, An-
drea Redi, and Dieter W. Fellner. Tiled Projection onto Deform-
ing Screens. Computer Graphics and Visual Computing (CGVC),
1:35-42, 2015.

Hyosun Kim, Christoph Schinko, Sven Havemann, and Di-
eter Fellner. Tiled Projection onto Bent Screens using Multi-
Projectors. Proceedings of the 7th IADIS International Confer-
ence on Computer Graphics, Visualization, Computer Vision and
Image Processing, 7:67-74, 2013.

Ulrich Krispel, Christoph Schinko, and Torsten Ullrich. The Rules
Behind — Tutorial on Generative Modeling. Proceedings of the 12th
Symposium on Geometry Processing / Graduate School, 12:2:1—
2:49, 2014.

Ulrich Krispel, Christoph Schinko, and Torsten Ullrich. A Survey
of Algorithmic Shapes. Remote Sensing, 7:12763-12792, 2015.

Ulrich Krispel, Christoph Schinko, and Torsten Ullrich. A Sur-
vey of Algorithmic Shapes. Remote Sensed Data and Processing
Methodologies for 3D Virtual Reconstruction and Visualization of
Complex Architectures, 219:498-529, 2016.

BIBLIOGRAPHY 187

[KUF14]

[Lanll]

[LDYS

[LDMA+04]

[LHKR10]

[Li17]

[LLL*15]

[LNOMOS]

[Loo87]

[Lor63]

[LWWOS]

Ulrich Krispel, Torsten Ullrich, and Dieter W. Fellner. Fast and
Exact Plane-Based Representation for Polygonal Meshes. Pro-
ceeding of the International Conference on Computer Graphics,

Visualization, Computer Vision and Image Processing, 8:189-196,
2014.

Marcel Lancelle. Visual Computing in Virtual Environments.
PhD-Thesis, Technische Universitit Graz, Austria, 1:1-228, 2011.

Bernd Lintermann and Oliver Deussen. A Modelling Method and
User Interface for Creating Plants. Computer Graphics Forum,
17(1):73-82, 1998.

Johnny C. Lee, Paul H. Dietz, Dan Maynes-Aminzade, Ramesh
Raskar, and Scott E. Hudson. Automatic Projector Calibration
with Embedded Light Sensors. Proceedings of the 17th Annual
ACM Symposium on User Interface Software and Technology,
17:123-126, 2004.

Douglas Lanman, Matthew Hirsch, Yunhee Kim, and Ramesh
Raskar. Content-adaptive Parallax Barriers: Optimizing Dual-
layer 3D Displays Using Low-rank Light Field Factorization. ACM
Trans. Graph., 29(6):163:1-163:10, 2010.

Edmond Li. Jewellery CAD/CAM Limited. online:
http://www.jcadcam.coms, 2017.

Bo Li, Yijuan Lu, Chunyuan Li, Afzal Godil, Tobias Schreck,
Masaki Aono, Martin Burtscher, Qiang Chen, Nihad Karim
Chowdhury, Bin Fang, Hongbo Fu, Takahiko Furuya, Haisheng
Li, Jianzhuang Liu, Henry Johan, Ryuichi Kosaka, Hitoshi Koy-
anagi, Ryutarou Ohbuchi, Atsushi Tatsuma, Yajuan Wan, Chaoli
Zhang, and Changqing Zou. A comparison of 3D shape retrieval
methods based on a large-scale benchmark supporting multimodal
queries. Computer Vision and Image Understanding, 131(C):1-
27, 2015.

Erik Lindholm, John Nickolls, Stuart Oberman, and John Mon-
trym. NVIDIA Tesla: A Unified Graphics and Computing Archi-
tecture. IEEE Micro — The magazine for chip and silicon systems
designers, 28:39-55, 2008.

Charles Loop. Smooth Subdivision Surfaces Based on Triangles.
Master’s Thesis, University of Utah, USA, 1:1-74, 1987.

Edward N. Lorenz. Deterministic nonperiodic flow. Journal of
the Atmospheric Sciences, 20(2):130-141, 1963.

Markus Lipp, Peter Wonka, and Michael Wimmer. Interactive
Visual Editing of Grammars for Procedural Architecture. ACM
Transactions on Graphics, 27:3:1-3:10, 2008.

188

[LWW10]

[LY99]

[LZQO6]

[Mar98]
[Mig17]

[Mit90]

[MMO8]

[MSH™08]

[MWH*06]

[MZWVGO7]

[NAMOG]

[NAT90]

[Nic02]

[NvilT7al

[Nvil7b]

BIBLIOGRAPHY

Markus Lipp, Peter Wonka, and Michael Wimmer. Parallel Gener-
ation of Multiple L-Systems. Computers € Graphics, 34:585-593,
2010.

Tim Lindholm and Frank Yellin. The Java(TM) Virtual Machine
Specification. Prentice Hall, 1999.

Yi Liu, Hongbin Zha, and Hong Qin. Shape topics: A compact
representation and new algorithms for 3d partial shape retrieval.
IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition, 2:2025-2032, 2006.

George E. Martin. Geometric Constructions. Springer, 1998.

Migenius Pty Ltd. Migenius - Photorealistic Rendering in the
Cloud Made Easy. online: http://www.migenius.com/, 2017.

William J. Mitchell. The Logic of Architecture: Design, Compu-
tation, and Cognition. MIT Press, 1990.

Paul Merrell and Dinesh Manocha. Continuous Model Synthesis.
ACM Transactions on Graphics, 27:158:1-158:9, 2008.

Erick Mendez, Gerhard Schall, Sven Havemann, Dieter W. Fell-
ner, Dieter Schmalstieg, and Sebastian Junghanns. Generating
Semantic 3D Models of Underground Infrastructure. IEEE Com-
puter Graphics and Applications, 28:48-57, 2008.

Pascal Miiller, Peter Wonka, Simon Haegler, Ulmer Andreas, and
Luc Van Gool. Procedural Modeling of Buildings. Proceedings of
2006 ACM Siggraph, 25(3):614-623, 2006.

Pascal Miiller, Gang Zeng, Peter Wonka, and Luc Van Gool.
Image-based Procedural Modeling of Facades. ACM Transactions
on Graphics, 28:3:1-3:9, 2007.

Mark J. Nelson, Calvin Ashmore, and Michael Mateas. Author-
ing an Interactive Narrative with Declarative Optimization-Based
Drama Management. Proceedings of the Artificial Intelligence and
Interactive Digital Entertainment Conference, 2:127-129, 2006.

Bruce Naylor, John Amanatides, and William Thibault. Merg-
ing bsp trees yields polyhedral set operations. Proceedings of
the 17th annual conference on Computer graphics and interactive
techniques, 24(4):115-124, 1990.

Franco Niccolucci. XML and the future of humanities computing.
ACM SIGAPP applied computing review, 10(1):43-47, 2002.

Nvidia Corporation. Geforce Now - The New Way to Game. on-
line: http://shield.nvidia.com/game-streaming-with-geforce-now,
2017.

Nvidia Corporation. Iray GPU Rendering. online:
http://www.nvidia.com/object /nvidia-iray.html, 2017.

BIBLIOGRAPHY 189

[Nvil7c]

[OKO08]

[Par10]

[PBP02]

[PKG*07]

[PL90)
[PL02]

[PMO1]

[Pol05]
[PT97]

[PTY10]

[QJS+06]

[RBY*99]

[RF07]

Nvidia Corporation. NVIDIA CUDA C Programming Guide. on-
line: http://docs.nvidia.com/cuda/cuda-c-programming-guide/,
2017.

Mine Ozkar and Sotirios Kotsopoulos. Introduction to shape
grammars. International Conference on Computer Graphics and
Interactive Techniques ACM SIGGRAPH 2008 (course notes),
36:1-175, 2008.

Terence Parr. Language Implementation Patterns: Create
Your Own Domain-Specific and General Programming Languages.
Pragmatic Bookshelf, 2010.

Hartmut Prautzsch, Wolfgang Boehm, and Marco Paluszny.
Bézier and B-Spline Techniques. Springer, 2002.

Tom Peterka, Robert L. Kooima, Javier I. Girado, Jinghua Ge,
Daniel J. Sandin, and DeFanti Thomas A. Evolution of the Varrier
Autostereoscopic VR, Display: 2001-2007. Stereoscopic Displays
and Virtual Reality Systems, 14:1-11, 2007.

Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The Algo-
rithmic Beauty of Plants. Springer-Verlag, 1990.

Helmut Pottmann and Stefan Leopoldseder. Geometries for
CAGD. Handbook of 8D Modeling, 1:43-73, 2002.

Yogi Parish and Pascal Mueller. Procedural Modeling of Cities.
Proceedings of the 28th annual conference on Computer graphics
and interactive techniques, 28:301-308, 2001.

Tomas Polgar. FREAX: The Brief History of the Computer De-
moscene. CSW-Verlag, Winnenden, 2005.

Les Piegl and Wayne Tiller. The NURBS book. Springer-Verlag
New York, Inc., 1997.

Christopher Pedersen, Julian Togelius, and Georgios N. Yan-
nakakis. Modeling Player Experience for Content Creation. IEEFE
Transactions on Computational Intelligence and Al in Games,

2:54-67, 2010.

Patrick Quirk, Tyler Johnson, Rick Skarbez, Herman Towles, Flo-
rian Gyarfas, and Henry Fuchs. RANSAC-Assisted Display Model
Reconstruction for Projective Display. Proceedings of the IEEE
VR Workshop on Emerging Display Technologies, 1:26-29, 2006.

Ramesh Raskar, Michael S. Brown, Ruigang Yang, Wei-Chao
Chen, Greg Welch, Herman Towles, W. Brent Seales, and Henry
Fuchs. Multi-Projector Displays Using Camera-Based Registra-
tion. Proceedings of the IEEE Conference on Visualization, 1:161—
168, 1999.

Casey Reas and Ben Fry. Processing: A Programming Handbook
for Visual Designers and Artists. MIT Press, 2007.

190

[RKT+12]

[RWC+98]

[SBEF14]

[Scho8]

[SEFR14]

[Set13]

[SICH*14]

[SK92]

[SKR*+10]

[SKUOS]

[SKU15]

BIBLIOGRAPHY

Hayko Riemenschneider, Ulrich Krispel, Wolfgang Thaller,
Michael Donoser, Sven Havemann, Dieter W. Fellner, and Horst
Bischof. Irregular lattices for complex shape grammar facade pars-
ing. Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 25:1640-1647, 2012.

Ramesh Raskar, Greg Welch, Matt Cutts, Adam Lake, Lev Stesin,
and Henry Fuchs. The Office of the Future: A Unified Approach
to Image-based Modeling and Spatially Immersive Displays. Pro-
ceedings of the 25th Annual Conference on Computer Graphics
and Interactive Techniques, 25:179-188, 1998.

Christoph Schinko, René Berndt, Eva Eggeling, and Dieter Fell-
ner. A Scalable Rendering Framework for Generative 3D Con-
tent. Proceedings of the 19th International ACM Conference on
3D Web Technologies, 19:81-87, 2014.

Uwe Schoning. Theoretische Informatik - kurz gefasst. Spektrum
Akademischer Verlag, Heidelberg, 5th edition, 2008.

Timo Scharwéchter, Markus Enzweiler, Uwe Franke, and Stefan
Roth. Stixmantics: A medium-level model for real-time seman-
tic scene understanding. Computer Vision - ECCV 2014 - 13th
European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V, 5:533-548, 2014.

Volker Settgast. Processing Semantically Enriched Content for In-
teractive 3D Visualizations. PhD-Thesis, Technische Universitat
Graz, Austria, 1:1-233, 2013.

Aitor Santamaria-Ibirika, Xabier Cantero, Sergio Huerta, Igor
Santos, and Pablo G. Bringas. Procedural Playable Cave Systems
based on Voronoi Diagram and Delaunay Triangulation. Proceed-
ings of the International Conference on Cyberworlds, 12:15-22,
2014.

John M. Snyder and James T. Kajiya. Generative modeling:
a symbolic system for geometric modeling. Proceedings of the
19th annual conference on computer graphics and interactive tech-
niques, 1:369-378, 1992.

Kristian Sons, Felix Klein, Dmitri Rubinstein, Sergiy Byelozyorov,
and Philipp Slusallek. Xml3d: interactive 3d graphics for the web.
Web3D ’10: Proceedings of the 15th International Conference on
Web 3D Technology, 15:175-184, 2010.

Laszlé Szirmay-Kalos and Tam&ds Umenhoffer. Displacement map-
ping on the GPU - State of the Art. Computer Graphics Forum,
27(6):1567-1592, 2008.

Christoph Schinko, Ulrich Krispel, and Torsten Ullrich. Know the
Rules — Tutorial on Procedural Modeling. Proceedings of the 10th
International Joint Conference on Computer Vision, Imaging and

BIBLIOGRAPHY 191

[SKUF15]

[SMD*01]

[Sonl7]

[SPH*16]

[SPK*14]

[SS03]

[SSSS14]

[SSUF10a]

[SSUF10b)]

Computer Graphics Theory and Applications (GRAPP Tutorial
Notes), 10:271f, 2015.

Christoph Schinko, Ulrich Krispel, Torsten Ullrich, and Dieter W.
Fellner. Built by Algorithms — State of the Art Report on Pro-
cedural Modeling. Proceedings of the 6th International Workshop

on 3D Virtual Reconstruction and Visualization of Complex Ar-
chitectures (3D-ARCH), 6:469-479, 2015.

Daniel J. Sandin, Todd Margolis, Greg Dawe, Jason Leigh, and
DeFanti Thomas A. The Varrier Auto-Stereographic Display.
Stereoscopic Displays and Virtual Reality Systems, 8:1-8, 2001.

Sony Corporation. Playstation Now - PS Now Subscrip-
tion for PS3 Games. online: http://www.playstation.com/en-
us/explore/playstationnow/, 2017.

Christoph Schinko, Markus Peer, Daniel Hammer, Matthias
Pirstinger, Cornelia Lex, Ioana Koglbauer, Arno Eichberger,
Jirgen Holzinger, Eva Eggeling, Dieter W. Fellner, and Torsten
Ullrich. Building a Driving Simulator with Parallax Barrier Dis-
plays. Proceedings of the 11th International Joint Conference on
Computer Vision, Imaging and Computer Graphics Theory and
Applications (GRAPP), 11:283-291, 2016.

Ondrej Stava, Soren Pirk, Julian Kratt, Baoquan Chen, Radomir
Meéch, Oliver Deussen, and Bedrich Benes. Inverse Procedural
Modelling of Trees. Computer Graphics Forum, 33:118-131, 2014.

Daniel Scharstein and Richard Szeliski. High-accuracy Stereo
Depth Maps Using Structured Light. Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition, 1:195-202, 2003.

Helmut Schrom-Feiertag, Christoph Schinko, Volker Settgast, and
Stefan Seer. Evaluation of Guidance Systems in Public Infrastruc-
tures Using Eye Tracking in an Immersive Virtual Environment.
Proceedings of the 2nd International Workshop on Eye Tracking
for Spatial Research co-located with the 8th International Confer-
ence on Geographic Information Science, 2:62-66, 2014.

Christoph Schinko, Martin Strobl, Torsten Ullrich, and Dieter W.
Fellner. Modeling Procedural Knowledge — A Generative Modeler
for Cultural Heritage. Proceedings of the 3rd International Euro-
Mediterranean Conference, (EuroMed), 6436:153-165, 2010.

Martin Strobl, Christoph Schinko, Torsten Ullrich, and Dieter W.
Fellner. Euclides — A JavaScript to PostScript Translator. Pro-
ceedings of the 1st International Conference on Computational
Logics, Algebras, Programming, Tools, and Benchmarking (Com-
putation Tools), 1:14-21, 2010.

192

[SSUF11a]

[SSUF11b]

[Sta9s]

[Sti80]

[Str07]

[SUF11]

[SUF12]

[SUF14]

[Sul04]

[SUSF11]

[SVP+17]

BIBLIOGRAPHY

Thomas Schiffer, Christoph Schinko, Torsten Ullrich, and Di-
eter W. Fellner. Real-World Geometry and Generative Knowl-
edge. The FEuropean Research Consortium for Informatics and
Mathematics (ERCIM) News, 86:15-16, 2011.

Christoph Schinko, Martin Strobl, Torsten Ullrich, and Dieter W.
Fellner. Scripting Technology for Generative Modeling. Interna-
tional Journal On Advances in Software, 4:308-326, 2011.

Jos Stam. Exact evaluation of catmull-clark subdivision surfaces
at arbitrary parameter values. Proceedings of the 25th Annual
Conference on Computer Graphics and Interactive Techniques,
15:395-404, 1998.

George Stiny. Introduction to shape and shape grammars. Envi-
ronment and planning B, 7(3):343-351, 1980.

Bjarne Stroustrup. Evolving a language in and for the real world:
C++ 1991-2006. Proceedings of the 3rd ACM SIGPLAN Confer-
ence on History of Programming Languages, 3:4:1-4:59, 2007.

Christoph Schinko, Torsten Ullrich, and Dieter W. Fellner. Simple
and Efficient Normal Encoding with Error Bounds. Proceedings
of Theory and Practice of Computer Graphics, 29:63-66, 2011.

Christoph Schinko, Torsten Ullrich, and Dieter W. Fellner. Mini-
mally Invasive Interpreter Construction — How to reuse a compiler
to build an interpreter. Proceedings of the 3rd International Con-
ference on Computational Logics, Algebras, Programming, Tools,
and Benchmarking (Computation Tools), 3:38-44, 2012.

Christoph Schinko, Torsten Ullrich, and Dieter W. Fellner. Model-
ing with High-Level Descriptions and Low-Level Details. Proceed-
ings of the 8th International Conference on Computer Graphics,
Visualization, Computer Vision and Image Processing, 8:328-332,
2014.

Eldar Sultanow. Implizite Flachen. Technical Report at Hasso-
Plattner-Institut, 1:1-11, 2004.

Christoph Schinko, Torsten Ullrich, Thomas Schiffer, and Di-
eter W. Fellner. Variance Analysis and Comparison in Computer-
Aided Design. Proceedings of the 4th International Workshop on

3D Virtual Reconstruction and Visualization of Complex Archi-
tectures (3D-ARCH), 4:21-25, 2011.

Christoph Schinko, Thomas Vosgien, Thorsten Prante, Tobias
Schreck, and Torsten Ullrich. Search and Retrieval in CAD
Databases — a user-centric State-of-the-Art Overview. Proceed-
ings of the 12th International Joint Conference on Computer Vi-
sion, Imaging and Computer Graphics Theory and Applications
(GRAPP), 12:306-313, 2017.

BIBLIOGRAPHY 193

[SYXHOS]

[TDNLOG6]

[TDNLO7]

[TKHF12

[TKZ"13a]

[TKZ*13b]

[TLL*11]

[TMWO02a]

[TMWO02b)

[TYSB11]

[UF11]

Weibin Sun, Xubo Yang, Shuangjiu Xiao, and Wencong Hu. Ro-
bust Checkerboard Recognition for Efficient Nonplanar Geometry
Registration in Projector-camera Systems. Proceedings of the 5th
ACM/IEEE International Workshop on Projector Camera Sys-
tems, 5:2:1-2:7, 2008.

Julian Togelius, Renzo De Nardi, and Simon M. Lucas. Making
Racing Fun Through Player Modeling and Track Evolution. Pro-
ceedings of the Workshop on Adaptive Approaches for Optimizing
Player Satisfaction in Computer and Physical Games, 6:61-70,
2006.

Julian Togelius, Renzo De Nardi, and Simon M. Lucas. Towards
automatic personalised content creation for racing games. IFEFE
Symposium on Computational Intelligence and Games, 11:252—
259, 2007.

Wolfgang Thaller, Ulrich Krispel, Sven Havemann, and Dieter W.
Fellner. Implicit Nested Repetition in Dataflow for Procedural
Modeling. Proceedings of the International Conference on Compu-
tational Logics, Algebras, Programming, Tools, and Benchmark-
ing (Computation Tools), 3:45-50, 2012.

Wolfgang Thaller, Ulrich Krispel, René Zmugg, Sven Havemann,
and Dieter W. Fellner. A Graph-Based Language for Direct Ma-
nipulation of Procedural Models. International Journal on Ad-
vances in Software, 6:225-236, 2013.

Wolfgang Thaller, Ulrich Krispel, René Zmugg, Sven Havemann,
and Dieter W. Fellner. Shape Grammars on Convex Polyhedra.
Computers & Graphics, 37:707-717, 2013.

Jerry O. Talton, Yu Lou, Steve Lesser, Jared Duke, Radomir
Mech, and Vladlen Koltun. Metropolis Procedural Modeling.
ACM Transactions on Graphics, 30:11:1-11:14, 2011.

Robert F. Tobler, Stefan Maierhofer, and Alexander Wilkie. A
Multiresolution Mesh Generation Approach for Procedural Defi-
nition of Complex Geometry. Proceedings of the Shape Modeling
International, 8:35-44, 2002.

Robert F. Tobler, Stefan Maierhofer, and Alexander Wilkie.
Mesh-Based Parametrized L-Systems and Generalized Subdivi-
sion for Generating Complex Geometry. International Journal of
Shape Modeling, 8:173-191, 2002.

Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley, and
Cameron Browne. Search-Based Procedural Content Generation:
A Taxonomy and Survey. IEEE Transactions on Computational
Intelligence and AI in Games, 3:172-186, 2011.

Torsten Ullrich and Dieter W. Fellner. Generative Object Defini-
tion and Semantic Recognition. Proceedings of the Eurographics
Workshop on 3D Object Retrieval, 4:1-8, 2011.

194

[Ul11]

[U.S06]

[US13]

[USB10]

[USFOS]

[USF10]

[USSF13]

[VBO7]

[VGDA*12]

[VRM97]

[VV04]

[Wal07]

BIBLIOGRAPHY

Torsten Ullrich. Reconstructive Geometry. PhD-Thesis, Technis-
che Universitdt Graz, Austria, 1:1-322, 2011.

U.S. Product Data Association (US PRO), Formerly ANSI US
PRO/IPO-100-1996. Initial Graphics Exchange Specification
IGES 5.3, 2006.

Torsten Ullrich and Christoph Schinko. Bibliotheksdienste und
semantische Auszeichnungen fiir digitale Artefakte. Kulturelles
Erbe in der Cloud — Fachtagung “Digitale Bibliotheken”, 4:68ff,
2013.

Torsten Ullrich, Volker Settgast, and René Berndt. Semantic En-
richment for 3D Documents: Techniques and Open Problems.
Publishing in the Networked World: Transforming the Nature of
Communication, Proceedings of the International Conference on
Electronic Publishing, 14:374-384, 2010.

Torsten Ullrich, Volker Settgast, and Dieter W. Fellner. Semantic
Fitting and Reconstruction. Journal on Computing and Cultural
Heritage, 1(2):1201-1220, 2008.

Torsten Ullrich, Christoph Schinko, and Dieter W. Fellner. Pro-
cedural Modeling in Theory and Practice. Poster Proceedings of
the 18th WSCG International Conference on Computer Graphics,
Visualization and Computer Vision, 18:5-8, 2010.

Torsten Ullrich, Christoph Schinko, Thomas Schiffer, and Di-
eter W. Fellner. Procedural Descriptions for Analyzing Digitized
Artifacts. Applied Geomatics, 5:185-192, 2013.

Jan Vrany and Alexandre Bergel. The Debuggable Interpreter
Design Pattern. Proceedings of the International Conference on
Software and Data Technologies, 2:22-29, 2007.

Carlos A. Vanegas, Ignacio Garcia-Dorado, Daniel G. Aliaga,
Bedrich Benes, and Paul Waddell. Inverse Design of Urban Proce-
dural Models. ACM Transactions on Graphics, 31:168:1-168:11,
2012.

VRML Consortium, Inc. Information technology —
Computer graphics and image processing — The Vir-
tual Reality Modeling Language (VRML). online:

http://tecfa.unige.ch/guides/vrml/vrml97/spec/, 1997.

Emily A. Vander Veer. JavaScript for Dummies. For Dummies,
2004.

Ingo Wald. On fast construction of sah-based bounding volume
hierarchies. Proceedings of the 2007 IEEE Symposium on Inter-
active Ray Tracing, 1:33-40, 2007.

BIBLIOGRAPHY 195

[Web08]

[Wei07]

[Weil7]

[WMG+07]

[WYD*14]

[YMYH12]

[YWO1]

[YYT*11]

[Zak11]

[Z1.04]

[ZPKG02]

[ZWAYO08)]

Web3D Consortium, Inc. Information technology — Com-
puter graphics and image processing — Extensible 3D (X3D).
online: http://www.web3d.org/documents/specifications/19775-
1/V3.2/, 2008.

Daniel Weiskopf. GPU-Based Interactive Visualization Tech-
niques. Springer-Verlag Berlin Heidelberg, 1 edition, 2007.

Eric W. Weisstein. Spherical code. online:
http://mathworld.wolfram.com/SphericalCode.html, 2017.

Ingo Wald, William R. Mark, Johannes Giinther, Solomon Boulos,
Thiago Ize, Warren Hunt, Steven G. Parker, and Peter Shirley.
State of the Art in Ray Tracing Animated Scenes. STAR Pro-
ceedings of Furographics, 26:89-116, 2007.

Fuzhang Wu, Dong-Ming Yan, Weiming Dong, Xiaopeng Zhang,
and Peter Wonka. Inverse procedural modeling of facade layouts.
ACM Transactions on Graphics, 33:121:1-121:10, 2014.

Liu Yong, Zhang Mingmin, Jiang Yunliang, and Zhao Haiying.
Improving procedural modeling with semantics in digital archi-
tectural heritage. Computers & Graphics, 36:178-184, 2012.

Ruigang Yang and Greg Welch. Automatic and Continuous Pro-
jector Display Surface Calibration Using Every-Day Imagery. Pro-
ceedings of 9th International Conf. in Central Europe in Computer
Graphics, Visualization, and Computer Vision WSCG, 9:320-327,
2001.

Lap-Fai Yu, Sai-Kit Yeung, Chi-Keung Tang, Demetri Terzopou-
los, Tony F. Chan, and Stanley Osher. Make it Home: Automatic
Optimization of Furniture Arrangement. ACM Transactions on
Graphics, 30:86:1-86:11, 2011.

Alon Zakai. Emscripten: An LLVM-to-JavaScript Compiler. Pro-
ceedings of the ACM International Conference Companion on Ob-

ject Oriented Programming Systems Languages and Applications
Companion, 1:301-312, 2011.

Dengsheng Zhang and Guojun Lu. Review of shape representation
and description techniques. Pattern Recognition, 37:1-19, 2004.

Matthias Zwicker, Mark Pauly, Oliver Knoll, and Markus Gross.
Pointshop 3D: an interactive system for point-based surface edit-
ing. Proceedings of the 29th Annual Conference on Computer
Graphics and Interactive Techniques, 29:322-329, 2002.

Jin Zhou, Liang Wang, Amir Akbarzadeh, and Ruigang Yang.
Multi-projector Display with Continuous Self-calibration. Pro-
ceedings of the 5th ACM/IEEE International Workshop on Pro-
jector Camera Systems, 5:3:1-3:3, 2008.

	Introduction
	Digital Technology
	Generative Modeling
	Visualization
	Open Problems and Contributions
	Overview

	Shapes
	Definition and Perception
	Textual Shape Descriptions
	Image-based Shape Descriptions
	Surface-Based Shape Descriptions
	Volumetric Shape Descriptions
	Algorithmic Shape Descriptions
	Summary

	Modeling
	Primitive Shape Modeling
	Semantic Modeling
	Generative Modeling
	Generative Modeling Language (GML)
	Summary

	Meta Modeler: Euclides
	Overview
	Architecture
	Language Elements
	Target Platforms
	Provided Libraries
	IDE
	Interpreter
	Examples
	Summary

	Inverse Modeling
	Examples
	Real-World Comparison
	Shape Modeling
	Summary

	Visualization
	Non-Planar Projections
	Parallax Barrier Displays
	Summary

	Conclusion & Future Work
	Generative Modeling
	Inverse Modeling
	Visualization Technologies
	Future Work

	Appendices
	Euclides Language Elements
	Comments
	Statements
	Expressions

