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Abstract

Vector graphics in 2D is consolidated since decades, as is supported in many
design applications, such as Adobe Illustrator [Ado21], and languages, like
Scalable Vector Graphics (SVG) [W3C10]. In this thesis, we address the problem
of designing algorithms that support the generation of vector graphics on a
discrete surface. We require such algorithm to rely on the intrinsic geometry of
the surface, and to support real time interaction on highly-tessellated meshes
(few million triangles). Both of these requirements aim at mimicking the
behavior of standard drawing systems in the Euclidean context in the following
sense. Working in the intrinsic setting means that we consider the surface as
our canvas, and any quantity needed to ful�ll a given task will be computed
directly on it, without resorting to any type of local/global parametrization
or projection. In this way, we are sure that, once the theoretical limitations
behind some given operation are properly handled, our result will always be
consistent with the input regardless of the surface we are working with. As
we will see, in some cases, this may imply that one geometric primitive cannot
be inde�nitely large, but must be contained in a proper subset of the surface.
Requiring the algorithms to support real time interaction on large meshes
makes possible to use them via a click-and-drag procedure, just as in the 2D
case. Both of these two requirements have several challenges. On the one hand,
working with a metric di�erent from the Euclidean one implies that most
of the properties on which one relies on the plane are not preserved when
considering a surface, so the conditions under which geometric primitives
admit a well de�ned counterpart in the manifold setting need to be carefully
investigated in order to ensure the robustness of our algorithms. On the other
hand, the building block of most of such algorithms are geodesic paths and
distances, which are known to be expensive operations in computer graphics,
especially if one is interested in accurate results, which is our case.
The purpose of this thesis, is to show how this problem can be addressed

ful�lling all the above requirements. The �nal result will be a Graphical User
Interface (GUI) endowed with all the main tools present in a 2D drawing
system that allow the user to generate geometric primitives on a mesh in
robust manner and in real-time.

v





Acknowledgements

First and foremost, I would like to express my gratitude to my supervisor,
Enrico Puppo, even if I don’t think that I will be able to �nd words that
faithfully describe how grateful I am for his support. Besides the fact that
I owe to him most of the things I learned, his priceless guidance has been
always present during these years, he always encouraged me to pursue my
ideas, being always available for useful discussions and helping me in all the
di�cult moments I encountered.
I am also very grateful to Kai Hormann, which supervised me during my

visiting period in Lugano, at USI (Universitá della Svizzera Italiana). He made
those three months a wonderful experience, in which I learned an incredible
amount of things and had the possibility of meeting wonderful people.

A special thank goes to Fabio Pellacini, being always present in helping me
with my implementations and providing useful advices on every level. The
calls we had were precious moments of this journey.
Part of the merit for achieving this milestone goes to Marco Livesu for his

huge support, especially at the beginning of my PhD. His patience while teach-
ing me most of the things I know about C++ programming was immeasurable.

Special thanks go to Carlo Mantegazza for being always available for useful
discussions during the writing of this thesis and the paper on the cut locus,
his help was crucial in every occasion.

I also would like to thank Pierre Alliez and Marco Tarini for having reviewed
this thesis. Their feedback and suggestions have been very helpful to improve
the presentation.
I am very grateful to my PhD committee, especially to Giuseppe Patané.

He always provided useful comments and feedback at every presentation I
delivered, and was always available to advise me whenever I consulted him.
For the wonderful moments shared during this journey, I am very grate-

ful to my friends and colleagues, both in at DIBRIS and USI. Thank you all.
Among them, special thanks go to Eleonora, Filippo, Davide, Veronica, Vanessa,
Francesco, Federico, and Alexandros.

Last but not least, I would like to thank my family for their love and support.

vii





Contents

Introduction 1

1 Introduction 3
1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Notations and Conventions . . . . . . . . . . . . . . . . . . . . 5

I Preliminaries 7

2 Continuous Setting 9
2.1 Riemannian Manifolds . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Di�erentiable Manifolds . . . . . . . . . . . . . . . . . 12
2.1.2 Riemannian Metric . . . . . . . . . . . . . . . . . . . . 16
2.1.3 A�ne Connection . . . . . . . . . . . . . . . . . . . . 18
2.1.4 Di�erential Operators on Manifolds . . . . . . . . . . 21
2.1.5 Extrinsic setting and choice of the Riemannian metric 23

2.2 Geodesics and Exponential Map . . . . . . . . . . . . . . . . . 24
2.2.1 Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.2 Exponential and Logarithmic Map . . . . . . . . . . . 26

2.3 Curvature and Jacobi Fields . . . . . . . . . . . . . . . . . . . . 29
2.3.1 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.2 Jacobi Fields . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.3 Gauss-Bonnet Theorem . . . . . . . . . . . . . . . . . 33

2.4 Cut Locus and Convexity . . . . . . . . . . . . . . . . . . . . . 35
2.4.1 Cut Locus . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.2 Convexity . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Discrete Setting 41
3.1 Tangent Spaces, Metric and Parallel Transport . . . . . . . . . 42
3.2 Di�erential Operators . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Gradient Field Estimation on Triangle Meshes . . . . . 45
3.2.2 Di�erential Operators: A Uni�ed Framework . . . . . 52
3.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Geodesic Paths and Distances 61
4.1 PDE-based Methods . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 Polyhedral methods . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Shortest and Straightest Paths on Triangle Meshes . . 64
4.2.2 Exact Methods . . . . . . . . . . . . . . . . . . . . . . 68
4.2.3 Graph-Based methods . . . . . . . . . . . . . . . . . . 69

ix



x Contents

4.2.4 Local Methods . . . . . . . . . . . . . . . . . . . . . . 71
4.2.5 Geodesic Tracing . . . . . . . . . . . . . . . . . . . . . 72

4.3 Our approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.1 Locally Shortest Paths Tracing . . . . . . . . . . . . . 74
4.3.2 Geodesic Distance Fields Computation . . . . . . . . . 77

II Geometric primitives on discrete surfaces 79

5 Practical Computation of the Cut Locus on Discrete Surfaces 81
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.1 Cut locus from spanning tree . . . . . . . . . . . . . . 84
5.3.2 Homology . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3.3 Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.4.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Vector Graphics on Surfaces Using Straightedge and Com-
pass Constructions 103
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2.1 Intrinsic Geometry of Surfaces . . . . . . . . . . . . . 104
6.2.2 Vector Graphics . . . . . . . . . . . . . . . . . . . . . . 105

6.3 Basic Straightedge and Compass Constructions in the Plane . 105
6.3.1 The Geodesic Arsenal . . . . . . . . . . . . . . . . . . 106

6.4 Constructions in Tangent Space . . . . . . . . . . . . . . . . . 106
6.4.1 Operations with segments . . . . . . . . . . . . . . . . 107
6.4.2 Operations with angles . . . . . . . . . . . . . . . . . . 108
6.4.3 Perpendicular to a line and the Square-set operator . . 109
6.4.4 Regular Polygons . . . . . . . . . . . . . . . . . . . . . 111
6.4.5 Parallelogram, rhombus and rectangle . . . . . . . . . 113
6.4.6 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.5 Direct Constructions on the Surface . . . . . . . . . . . . . . . 115
6.5.1 Angle bisection . . . . . . . . . . . . . . . . . . . . . . 116
6.5.2 Line segment bisector and midpoint . . . . . . . . . . 117
6.5.3 Circle through three non-collinear points . . . . . . . 117
6.5.4 Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.5.5 Ellipse . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.6 Unresolved Contructions . . . . . . . . . . . . . . . . . . . . . 121
6.7 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.8 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . 126



Contents xi

7 b/Surf: Interactive Bézier Splines on Surface Meshes 127
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.1.1 Curve schemes in the manifold setting . . . . . . . . . 127
7.1.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 128
7.1.3 Computational framework and system . . . . . . . . . 128
7.1.4 Assessment and comparisons . . . . . . . . . . . . . . 129

7.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.3 Bézier Curves on Manifolds . . . . . . . . . . . . . . . . . . . . 132

7.3.1 Preliminaries and notations . . . . . . . . . . . . . . . 132
7.3.2 Extension of the weighted average . . . . . . . . . . . 133
7.3.3 de Casteljau point evaluation . . . . . . . . . . . . . . 134
7.3.4 Bernstein point evaluation with the RCM . . . . . . . 135
7.3.5 Recursive de Casteljau subdivision (RDC) . . . . . . . 135
7.3.6 Open-uniform Lane-Riesenfeld Subdivision (OLR) . . . 137
7.3.7 Limitations . . . . . . . . . . . . . . . . . . . . . . . . 140

7.4 Practical Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 141
7.4.1 Algorithms for the RDC scheme . . . . . . . . . . . . . 141
7.4.2 Algorithms for the OLR scheme . . . . . . . . . . . . . 144

7.5 Implementation and User Interface . . . . . . . . . . . . . . . 145
7.5.1 User interface . . . . . . . . . . . . . . . . . . . . . . . 145

7.6 Results and Validation . . . . . . . . . . . . . . . . . . . . . . . 148
7.6.1 Robustness and performance . . . . . . . . . . . . . . 148
7.6.2 Sensitivity to the input mesh . . . . . . . . . . . . . . 150
7.6.3 Comparison with the state-of-the-art . . . . . . . . . . 153
7.6.4 Interactive use . . . . . . . . . . . . . . . . . . . . . . 158

7.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . 159

8 Concluding Remarks 161
8.1 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161





Introduction





1
Introduction

Software packages for the generation of vector graphics in 2D are available
in many forms nowadays. From the most basic ones, which can be found and
used online, to the more advanced ones, which give the user a wide range of
tools to generate and edit visual images. Such packages are extensively used
in many applications, such as design, engineering and manufacturing. The
concept of geometric primitive is at the core of this technology. Essentially,
geometric primitives are basic geometric shapes that can be used and combined
to generate more complex ones. Such primitives are de�ned in a plane endowed
with the Euclidean metric, together with a Cartesian coordinate system, and
the algorithms to generate them are based on this structure. To �x ideas, a
straight line segment can be traced once its two endpoints are de�ned, since
we have a closed form to describe the other points on it and, of course, in
order to exploit such closed form we need the coordinates of the endpoints in
a common reference system.

The purpose of this thesis is to describe several algorithms that generate the
counterparts of such geometric primitives in a di�erent domain, endowed with
a di�erent metric. In particular, we will no longer consider a plane, but a surface.
In other words, if the plane is the piece of paper on which we are drawing,
then we are concerned in understanding how to turn such piece of paper into
a curved domain, in order to be able to draw on a sphere, for example. It is
important to point out that our strategy will not consist in drawing on the
piece of paper and wrap the paper to form a surface, but rather forget about the
piece of paper (hence all the geometry we were relying on in that setting), and
investigate on how the constructions we were able to do in the planar case can
be extended to the surface setting. The main theoretical problem we will face
in such task is that, when working in a context with a metric di�erent from
the Euclidean one, even the simplest concepts such as a straight line or a circle
do not preserve all their properties. Therefore, one needs to �nd solutions
that guarantee some kind of consistency with their Euclidean counterparts,
and at the same time that are de�ned in an intrinsic way. Roughly speaking,
this means that we de�ne them using just what we have “on the surface”, i.e.
ignoring every other possible technique that takes place in a space di�erent
from our domain. Although being more challenging than working, for example,
in ℝ3 and then �nd a way to map the result onto the surface, this approach
makes our algorithms well de�ned and robust regardless of the surface we are
working on. Some operations may undergo to some constraint imposed by the

3



4 introduction

fact that we are working on a curved domain, but once such constraints are
met, we will be able to generate geometric primitives free of artifacts, being
sure that the �nal result will be consistent with our expectations.
From a computational point of view, our algorithms must be designed

keeping in mind that they need to be e�cient. In fact, we aim at reproducing
the behavior of the 2D drawing systems, where all the operations can be
done via an intuitive click-and-drag procedure, and the result is shown in real
time. For this reason, each of the proposed algorithms for the generation of
primitives in this thesis has been implemented in a way that guarantees the real
time interaction on meshes consisting of fewmillion triangles. This constituted
a challenge mainly for the following reason. In the Euclidean setting, most of
the de�nitions of geometric primitives involves distances and/or straight lines,
both of which can be computed in closed form. Conversely, when considering
two points on a surface, we need to compute their geodesic distance, which
means that we need to �nd the shortest path on the surface connecting them.
Unfortunately, we do not have a closed form for the geodesic distance between
two points, and similarly for the analogue of the straight lines on a surface,
which are called geodesics. The algorithms that compute geodesic paths and
distances are known to be expensive, especially if a certain amount of accuracy
is requested, which is our case. A poor estimation of such quantities may lead
to, e.g., wiggly geodesic circles or broken splines, which is not acceptable.

1.1 Outline
Part I We introduce the theoretical concepts upon which our algorithms
rely and describe how such concepts are brought into a discrete setting. In
doing so, we also review the main state-of-the-art methods and brie�y compare
their results with the ones obtained with our implementations.

Chapter 2 We present background notions of Riemannian geometry
and report the main results that will be exploited in the sequel.

Chapter 3 We describe the data structures used to encode a discrete
surface and the basic tools used in most of our implementations.

Chapter 4 We review themainmethods for the computation of geodesic
paths and distances, and we describe how such quantities are computed
in our setting.

Part II We present our solutions for the problem of de�ning geometric
primitives on a discrete surface. We start by describing an algorithm that
estimates the cut locus of a point on mesh, which will be crucial in determ-
ining whether our construction are well de�ned or not. Algorithms for the
generations of various geometric primitives are then described.

Chapter 5 We describe an algorithm that estimates the cut locus on a
discrete surface. With respect to previous methods in the literature, our
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approach compute an approximation of the cut locus in seconds on large
meshes with arbitrary genus.

Chapter 6 We present di�erent techniques to generate the simplest
geometric primitives on a surface. These techniques are compatible with
real-time interaction and they are integrated in the context of a prototype
interactive system.

Chapter 7 We present two algorithms for the tracing of Bézier curves
on a mesh are presented. We show that such algorithms produce 𝐶1 and
𝐶2 curves for any arbitrary positioning of the control points on the surface.
Such algorithms are integrated to extend our prototype system.

1.2 Notations and Conventions
The terms “smooth” and “di�erentiable” wewill be usedmeaning𝐶∞ continuity.
When this does not cause amibiguities, we will write simply 0 to denote the
origin of ℝ𝑛 . For example, if 𝛼 : [𝑎, 𝑏] → ℝ3 is a curve in the the space, we
will write 𝛼 (𝑡) ≠ 0 meaning 𝛼 (𝑡) ≠ (0, 0, 0), 𝑡 ∈ [𝑎, 𝑏]. Moreover, the list below
describes the main notations that will be used in the following. Note that, the
symbols used in the continuous setting will be used in the discrete setting as
well, with obvious meaning. For example, 𝑇𝑝𝑀 will describe the tangent space
at a point 𝑝 belonging to the triangle mesh𝑀 .

Continuous setting

M, 𝑆 Complete Riemannian 2-manifold

𝑋,𝑌 Vector �elds onM

𝑇𝑝M Tangent space at a point 𝑝 ∈ M

{ 𝜕
𝜕𝑥𝑖

} = {𝜕𝑖} Basis of 𝑇𝑝M corresponding to the local coordinates (𝑥0, 𝑥1)

〈· , ·〉 Euclidean inner product

〈· , ·〉𝑔 Inner product on 𝑇𝑝M

𝑑M (·, ·) Geodesic distance onM

𝑑𝑝 (·) Geodesic distance functions sourced at 𝑝 ∈ M

D(𝑈 ) Set of 𝐶∞ real-valued functions de�ned on𝑈

X(𝑈 ) Set of 𝐶∞ vector �elds de�ned on𝑈

𝛾 Geodesic on M

𝛾𝑝𝑞 Minimizing geodesic connecting 𝑝 to 𝑞, 𝑝, 𝑞 ∈ M

𝐾 Gaussian curvature
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∇𝑋𝑌 Covariant derivative of the vector �eld 𝑌 along the vector �eld 𝑋

𝑑𝑓𝑝 Di�erential of 𝑓 ∈ D(M) at 𝑝 ∈ M

∇𝑓 Riemannian gradient of 𝑓 ∈ D(M)

∇2 𝑓 Second covariant derivative of 𝑓 ∈ D(M)

Hess𝑓 Hessian of 𝑓 ∈ D(M)

𝛥𝑓 Laplacian of 𝑓 ∈ D(M)

Discrete setting

𝑀 Triangle mesh with vertices, edges and triangles denoted by 𝑉 , 𝐸 and
𝑇 , respectively

𝑒𝑖 𝑗 Edge connecting the vertices 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑀

𝑡𝑖 𝑗𝑘 Triangle having vertices 𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑘 ∈ 𝑀

𝜃
𝑗𝑘

𝑖
Angle at 𝑣𝑖 of 𝑡𝑖 𝑗𝑘

S(𝑣) Star (region) of the vertex 𝑣 ∈ 𝑀

N(𝑣) 1-ring (vertices) of the vertex 𝑣 ∈ 𝑀

𝐿𝑘 (𝑣) Link of the vertex 𝑣 ∈ 𝑀
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2
Continuous Setting

In this chapter the theoretical context inwhichmost of the algorithms proposed
in this thesis are de�ned is presented. Since the objects targeted by such
algorithms are discrete surfaces (meshes), a formal de�nition of what we mean
with “surface” will be introduced. Secondly, we will introduce the concepts
that will allow us to describe the properties of such objects, such as their
curvature at a given point or the length of a curve on them. The properties
we are more interested in are the intrinsic ones, rather than the extrinsic ones.
Before entering the details and giving formal de�nitions, we will elaborate a
bit more on what has just been said by considering two examples that motivate
the theory developed in the following.
Let us consider the unit sphere 𝑆2 in ℝ3 and let 𝑝 be a point on 𝑆2. To �x

ideas, one can think about 𝑆2 as the surface of the earth and at 𝑝 as our position
on it. Then, it is quite simple to convince ourselves that, locally, the surface we
are living on seems �at, with two dimensions only. In fact, the maps we use to
navigate the earth are 2-dimensional.When travelling far, wemay need another
map, which overlapswith the onewewere following so that we can switch from
one to the other, but all of them faithfully represent the streets surrounding
us so that it is possible to reach every position on earth relying exclusively on
thesemaps. Let now𝛾 : [𝑎, 𝑏] → 𝑆2 be a di�erentiable curve on 𝑆2, and suppose
that 𝛾 (𝑎) = 𝑝 , where “di�erentiable” means that, if 𝛾 (𝑡) = (𝑥 (𝑡), 𝑦 (𝑡), 𝑧 (𝑡)),
then the functions 𝑥 (𝑡), 𝑦 (𝑡), 𝑧 (𝑡) are di�erentiable. We can think about 𝛾
as a path we need to follow to reach some position 𝛾 (𝑏). Then ¤𝛾 (𝑡) is the
vector tangent to 𝛾 (and hence to 𝑆2) at 𝛾 (𝑡). Therefore, we can think about
¤𝛾 (𝑎) as the direction in which we need to move our �rst step in order to
follow the trajectory de�ned by 𝛾 on 𝑆2. However, ¤𝛾 (𝑡) = ( ¤𝑥 (𝑡), ¤𝑦 (𝑡), ¤𝑧 (𝑡))
is a 3-dimensional vector, which seems quite inconsistent with the fact that
locally our surface is well described by a portion of the plane. Taking a step
further, let us consider ¥𝛾 (𝑡), which geometrically is a vector orthogonal to ¤𝛾 (𝑡)
whose magnitude is equal to the curvature of 𝛾 at 𝑡 . Now we can clearly see
how the excess of information brought by considering 3D vectors to describe
the geometric properties of 𝛾 becomes disturbing when trying to follow its
trajectory on 𝑆2. In fact, the component of ¥𝛾 (𝑡) we are interested in is the one
that gives us information about the entity of the drifts we have to do in order
to be compliant with the direction of ¤𝛾 (𝑡). However, ¥𝛾 (𝑡) encodes also the
curvature due to the fact that 𝛾 is curving to remain on 𝑆2, which is totally
irrelevant to us. Referring to Figure 2.1, we can say that we are interested in

9



10 continuous setting

Figure 2.1: The intrinsic component (green vector) of ¥𝛾 (𝑎)(blue vector) gives inform-
ation about how much 𝛾 is “bending” on the blue plane, while the extrinsic component
(red vector) is the curvature “necessary to keep 𝛾 on 𝑆2”. In fact, its magnitude coin-
cides with the Gaussian curvature of 𝑆2.

the variations that 𝛾 has with respect to the blue plane, i.e. the plane which
¤𝛾 (𝑎) belongs to. The component of ¥𝛾 (𝑎) depicted with a green vector indicates
how much 𝛾 is drifting from the point of view of someone that is standing
on such plane at 𝑝 , while the other one (red vector), is the component due
to the fact that 𝛾 needs to bend in order to stay on the sphere. This latter
component is an extrinsic quantity, while the former is an intrinsic one. In
a nutshell, intrinsic properties “forget” about the embedding space and give
information about what happens on the earth, while extrinsic ones depend
on the ambient space. For this reason, the context in which all the theory
in this chapter will be described is the one of intrinsic geometry, i.e. we will
be interested in what happens on the surface ignoring everything around it.
Nevertheless, sometimes we may consider the extrinsic point of view, since
some concepts may have a more intuitive interpretation when viewed in such
setting. We will point out when this is the case and use di�erent notations in
order to avoid ambiguities.
Let now 𝛼 : [𝑎, 𝑏] → ℝ3 be a regular parametrized di�erentiable curve in

ℝ3, where “regular” means that ¤𝛼 (𝑡) ≠ 0 for every 𝑡 ∈ [𝑎, 𝑏]. Given 𝑡 ∈ [𝑎, 𝑏],
the arc-length of 𝛼 from 𝑎 is by de�nition

𝑠 (𝑡) :=
∫ 𝑡

𝑎

‖ ¤𝛼 (𝑢)‖𝑑𝑢,

where
‖ ¤𝛼 (𝑢)‖2 = 〈 ¤𝛼 (𝑢) , ¤𝛼 (𝑢)〉,

and 〈· , ·〉 is the Euclidean inner product. Supose now that 𝛼 (𝑎) = 𝑝0 and
𝛼 (𝑏) = 𝑝1, where 𝑝0 and 𝑝1 are two points in ℝ3. Then, by Fundamental
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theorem of Calculus we have that

𝛼 (𝑏) − 𝛼 (𝑎) =
∫ 𝑏

𝑎

¤𝛼 (𝑡)𝑑𝑡 .

Therefore, for every unit vector 𝑣 ∈ ℝ3, by the Cauchy-Schwartz inequality
we have that

〈𝑣 , 𝑝1 − 𝑝0〉 = 〈𝑣 , 𝛼 (𝑏) − 𝛼 (𝑎)〉 ≤
∫ 𝑏

𝑎

‖ ¤𝛼 (𝑠)‖𝑑𝑠, (2.1)

Now, by taking 𝑣 = (𝑝1−𝑝0)
‖𝑝1−𝑝0 ‖ and comparing the �rst and the last term of (2.1),

we conclude that every curve connecting 𝑝0 to 𝑝1 has length at least ‖𝑝1 − 𝑝0‖,
which is the Euclidean distance 𝑑𝐸 (𝑝0, 𝑝1) from 𝑝0 to 𝑝1. Of course, the curve
whose length realizes such distance is the straight line 𝑟 (𝑡) = 𝑝0 + 𝑡 (𝑝1 − 𝑝0),
𝑡 ∈ [0, 1], which is unique up to parametrization. Summarizing, we have that
the distance between two points in ℝ3 is equal to the length of the shortest
curve connecting them. The curves in ℝ3 that realize the distance between
any two points on them are straight lines, i.e. curve with zero curvature, and
they are uniquely de�ned once two points on them are �xed. Last but not least,
to give this notion of distance we only used the inner product of ℝ3.

In Section 2.1 the intuitive idea of surface that we previously developed will
be formalized. We will consider a set that can be covered with such charts,
which maps portion of it di�eomorphically to an open set of ℝ2, i.e. a disk.
Upon this de�nition, we will build a framework that will satisfy all the requests
formulated in the examples presented before. This will lead to the de�nition
of Riemannian manifold.
In Section 2.2 we will characterize the curves that realize the distance

between two points on a surface. In fact, since such curves are always the
straightest among all others curves (just as straight lines in ℝ3), we will form-
ally de�ne them. We will then introduce two important mappings that allow
us to consider a local system of coordinates based on this latter de�nition.

In Section 2.3, the concept of curvature will be introduced. We will see that
this quantity can be de�ned as a measure of how much the surface fails to be
locally �at.
We will conclude the chapter with Section 2.4, in which the de�nition of

cut locus of a point and the concept of convexity will be introduced. Both of
these concepts will play an important role in the sequel.
For the sake of simplicity, such de�nitions and all the related results will

be given in the 2-dimensional setting, although they are extendable to 𝑛-
dimensional manifolds. Any further detail about the content of this chapter
can be found in any introductory book to Di�erential Geometry, e.g. [dC92,
Sak97,GHL04].
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2.1 Riemannian Manifolds

2.1 .1 Di�erentiable Manifolds

We will start by formalizing the concepts of local maps or charts de�ned
previously.

definition 2.1 (Local chart): Let M be a Hausdor� topological space. A
pair (𝑈 ,𝜙) of an open set 𝑈 ofM and a homeomorphism 𝜙 : 𝑈 → ℝ𝑚 from
𝑈 to an open set of 𝑅𝑚 is called a (local) chart and 𝑈 is called a coordinate
neighborhood.

We are now ready to give the de�nition of a di�erentiable 2-manifold.
Essentially, such de�nition will consists in requiring that such object must
locally resemble to a portionℝ2, and we will use local charts to formalize what
we mean with “resemble”.

definition 2.2 (Di�erentiable 2-manifold): Let 𝐴 be an indexing set.
Then, if there exists a family {(𝑈𝛼 , 𝜙𝛼 )}𝛼 ∈𝐴 inM such that:

i)
⋃
𝛼 ∈𝐴

𝜙𝛼 (𝑈𝛼 ) = M,

ii) whenever 𝑉 := 𝑈𝛼 ∩𝑈𝛽 ≠ ∅, coordinates transformations
𝜙𝛽 ◦𝜙−1

𝛼 : 𝜙𝛼 (𝑉 ) → 𝜙𝛽 (𝑉 ) are𝐶∞ maps between open subsets of ℝ2 (see
�gure below),

thenM is a di�erentiable (or smooth) manifold of dimension 2 with an atlas
{(𝑈𝛼 , 𝜙𝛼 )}𝛼 ∈𝐴.

Let (𝑢0, 𝑢1) denotes the coordinates in ℝ2. For a chart (𝑈𝛼 , 𝜙𝛼 ), we set
𝑥𝑖𝛼 := 𝑢𝑖 ◦𝜙𝛼 , 𝑖 = 0, 1, which are called local coordinates. In the following, when
we will consider the local coordinates representation of some quantity de�ned
in a neighborhood𝑈 of a point 𝑝 in a manifold M, we will mean that a chart
(𝑈 ,𝜙, 𝑥𝑖) has been �xed. Such an assumption will be pointed out for a while,
and at some point we will freely consider such coordinates implicitly referring
to (𝑈 ,𝜙, 𝑥𝑖).
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At a �rst glance, condition ii) of the theorem above seems to impose more
than what we were looking for. In fact, referring to the example of the sphere
made before, at this stage we only wanted to formalize the idea that 2D maps
can be used to move on 𝑆2. For this purpose, 𝐶0 charts would be enough,
since we are only interested in moving from𝑈𝛼 to𝑈𝛽 and having consistency
between the maps 𝜙𝛼 and 𝜙𝛽 during the transition. In this case, we would say
that M is a topological manifold. However, the direction we wanted to follow
was given by the tangent ¤𝛾 (𝑡) of a given curve 𝛾 , obtained by di�erentiating
the three components of 𝛾 with respect to 𝑡 . In our current setting, we do not
have the possibility of considering (and in particular, di�erentiating) objects
de�ned in the ambient space, since we do not have one anymore. We therefore
assume the smoothness of the local charts in order to exploit it to de�ne the
di�erentiation of functions on the manifold and, in particular, tangent vectors.
For the latter, we are going to consider two di�erent de�nitions: the �rst
one has the purpose of giving an intuitive geometrical idea of what a vector
tangent to a manifold is, the second one will be used when vector �elds will
be introduced.
When we considered the curve 𝛾 on the sphere, we observed that, since

¤𝛾 (𝑎) is a vector tangent to 𝛾 at 𝛾 (𝑎) = 𝑝 , then such vector is also tangent to 𝑆2
at 𝑝 . In fact, it is well known that there is a plane tangent to 𝑆2 at 𝑝 in which
the tangent vectors at 𝑝 of all the curves through 𝑝 are de�ned. It is therefore
reasonable to de�ne the tangent space to a di�erentiable manifold following
this observation. However, since in this setting we cannot freely di�erentiate
the components of 𝛾 as before, we will exploit the di�erentiable structure of
the manifold to consider the tangent vector to a curve at a given point. Let now
𝐼 be an open interval containing 0. A 𝐶∞ map 𝑐 : 𝐼 → M such that 𝑐 (0) = 𝑝 is
called a (𝐶∞) curve through 𝑝 ∈ M.

definition 2.3 (Tangent vector): LetM be a di�erentiable 2-manifold
and let (𝑈 ,𝜙) be a chart around 𝑝 ∈ M. A tangent vector to M at 𝑝 is an
equivalence class of curves 𝑐 : 𝐼 → M, where 𝐼 and 𝑐 are as above, for the
equivalence relation ∼ de�ned by

𝑐 ∼ 𝜎 ⇐⇒ 𝑑

𝑑𝑡

����
𝑡=0

(𝜙 ◦ 𝑐) (𝑡) = 𝑑

𝑑𝑡

����
𝑡=0

(𝜙 ◦ 𝜎) (𝑡) .

The tangent space to M at 𝑝 , denoted with 𝑇𝑝M, is the set of all tangent
vectors to M at 𝑝 . Essentially, a tangent vector 𝜉 ∈ 𝑇𝑝M is represented by
curve 𝑐 and, in order to be able to assess which curves have the same tangent at
𝑝 , we use a chart to make this comparison between vectors inℝ2. Similarly, one
can introduce the concept of a smooth function onM. Let thus 𝑓 : M → ℝ

be a real-valued function on a smooth manifoldM. Then 𝑓 is said to be𝐶∞ at
𝑝 ∈ M if 𝑓 ◦𝜙−1 : 𝜙 (𝑈 ) → ℝ is𝐶∞ at 𝜙 (𝑝), where (𝑈 ,𝜙) are de�ned as above.
Note that, by condition ii), both these latter de�nitions do not depend on the
choice of charts around 𝑝 . In the following, we will denote with F (𝑉 ) the set
of all real-valued functions de�ned on an open set 𝑉 ⊆ M and of class 𝐶∞

everywhere. We also denote with F (𝑝) the family of 𝐶∞ functions de�ned in
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a neighborhood of 𝑝 . We will also denote withD(M) the set of all real-valued
functions de�ned on M that are di�erentiable, and, with obvious meaning of
the notations, we will use D(𝑉 ) and D(𝑝).
Let us now 𝑐 be as above, and let us consider the directional derivative

𝜉 𝑓 := 𝑑
𝑑𝑡

��
𝑡=0 𝑓 (𝑐 (𝑡)) of 𝑓 ∈ F (𝑝), where 𝜉 = ¤𝑐 (0). Such derivative satis�es

𝜉 (𝑎𝑓 + 𝑏𝑔) = 𝑎𝜉 𝑓 + 𝑏𝜉𝑔, 𝜉 (𝑓 𝑔) = 𝑓 (𝑝)𝜉𝑔 + 𝑔(𝑝)𝜉 𝑓 , (2.2)
where 𝑎, 𝑏 ∈ ℝ and 𝑓 , 𝑔 ∈ F (𝑝). The reader may recognize in the above
equations the properties that the usual di�erentiation in the Euclidean setting
satis�es. In fact, the mapping 𝜉 : F (𝑝) → ℝ satisfying (2.2) is called a deriv-
ation of F (𝑝). By de�ning (𝑎𝜉 + 𝑏𝜂) 𝑓 := 𝑎𝜉 𝑓 + 𝑏𝜂𝑓 for derivations 𝜉, 𝜂 and
𝑎, 𝑏 ∈ ℝ, we can identify the tangent space𝑇𝑝M as the space of all derivations
of F (𝑝), which is a vector space. If (𝑈 ,𝜙, 𝑥𝑖) is a chart, then for 𝑝 ∈ 𝑈 we
de�ne 𝜕

𝜕𝑥𝑖
(𝑝) ∈ 𝑇𝑝M (𝑖 = 0, 1) by

𝜕

𝜕𝑥𝑖
(𝑝) 𝑓 :=

(
𝜕

𝜕𝑢𝑖

)
(𝑓 ◦ 𝜙−1) (𝜙 (𝑝)),

where 𝜕
𝜕𝑢𝑖 denotes the partial di�erentiation with respect to the 𝑖-th coordinate.

Then { 𝜕
𝜕𝑥0 (𝑝), 𝜕

𝜕𝑥1 (𝑝)} gives a basis of 𝑇𝑝M for each 𝑝 ∈ M. From now on,
we also write 𝜕

𝜕𝑥𝑖
, or simply 𝜕𝑖 , when this does not cause ambiguity. Now let

𝑇M := ∪𝑝∈M𝑇𝑝M be the set of all tangent vectors toM and 𝜏M : 𝑇M → M
the map that associates 𝑝 to every 𝜉 ∈ 𝑇𝑝M. Then𝑇M carries a 4-dimensional
𝐶∞ manifold structure and 𝜏M is a𝐶∞ map. We call𝑇M the tangent bundle of
M.

With the above notations, a vector 𝜉 ∈ 𝑇𝑝M can be therefore written as

𝜉 = 𝜉𝑖
𝜕

𝜕𝑥𝑖
,

and 𝜉 (𝑓 ), or simply 𝜉 𝑓 as
𝜉 𝑓 = 𝜉𝑖

𝜕𝑓

𝜕𝑥𝑖
.

Here and in the sequel we use the Einstein summation convention that dictates
an implicit sum over indices appearing twice in lower and upper position in
expressions. Thus, 𝜉𝑖 𝜕

𝜕𝑥𝑖
is an abbreviation for

1∑︁
𝑖=0

𝜉𝑖
𝜕

𝜕𝑥𝑖
,

since the index 𝑖 appears in upper position in 𝜉𝑖 and in lower position in 𝜕
𝜕𝑥𝑖

.
The gradient �eld of some 𝑓 ∈ D(M) will play an important role in most

of this thesis. In order to de�ne it, we �rst need to introduce the concept of
vector �eld on a manifold.

definition 2.4 (Vector �eld): LetM be a smooth 2-manifold, and suppose
that every point 𝑝 ∈ M a tangent vector 𝑋𝑝 ∈ 𝑇𝑝M is assigned. If a map

𝑋 : M → 𝑇M
𝑝 ↦→ 𝑋𝑝

is 𝐶∞, then 𝑋 is said to be a (𝐶∞) vector �eld onM.
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We will denote with X(M) the set of all vector �elds on M. The de�nition
of a tangent vector as a derivation is quite convenient to see a vector �eld 𝑋 as
a mapping from D(M) to F (M). In details, with respect to a chart (𝑈 ,𝜙, 𝑥𝑖)
we have the vector �elds 𝜕

𝜕𝑥𝑖
: 𝑞 ↦→ 𝜕

𝜕𝑥𝑖
(𝑞) for every 𝑞 ∈ 𝑈 (𝑖 = 0, 1). Then for

every 𝑋 ∈ X(𝑈 ) and 𝑞 ∈ 𝑈 , 𝑋𝑞 may be written as

𝑋𝑞 = 𝑋 𝑖 (𝑞) 𝜕

𝜕𝑥𝑖
(𝑞),

where𝑋 𝑖 ∈ F (𝑈 ), 𝑖 = 0, 1. We can thus think of𝑋 as a mapping𝑋 : D(M) →
F (M) de�ned as

(𝑋 𝑓 ) (𝑞) = 𝑋 𝑖 (𝑞) 𝜕𝑓
𝜕𝑥𝑖

(𝑞) . (2.3)

Equation (2.3) tells us that 𝑋 is a mapping that associates to every 𝑓 ∈ 𝐷
its directional derivative 𝑋 𝑓 along 𝑋𝑞 ∈ 𝑇𝑞M, for every 𝑞 ∈ M. Note that, if
𝑋 𝑓 ∈ D(M), then it is immediate that 𝑋 is di�erentiable, i.e. 𝑋 : D(M) →
D(M).
Give a function 𝐹 : M → N between two smooth 2-di�erentiable manifolds,

we can now de�ne the di�erential (or pushforward) of 𝐹 at a given point 𝑝 ∈ M
as a mapping between the tangent spaces 𝑇𝑝M and 𝑇𝐹 (𝑝)N . As we de�ned
tangent vectors in two di�erent ways, we will give this de�nition according to
both representations.

definition 2.5 (Di�erential): Let M and N be two smooth manifolds,
and let 𝐹 : M → N be a di�erentiable mapping between them. For every
𝑝 ∈ 𝑀 and for each 𝜉 ∈ 𝑇𝑝M, let 𝛾 : (−𝛿, 𝛿) → M be a smooth curve such
that 𝛾 (0) = 𝑝 and ¤𝛾 (0) = 𝜉 . Let 𝜎 be the image of 𝛾 through 𝐹 , i.e. 𝜎 = 𝐹 ◦ 𝛾 .
Then the linear mapping 𝑑𝐹𝑝 : 𝑇𝑝M → 𝑇𝐹 (𝑝)N given by 𝑑 𝑓𝑝 (𝜉) = 𝑑

𝑑𝑡

��
𝑡=0𝜎 (𝑡)

is called the di�erential of 𝐹 at 𝑝 .

The above de�nition gives a clear geometrical interpretation of the di�er-
ential: the vector tangent to a given curve through 𝑝 is mapped to the vector
tangent to the image of that curve through 𝐹 . However, the interpretation of
tangent vectors as derivations allows us to express the di�erential in local
coordinates, which will be used in the sequel.

With the notations used above, let (𝑈 ,𝜙, 𝑥𝑖) and (𝑉 ,𝜓,𝑦 𝑗 ) be two charts in
𝑝 and 𝐹 (𝑝) = (𝐹 0(𝑥0, 𝑥1), 𝐹 1(𝑥0, 𝑥1)), respectively. Then 𝑑𝐹𝑝 may be de�ned
as

𝑑𝐹𝑝 (𝜉) (𝑔) := 𝜉 (𝑔 ◦ 𝐹 ), 𝑔 ∈ F (𝐹 (𝑝)),
i.e.

𝑑𝐹𝑝 : 𝑇𝑝M → 𝑇𝐹 (𝑝)N

𝜉 = 𝜉𝑖
𝜕

𝜕𝑥𝑖
(𝑝) ↦→ 𝜉𝑖

𝜕𝐹 𝑗

𝜕𝑥𝑖
(𝑝) 𝜕

𝜕𝑦 𝑗
𝐹 (𝑝).

We thus see that the di�erential of 𝐹 at 𝑝 maps a vector 𝜉 ∈ 𝑇𝑝M to a vector
𝑤 ∈ 𝑇𝐹 (𝑝)N such that the components𝑤 𝑗 of𝑤 are the directional derivatives
of the components of 𝐹 along 𝜉 . Note that, if 𝐹 is invertible, the above equation
suggests that 𝑑𝐹 somehow induces a way of computing directional derivatives
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of the functions 𝑔 ∈ D(N). Actually, we already exploited this fact when we
de�ned the basis { 𝜕

𝜕𝑥0 (𝑝), 𝜕
𝜕𝑥1 (𝑝)} of𝑇𝑝M. In fact, such vectors can be written

as
𝜕

𝜕𝑥𝑖
(𝑝) = 𝑑𝜙 (𝑝)𝜙

−1
(
𝜕

𝜕𝑢𝑖

)
,

i.e. we used the image of the basis of𝑇𝜙 (𝑝)ℝ
2 through the di�erential of 𝜙−1 to

de�ne the basis of 𝑇𝑝M. See Figure 2.2.

Figure 2.2: The di�erential of 𝜙−1 at 𝜙 (𝑝) maps 𝜕
𝜕𝑢𝑖 to 𝜕

𝜕𝑥𝑖
, 𝑖 = 0, 1.

We conclude this section by giving the de�nition of integral curve of a
vector �eld.

definition 2.6 (Integral curve): Given a vector �eld 𝑋 onM and 𝑝 ∈ M,
a curve 𝑐 : (−𝛿, 𝛿) → M such that 𝑐 (0) = 𝑝 is called an integral curve of 𝑋
through 𝑝 is 𝑋𝑐 (𝑡 ) = ¤𝑐 (𝑡) holds everywhere.

2.1 .2 Riemannian Metric

If we think again at the example made at the beginning of this chapter in which
we considered a curve 𝛾 on 𝑆2, we realize that we have now all the ingredients
to de�ne 𝑆2, 𝛾 (𝑡) and ¤𝛾 (𝑡) without relying on the framework provided by the
embedding space ℝ3. However, we did not make any progress in terms of
measuring the length of a curve. This in fact would allow us to de�ne the
distance 𝑑M (𝑝, 𝑞) between two points 𝑝, 𝑞 on a manifoldM as the length of
the shortest curve connecting them, similarly to what we have seen in the
Euclidean case. The �rst step in this direction will be the de�nition of a scalar
product between the vectors tangent toM. Such product will induce a norm
that can be used to measure the length of a curve on M. The main di�erence
with respect to the Euclidean case though, is that now vectors tangent toM at
two di�erent points 𝑝, 𝑞 ∈ M belong to di�erent tangent spaces, namely𝑇𝑝M
and 𝑇𝑞M. We thus need to de�ne an inner product on each tangent space, i.e,
a Riemannian metric onM.
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definition 2.7 (Riemannian metric): Let M be a smooth manifold. If
for every point 𝑝 ∈ M an inner product 𝑔𝑝 is assigned to 𝑇𝑝M such that the
functions

𝑔(𝑋,𝑌 ) : M → ℝ

𝑝 ↦→ 𝑔𝑝 (𝑋𝑝 , 𝑌𝑝)
are of class 𝐶∞ for all 𝑋,𝑌 ∈ X(M), then we call 𝑔 a Riemannian metric on
M and the pair (𝑀,𝑔) a smooth Riemannian manifold.

One can show that every di�erentiable manifold may be equipped with a
Riemannian metric.
To �x ideas, the inner product 𝑔𝑝 is a positive de�nite, symmetric, bilinear

map 〈· , ·〉𝑝 : 𝑇𝑝M ×𝑇𝑝M → ℝ for every 𝑝 ∈ M. We thus may consider the
norm ‖ · ‖𝑝 of a vector 𝜉 ∈ 𝑇𝑝M de�ned as ‖𝜉 ‖2𝑝 := 〈𝜉 , 𝜉〉𝑝 . When this will
not cause ambiguities, in the following we will simply write ‖𝜉 ‖ and 〈𝜉 , 𝜉〉,
omitting 𝑝 .

Now let (𝑈 ,𝜙, 𝑥𝑖) be a chart onM. Then we can think about the metric as
a positive de�nite symmetric 2 × 2 matrix 𝑔(𝑝) for every 𝑝 ∈ 𝑈 . By denoting
the 𝑖 𝑗 th entry of such matrix with 𝑔𝑖 𝑗 (𝑝), we set

𝑔𝑖 𝑗 (𝑝) = 〈𝜕𝑖 , 𝜕𝑗 〉𝑝 , 0 ≤ 𝑖, 𝑗 ≤ 1.

For any given 𝑝 ∈ 𝑈 , let 𝑣,𝑤 be two vectors in 𝑇𝑝M, then

〈𝑣 ,𝑤〉 = 𝑣𝑇𝑔(𝑝)𝑤 = 𝑔𝑖 𝑗 (𝑝)𝑣𝑖𝑤 𝑗 . (2.4)

We will refer to 𝑔(𝑝) as the local representation of the Riemannian metric (or the
𝑔𝑖 𝑗 of the metric) in the chart (𝑈 ,𝜙, 𝑥𝑖). We denote with 𝑔𝑖 𝑗 (𝑝) the 𝑖 𝑗 th entry
of 𝑔(𝑝)−1. It is important to point out that, although thinking about 𝑔(𝑝) as
matrix is convenient to visualize things, 𝑔(𝑝) is a tensor of type (0, 2), which,
roughly speaking, means that it is a linear mapping that associates to every
pair of tangent vectors belonging to the same tangent space a scalar. For this
reason, in the following we may refer to it also as metric tensor.
We may now consider the length of curves on a Riemannian manifoldM.

Let 𝑐 : [𝑎, 𝑏] → M be a smooth curve onM, we de�ne its length 𝐿(𝑐) by

𝐿(𝑐) =
∫ 𝑏

𝑎

‖ ¤𝑐 (𝑡)‖𝑐 (𝑡 )𝑑𝑡 =
∫ 𝑏

𝑎

〈¤𝑐 (𝑡) , ¤𝑐 (𝑡)〉1/2
𝑐 (𝑡 )𝑑𝑡, (2.5)

and its arc-length by

𝑠 (𝑡) =
∫ 𝑡

𝑎

‖ ¤𝑐 (𝑢)‖𝑐 (𝑢)𝑑𝑢.

If 𝑐 is regular, i.e. ¤𝑐 (𝑡) ≠ 0 for every 𝑡 ∈ [𝑎, 𝑏], the arc-length 𝑠 = 𝑠 (𝑡) is
strictly monotone increasing, since 𝑠 ′(𝑡) = ‖ ¤𝑐 (𝑡)‖ > 0. Denoting by 𝑡 = 𝑡 (𝑠)
its inverse, we get the parametrization of a curve by arc-length, 𝑐 (𝑠) = 𝑐 (𝑡 (𝑠)),
for 0 ≤ 𝑠 ≤ 𝐿(𝑐). Note that in this case we have

‖ ¤̄𝑐 (𝑠)‖ = ‖𝑡 ′(𝑠) ¤𝑐 (𝑡 (𝑠))‖ =




 ¤𝑐 (𝑡 (𝑠)
𝑠 ′(𝑡 (𝑠))





 = 1.

In general, a curve is said to be normal (or parametrized by arc-length) if
‖ ¤𝑐 (𝑡)‖ ≡ 1, and of constant speed (or parametrized proportionally to arc-length)
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if ‖ ¤𝑐 (𝑡)‖ is constant. In the following, we will always assume a given curve to
be regular.
Let now C𝑝𝑞 be the set of all curves joining 𝑝 to 𝑞 onM. We de�ne

𝑑M (𝑝, 𝑞) := inf{𝐿(𝛾) : 𝛾 ∈ C𝑝𝑞}. (2.6)

Whenever this does not cause ambiguity, wemay simply write𝑑 (𝑝, 𝑞), omitting
the index M. One can show that the distance function de�ned above satis�es
the usual axioms, i.e., for all 𝑝, 𝑞, 𝑟 ∈ M we have

i) 𝑑 (𝑝, 𝑞) ≥ 0 and 𝑑 (𝑝, 𝑞) > 0 if 𝑝 ≠ 𝑞,
ii) 𝑑 (𝑝, 𝑞) = 𝑑 (𝑞, 𝑝),
iii) 𝑑 (𝑝, 𝑞) ≤ 𝑑 (𝑝, 𝑟 ) + 𝑑 (𝑟, 𝑞) .

2.1 .3 A�ne Connection

When we considered the shortest curve between two points inℝ3, we observed
that such curve had to be a straight line, i.e. a curve with null curvature
everywhere. We would like to make a similar assessment concerning the
curves in C𝑝,𝑞 , for 𝑝, 𝑞 ∈ M. However, the fact that vectors tangent to a
manifold at two di�erent points belong to di�erent spaces is a problem also
in this case. To understand why, let us consider a vector �eld 𝑋 on ℝ3 and a
vector 𝜉 at 𝑝 ∈ ℝ3. Then, to study how 𝑋 varies in a neighborhood of 𝑝 along
direction 𝜉 one must compute

lim
𝑡→0

𝑋 (𝑝 + 𝑡𝜉) − 𝑋 (𝑝)
𝑡

. (2.7)

Since ℝ3 is a manifold, we have that 𝑋 (𝑝 + 𝑡𝜉) belongs to 𝑇𝑝+𝑡𝜉ℝ3 and 𝑋 (𝑝) ∈
𝑇𝑝ℝ

3. However, for each 𝑝 ∈ ℝ3, 𝑇𝑝ℝ3 can be canonically identi�ed with
𝑇0ℝ

3 � ℝ3, so we can freely add and subtract vectors tangent at di�erent
points because, with a slight abuse, we can say that the tangent space at every
point in ℝ3 is ℝ3 itself. Note that this is the same thing we do when we think
ofℝ3 as a�ne space. In fact, when we considered the quantity ¥𝛾 (𝑡) it was clear
what we meant and that such quantity was well-de�ned. However, when we
consider a generic Riemannian manifoldM, in order to compute the curvature,
or the acceleration of a given curve 𝛾 , we need a way to map, or connect, the
tangent space at a point to the tangent space at any neighboring point. This
leads us to the following

definition 2.8 (A�ne connection): An a�ne connection ∇ on a smooth
manifoldM is a mapping

∇ : X(M) × X(M) → X(M)
(𝑋,𝑌 ) ↦→ ∇𝑋𝑌

which satis�es the following properties:

i) ∇𝑓 𝑋+𝑔𝑌𝑍 = 𝑓 ∇𝑋𝑍 + 𝑔∇𝑌𝑍
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ii) ∇𝑋 (𝑌 + 𝑍 ) = ∇𝑋𝑌 + ∇𝑋𝑍

iii) ∇𝑋 (𝑓 𝑌 ) = 𝑓 ∇𝑋𝑌 + 𝑋 (𝑓 )𝑌

where 𝑋,𝑌, 𝑍 ∈ X(M) and 𝑓 , 𝑔 ∈ 𝐷 .

In order to better understand this latter concept, let us consider two vector
�elds 𝑋 = 𝑋 𝑖𝜕𝑖 and 𝑌 = 𝑌 𝑗 𝜕𝑗 , 𝑋,𝑌 ∈ X(M), and let us compute ∇𝑋𝑌 .

∇𝑋𝑌 = ∇𝑋 𝑖𝜕𝑖𝑌
𝑗 𝜕𝑗

= 𝑋 𝑖∇𝜕𝑖

(
𝑌 𝑗 𝜕𝑗

)
i)

= 𝑋 𝑖𝑌 𝑗∇𝜕𝑖 𝜕𝑗 + 𝑋 𝑖𝜕𝑖 (𝑌 𝑗 )𝜕𝑗 ii) and iii)

Note that ∇𝜕𝑖 𝜕𝑗 measures how much 𝜕𝑗 varies when we move in the direction
𝜕𝑖 . We can thus express this in terms of the basis {𝜕0, 𝜕1} and set ∇𝜕𝑖 𝜕𝑗 = 𝛤

𝑘
𝑖 𝑗 𝜕𝑘 .

We can conclude that

∇𝑋𝑌 = (𝑋 (𝑌𝑘 ) + 𝛤𝑘𝑖 𝑗𝑋 𝑖𝑌 𝑗 )𝜕𝑘 . (2.8)

Therefore, the covariant derivative ∇𝑋𝑌 at 𝑝 ∈ M is a vector belonging to
𝑇𝑝M whose coe�cients in the basis of 𝑇𝑝M consist in two terms: the �rst
one is the usual derivative of a vector �eld along another one, the second one
keeps into account that we are on a curved domain, and hence measures how
basis vectors change when we move in a given direction. We will see that, in
the Euclidean case, the (di�erentiable) functions 𝛤𝑘𝑖 𝑗 , called Christo�el symbol,
are identically zero, con�rming that the a�ne connection is a generalization
of the usual di�erentiation of vector �elds in the Euclidean setting.
It is possible that, so far, the way in which an a�ne connection connects

tangent spaces is not so transparent. To make this more clear, we are going to
show that an a�ne connection leads to a bona �de de�nition of parallelism
between vectors. First, we introduce the concept of a vector �eld along a curve,
and then we use the a�ne connection to characterize those vector �elds that
have null covariant derivative with respect to the tangent vectors of the curves
along which they are de�ned.

definition 2.9 (Vector �eld along a curve): A vector �eld 𝑌 along a
smooth curve 𝑐 : [𝑎, 𝑏] → M is a 𝐶∞ mapping that associates to every
𝑡 ∈ [𝑎, 𝑏] a tangent vector 𝑌 (𝑡) ∈ 𝑇𝑐 (𝑡 )M. 𝑌 is di�erentiable in the sense that,
for any 𝑓 ∈ D(M), the function 𝑡 ↦→ 𝑌 (𝑡) 𝑓 is di�erentiable on [𝑎, 𝑏].

We can then compute the covariant derivative of 𝑌 (𝑡) with respect to ¤𝑐 (𝑡).
Such quantity will be denoted with ∇ ¤𝑐𝑌 , and it is convenient to express it in
local coordinates. By choosing a chart (𝑈 ,𝜙, 𝑥𝑖), we have that

∇ ¤𝑐𝑌 =

(
𝑑𝑌𝑘

𝑑𝑡
+ 𝛤𝑘𝑖 𝑗

𝑑𝑥𝑖

𝑑𝑡
𝑌 𝑗

)
𝜕𝑘 , (2.9)

where we set 𝑌 (𝑡) = 𝑌 𝑖𝜕𝑖 (𝑐 (𝑡)) and 𝑥𝑖 (𝑡) = 𝑥𝑖 (𝑐 (𝑡)).
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definition 2.10 (Parallel vector along a curve): Let 𝑌 (𝑡) a vector �eld
along a smooth curve 𝑐 : [𝑎, 𝑏] → M. We say that 𝑌 (𝑡) is parallel along 𝑐 if
∇ ¤𝑐𝑌 is identically null.

By writing the condition ∇ ¤𝑐𝑌 ≡ 0 with respect to a chart, one can prove the
following

proposition 2.11 : With 𝑐 as above, let 𝑌𝑎 be a vector in 𝑇𝑐 (𝑎)M. Then
there exists a unique parallel vector �eld 𝑌 along 𝑐 , called the parallel transport
of 𝑌𝑎 along 𝑐 , such that 𝑌 (𝑎) = 𝑌𝑎 .

The parallel transport can thus be seen as a map 𝑃𝑡0,𝑡1𝑐 : 𝑇𝑐 (𝑡0)M → 𝑇𝑐 (𝑡1)M,
where 𝑡0, 𝑡1 ∈ [𝑎, 𝑏], such that 𝑃𝑡0,𝑡1𝑐 (𝜉) is 𝑌 (𝑡1), where 𝜉 ∈ 𝑇𝑐 (𝑡0) and 𝑌 is
the parallel transport of 𝜉 along 𝑐 . This latter interpretation allows us to
express the covariant derivative in terms of the parallel transport. Namely, for
𝑋,𝑌 ∈ X(M) and a smooth curve 𝑐 (𝑡) onM with 𝑐 (0) = 𝑝 and ¤𝑐 (0) = 𝑋𝑝 , we
have that

(∇𝑋𝑌 )𝑝 = lim
𝑡→0

𝑃
𝑡,0
𝑐 (𝑌𝑐 (𝑡 ) ) − 𝑌𝑝

𝑡
. (2.10)

By comparing the above equation with Eq. (2.7), we see how the de�nition
of an a�ne connection on M allowed us to compare vectors belonging to
di�erent tangent spaces and hence to compute their derivatives with respect
to other vectors.
De�nition 2.8 suggests that, given a manifold M, the choice of the a�ne

connection which endowM with is not unique. However, an important result
states that, for each Riemannian metric on a manifold, there is a unique a�ne
connection, called the Levi-Civita connection, which satis�es certain two
properties. The �rst one is the compatibility with the metric:

definition 2.12 (Compatibility with the metric): Let (M, 𝑔) be a Rieman-
nian manifold. An a�ne connection ∇ on M is said to be compatible with the
metric 𝑔 if, for any 𝑋,𝑌, 𝑍 ∈ X(M), we have

𝑋 〈𝑌 , 𝑍 〉𝑔 = 〈∇𝑋𝑌 , 𝑍 〉𝑔 + 〈𝑌 ,∇𝑋𝑍 〉𝑔 .

Roughly speaking, we can say that a connection is compatible with the
metric if we can di�erentiate the product of two vector �elds by applying the
usual product rule. The second property involves just the connection, and it
requires the latter to be symmetric in some sense. A connection satisfying such
property is also called torsion-free. We do not enter the detail for brevity, and
refer to [Sak97,dC92] for a formal de�nition. The Fundamental Theorem of
Riemannian geometry states that for each Riemannian metric, there is a unique
connection ∇ which is both torsion-free and compatible with the metric. Such
connection is called the Levi-Civita connection or the Riemannian connection.
From now on, ∇ will always indicate such connection.
One can show that the compatibility with metric of a connection implies

that 𝛤𝑘𝑖 𝑗 = 𝛤𝑘𝑗𝑖 . In particular, one can also show that the Christo�el symbols can
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be express in terms of the local representation of the metric in the following
way

𝛤𝑘𝑖 𝑗 =
1
2𝑔

𝑘𝑚 (𝜕𝑖𝑔 𝑗𝑚 + 𝜕𝑗𝑔𝑚𝑖 − 𝜕𝑚𝑔𝑖 𝑗 ), (2.11)

where we remember that 𝑔𝑘𝑚 is the 𝑘𝑚th entry of the inverse of 𝑔, and that
𝜕𝑖 =

𝜕
𝜕𝑥𝑖

.

2.1 .4 Di�erential Operators on Manifolds

We will now introduce the de�nition of the di�erential operators that we will
use in the sequel. For every one of them, we will present their expression in
terms of the Riemannian metric, since it will be used when implementing them
in the discrete setting.

definition 2.13 (Gradient): Let 𝑓 ∈ D(M). The gradient vector ∇𝑓 of 𝑓
is the unique vector �eld in X(M) satisfying

〈∇𝑓 , 𝑋 〉 = 𝑋 (𝑓 ), 𝑋 ∈ X(M).

By �xing 𝑝 ∈ M and putting (∇𝑓 )𝑝 = 𝑦𝑖
𝜕𝑓

𝜕𝑥𝑖
, by Eq. (2.3) and (2.4), we can

re-write the de�nition of ∇𝑓 above in the following way

𝑔𝑖 𝑗𝑦
𝑖𝑋 𝑗 = 𝑋 𝑗 𝜕𝑓

𝜕𝑥 𝑗
,

which means that
(∇𝑓 )𝑝 = 𝑔𝑖 𝑗

𝜕𝑓

𝜕𝑥 𝑗

𝜕

𝜕𝑥𝑖
, (2.12)

where we omit the dependence from 𝑝 to keep a light notation.

definition 2.14 (Second Covariant Derivative): Let 𝑓 ∈ D(M). The
second covariant derivative of a real-valued function 𝑓 is the bilinear operator
de�ned by

∇2 𝑓 (𝑋,𝑌 ) = 〈∇𝑋∇𝑓 , 𝑌 〉 = 𝑋𝑌 𝑓 − (∇𝑋𝑌 ) 𝑓 , 𝑋 ∈ X(M).

Therefore, the second covariant derivative associates to each pair of vectors
𝑋𝑝 , 𝑌𝑝 ∈ 𝑇𝑝M the covariant derivative of the gradient of 𝑓 along 𝑋𝑝 , and
compute its component along 𝑌𝑝 . However, to retrieve its expression in local
coordinates it is convenient to use the other expression. Let 𝑋 = 𝑋 𝑖 𝜕

𝜕𝑥 𝑗 and
𝑌 = 𝑌 𝑗 𝜕

𝜕𝑥 𝑗 , then, by (2.3), (2.8) and the chain rule, we have

𝑋𝑌 𝑓 − (∇𝑋𝑌 ) 𝑓 = 𝑋 (𝑌 𝑗 𝜕𝑓

𝜕𝑥 𝑗
) −

(
(𝑋 (𝑌𝑘 ) + 𝛤𝑘𝑖 𝑗𝑋 𝑖𝑌 𝑗 ) 𝜕

𝜕𝑥𝑘

)
𝑓

= 𝑋 𝑖 𝜕𝑌
𝑗

𝜕𝑥𝑖
𝜕𝑓

𝜕𝑥 𝑗
+ 𝑋 𝑖𝑌 𝑗 𝜕2 𝑓

𝜕𝑥𝑖𝜕𝑥 𝑗
−
(
𝑋 𝑖 𝜕𝑌

𝑘

𝜕𝑥𝑖
+ 𝛤𝑘𝑖 𝑗𝑋 𝑖𝑌 𝑗

) 𝜕𝑓
𝜕𝑥𝑘

.

By simplifying we thus obtain

∇2 𝑓 (𝑋,𝑌 ) = 𝑋 𝑖𝑌 𝑗 𝜕2 𝑓

𝜕𝑥𝑖𝜕𝑥 𝑗
− 𝛤𝑘𝑖 𝑗𝑋 𝑖𝑌 𝑗 𝜕𝑓

𝜕𝑥𝑘
.
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Therefore, when 𝑋 = 𝜕
𝜕𝑥𝑖

and 𝑌 = 𝜕
𝜕𝑥 𝑗 we have

∇2 𝑓𝑖 𝑗 =
𝜕2 𝑓

𝜕𝑥𝑖𝜕𝑥 𝑗
− 𝛤𝑘𝑖 𝑗

𝜕𝑓

𝜕𝑥𝑘
. (2.13)

definition 2.15 (Convexity of a function): A function 𝑓 ∈ D(M) is
called (strictly) convex if its second covariant derivative is positive semide�nite
(de�nite).

As it will be clear in the following, being able to assess the strictly convexity
of a function on given domain will be important for us, which by the de�nition
above means being able to check the positive de�netess of the second covariant
derivative. In order to do that, it is more convenient to introduce the Hessian
operator, which is as a linear operator from the tangent space 𝑇𝑝M of a point
𝑝 ∈ M into itself. More formally, we will consider the operator Hess : 𝑇𝑝M →
𝑇𝑝M de�ned as

Hess𝑓 (𝑋 ) = ∇𝑋∇𝑓 (𝑝),
i.e., the operator that associate to every vector 𝑋 ∈ 𝑇𝑝M the covariant deriv-
ative of the gradient of 𝑓 with respect to 𝑋 . It follows from the de�nition that
such operator is related to the second covariant derivative by

∇2 𝑓 (𝑋,𝑌 ) = 〈Hess𝑓 (𝑋 ) , 𝑌 〉.
An eigenvalue and an eigenvector of ∇2 𝑓 at a point 𝑝 ∈ M are a number 𝜆
and a vector 𝑋 ∈ 𝑇𝑝M such that for all vectors 𝑌 ∈ 𝑇𝑝M we have

∇2 𝑓 (𝑋,𝑌 ) = 𝜆〈𝑋 ,𝑌 〉.
The above formulas implies that the eigenvalues of ∇2 𝑓 coincides with the
ones of Hess𝑓 , so to assess its positive-de�netess we may check whether the
eigenvalues of Hess𝑓 are positive. To do that, we need to express Hess𝑓 (𝑋 ) in
local coordinates. By (2.8), (2.12) and the de�nition of Hess𝑓 we have that

Hess𝑓 (𝑋 ) =
(
𝑋
(
𝑔𝑘ℎ

𝜕𝑓

𝜕𝑥ℎ

)
+ 𝛤𝑘𝑖 𝑗𝑋 𝑖𝑔 𝑗ℎ

𝜕𝑓

𝜕𝑥ℎ

)
𝜕𝑘 ,

where 𝑋 = 𝑋 𝑖 𝜕
𝜕𝑥𝑖

. By observing that 𝜕𝑔𝑖 𝑗𝑔
𝑗𝑘

𝜕𝑥ℎ
=

𝜕𝛿𝑘
𝑖

𝜕𝑥ℎ
= 0 and applying the

product rule, we have that
𝜕𝑔𝑘ℎ

𝜕𝑥𝑖
= −𝑔𝑘𝑚𝜕𝑖𝑔𝑚𝑗𝑔

𝑗ℎ,

which once substituted in the expression of Hess𝑓 (𝑥) above gives

Hess𝑓 (𝑋 ) =
(
− 𝑔𝑘𝑚𝜕𝑖𝑔𝑚𝑗𝑔

𝑗ℎ 𝜕𝑓

𝜕𝑥ℎ
+ 𝑔𝑘ℎ 𝜕2 𝑓

𝜕𝑥ℎ𝜕𝑥𝑖
+ 𝛤𝑘𝑖 𝑗𝑔 𝑗ℎ

𝜕𝑓

𝜕𝑥ℎ

)
𝑋 𝑖𝜕𝑘 . (2.14)

In Section 3.2 we will see how the above formula will permit us to e�ciently
compute Hess𝑓 (𝑋 ) in the discrete setting.

definition 2.16 (Laplacian): Let 𝑓 ∈ D(M). We de�ne the Laplacian of
𝑓 as the trace of the second covariant derivative, namely

𝛥𝑓 = 𝑡𝑟∇2 𝑓 = 𝑔𝑖 𝑗∇2 𝑓𝑖 𝑗 ,
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where we do not justify the last equality since we would need the de�nition
of tensor. However, this implies that, in local coordinates, the Laplacian may
be written as

𝛥𝑓 = 𝑔𝑖 𝑗
𝜕2 𝑓

𝜕𝑥𝑖𝜕𝑥 𝑗
− 𝑔𝑖 𝑗𝛤𝑘𝑖 𝑗

𝜕𝑓

𝜕𝑥𝑘
. (2.15)

2.1 .5 Extrinsic setting and choice of the Riemannian metric

So far, we have been able to introduce all the basic quantities onM mentioned
at the beginning of this chapter: tangent vectors, a metric, and a way of
di�erentiating vectors with respect to other vectors, which, as we will see
in the next section, will allow us to de�ne the curvature of a curve onM in
an intrinsic manner. Moreover, all these quantities have been introduced by
relying exclusively on the charts that the coverM, so all these quantities are
intrinsic. Even if our interest will remain focused exclusively on this kind of
properties, in order to have a geometrical interpretation, it is often practical
to consider M as embedded surface in ℝ3. Note that, when we will move
to the discrete setting, we will always consider this kind of objects, so it is
appropriate to formally introduce them.

definition 2.17 (Embedded surface): Let 𝑆 be a subset ofℝ3. We say that
𝑆 is an embedded surface if for every 𝑝 ∈ 𝑆 there exists a chart (𝑈 ,𝜙) for ℝ3

such that 𝑝 ∈ 𝑈 and 𝜙 (𝑈 ∩ 𝑆) = 𝑉 × {0}, where 𝑉 ⊂ ℝ2.

Note that, in the above de�nition, we are considering ℝ3 as a di�erentiable
manifold, so 𝜙 is the identity map. It is convenient to introduce the following
notations. Let {𝑈𝛼 , 𝜙𝛼 }𝛼 ∈𝐴 be a covering atlas for ℝ3. By the above de�nition,
we can say that, if 𝑆 is an embedded surface, then 𝜙𝛼 (𝑆∩𝑈𝛼 ) can be seen as the
intersection of a plane with 𝜙𝛼 (𝑈𝛼 ) for every 𝛼 ∈ 𝐴, so it is possible to endow
𝑆 with the di�erentiable structure {𝑆 ∩𝑈𝛼 , 𝜙𝛼

��
𝑆∩𝑈𝛼

}𝛼 ∈𝐴. For practical reasons,
if𝑉𝛼 := 𝜙𝛼 (𝑆 ∩𝑈𝛼 ), it is convenient to consider the mapping 𝑥𝛼 : 𝑉𝛼 → 𝑆 ∩𝑈𝛼 .
In the following we will call 𝑥𝛼 a parametrization in a neighborhood of 𝑝 ∈ 𝑉𝛼 ,
and we will denote the coordinates in its domain to be (𝑢, 𝑣). In the following,
𝑆 will always denote an embedded surface of 𝑅3. One can show that the
tangent space 𝑇𝑝𝑆 at a point 𝑝 ∈ 𝑆 is a 2-dimensional vector subspace of
𝑇𝑝ℝ

3(i.e. a plane), having basis {𝑥𝑢, 𝑥𝑣}, where 𝑥 : 𝑉 → 𝑆 is a parametrization
of 𝑆 in a neighborhood of 𝑝 [Lee19, Proposition 5.8]. It is reasonable to ask
ourselves which metric we should endow 𝑆 with. The most natural choice is
to use the induced metric. In fact, since two tangent vectors 𝑣0, 𝑣1 ∈ 𝑇𝑝𝑆 are in
particular vectors of 𝑇𝑝ℝ3, a natural choice is to use the product of𝑇𝑝ℝ3 � ℝ3

as Riemannian metric, i.e. the usual Euclidean inner product 〈· , ·〉.
The fact that every point 𝑝 ∈ 𝑆 admits a tangent plane 𝑇𝑝𝑆 suggests that

one can consider the normal vector to such plane at 𝑝 . By de�ning

𝑁 (𝑞) := 𝑥𝑢 ∧ 𝑥𝑣
‖𝑥𝑢 ∧ 𝑥𝑣 ‖

(𝑞), 𝑞 ∈ 𝑥 (𝑉 ),
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we thus obtain a di�erentiable �eld of unit normal vectors on 𝑥 (𝑉 ). We will say
that, if 𝑆 admits a di�erentiable �eld of unit normal vector on the whole surface,
then 𝑆 is orientable, and the choice of such �eld 𝑁 is called an orientation of 𝑆 .
From now on, we will assume that 𝑆 is orientable. We can thus de�ne a map
𝑁 : 𝑆 → ℝ3 that takes its values in the unit sphere

𝑆2 = {𝑥 ∈ ℝ3 : ‖𝑥 ‖ = 1}.
We will call 𝑁 the Gauss Map of 𝑆 .

definition 2.18 (Orthogonal parametrization): Let 𝑥 : 𝑉 → 𝑆 a paramet-
rization of a neighborhood of 𝑝 ∈ 𝑆 . Then we de�ne the following quantities

𝐸 := 〈𝑥𝑢 , 𝑥𝑢〉, 𝐹 := 〈𝑥𝑢 , 𝑥𝑣〉, 𝐺 := 〈𝑥𝑣 , 𝑥𝑣〉.
Moreover, we will say that 𝑥 is an orthogonal parametrization if 𝐹 = 0.

2.2 Geodesics and Exponential Map

2.2 .1 Geodesics

As done before, we start this section by considering the examples made at
the beginning of this chapter and commenting on the progress made so far.
Let us then consider the covariant derivative ∇ ¤𝑐𝑌 of a vector �eld 𝑌 along
𝑐 , introduced in the previous section. Then, the choice 𝑌 (𝑡) = ¤𝑐 (𝑡) suggests
that ∇ ¤𝑐 ¤𝑐 must somehow be related to the curvature or the acceleration of the
curve 𝑐 (𝑡). To have a geometric interpretation of this vector, it is convenient
to switch to the extrinsic setting.
Let us start by formalizing the discussion made about the curve 𝛾 (𝑡) :

[𝑎, 𝑏] → 𝑆2 introduced at the beginning of this chapter. In order to put
ourselves in a more general context, we now assume 𝛾 : [𝑎, 𝑏] → 𝑆 to be
a curve on a generic surface 𝑆 ⊂ ℝ3. Suppose that 𝛾 is parametrized by arc-
length, so that ¤𝛾 (𝑡) has unit length for every 𝑡 ∈ [𝑎, 𝑏]. Let 𝑁 : [𝑎, 𝑏] → 𝑆2 be
the restriction of the Gauss map to 𝛾 (𝑡). For every 𝑡 ∈ [𝑎, 𝑏], let us denote with
𝑛(𝑡) := ¤𝛾 (𝑡) ∧ 𝑁 (𝑡) the vector normal to 𝛾 at 𝑡 . Then ¥𝛾 (𝑡) can be decomposed
into two scalar components(see Figure 2.3)

𝜅𝑔 (𝑡) :=< 𝑛(𝑡), ¥𝛾 (𝑡) >
𝜅𝑁 (𝑡) :=< 𝑁 (𝑡), ¥𝛾 (𝑡) >,

so that
¥𝛾 (𝑡) = 𝜅𝑔 (𝑡)𝑛(𝑡) + 𝜅𝑁 (𝑡)𝑁 (𝑡) .

Note that, since 𝑛(𝑡) is orthogonal to 𝑁 (𝑡), 𝑛(𝑡) belongs to 𝑇𝛾 ()𝑡𝑆 . Therefore,
𝑘𝑔 (𝑡), called geodesic curvature, measures how much 𝛾 is bending on 𝑆 , which
is exactly the quantity we were interested in (i.e. the green vector in Figure
2.1). Then one can de�ne the covariant derivative of ¤𝛾 (𝑡) at 𝑡 , which, when
working in the extrinsic setting, is usually denoted with 𝐷 ¤𝛾

𝑑𝑡
, as the projection

of ¥𝛾 (𝑡) into the plane tangent to 𝑆 at 𝛾 (𝑡), namely
𝐷 ¤𝛾
𝑑𝑡

= 𝜅𝑔 (𝑡)𝑛(𝑡) .
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Figure 2.3: The curvature ¥𝛾 can be decomposed in two components: 𝜅𝑔, which
measures how much 𝛾 is bending on M, and 𝜅𝑁 , which measures how much 𝛾 is
bending with M.

The geometric interpretation of ∇ ¤𝑐 ¤𝑐 made above suggests that one could
introduce a notion of “straightness” of curves on a manifold. In fact, since
in our setting ∇ ¤𝑐 ¤𝑐 is the only de�nition of curvature we have for a curve, it
seems reasonable to have a de�nition for the curves that has null curvature
everywhere, just as straight lines in the Euclidean setting. These curves are
called geodesics.

definition 2.19 : Let 𝛾 be a 𝐶2 curve on a Riemannian manifoldM. If

∇ ¤𝛾 ¤𝛾 (𝑡) ≡ 0, (2.16)

then 𝛾 is called a geodesic.

If 𝛾 : [0, 1] → M, then Eq. (2.16) implies that ¤𝛾 (𝑡) = 𝑃
0,𝑡
𝛾 ( ¤𝛾 (0)), which

means that the vector tangent to 𝛾 at 𝑡 is just the parallel transport of ¤𝛾 (0), i.e.
𝛾 proceeds straight. A curve satisfying such property is also called auto-parallel.
With respect to chart (𝑈 ,𝜙, 𝑥𝑖), we have that Eq. (2.16) turns into

𝑑2𝑥𝑖

𝑑𝑡
+ 𝛤𝑘𝑖 𝑗

𝑑𝑥𝑖

𝑑𝑡

𝑑𝑥 𝑗

𝑑𝑡
= 0, 𝑖 = 0, 1, (2.17)

where we set 𝑥𝑖 (𝑡) = 𝑥𝑖 (𝛾 (𝑡)). Confronting the above equation with Eq.(2.9),
one can see that we are imposing the coe�cients of ∇ ¤𝛾 ¤𝛾 in the basis {𝜕0, 𝜕1}
to be zero. Note that, in the Euclidean setting, the 𝑔𝑖 𝑗 of the metric is just the
identity 2 × 2 matrix everywhere; which in turns implies, by (2.11), that the
Christo�el symbols are zero everywhere. Therefore, (2.17) simply tells us that
geodesics in this setting are curve with null second derivatives, i.e. straight
lines.

One can show that, if 𝛾 is a geodesic, then the length of the tangent vector
¤𝛾 is constant, i.e. 𝛾 is parametrized proportionally to arc-length. Moreover, by
using the theory of second order ODE, one can prove the following
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theorem 2.20 (Local existence and uniqueness of a geodesic): LetM be a
Riemannian manifold, 𝑝 ∈ M, 𝑣 ∈ 𝑇𝑝M. Then there exists 𝜀 > 0 and precisely
on geodesic

𝛾 : [0, 𝜀] → M
such that 𝛾 (0) = 𝑝 , ¤𝛾 (0) = 𝑣 . In addition, 𝛾 depends smoothly on 𝑝 and 𝑣 .

We thus see that, locally, geodesics share another property with straight
lines, which is the uniqueness once a starting point and a direction is �xed.

2.2 .2 Exponential and Logarithmic Map

Note that if 𝛾 (𝑡) is a solution of Eq. (2.17), so is 𝛾 (𝜆𝑡) for any constant 𝜆 ∈ ℝ.
Denoting the geodesic of Theorem 2.20 satisfying 𝛾 (0) = 𝑝 , ¤𝛾 (0) = 𝑣 by 𝛾𝑣 , we
have that

𝛾𝑣 (𝑡) = 𝛾𝜆𝑣
(
𝑡

𝜆

)
, 𝜆 > 0, 𝑡 ∈ [0, 𝜀] .

In particular, 𝛾𝜆𝑣 is de�ned on [0, 𝜀
𝜆
]. Since by Theorem 2.20 𝛾𝑣 depends

smoothly on 𝑣 , there exists 𝜀0 > 0 such that for ‖𝑣 ‖ = 1 𝛾𝑣 is de�ned at
least on [0, 𝜀0]. Therefore, for any 𝑤 ∈ 𝑇𝑝M with ‖𝑤 ‖ ≤ 𝜀0, 𝛾𝑤 is de�ned at
least on [0, 1].

definition 2.21 (Exponential map): LetM be a Riemannian manifold,
𝑝 ∈ M, and 𝑉𝑝 := {𝑣 ∈ 𝑇𝑝M : 𝛾𝑣 is de�ned in [0, 1]}. The mapping

exp𝑝 : 𝑉𝑝 → M
𝑣 ↦→ 𝛾𝑣 (1)

is called the exponential map ofM at 𝑝 .

From a geometrical point of view, exp𝑝 (𝑣) associates to every 𝑣 ∈ 𝑇𝑝M
the point obtained by travelling along 𝛾𝑣 (𝑡) for an amount equal to ‖𝑣 ‖𝑝 . To
�x ideas, the straight line segment 𝑟 (𝑡) = 𝑝0 + 𝑡 (𝑝1 − 𝑝0) introduced at the
beginning of this chapter do the same thing in the Euclidean setting. In fact,
𝑟 (𝑡) is a map that associates to each 𝑡 a point 𝑞 obtained by moving from 𝑝0 in
the direction𝑤 := (𝑝1−𝑝0) for an amount 𝑡 · ‖𝑝1−𝑝0‖, where the norm we are
considering is the Euclidean one. One can show [dC92, Proposition 2.9] that the
exponential map exp𝑝 maps a neighborhood 𝑉 of 0 ∈ 𝑇𝑝M di�eomorphically
onto a neighborhood of 𝑝 ∈ M. We can now give the following de�nition:

definition 2.22 (Normal ball): LetM be a Riemannian manifold, 𝑝 ∈ M.
Let𝑉 be the neighborhood of 0 ∈ 𝑇𝑝M within which exp𝑝 is a di�eomorphism.
Then exp𝑝 𝑉 = 𝑈 is called a normal neighborhood of 𝑝 . IfB𝜀 (0) is a ball centered
at 0 ∈ 𝑇𝑝M with radius 𝜀 > 0, such that B𝜀 (0) ⊂ 𝑉 , then exp𝑝 B𝜀 (0) = 𝐵𝜀 (𝑝)
is a normal ball centered at 𝑝 with radius 𝜀.

Let now 𝑒0, 𝑒1 be a basis of 𝑇𝑝M, which is orthornormal with respect to the
inner product 〈· , ·〉𝑝 on 𝑇𝑝M. Expressing each vector 𝑣 ∈ 𝑇𝑝M in terms of
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this basis we obtain a map

𝛷 : 𝑇𝑝M → ℝ2

𝑣 = 𝑣0𝑒0 + 𝑣1𝑒1 ↦→ (𝑣0, 𝑣1)

For the next de�nition, it is convenient to identify 𝑇𝑝M with ℝ2 via𝛷 , and
the reason will be clear soon enough. By what said above, there exists a
neighborhood 𝑈 of 𝑝 which is mapped by exp−1𝑝 di�eomorphically onto a
neighborhood of 0 ∈ 𝑇𝑝M.

definition 2.23 (Normal coordinates): The local coordinates de�ned by
the chart (𝑈 , exp−1𝑝 ) are called (Riemannian) normal coordinates with center 𝑝 .

Note that, by the identi�cation𝑇𝑝M � 𝑅2 via𝛷 , (𝑈 , exp−1𝑝 ) is a proper chart
in the sense of De�nition 2.1. The mapping exp−1𝑝 is also called logarithmic
map at 𝑝 , and it will be denoted with log𝑝 . A geometric interpretation of the
logarithmic map can be as follows. With the notations of above, 𝑣 := log𝑝 (𝑞) is
a vector in𝑇𝑝M such that the uniquely de�ned geodesic 𝛾𝑣 such that 𝛾𝑣 (0) = 𝑝
and ¤𝛾𝑣 (0) = 𝑣 satis�es 𝛾𝑣 (1) = 𝑞, i.e. exp𝑝 (𝑣) = 𝑞, for every 𝑞 ∈ 𝑈 , as in Figure
2.4.

Figure 2.4: The exponential map at 𝑝 associates to a vector 𝑣 ∈ 𝑇𝑝M the point
𝑞 = 𝛾𝑣 (1), while the logarithmic map associates to a point 𝑞 in a neighborhood of 𝑝 a
vector 𝑣 ∈ 𝑇𝑝M which is the tangent vector at 𝑝 of the geodesic joining 𝑝 with 𝑞.

Similarly to what said above about the exponential map, one can see the
logarithmic map as the counterpart of the di�erence between two points 𝑝0, 𝑝1
in the a�ne space ℝ3. In fact,𝑤 := (𝑝1 − 𝑝0) is a vector such that 𝑝0 +𝑤 = 𝑝1.
We state now an important result known as Gauss lemma.

lemma 2.24 (Gauss): Let 𝑝 ∈ M, 𝑣 ∈ 𝑇𝑝M, 𝛾 (𝑡) := exp𝑝 (𝑡𝑣) the geodesic
with 𝛾 (0) = 𝑝 , ¤𝛾 (0) = 𝑣 , 𝑡 ∈ [0, 1]. If 𝑣 is contained in the domain of de�nition
of exp𝑝 , then for any𝑤 ∈ 𝑇𝑝M

〈(𝑑𝑒𝑥𝑝𝑝)𝑣𝑣 , (𝑑𝑒𝑥𝑝𝑝)𝑣𝑤〉 = 〈𝑣 ,𝑤〉,
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where (𝑑𝑒𝑥𝑝𝑝)𝑣 denotes the di�erential of exp𝑝 at 𝑣 , and it is applied to the
vectors 𝑣,𝑤 ∈ 𝑇𝑣𝑇𝑝M � 𝑇𝑝M considered as vectors tangent to 𝑇𝑝M at the
point 𝑣 .

The above lemma implies that exp𝑝 is a radial isometry in the sense that
the length of the radial component of any vector tangent to 𝑇𝑝M is preserved.
Moreover, we have that the image under the exponential map of every ball
centered at 0 ∈ 𝑇𝑝𝑀 , which thus intersect orthogonally the radius, is ortho-
gonal to every radial geodesic.

We want now to relate the de�nition of geodesics to the curves in C𝑝𝑞 that
realize the distance between 𝑝, 𝑞 ∈ M. In other words, since we have seen
that geodesics are curve with zero curvature everywhere, we ask ourselves
whether these curves are the shortest one among all the curves connecting
two arbitrary points on M. For this purpose, it is convenient to introduce the
following terminology.

proposition 2.25 : Let 𝑝 ∈ M, 𝑈 a normal neighborhood of 𝑝 . Then for
every 𝑟 > 0 such that the ball 𝐵 centered at 𝑝 with radius 𝑟 is normal, i.e.
𝐵 ⊂ 𝑈 , and for any 𝑞 ∈ 𝜕𝐵, there exists precisely one minimizing geodesic
from 𝑝 to 𝑞. If 𝑣 = 𝑙𝑜𝑔𝑝 (𝑞), then such geodesic is 𝛾 (𝑡) := 𝑒𝑥𝑝𝑝 (𝑡𝑣), 𝑡 ∈ [0, 1].
Here, “minimizing” means that such curve is the shortest among all the curves
in C𝑝𝑞 , i.e. 𝑑 (𝑝, 𝑞) = 𝐿(𝛾).

The above proposition tells us that every point 𝑝 ∈ M admits a neigh-
borhood𝑈 in which radial geodesics from 𝑝 behave like straight lines in the
following sense. For every 𝑞 ∈ 𝑈 , there exists a unique geodesic (i.e. a curve
with zero curvature) 𝛾 : [0, 1] → M such that 𝛾 (0) = 𝑝 , 𝛾 (1) = 𝑞 and such
that 𝐿(𝛾) = 𝑑 (𝑝, 𝑞). In the following, we will denote such geodesic with 𝛾𝑝𝑞 .
From what said above, it is clear that if a curve 𝑐 realizes the distance between
𝑝 and 𝑞, then 𝑐 is for sure a geodesic, but Proposition 2.25 suggests that not
all geodesics emanated from 𝑝 ∈ M are minimizing. In fact, consider a point
𝑝 on the unit sphere 𝑆2, and let 𝑣 be a vector in its tangent space. Then the
geodesic 𝛾 (𝑡) := exp𝑝 (𝑡𝑣) is a great circle arc on the sphere. However, once
𝛾 (𝑡) cross the antipodal point 𝑞 of 𝑝 , then it is clear that 𝛾 is no longer min-
imizing, since the points “beyond” 𝑞 can be reached with a shorter geodesic
𝜎 := exp𝑝 (𝑡 (𝑣 + 𝜋)), i.e. by going in the opposite direction with respect to 𝑣 .
In Section 2.4.1 we will address the problem of determining the set of points
beyond which a geodesic emanated from a given point is no longer minimizing.
For now, we are interested in stating the conditions under which a minimizing
geodesic can always be found for every choice of 𝑝, 𝑞 ∈ M.

definition 2.26 (Geodesically completeness): A Riemannian manifold
M is geodesically complete if, for all 𝑝 ∈ M, the exponential map exp𝑝 is
de�ned for all 𝑣 ∈ 𝑇𝑝M, i.e. if any radial geodesic 𝛾 (𝑡) from 𝑝 is de�ned for all
values of 𝑡 ∈ ℝ.

An example of a manifold which is not geodesically is ℝ3 \ {0}, since some
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geodesics will hit 0 and thus stop to be de�ned for some 𝑡 . We can now state
the Theorem of Hopf-Rinow.

theorem 2.27 (Hopf-Rinow): LetM be a Riemannian manifold. The fol-
lowing statements are equivalent:

i) M is a complete metric space where the distance function 𝑑 from 𝑝 to 𝑞
in M is de�ned as the minimum lengths of all curves in C𝑝𝑞 .

ii) The closed and bounded sets ofM are compact.
iii) There exists 𝑝 ∈ M for which exp𝑝 is de�ned for every 𝑣 ∈ 𝑇𝑝M.
iv) M is geodesically complete.

Furthermore, any of the above statements imply

v) Any two points 𝑝, 𝑞 ∈ M can be joined by a minimizing geodesic, i.e. by
a geodesic of length 𝑑 (𝑝, 𝑞).

For our purposes, the implication i) =⇒ v) is the most important. Not
that i) is a very natural hypothesis which holds in particular wheneverM is
compact. In the following, if not stated otherwise, we always denote with M
a complete Riemannian manifold.
At this point, we gave all the de�nitions needed to address the problems

raised at beginning of this chapter, which constitute a building block upon
which the theory of the next sections will be presented.

2.3 Curvature and Jacobi Fields
When considering a surface embedded in ℝ3, we have an intuitive notion
of whether a surface is �at or curved. For example, if the implicit form of
such surface is linear, we know that it is �at, while when we think about
a sphere or a torus, we know that they are curved. This intuitive idea of
curvature is expressed by the Gaussian curvature, which will be one of the
main concept of this chapter. Note that, when moving to higher dimensions,
there are several notions of curvatures, that capture aspects of non-linearity
of the manifold with varying details. However, in our setting we only need
to de�ne the Gaussian curvature, which, intuitively measures how much a
Riemannian manifold deviates from being Euclidean, i.e. �at. Let us consider a
point 𝑝 on a Riemannian manifold M. We know from the Gauss Lemma that
the exp𝑝 is a radial isometry, i.e. it preserves lengths along radial geodesics.
It is reasonable to ask ourselves what happens along non-radial directions
or, in other words, if there is way of quantifying how much radial geodesics
“pull away” from each other as they move away from 𝑝 . To investigate this,
we will start by introducing the Riemannian curvature, which will lead to the
de�nition of Gaussian curvature.

We will then introduce special vector �elds (called Jacobi �elds) along radial
geodesics that, roughly speaking, measure how much two nearby geodesic
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Figure 2.5: The Riemannian curvature describe the di�erence in parallel transporting
a vector 𝑍 around an in�nitesimal parallelogram spanned by two vectors 𝑋 and 𝑌 .

spread apart as they move away from their common starting point. This
de�nition will allow to relate the exponential map to the curvature.

We will conclude by stating the Gauss-Bonnet theorem, an important result
that will be helpful to have a geometric interpretation of some de�nitions in
Section 3.1 and to understand the theoretical limitations of some algorithms
in Chapter 6.

2.3 .1 Curvature

definition 2.28 (Riemannian curvature): The Riemannian curvature R
of a Riemannian manifold M is a correspondence that associates to every
𝑋,𝑌 ∈ X(M) a mapping 𝑅(𝑋,𝑌 ) : X(M) → X(M) given by

𝑅(𝑋,𝑌 )𝑍 = ∇𝑋∇𝑌𝑍 − ∇𝑌∇𝑋𝑍 − ∇[𝑋,𝑌 ]𝑍, 𝑍 ∈ X, (2.18)

where [𝑋,𝑌 ] is the Lie bracket [dC92]. Since in this thesis we will always
consider 𝑅(𝑋,𝑌 )𝑍 in cases where [𝑋,𝑌 ] = 0, we can forget about the last term
of the above equation and consider the Riemannian curvature de�ned as

𝑅(𝑋,𝑌 ) = ∇𝑋∇𝑌 − ∇𝑌∇𝑋 .

Keeping in mind the de�nition of covariant derivative through Eq.(2.10), we
see that, when computing ∇𝑋∇𝑌𝑍 , we �rst move 𝑍 by in�nitesimal parallel
transport in the direction 𝑌 and then in the direction 𝑋 , while when forming
∇𝑌∇𝑋𝑍 the order is reversed. The 𝑅(𝑋,𝑌 )𝑍 expresses the di�erence between
parallel transporting 𝑍 along an in�nitesimal parallelogram with sides 𝑋 and
𝑌 , i.e. the dependence of parallel transport on the chosen path. Therefore, we
clearly see that, if M = ℝ2, then 𝑅(𝑋,𝑌 )𝑍 ≡ 0 for every 𝑋,𝑌, 𝑍 ∈ X(M),
since parallel vector �elds in ℝ2 are constant �elds.

definition 2.29 (Gaussian curvature): Given a point 𝑝 on Riemannian
2-manifoldM, the Gaussian curvature 𝐾 at 𝑝 is given by

𝐾 =
〈𝑅(𝜕0, 𝜕1)𝜕1 , 𝜕0〉𝑝

𝐺
, (2.19)
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Figure 2.6: The mapping 𝛼 (𝑡, 𝑠) maps the rays 𝑡𝑣 (𝑠) in 𝑇𝑝M (dotted straight lines)
into geodesics 𝛾𝑠 (dotted black curves) through the exponential map. For illustrative
purposes, we consider only the case 𝑠 ∈ [0, 𝛿].

where 𝑔(𝑝) is the 𝑔𝑖 𝑗of the metric at 𝑝 and 𝐺 denotes its determinant.

A geometric interpretation of the above de�nition could be as follows. We
�rst observe that | 𝑔(𝑝) |= ‖𝜕0‖2‖𝜕1‖2 − 〈𝜕0 , 𝜕1〉 is the squared area of the
parallelogram spanned by 𝜕0 and 𝜕1. From what said before, the numerator
in Eq.(2.19) is the component along 𝜕0 of the di�erence we get when parallel
transporting 𝜕1 along such parallelogram.

2.3 .2 Jacobi Fields

We want now to examine the relationship between curvature and exponential
map. Let 𝑝 ∈ M, and 𝑣,𝑤 ∈ 𝑇𝑝M, where𝑤 ∈ 𝑇𝑣𝑇𝑝M � 𝑇𝑝M. Let us consider
the curve 𝑣 (𝑠) in 𝑇𝑝M de�ned as 𝑣 (𝑠) := 𝑣 + 𝑠𝑤 , 𝑠 ∈ [−𝛿, 𝛿]. Then 𝑣 (𝑠) is
such that 𝑣 (0) = 𝑣 , ¤𝑣 (0) = 𝑤 . Geometrically, one can think of 𝑣 (𝑠) as a fan
of vectors in 𝑇𝑝M spanned by 𝑣 − 𝛿𝑤 and 𝑣 + 𝛿𝑤 . We then de�ne a 𝐶∞ map
𝛼 : [0, 1] × [−𝛿, 𝛿] → M as

𝛼 (𝑡, 𝑠) := exp𝑝 (𝑡𝑣 (𝑠)) = exp𝑝 𝑡 (𝑣 + 𝑠𝑤) .

For each �xed 𝑠 , the curve 𝛾𝑠 : 𝑡 ↦→ 𝛼 (𝑡, 𝑠) is a radial geodesic from 𝑝 such
that ¤𝛾𝑠 (0) = 𝑣 (𝑠). Roughly speaking, the parameter 𝑠 in 𝛼 (𝑡, 𝑠) determine the
direction along which we “shoot” a geodesic and parameter 𝑡 determine the
range of the shot (see Figure 2.6). Let us put 𝐽 (𝑡) := 𝜕𝛼

𝜕𝑠
(𝑡, 0), which is a vector

�eld along 𝛾𝑣 := 𝑒𝑥𝑝𝑝 (𝑡𝑣), 0 ≤ 𝑡 ≤ 1. Note that 𝐽 (𝑡) = (𝑑 exp𝑝)𝑡𝑣𝑡𝑤 and hence,
in particular, 𝐽 (1) = (𝑑 exp𝑝)𝑣𝑤 . We will see that | 𝐽 (𝑡) | gives an estimation
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on how much geodesic spread apart with respect to the rays 𝑡𝑣 (𝑠) in 𝑇𝑝M. By
using the notation ¤𝐽 = ∇ ¤𝛾 𝐽 and ¥𝐽 = ∇ ¤𝛾∇ ¤𝛾 𝐽 , one can show that 𝐽 (𝑡) satis�es

¥𝐽 + 𝑅( ¤𝛾 (𝑡), 𝐽 (𝑡)) ¤𝛾 (𝑡) = 0, (2.20)

which is called the Jacobi equation.

definition 2.30 (Jacobi �eld): Let 𝛾 : [0, ℓ] → M be a geodesic in M. A
vector �eld along 𝛾 is said to be a Jacobi �eld if it satis�es the Jacobi equation
(2.20).

We are now ready to see how curvature and exponential map are related.

proposition 2.31 : If 𝛾 : [0, ℓ] → M is a geodesic parametrized by arc-
length, (i.e., ‖ ¤𝛾 (𝑡)‖ ≡ 1), and 𝐾 is Gaussian curvature at 𝑝 , then

| 𝐽 (𝑡) |= 𝑡 − 1
6𝐾𝑡

3 + 𝑜 (𝑡3), (2.21)

To give a geometric interpretation to the above formula, let us consider
again

𝛼 (𝑡, 𝑠) = 𝑒𝑥𝑝𝑝𝑡𝑣 (𝑠), 𝑡 ∈ [0, 𝜀], 𝑠 ∈ [−𝛿, 𝛿],
where 𝜀 is small enough to guarantee that exp𝑝 𝑡𝑣 (𝑠) is de�ned, and 𝑣 (𝑠) is
a curve in 𝑇𝑝M such that ‖𝑣 (𝑠)‖ = 1, 𝑣 ′(0) = 𝑤 . Let us consider the rays
𝑡 ↦→ 𝑡𝑣 (𝑠), 𝑡 ∈ [0, 𝛿], that start from 0 ∈ 𝑇𝑝M and deviate from the ray
𝑡 ↦→ 𝑡𝑣 (0) with velocity 



( 𝜕𝜕𝑠 𝑡𝑣 (𝑠)) (0)



 = ‖𝑡𝑤 ‖ = 𝑡 .

On the other hand, Eq. (2.21) tells us that geodesics 𝑡 ↦→ exp𝑝 (𝑡𝑣 (𝑠)) deviate
from 𝛾 (𝑡) = 𝑒𝑥𝑝𝑝𝑡𝑣 (0) with a velocity that di�ers from 𝑡 by − 1

6𝐾𝑡
3. This tells

us that, locally, the geodesics spread apart less than the rays in 𝑇𝑝M in the
case 𝐾 > 0, while they deviate from each other faster if 𝐾 < 0. To �x ideas,
an example of the former case are geodesics starting from the north pole of
the sphere. Eventually, they will end up converging on the same point (the
south pole). On the other hand, geodesics starting from the same point on
the Poincarré disk, which are Euclidean circle arcs, pull away from each other
faster than straight lines and never meet. We conclude this section with the
de�nition of conjugate point, which will be needed when we will talk about
the cut locus in Section 2.4.1.

definition 2.32 (Conjugate point): Let 𝛾 : [0, ℓ] → M be a geodesic.
The point 𝛾 (𝑡0) is said to be conjugate to 𝛾 (0) along 𝛾 , 𝑡0 ∈ (0, ℓ], if there exists
a Jacobi �eld 𝐽 along 𝛾 , not identically zero, with 𝐽 (0) = 𝐽 (𝑡0) = 0.

It can be shown that, on manifolds with constant positive curvature 𝐾 , if we
consider two nearby geodesics emanated from the same point 𝑝 (e.g. 𝛼 (𝑡, 𝑠0)
and𝛼 (𝑡, 𝑠0), for some 𝑠0, 𝑠1 ∈ [−𝛿, 𝛿]), then these two geodesics initially diverge,
but then converge again, until they meet at a point, which is called indeed
the �rst conjugate point of 𝑝 . Note that this does not happen on manifold
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with non-positive curvature: if 𝐾 = 0, then straight lines diverge linearly,
while if 𝐾 < 0 it can be shown that they diverge exponentially [Sak97]. As a
concrete example, one may think again at the case of the sphere: if we shoot
two geodesics from the north pole, then eventually these two geodesics will
meet each other at the south pole. In fact, every point 𝑝 on the sphere has
as conjugate point its antipodal point. Conjugate points are crucial in the
de�nition of cut locus, as we will see in Section 2.4.

2.3 .3 Gauss-Bonnet Theorem

In this section, we will state an important result in the di�erential geometry
of surfaces, i.e. the Gauss-Bonnet theorem. We will report such theorem in
its local version, and refer to [dC76]. We will use such result to understand
the theoretical limitations in some algorithms presented in Chapter 6, and to
introduce a discrete notion of curvature at the vertices of a discrete surface
in Section 3.1. Since one of our purpose is having an intuitive de�nition
of curvature, in this section we will take an extrinsic approach, the intrinsic
formulation of the Gauss-Bonnet theorem can be found for example in [Cha06].
This choice will allow us to give an equivalent formulation of (2.19) which
may be more intuitive. In the following, we will therefore use the notations
introduced at the end of Section 2.1.2, and consider a surface 𝑆 embedded in
ℝ3.

Let us consider a continuous mapping𝛾 : [0, ℓ] → 𝑆 from the closed interval
[0, ℓ] to 𝑆 . We will say that 𝛾 is a simple, closed, piece-wise regular, parametrized
curve if the following conditions hold:

i) 𝛾 (0) = 𝛾 (ℓ)
ii) For 𝑡0, 𝑡1 ∈ [0, ℓ), 𝑡0 ≠ 𝑡1 implies 𝛾 (𝑡1) ≠ 𝛾 (𝑡2)
iii) There exists a subdivision

0 = 𝑡0 ≤ 𝑡1 ≤ . . . ≤ 𝑡𝑘 ≤ 𝑡𝑘+1 = ℓ,

of [0, ℓ] such that 𝛾 is di�erentiable and regular (i.e. ¤𝑔𝑎𝑚𝑚𝑎(𝑡) ≠ 0) in
each [𝑡𝑖 , 𝑡𝑖+1], 𝑖 = 0, . . . , 𝑘 .

Essentially, we are requesting 𝛾 to be a closed curve i), that does not self-
intersect ii), which fails to have a well de�ned tangent line only at a �nite
number of points iii). The points 𝛾 (𝑡𝑖) are called vertices of 𝛾 and the traces
𝛾 ( [𝑡𝑖 , 𝑡𝑖 + 1]) are called regular arcs of gamma, 𝑖 = 0, . . . , 𝑘 . It is usual to call
the trace of 𝛾 [0, ℓ] a closed, piece-wise, regular curve. For our purpose, it is
convenient to think about 𝛾 as the boundary 𝜕𝑅 of a region 𝑅 ⊂ 𝑆 , which we
assume to be homeomorphic to a disk. Moreover, we will say that 𝛾 is positively
oriented is for each 𝛾 (𝑡), belonging to a regular arc, the positive orthogonal
basis { ¤𝛾 (𝑡), 𝑛(𝑡)} is such that 𝑛(𝑡) “points toward” 𝑅 or, more precisely, for
any curve 𝛽 : 𝐼 → 𝑅 such that 𝛽 (0) = 𝛾 (𝑡) and ¤𝛽 (0) ≠ ¤𝛾 (𝑡), we have that
〈 ¤𝛽 (0) , 𝑛(𝑡)〉 ≥ 0.
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Let now 𝑥 : 𝑈 → 𝑆 be a parametrization of 𝑆 and let 𝑅 ⊂ 𝑥 (𝑈 ) be a bounded
region of 𝑆 . If 𝑓 is a di�erentiable function on 𝑆 , then it is easily seen that the
integral ∬

𝑥−1 (𝑅)
𝑓 (𝑢, 𝑣)

√
𝐸𝐺 − 𝐹 2𝑑𝑢𝑑𝑣

does not depend on the parametrization 𝑥 . This integral has, therefore, a
geometrical meaning and is called the integral of 𝑓 over the region 𝑅, and it is
usually denoted as ∬

𝑅

𝑓 𝑑𝜎.

theorem 2.33 (Local Gauss-Bonnet): Let𝑅 ⊂ 𝑥 (𝑈 ) be a region of 𝑆 homeo-
morphic to a disk, where 𝑥 is an orthogonal parametrization of 𝑆 . Let 𝛾 : 𝐼 → 𝑆

be such that 𝜕𝑅 = 𝛾 (𝐼 ). Assume that 𝛾 is positively oriented, parametrized
by arc length 𝑠 and let 𝛾 (𝑠0), . . . , 𝛾 (𝑠𝑘 ) and 𝜃0, . . . , 𝜃𝑘 be the vertices and the
external angles of 𝛾 , respectively. Then

𝑘∑︁
𝑖=0

∫ 𝑠𝑖+1

𝑠𝑖

𝜅𝑔 (𝑠)𝑑𝑠 +
∬

𝑅

𝐾𝑑𝜎 +
𝑘∑︁
𝑖=0

𝜃𝑖 = 2𝜋, (2.22)

where 𝜅𝑔 (𝑠) denoted the geodesic curvature (see Section 2.2).

An interesting case is when the boundary of 𝑅 is a geodesic polygon, i.e.
𝜅𝑔 (𝑠) ≡ 0 along every regular arcs of 𝛾 . Then (2.22) becomes∬

𝑅

𝐾𝑑𝜎 +
𝑘∑︁
𝑖=0

𝜃𝑖 = 2𝜋,

by substituting 𝜃𝑖 = 𝜋 − 𝜃𝑖 , where 𝜃𝑖 are the internal angles we have
𝑘∑︁
𝑖=0

𝜃𝑖 =

∬
𝑅

𝐾𝑑𝜎 + (𝑘 − 1)𝜋. (2.23)

Therefore, the sum of the internals angles of a geodesic polygon is fully de-
termined by the total curvature of the region circumscribed by the polygon
itself. We note that if 𝐾 = 0 then we obtain the well known formula for the
sum of the interior angles of a planar polygon.
We would like now to present a de�nition of the curvature within this

setting equivalent to (2.19), which may be more intuitive. The notations will
be the same as of above with one di�erence: we will assume that the boundary
of 𝑅 has no vertices, i.e. we consider a curve parametrized by arc-length
𝛾 : [0, ℓ] → 𝑥 (𝑈 ) such that trace of 𝛾 ( [0, ℓ]) = 𝜕𝑅. We further suppose that 𝑥
is a parametrization of a neighborhood of some point 𝑝 ∈ 𝑆 . Let us consider a
unit vector 𝑉0 tangent to 𝑆 at 𝛾 (0), and let us denote with 𝑉 (𝑠), 𝑠 ∈ [0, ℓ] its
parallel transport along 𝛾 . By denoting with 𝜙 (𝑠) the angle formed by 𝑉 (𝑠)
with 𝑥𝑢 , and putting 𝛥𝜙 := 𝜙 (ℓ) − 𝜙 (0), we have the Gaussian curvature 𝐾 at
𝑝 satis�es

𝐾 = lim
𝑅→𝑝

𝛥𝜙

𝐴(𝑅) ,

where 𝐴(𝑅) denotes the area of the region 𝑅, and the limit is taken through a
sequence of regions 𝐵𝑛 that converges to 𝑝 .
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2.4 Cut Locus and Convexity
In Section 2.2 we stated the conditions under which the minimizing geodesic
between two points 𝑝, 𝑞 ∈ M always exists. However, we did not talk about
their uniqueness outside a normal ball. Di�erently from what happens in 𝑅𝑛 ,
where every straight line realizes the distance between any of two points on it,
on a Riemannian manifold there could be more than one minimizing geodesics
joining two points. Moreover, we have seen that if a curve realizes the distance
between two points, then such curve must be a geodesic, but the converse
is no longer true. For these reasons, in Riemannian geometry, the concept of
convexity is more complicated, since, for example, even a normal ball (i.e. a
ball di�eomorphic to a Euclidean one) may not be convex.
In this section we will investigate more in details how geodesics behave

globally. We will start by introducing the concept of cut locus of a point 𝑝 ∈ M,
which is the closure of the set of points that can be joined to 𝑝 with more
than one minimizing geodesic. Since Poincaré introduced the concept of cut
locus [Poi05], this subject was studied by di�erent researchers under di�erent
perspectives and in di�erent times. Initially, the cut locus has been studied
mainly from a geometrical point of view, while in the last decades important
results have been stated about the relationship of the cut locus at a point and
the behavior of the geodesic distance function sourced at such point. Since for
the purpose of this thesis we are more interested in this latter type of results,
we will not give a comprehensive analysis of this subject, and refer the reader
to [Sak97,GHL04,CE75] for further details. We will conclude by giving the
de�nition of strongly convex ball, which will play an important role in the
following.

2.4 .1 Cut Locus

Let M be a complete Riemannian manifold and let 𝑝 ∈ M. Let us consider
the normal geodesic 𝛾𝑣 : [0, +∞] → M emanating from 𝑝 such that ¤𝛾𝑣 (0) = 𝑣 ,
𝑣 ∈ 𝑇𝑝M. We de�ne the following quantity

𝑡𝑣 := sup{𝑡 > 0 : 𝛾𝑣 (𝑡)
��
𝑡 ∈[0,𝑡 ] is minimizing, namely 𝑑 (𝑝,𝛾𝑣 (𝑡)) = 𝑡}.

Of course, we have 0 < 𝑡𝑣 ≤ +∞ and, if 𝑡 (𝑣) < +∞, then it corresponds
to the last value such that 𝛾𝑣 (𝑡)

��
𝑡 ∈[0,𝑡𝑣 ] realizes the distance between each of

its point. In this case, we call 𝛾𝑣 (𝑡𝑣) a cut point of 𝑝 along 𝛾 . We will start by
giving a fundamental property of 𝑡𝑣 .

proposition 2.34 : Suppose that 𝛾𝑣 (𝑡𝑣) is a cut point of 𝑝 along 𝛾𝑣 . Then
at least one of the following conditions a) and b) holds:

a) 𝛾𝑣 (𝑡𝑣) is the �rst conjugate point of 𝑝 along 𝛾𝑣 ,
b) There exists a vector 𝑢 ∈ 𝑇𝑝M, 𝑢 ≠ 𝑣 such that 𝛾𝑢 (𝑡𝑣) = 𝛾𝑣 (𝑡𝑣).

In other words, the above Proposition tells us that the �rst point beyond
which a geodesic𝛾 from 𝑝 stops of beingminimizing is either the �rst conjugate
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point of 𝑝 along 𝛾 , or it is a point that can joined to 𝑝 with another minimizing
geodesic 𝜎 di�erent from 𝛾 .

definition 2.35 (Cut locus): The set of all cut points of 𝑝 along every
geodesic emanated from 𝑝 , is called the cut locus 𝐶 (𝑝) of 𝑝 . More formally

𝐶 (𝑝) := exp𝑝 𝐶 (𝑝),
where

𝐶 (𝑝) := {𝑡𝑣𝑣 : 𝑣 ∈ 𝑇𝑝M, 𝑡𝑣 < +∞}
is called the tangent cut locus of 𝑝 .

In the following, we will denote with U𝑝 the set {𝑣 ∈ 𝑇𝑝M : 𝑡𝑣 > 1}, i.e.
U𝑝 is the set of vectors 𝑣 in𝑇𝑝M such that the geodesic 𝑡 ↦→ 𝛾𝑣 (𝑡) = exp𝑝 (𝑡𝑣)
is minimizing in the interval [0, 1].

proposition 2.36 : With the notation introduced above, we have that
𝐶 (𝑝) ∪ U𝑝 = M and 𝐶 (𝑝) ∩ U𝑝 = ∅. Moreover, the exponential map is a
di�eomorphism between U𝑝 and the open set M \𝐶 (𝑝), consequently 𝐶 (𝑝)
is closed.

One can show that if 𝑝 is a cut point of 𝑞 along 𝛾𝑝𝑞 then 𝑞 is a cut point of 𝑝
along 𝛾𝑞𝑝 . In particular, 𝑞 ∈ 𝐶 (𝑝) if an only if 𝑝 ∈ 𝐶 (𝑞). As an example, one can
consider 𝑝 ∈ 𝑆2. Then the cut locus of 𝑝 consists of its antipodal point 𝑞 and, in
this case, such point is both conjugate along all the geodesics emanating from
𝑝 and such that all geodesics joining 𝑝 and 𝑞 have the same length. However,
this simple structure of the cut locus is quite unusual. Actually, it has been
proved that a compact Riemannian 2-manifold for which the cut locus of every
point consists in just one point must be isometric to 𝑆2. In fact, even for the
2-dimensional, the determination of the cut locus of a point on a Riemannian
manifold is far from being trivial. We are going now to present the results that
will be exploited in Chapter 5. In the following, we will denote with 𝑑𝑝 the
distance function (or distance �eld) that associates to every 𝑞 ∈ M its geodesic
distance from 𝑝 , i.e.

𝑑𝑝 : M → ℝ

𝑞 ↦→ 𝑑 (𝑝, 𝑞).

With this de�nition, we can report a well known result concerning the
smoothness of 𝑑𝑝 .

proposition 2.37 : The function 𝑑𝑝 de�ned above is of class 𝐶∞ on M \
{𝐶 (𝑝) ∪ 𝑝}, and its gradient ∇𝑑𝑝 (𝑞) at 𝑞 ∈ M \ {𝐶 (𝑝) ∪ 𝑝} is given by

∇𝑑𝑝 (𝑞) = ¤𝛾𝑝𝑞 (𝑑𝑝 (𝑞)),
where we remember that 𝛾𝑝𝑞 denotes the unique minimizing geodesic from
𝑝 to 𝑞 parametrized by arc-length. In particular, we have that ‖∇𝑑𝑝 (𝑞)‖ = 1.
Moreover, suppose that there exist at least two normal minimizing geodesics
joining 𝑝 to 𝑞. Then 𝑑𝑝 is not di�erentiable at 𝑞.
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Figure 2.7: Example of the cut locus (red) of a point (black bullet) on a torus.

Note that, for what said in Section 2.3.2, conjugate points along a given
geodesic from 𝑝 are critical points of exp𝑝 , since at those points the di�erential
of the exponential map is zero. Therefore, cut points may be characterized both
with geometric arguments (conjugate points, number of minimal geodesics)
and with analytical arguments (critical points of exp𝑝 , points at which 𝑑𝑝 is not
di�erentiable). We will see how these de�nitions has been used to implement
algorithms that estimate the cut locus on discrete surfaces in Chapter 5.

definition 2.38 (Injectivity radius): Let 𝑝 be a point in M. We de�ne
the injectivity radius 𝑖𝑝 (M) at 𝑝 as

sup{𝑟 > 0 : 𝑒𝑥𝑝𝑝
��
𝐵𝑟 (0) is a di�eomorphism},

where 𝐵𝑟 (0)0 ∈ 𝑇𝑝M is a ball centered at 0 ∈ 𝑇𝑝M with radius 𝑟 .

proposition 2.39 : With the notations used above, we have that

𝑖𝑝 (M) = 𝑑 (𝑝,𝐶 (𝑝)),

and 𝑝 ↦→ 𝑖𝑝 (M) is a continuous function fromM to ℝ+ ∪ {+∞}.

Second order di�erential properties at the cut locus have been investigated
only more recently in a weak sense, like in the sense of distributions, or of
viscosity, or of barriers [GOV22,MMU14,Nee07]. Roughly speaking, all such
methods study the behavior at the cut locus by approximating the distance
function arbitrarily well with a smooth function. Mantegazza and colleagues
show the equivalence of analyses in the sense of distributions and of viscosity,
and that the analysis in the sense of barriers implies the other two [MMU14].
Cordero-Erausquin and colleagues proved that the distance function fails to
be semiconvex at the cut locus, by showing that the Hessian is unbounded
from below [CEMS01]. Neel used the heat kernel as a natural molli�cation
of the distance function and, among other results, proved that the norm of
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the Hessian blows to in�nity at the cut locus [Nee07]. We will report here
the result we will be using in Chapter 5, due to Générau [Gén20], referring to
cited literature for any further detail on the subject.

definition 2.40 : Let𝜓 : M → ℝ be a continuous function, and 𝑝 ∈ M.
We say that the Laplacian of 𝜓 at 𝑝 is −∞ in the sense of barriers if for any
𝐴 > 0, there exists a smooth function 𝜙 : M → ℝ de�ned in a neighborhood
of 𝑝 such that

𝜙 ≥ 𝜓, 𝜙 (𝑝) = 𝜓 (𝑝), and 𝛥𝜙 (𝑝) ≤ −𝐴.

theorem 2.41 : Let M be a smooth manifold without boundary of dimen-
sion 𝑛 ≥ 2, and 𝑝 ∈ M. The Laplacian of 𝑑𝑝 is −∞ at every point of 𝐶 (𝑝) in
the sense of barriers.

Concerning topological properties, we �rst report an important result due
to Myers ( [Mye35, Theorem 4, Vol. II])

theorem 2.42 : The cut locus𝐶 (𝑝) of point 𝑝 on a closed analytic surface 𝑆
is a linear graph. The endpoints of𝐶 (𝑝) are conjugate to 𝑝 , and are cusps turned
towards 𝑝 of the locus of �rst conjugate points to 𝑝 . An arc of𝐶 (𝑝) containing
no points conjugate to 𝑝 and no interior points which can be connected to 𝑝
with more than 2 minimizing geodesics is a regular analytic arc.

The term analytic surface means that 𝑆 can be locally represented through
(real) analytic functions. Sincewewill apply this results in the case of embedded
surface in the sense of De�nition 2.17 with no boundary, this result holds in
our setting. Note that Myer also proves that the number of endpoints of 𝐶 (𝑝)
(as a graph) is �nite ( [Mye35, Vol I]). These results have been generalized to
higher dimensions by Buchner [Buc77].
We will now report a result due to Mantegazza and Mennucci which sum-

marizes most of the geometrical and topological properties of the cut locus
that we will need in the sequel. Such results will be adapted to our context in
the following sense. We will omit the contributions regarding concepts that
we did not de�ne so far, and we will restrict the result to the case in whichM
is a Riemannian 2-manifold endowed with a 𝐶∞ metric. For further details we
refer to [MM02].

proposition 2.43 : Let 𝑝 ∈ M, where M is a smooth and connected
Riemannian manifold. Then the squared distance function from 𝑝 is 𝐶∞ in
M\𝐶 (𝑝), which is an open neighborhood of 𝑝 . Moreover,𝐶 (𝑝) has Hausdor�
dimension at most 1, and the subset of 𝐶 (𝑝) where 𝑑𝑝 fails to be di�erentiable
is locally a �nite union of smooth curves.

We now relate the topology of M with the one of 𝐶 (𝑝). For the sake of
brevity, we omit the introduction of basic concepts of Algebraic Geometry
such as homology groups and retractions. The reader not familiar with these
de�nitions is referred to [Ful97,CLO98].
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Figure 2.8: The intersection of a strongly convex set (blue) with a weakly convex one
(red) could be not topologically consistent with what happens in the Euclidean plane:
geodesics may intersect in more than one point (left) and circles may intersect in
more than two points (middle); a circle with radius greater than the injectivity radius
of its center may not be even homeomorphic to a Euclidean circle, and may be not
smooth at the cut locus of the center (right).

proposition 2.44 : LetM be a compact connected 2-dimensional Rieman-
nian manifold, and let 𝑝 be a point onM. Then

i) M\ {𝑝} deformation retracts to𝐶 (𝑝) andM\𝐶 (𝑝) deformation retracts
to 𝑝 .

ii) 𝐻𝑖 (M,ℤ) � 𝐻𝑖 (𝐶 (𝑝),ℤ) 𝑖 = 0, 1,

where 𝐻𝑖 (𝐴,ℤ) denotes the 𝑖-th homology group.

Condition i) tells us that we can continuously deform M \ 𝑝 into 𝐶 (𝑝) and
M \𝐶 (𝑝) into 𝑝 , while, roughly speaking, condition ii) tells us that M and
𝐶 (𝑝) have the same number of connected components and the same number
of holes.

2.4 .2 Convexity

As said before, in Riemannian geometry there several notions of convexity
that one may consider, all of which coincide in 𝑅𝑛 .

definition 2.45 (Convexity): Let 𝐾 (≠ ∅) be a subset of a Riemannian
manifoldM. Then 𝐾 is

• weakly convex, if for any two points 𝑝, 𝑞 ∈ 𝐾 there exists a unique normal
geodesic 𝛾𝑝𝑞 such that 𝛾𝑝𝑞 is entirely contained in 𝐾 , and it is the unique
minimizing geodesic in 𝐾 connecting 𝑝 to 𝑞.

• strongly convex if for any 𝑝, 𝑞 ∈ 𝐾 there exists a unique normal minimizing
geodesic 𝛾𝑝𝑞 ∈ M, and 𝛾𝑝𝑞 is entirely contained in 𝐾 .

To understand the di�erence between these two de�nitions one can consider
the examples in Figure 2.8. Note that a geodesic is strongly convex if its length
does not exceed the radius of injectivity of one of its endpoints, otherwise it is
weakly convex. When one intersects a strongly convex geodesic with another
geodesic which is not, then the number of intersections could be arbitrarily
many (Figure 2.8, left). Similar arguments apply to the case of geodesic circles:
if one of the two circles is not strongly convex, then the intersection could
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Figure 2.9: The cut locus (red) of a point 𝑝 (black dot) on a torus. The convex ball
(blue) centered at 𝑝 cannot extend further, since otherwise it would contain pairs of
points connected with a shortest path crossing the outer equator, hence not entirely
contained in such ball.

be not topologically consistent with what happens in the Euclidean setting,
where the intersection of two circles is either empty, or consists in one or two
points. Note that the red circle in Figure 2.8(middle) is weakly convex, since
for every point there exists a unique minimizing geodesic within such circle
connecting them, which is not the case for the circle on the right, which is not
even homeomorphic to its Euclidean counterpart.

definition 2.46 (Convexity radius): For every point 𝑝 ∈ M, let

𝑟𝑝 := sup{𝑟 > 0 : 𝐵𝑟 (𝑝) is strongly convex},

the 𝑟𝑝 is called the convexity radius of 𝑝 .

It is well known that ifM is a Riemannian manifold with bounded curvature,
then 𝑟𝑝 > 0 for every 𝑝 ∈ M. Nevertheless, the estimate of the convexity radius
of a point, or the convexity radius of the manifold (de�ned as the minimum
among the convexity radii of its point) is still a matter of research interest
nowadays (see for example [Dib17,Xu18]). Most of the classical results proved
lower and upper bound in terms of the injectivity radius and upper bound
of the curvature. However, in the following we will determine the convexity
radius of a point 𝑝 by considering the Hessian of the distance function 𝑑𝑝 . In
fact, Whitehead proved that if Hess𝑑𝑝 is positive de�nite inside a ball 𝐵𝑟 (𝑝),
i.e. 𝑑𝑝 is strictly convex, then 𝐵𝑟 (𝑝) is strongly convex [Whi33]. The proof
of this fact can be carried out also by arguments similar to the ones used
in [Sak97, Theorem 5.3]. Figure 2.9 shows the cut locus (red curve) of a point
(blue bullet) on a torus, and a strongly convex ball (blue circle) centered at that
point.



3
Discrete Setting

In the previous chapter we introduced the theory upon which the algorithms
described in the following will be built. We will now see how such concepts
can be brought into a discrete setting, where we cannot a�ord of considering
the neighborhood of a point 𝑝 ∈ M in the usual sense, i.e. as in�nite set of
points onM surrounding 𝑝 . The discretization ofM will be amesh𝑀 , made of
vertices, edges, and triangles, which will be denoted by𝑉 , 𝐸 and𝑇 respectively.
We assume the vertices {𝑣1, . . . , 𝑣𝑛} of 𝑀 to be points of M, i.e. they belong
to some sampling of points made on the continuous surface. We will denote
with 𝑡𝑖 𝑗𝑘 ∈ 𝐹 the triangle having vertices {𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑘 }, and with 𝑒𝑖 𝑗 the edge
connecting 𝑣𝑖 with 𝑣 𝑗 . For every vertex 𝑣𝑖 ∈ 𝑀 there exists at least one triangle
in 𝑇 (plane) triangle having 𝑣𝑖 as one of its vertices. We further require such
triangulation to be a simplicial complex, which means that the intersection
of every pair of triangles is either the empty one, or a common vertex, or a
common edge. We do not allow con�gurations in which a triangle share its
edge with more than one triangle or in which its edge intersect the interior
of another triangle. Moreover, we would like to ensure that 𝑀 preserve the
property of a topological manifold, i.e. that it is possible to consider a covering
of 𝐶0 charts that maps homeomorphically the neighborhood of a vertex to
a disk in ℝ2. To state this property formally, we need to introduce some
de�nitions and notations. Given a vertex 𝑣 ∈ 𝑀 , the set of triangles incident
to 𝑣 will be called the star of 𝑣 , and will be denoted with S(𝑣), while the
set of vertices which are the other endpoints of all the edges incident in 𝑣 is
called the 1-ring of 𝑣 , and will be denoted with N(𝑣), where the choice of the
letter N is due to the fact that we will often refer to this set as the (discrete)
neighborhood of 𝑣 . For 𝑘 ≥ 2, we de�ne the 𝑘-ring of 𝑣 as the set of vertices
that adjacent to the vertices of the (𝑘 − 1)-ring. Finally, sinceN(𝑣) consists of
a set of vertices that are connected pairwise with and edge, we will call the
link 𝐿𝑘 (𝑣) of 𝑣 the union of N(𝑣) and such edges. We will then require the
link of every vertex 𝑣 ∈ 𝑀 to be a single closes loop. If we think about the set
𝐿𝑘 (𝑣) ∪ S(𝑣) as a discretization of the mathematical neighborhood of 𝑣 , then
under the assumption made above this latter requirement is equivalent to ask
that 𝐿𝑘 (𝑣)∪S(𝑣) is homeomorphic to a plane disk, which somehow “discretize”
the de�nition of topological manifold seen in Section 2.1. More details about
the existence of such triangulation can be found in [Cai35,Whi40,Whi57]. In
the following, we will say that𝑀 is a triangle mesh havingM as carrier.

We will now show how the concepts introduced in Chapter 2 can be adapted
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in order to be de�ned in this (discrete) domain. We will start by de�ning the
tangent spaces for the vertices, the edges and the triangles of𝑀 . Then, we will
give the de�nitions of two possible metrics that can be de�ned on𝑀 pointing
out the nuances between these choices. The de�nition of covariant derivative
will be somehow more subtle: in fact, we will only give the de�nition of
(discrete) parallel transport, and this by (2.10) implicitly means that our discrete
covariant derivative will be the one obtained by such de�nition. Note that, in
the literature, more sophisticated methods exist that propose a discretization
of this concept, see e.g. [LTGD16].

3.1 Tangent Spaces, Metric and Parallel Transport
We are now interested in de�ning the tangent space 𝑇𝑝𝑀 of a point 𝑝 on M.
Note that, with the term “point” we are not restricting ourselves exclusively
to the vertices of𝑀 , but we are considering also the points in the interior of
edges and triangles. In the following, we will call 𝑝 a mesh point.
As pointed out in Section 2.1, the smoothness of the charts in De�nition

2.2 allowed us to introduce the concept of vectors tangent to a di�erentiable
manifold, which lead to the de�nition of tangent spaces. Since in our current
setting we lack such di�erentiable structure, we need a way of “discretizing”
such concepts. This can be done in two ways: either we see𝑀 as a topological
manifold, and we de�ne the tangent space at a given point 𝑝 ∈ 𝑀 by �nding
a suitable discrete counterpart of the de�nition in the continuous setting, or
we see𝑀 as an approximation of an embedded surface, for which we �nd a
local parametrization around every vertex 𝑣𝑖 ∈ 𝑀 . The former approach will
be the one described in this section. While a mixture of the two will be used
in Section 3.2.2 to de�ne discrete di�erential operators on𝑀 and in Section
3.2.3 we justify this latter choice. Note that these two di�erent conceptions of
𝑀 will also be considered in Chapter 4, where we introduce the discretization
of the geodesics.
We thus aim at reproducing the concept of tangent space introduced in

Section 2.1, so for every point 𝑝 we want to de�ne a 2-dimensional vector
space in which the vectors tangent to𝑀 at 𝑝 belong.
Let us start by assuming that 𝑝 lies inside a triangle 𝑡𝑖 𝑗𝑘 . It is clear that,

for every curve 𝛾 : [𝑎, 𝑏] → 𝑀 through 𝑝 , there exists 𝑎𝑝 , 𝑏𝑝 ∈ ℝ such that
𝛾
��
[𝑎𝑝 ,𝑏𝑝 ] is a plane curve entirely contained in 𝑡𝑖 𝑗𝑘 . Therefore, in this case,

the 2-dimensional space in which all the vectors tangent to 𝑀 at 𝑝 lie can
be identi�ed with the plane containing 𝑡𝑖 𝑗𝑘 . Similarly, if 𝑝 lies on an edge 𝑒 ,
once the two triangles 𝑡0, 𝑡1 sharing 𝑒 are �attened onto a common plane, the
considerations made before apply also in this case, too. Note that, in both cases,
one can de�ne a system of coordinates in 𝑇𝑝𝑀 such that the exponential map
exp𝑝 from 𝑇𝑝𝑀 to𝑈 ⊂ 𝑀 is an isometry, where 𝑈 in the �rst case is 𝑡𝑖 𝑗𝑘 and
in the second is 𝑡0 ∪ 𝑡1.
If 𝑝 is vertex instead, then such mapping cannot be isometric, in general.

In this latter case, we use a well known approach in the literature (see e.g.
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[ZMT07,KCPS13, SSC19b]) which consist in mapping the triangles in the star
of 𝑝 by rescaling the total angle they form about 𝑝 by 2𝜋 .
In details, if 𝑉 = {𝑣1, . . . , 𝑣𝑛}, suppose that

𝑝 = 𝑣𝑖 for some 𝑖 = 1, . . . , 𝑛. Let us denote with
𝜃
𝑗𝑘

𝑖
the angle at 𝑣𝑖 of the triangle 𝑡𝑖 𝑗𝑘 ∈ S(𝑣𝑖)

(see inset).
Then by letting

𝛩𝑖 :=
∑︁

𝑡𝑖 𝑗𝑘 ∈S(𝑣𝑖)
𝜃
𝑗𝑘

𝑖
(3.1)

be total interior angle at 𝑣𝑖 , we de�ne the normalized angles

𝜃
𝑗𝑘

𝑖
:=

2𝜋𝜃 𝑗𝑘
𝑖

𝛩𝑖

which sum to 2𝜋 . Therefore, we can now consider a plane 𝑇𝑝𝑀 in which
all the neighbors of 𝑣𝑖 can be represented. In fact, by putting S(𝑣𝑖) =

{𝑡𝑖 𝑗0 𝑗1, . . . , 𝑡𝑖 𝑗𝑚−1, 𝑗𝑚 }, we can map an outgoing edge 𝑒𝑖 𝑗0 into the 𝑥-axis of 𝑇𝑝𝑀 ,
and de�ne a polar coordinate system (𝜌, 𝜃 ) consistently with the rescaling of
the angles done above. By putting

𝜃𝑖 𝑗𝑎 :=
𝑎−1∑︁
𝑝=0

𝜃
𝑗𝑝 𝑗𝑝+1
𝑖

,

every vertex {𝑣 𝑗0, . . . , 𝑣 𝑗𝑚 } in N(𝑣𝑖) can be uniquely represented with the
pair (𝜌𝑖 𝑗𝑎 , 𝜃𝑖 𝑗𝑎 ), where 𝜌𝑎 is the length of 𝑒𝑖 𝑗𝑎 and 𝜃𝑖 𝑗𝑎 is the cumulative angle
de�ned above, 𝑎 = 0, . . . ,𝑚. It is therefore clear that, in this case, exp𝑝 will be
just a radial isometry, since we are just preserving the lengths of the outgoing
edges (i.e. the radial geodesics) from 𝑝 .
In all the three possible scenarios discussed above, it is clear that the most

natural choice is to de�ne the inner product in 𝑇𝑝𝑀 as the usual Euclidean
inner product 〈· , ·〉. Let us now consider the edge 𝑒𝑖 𝑗 for some 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 . For
what said above, 𝜃𝑖 𝑗 encodes the direction of such edge in the tangent space
of 𝑣𝑖 . In other words, the vector (𝜌𝑖 𝑗 , 𝜃𝑖 𝑗 ) ∈ 𝑇𝑣𝑖𝑀 is the vector tangent to the
(trivial) geodesic joining 𝑣𝑖 to 𝑣 𝑗 at 𝑣𝑖 . Suppose now that we want parallel
transport some vector 𝜉 ∈ 𝑇𝑝𝑀 from 𝑇𝑣𝑖𝑀 to 𝑇𝑣𝑗𝑀 . Note that, since 𝑣 𝑗 is a
neighbor of 𝑣𝑖 , 𝑒𝑖 𝑗 can also be expressed in the coordinate system of 𝑣 𝑗 , i.e. by
(𝜌𝑖 𝑗 , 𝜋 + 𝜃 𝑗𝑖), where 𝜋 accounts for the fact that 𝜃 𝑗𝑖 is the direction of 𝑣𝑖 in
the tangent space of 𝑣 𝑗 , as shown in Figure 3.1. It is clear then that, to parallel
transport 𝜉 from𝑇𝑣𝑖𝑀 to𝑇𝑣𝑗𝑀 , we need to rotate it by the angle (𝜋 +𝜃 𝑗𝑖) −𝜃𝑖 𝑗 .
By doing this, we are ensuring that 𝜉 will keep a constant angle with respect to
the tangent vector of 𝑒𝑖 𝑗 when moving from one tangent space to the other, i.e.
𝜉 does not undergo to any variation along 𝑒𝑖 𝑗 during the transition. Similarly,
one can parallel transport a vector from a vertex 𝑣 to a triangle 𝑡 (and vice
versa) by thinking of the centroid of the triangle as a vertex of the mesh, and
expressing its direction in the tangent space of 𝑣 and proceeding as before,
while the parallel transport a vector from a triangle to an adjacent one boils
down to a translation once we �atten the two triangle in common plane.
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Figure 3.1: The edge 𝑒𝑖 𝑗 can be represented both in the tangent space of 𝑣𝑖 and in the
tangent space of 𝑣 𝑗 . Viewed as a geodesic connecting such vertices, its tangent vector
at 𝑣𝑖 forms an angle 𝜃𝑖 𝑗 with respect to the reference direction 𝜃 = 0 (red). We can
then express such direction in 𝑇𝑣𝑗𝑀 as 𝜃 𝑗𝑖 + 𝜋 .

Therefore, parallel transport in the discrete setting consists in rotations that
keep a vector “constant” when moving them from a tangent space to another.
Such de�nition suggests a useful interpretation of the polar coordinates in
the tangent space of a vertex 𝑣𝑖 , which can be thought as normal coordinates
(De�nition 2.23) at 𝑣𝑖 . In fact, we are considering a neighborhood around 𝑣𝑖 , and
we are mapping the points in such neighborhood through the logarithmic map,
since the pair (𝜌𝑖 𝑗 , 𝜃𝑖 𝑗 ) represent the tangent vector at 𝑣𝑖 of the geodesic 𝑒𝑖 𝑗
connecting 𝑣𝑖 to 𝑣 𝑗 . Furthermore, it is clear that everymesh point 𝑝 belonging to
a triangle in S(𝑣𝑖) can be expressed in such coordinates system by considering
the straight line segment that join such point to 𝑣𝑖 .

3.2 Di�erential Operators
Quite often, a scalar �eld is sampled at the vertices of a mesh, which as said
before discretizes a given domain. Computational analysis of such �eld may
require evaluating its �rst and second order derivatives and, possibly, tracing
the integral curves of its gradient. To �x ideas, consider the case in which such
scalar �eld is the geodesic distance function from a given point on a mesh
(sampled at its vertices). Then the integral lines of such �eld are the geodesic
emanated from such point.

In the discrete setting, the knowledge of a scalar function (or a signal) on a
mesh𝑀 is limited to a �nite number of points, which usually are the vertices
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of𝑀 . However, in order to compute �rst and second order derivatives of such
function, one needs to somehow extend it to the whole𝑀 . In the present thesis,
this will always be done by linear interpolation, which means that we assume
the function to be linear inside the triangles of 𝑀 , where we evaluate it by
interpolating its values at the vertices. Assuming the piecewise linearity of
the function could overly simplify its nature, especially if𝑀 is coarse.

Working on a discrete domain not only in�uences the de�nition of a function
on it, but also the way in which one di�erentiate such function. To �x ideas, one
can think of the �rst order �nite di�erences method to estimate the gradient
of a function 𝑓 in the univariate case: since the points at which the values of
𝑓 are known do not have a continuous neighborhood, one approximates the
quantity

lim
𝑥→𝑥0

𝑓 (𝑥) − 𝑓 (𝑥0)
𝑥 − 𝑥0

with 𝑓 (𝑥𝑖+1) − 𝑓 (𝑥𝑖)/(𝑥𝑖+1−𝑥𝑖), where {𝑥0, . . . , 𝑥𝑘 } is a sampling of the domain
at which 𝑓 is known. When moving to a discretization of a 2-dimensional
curved domain, things get more complicated, since we also need to �nd a way
of discretizing a covariant di�erentiation.

In this section, we will start by considering the planar case, i.e. we postpone
the case of discrete curved domain after reviewing the main methods that
estimate the gradient of scalar function de�ned over a triangle planar mesh.
The idea is to understand the pros and cons of each of these methods in the
former case, and exploit such knowledge to design a robust way of estima-
tion di�erential quantities in the latter one. This seems reasonable since the
pathologies that a given method has in the planar case will be preserved when
considering a curved domain, so in this way we are somehow splitting the
analysis in two parts, where we isolate the problems due the discretization
of the domain from the ones induced by the discretization of the covariant
di�erentiation. The �nal purpose, will be a unique framework in which the
�rst and second order derivatives of scalar �eld on a (non-planar) triangle
mesh𝑀 can be computed in an e�cient and robust way.

3.2 .1 Gradient Field Estimation on Triangle Meshes

This section includes contents from a co-authored paper [MLP19] that
has been re-formatted for this thesis.
A said before, in the geometry processing and FEM literature, a scalar

�eld is often extended from vertices to the interior of higher dimensional
triangles by linear interpolation. Under this approach, a constant gradient is
associated to each triangle with a straightforward computation, thus providing
the simplest form of evaluation of the gradient �eld. Although su�cient for
many applications, the piecewise constant gradient has several limitations
and drawbacks: being not continuous, the gradient has divergent covariant
derivative at the interface between triangles; singularities are forced to lie just
at vertices of the mesh; and integral curves are discretized into polylines that
travel parallel to each other inside each element, so that their distribution does
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not depend just on the �eld, but also on the orientation of edges and on the
vertex valences of the underlying mesh (see Figure 3.2).

Figure 3.2: Per-face gradient estimation on a paraboloid with minimum at the center
of the domain (left). Although the estimate is very accurate, integral lines traced
from a neighborhood of the minimum do not diverge uniformly, but rather travel in
four bundles of nearly parallel lines (right). This behavior is induced by the discrete
piecewise constant nature of the gradient �eld. Starting the tracing from the star of a
vertex with low valence exacerbates the problem.

As discussed in [DGDT16], discrete vector �elds can be given per face,
per edge, or per vertex. Despite the entity to which the gradient estimate is
attached, the gradient �eld can be extended to the whole mesh either in a
piecewise constant manner – i.e., de�ning a local region surrounding each
vertex/edge/face and assuming the gradient to be constant within it, or via
interpolation – e.g., linearly inside each simplex. When vector �elds are ex-
tended to the whole mesh by linear interpolation, they can be traced exactly
inside each region [KRG03,NJ99].

In [MLP19], common methods for estimating a per-vertex gradient �eld lin-
early interpolated within each element have been reviewed, and a comparison
of their accuracy with respect to the standard method to compute a per-face
constant gradient �eld has been presented. We will start by describing the
methods considered, and then brie�y summarize the results of such work. Note
that, even if such comparisons has been made considering planar 2D meshes
and 3D meshes, further experiments con�rmed that the considerations made
in that context may be extended also in the case of surface meshes. This latter
statement will be clari�ed at the end of this section through more speci�c
arguments. In the following, we will use the following notations.
Let 𝛺 ⊂ ℝ2 be a compact domain and 𝑀 be a triangle mesh having 𝛺 as

carrier. As done before, with denote with𝑉 and𝑇 the vertices and the triangles
of 𝑀 , respectively. Let 𝑓 : 𝛺 −→ ℝ be a smooth scalar function on 𝛺 . We
assume to know the value of 𝑓 only at the vertices of𝑀 . The discrete version
of 𝑓 is therefore a collection 𝐹 = {𝑓1, . . . , 𝑓𝑛}, where 𝑛 is the number of vertices
in 𝑉 and each 𝑓𝑖 corresponds to the function value sampled at vertex 𝑣𝑖 , for all
𝑖 = 1, . . . , 𝑛. The problem addressed in the following is that of estimating the
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gradient ∇𝑓 on 𝛺 , on the basis of the discretizations 𝐹 and𝑀 .

Per-Triangle linear Estimation (PTE)

Our bottom line is a method that estimates a constant gradient at each triangle.
We start by extending the values in 𝐹 to the triangles of𝑀 by linear interpola-
tion, which means that in each triangle 𝑡 of𝑀 we consider the (unique) linear
function

𝑓𝑡 (𝑝) =
∑︁
𝑣𝑖 ∈𝑡

𝑣𝑖𝜆𝑖 𝑓𝑖 ,

where 𝑝 is a generic point of 𝑡 , the 𝑣𝑖 ’s are the vertices of 𝑡 and the 𝜆𝑖 ’s are the
barycentric coordinates of 𝑝 with respect to the 𝑣𝑖 ’s. In this model, function 𝑓
estimates 𝑓 as a piecewise-linear function, which is continuous over 𝛺 and
di�erentiable only in the interior of its triangles. The gradient of 𝑓 is thus
constant inside every triangle 𝑡 and it is associated either to the whole 𝑡 , or
conventionally to its centroid 𝑐𝑡 , depending on the applications. For a triangle
𝑡 with vertices 𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑘 it is easy to show that we have

∇𝑓𝑡 = (𝑓𝑗 − 𝑓𝑖)
(𝑣𝑖 − 𝑣𝑘 )⊥

2𝐴𝑡

+ (𝑓𝑘 − 𝑓𝑖)
(𝑣 𝑗 − 𝑣𝑖)⊥

2𝐴𝑡

. (3.2)

where 𝑒⊥ denotes edge 𝑒 rotated by 90◦, and 𝐴𝑡 is the area of 𝑡 . In fact, by a
corollary of the divergence theorem, we have that the integral ∇𝑓 over 𝑡 is
equal to the integral of 𝑓 along the edges of 𝑡 . Since 𝑓 is linear by de�nition
along edges, we can use the trapezoidal rule to compute such integral, which
gives Eq. (3.2).

In the piecewise linear model of 𝑓 the gradient is not de�ned at vertices of
𝑀 . The methods we review in the following assume that 𝑓 is a higher order
function, smooth at edges and vertices of 𝑀 . The di�erent methods exploit
di�erent facts that hold in the continuous case, and try to bring them to the
discrete setting. All such methods work either by averaging (integration) or
by approximation (�tting), because no exact model can be assumed for 𝑓 in
the generic case.
Note that, once the gradient has been estimated at all vertices, the gradi-

ent �eld can be extended by linear interpolation inside cells of any order. It
is therefore continuous in 𝛺 and overall more accurate than the piecewise
constant �eld reviewed in the previous section [MLP19]. In the following, with
a slight abuse, we will identify 𝑓 with 𝑓 .

Average Gradient on Star (AGS)

A common procedure in discrete di�erential geometry consists of estimating
a di�erential property at a point 𝑝 as the average value of the same property
in a neighborhood of 𝑝 [MDSB03].
More formally, in our case, we can write

∇𝑓 (𝑝) ' 1
𝐴𝐵 (𝑝)

∫
𝐵 (𝑝)

∇𝑓 𝑑𝑎, (3.3)

where 𝐵(𝑝) is a neighborhood of 𝑝 and 𝐴𝐵 (𝑝) is its area.
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Now, given a vertex 𝑣 of𝑀 , we can use the method in the previous section to
estimate (an average value of) ∇𝑓 in the triangles of the star of 𝑣 , and compute
the integral as a sum of constant terms, obtaining

∇𝑓𝑣 '
1∑

𝑡 ∈N(𝑣)
𝑤𝑡

∑︁
𝑡 ∈N(𝑣)

𝑤𝑡∇𝑓𝑡 , (3.4)

where ∇𝑓𝑡 is the value computed with Equation 3.2 and 𝑤𝑡 is the weight as-
signed to triangle 𝑡 incident at 𝑣 . Correa et al. [CHM09] studied the in�uence
of di�erent weights on the accuracy of results on tetrahedral meshes, They
experimented using the inverse distance of centroid of 𝜏 from 𝑣 , the (solid) angle
of 𝜏 at 𝑣 , and the volume of 𝜏 , where 𝜏 denotes a tetrahedron incident at 𝑣 .
Note that, in our case, weighting with the area corresponds to applying the
divergence theorem to compute Equation 3.3 on the star of 𝑣 (or, equival-
ently, on a centroidal decomposition of triangles, as de�ned in [MDSB03]),
by assuming the linear model inside each incident triangle. According to the
experiments in [CHM09, TW97] however, the inverse distance of centroid
and the angle weights perform similarly, and overall better than the volume
weight. Furthermore, in the experiments made in [MLP19], we found the angle
weight to be more robust against anisotropic meshes (i.e., meshes containing
elongated elements), hence we consider such weight throughout. In summary,
𝑤𝑡 in Equation 3.4 will be the measure of the angle of 𝑡 at 𝑣 (where dependence
of𝑤𝑡 on 𝑣 has been omitted to keep a lighter notation).

Least Squares �t of Directional Derivatives (LSDD)

This approach consists in estimating �rst a few directional derivatives of 𝑓 at
𝑣𝑖 , and imposing their relation with the gradient. Let be {𝑣0, ..., 𝑣𝑘𝑖 } the vertices
belonging to the 1-ring of 𝑣𝑖 . Taylor’s expansion of 𝑓 at the �rst order allows
us to write:

𝑓 (𝑣 𝑗 ) − 𝑓 (𝑣𝑖) ≈ ∇𝑓 · (𝑣𝑖 − 𝑣 𝑗 ),
for every 𝑗 = 0, ..., 𝑘𝑖 . The idea is to build a linear system exploiting the above
approximation, i.e. writing

𝑓 (𝑣 𝑗 ) − 𝑓 (𝑣𝑖) = ∇𝑓 · (𝑣𝑖 − 𝑣 𝑗 ), 𝑗 = 0, ..., 𝑘𝑖 . (3.5)

Note that the second term of (3.5) is the directional derivative of 𝑓 along vector
(𝑣𝑖 − 𝑣 𝑗 ), hence the name. Since 𝑘𝑖 is usually greater than the dimension of
the space, 2, the linear system is usually overdetermined and it only admits
a least squares solution. As observed in [CHM09], this can be addressed as a
weighted least squares problem, where a weight is assigned to each equation,
which is inversely proportional to the square of the corresponding edge length.
Let 𝐴𝑖 be the 𝑘𝑖 × 2 matrix obtained by collecting all the (𝑣 𝑗 − 𝑣𝑖), let𝑊𝑖 the
diagonal matrix of weights, and let 𝐷𝑖 be the column matrix consisting of all
the 𝑓 (𝑣 𝑗 ) − 𝑓 (𝑣𝑖). Then, the weighted least squares solution is obtained by
resolving the 2 × 2 linear system

𝐴𝑇
𝑖𝑊𝑖𝐴𝑖∇𝑓 (𝑣𝑖) = 𝐴𝑇

𝑖𝑊𝑖𝐷𝑖 , (3.6)
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where𝑊𝑖 ( 𝑗, 𝑗) = 1/𝑑2𝑖 𝑗 and 𝑑𝑖 𝑗 is the length of edge 𝑣𝑖𝑣 𝑗 . Note that such a
system must be solved at every vertex. The unweighted solution (i.e.,𝑊𝑖 = 𝐼 )
turned out to be less robust in all the experiments made in [MLP19].

Linear regression (LR)

The last approach we review consists of approximating function 𝑓 in the
neighborhood of 𝑣𝑖 with a polynomial 𝜋𝑖 of given degree, by setting a system
of linear equations that asks 𝜋𝑖 to assume the given values of 𝐹 at all vertices
of a given 𝑘-ring of 𝑣𝑖 . After the �tting polynomial has been obtained, the
gradient of 𝑓 at 𝑣𝑖 is estimated analytically as the gradient of 𝜋𝑖 .
In [MLP19], we considered quadratic polynomials and 1-rings, which are

extended to 2-rings only if the number of neighbors of 𝑣𝑖 is insu�cient to �x
all degrees of freedom, so we will describe this method consistently with such
choice. We have

𝜋𝑖 (𝑥,𝑦) = 𝑎𝑖𝑥2 + 𝑏𝑖𝑦2 + 𝑐𝑖𝑥𝑦 + 𝑑𝑖𝑥 + 𝑒𝑖𝑦 + 𝑓𝑖 , (3.7)

where coe�cients 𝑃𝑇𝑖 = [𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , 𝑑𝑖 , 𝑒𝑖 , 𝑓𝑖] are unknown. For each vertex 𝑣 𝑗
in the neighborhood of 𝑣𝑖 (including 𝑣𝑖 itself), we impose 𝜋𝑖 (𝑣 𝑗 ) = 𝑓𝑗 , thus
obtaining a linear system with as many equations as the vertices in the neigh-
borhood of 𝑣𝑖 . Again, we address it as a weighted least squares problem, by
assigning a weight to each equation, and we obtain the coe�cients of the best
�tting polynomial by solving the system

𝐴𝑇
𝑖𝑊𝑖𝐴𝑖𝑃𝑖 = 𝐴

𝑇
𝑖𝑊𝑖𝐹𝑖 , (3.8)

where:

• 𝐴𝑖 is a 𝑘𝑖 × 6 matrix containing one row per vertex in the neighborhood
of 𝑣𝑖 (including 𝑣𝑖 itself); the row corresponding to vertex 𝑣 𝑗 = (𝑥 𝑗 , 𝑦 𝑗 )
contains values (𝑥2𝑗 , 𝑦2𝑗 , 𝑥 𝑗𝑦 𝑗 , 𝑥 𝑗 , 𝑦 𝑗 , 1);

• 𝐹𝑖 is a column vector containing the values 𝑓𝑗 corresponding to the vertices
𝑣 𝑗 in the neighborhood of 𝑣𝑖 ;

• 𝑊𝑖 is a diagonal matrix of weights, each inversely proportional to distance
from 𝑣𝑖 with a Gaussian decay:

𝑊𝑖 ( 𝑗, 𝑗) =
1

𝐿
√
2𝜋
𝑒
−
𝑑2
𝑖 𝑗

𝐿2

with 𝑑𝑖 𝑗 being the length of edge 𝑣𝑖𝑣 𝑗 (𝑑𝑖𝑖 = 0) and 𝐿 being the average
edge length in the mesh.

Once the coe�cients of 𝜋𝑖 are known, the gradient at 𝑣𝑖 = (𝑥𝑖 , 𝑦𝑖) is given
trivially by

∇𝑓 (𝑣𝑖) = (2𝑎𝑖𝑥𝑖 + 𝑐𝑖𝑦𝑖 + 𝑑𝑖 , 2𝑏𝑖𝑦𝑖 + 𝑐𝑖𝑥𝑖 + 𝑒𝑖).
Note that we have to assemble and solve such a system at every vertex, hence
this method is the most expensive in the set we review. As for the previous
method, we found the weighted solution of the least squares problem to
perform better than the unweighted solution in all our experiments.
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Outcome of the comparison

The four techniques presented in previous section were tested using analytic
functions, comparing numerical estimates with the ground truth. In order to
analyze di�erent situations, a parametric family of non-polynomial periodic
functions was used together with meshes with di�erent characteristics. We
considered the domain 𝛺 = [0, 1] × [0, 1] and the following parametric family
of functions:

𝑓𝑎,𝑏 (𝑥,𝑦) = 𝑎 sin(𝑏𝑥) cos(𝑏𝑦).
Parameters 𝑎 and 𝑏 control the amplitude and the frequency of the function,
respectively. Figure 3.3 shows four plots of 𝑓𝑎,𝑏 for di�erent values of 𝑎 and 𝑏.

Figure 3.3: Four examples of the test function 𝑓𝑎,𝑏 used in [MLP19]. Parameter 𝑎
controls the amplitude, whereas parameter 𝑏 controls the frequency. From left to right:
𝑓2,10, 𝑓5,10, 𝑓2,30, 𝑓5,30.

We used three di�erent types of discretization for the domain𝛺 : a structured
mesh made of equilateral triangles, an unstructured mesh obtained by triangu-
lating a Poisson sampling of the domain, and an anisotropic mesh obtained by
triangulating a rectangle and squeezing it to �t the square. Closeups of these
three tessellations is shown in Figure 3.4.

Figure 3.4: Close up of the test meshes. From left to right: structured, unstructured
and anisotropic.

We also used di�erent error metrics, in order to isolate the error in estimat-
ing the direction and the magnitude of the gradient. The analysis of our results,
not surprisingly, showed that PTE perform worse than vertex-based methods.
The only exception being performances at the boundaries, and the estima-
tion of the sole magnitude of the gradient on coarse meshes, where separate
computation per triangle o�ers an advantage over methods that use a bigger
stencil. On the other hand, a smaller stencil turned out to be counterproductive
when considering the estimation of the direction of the gradient, especially
near critical points of the signal. In fact, sampling the signal just along three
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directions (the vertices of the triangle) gives not enough information for an ac-
curate estimation, especially if nearby the signal undergoes to abrupt changes.
In other words, the vertices of the triangle give a poor approximation of the
neighborhood in Eq. (3.3) and this a�ects the estimation of the gradient, as
shown in Figure 3.5.

Figure 3.5: Example in which PTE (red arrows) fails in estimating the direction of
the gradient (black arrows). The geometry of the highlighted triangle is such that
the estimation of the gradient through Eq. (3.2) does not take into account of the
maximum the ground truth is pointing to.

AGS and LSSD are more resilient to this kind of errors, but they may o�er
a poor approximation of the gradient near singularities. In fact, even if the
stencil used is larger, and span more directions around the vertex we are
considering, it still depends on the local geometry of the mesh, and it may
happen that some (relevant) information is lost. Moreover, these e�ects are
more evident at boundary vertices. In fact, in these cases the estimation relies
on an asymmetric discretization of the neighborhood 𝐵(𝑝), since we have only
half of it to our disposal. Roughly speaking, the absence of edges or triangles
that “pull” the gradient to a di�erent direction make the estimation to be based
just on what happens on one side (the one in which we know the signal).

For LR the situation is rather di�erent. Note that estimating a gradient at the
boundary with LR is equivalent to using LR to extrapolate the signal beyond the
boundary. It is well known that extrapolationmethods are very unstable, unless
a prior on the data can be assumed. The assumption underlying LR is that the
signal is a quadric, which is not true in general, and in particular for the test
function used to run the experiments. In fact, LR does not fail systematically
at all critical points, but when it does, it may return very poor results. Figure
3.6 summarizes what has just been said showing the heat map of the error
made by the four methods when estimating the gradient of 𝑓0.1,11. In detail,
the error shown is ‖∇𝑓 (𝑣𝑖) − ∇𝐹 (𝑣𝑖)‖, where ∇𝑓 (𝑣𝑖) is the gradient estimated
with a given method, and ∇𝐹 (𝑣𝑖) is analytic gradient of 𝑓0.1,11 computed at 𝑣𝑖 .

We conclude this section by reporting a table that summarizes the results
obtained in [MLP19], and we refer to such paper for every further detail on
the subject (such as the analysis on 3D meshes which was not commented in
this thesis). For a given mesh, we de�ne 𝐿 to be its average edge length, hence
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f0.1,11 PCE AGS LSDD LR
0

>0.25

Figure 3.6: Heatmaps of the total error measured on the 2D unstructured mesh with
test function 𝑓0.1,11.

1/𝐿 to be the sampling frequency. In the experiments, we did not investigate
progressively �ner meshes; we rather decided to keep the tessellation �xed
and to act on the frequency of the test function (i.e., parameter 𝑏), in order
to study the interaction between domain discretization and signal frequency.
Note that the two approaches are equivalent. The quantity 𝐿/𝑃 in the table
below, stands for the ratio signal frequency over sampling frequency.

Method
Overall performance Resilience to: Comp. cost

Pathologiesinterior boundary poor L/P anisotropy noise
direction magnitude

PCE - - + - + - - - ++ critical points
AGS ++ - - - + + ++ critical points
LSDD ++ - - - + + - critical points
LR ++ - - - - ++ + - - critical points on boundary

Table 3.1: Summary of the performance of the various methods on an ordinal scale
(- -, -, +, ++) on all aspects analyzed. Overall, LR is the preferable algorithm to use
in terms of robustness, while AGS o�ers the best trade o� between accuracy and
e�ciency.

3.2 .2 Di�erential Operators: A Uni�ed Framework

Even if the analysis made in [MLP19] dealt with planar and 3D meshes, i.e.
complexes that do not require the use of a non-linear geometry, further ex-
periments con�rmed that the considerations made applied also to the case of
surface meshes. In fact, the (discrete) curvature of the mesh does not change
the fact that methods such as PTE, AGS or LSSD heavily depend on the quality
of the neighborhood used to compute the gradient. In details: PTE considers
just one triangle, while, in the other two cases, once the contributions of the
neighboring triangles or vertices has been parallel transported to the tangent
space of a given vertex, there are no di�erences between surface and planar
setting in terms of pathologies. Of course, results can be worsened by the fact
that the contributions of nearby vertices are parallel transported. At this re-
gard, it is important to point out another major di�erence between the setting
considered in [MLP19] and the current one. Both in the case of planar meshes
and 3D meshes, the discretization of the domain implies the restriction of the
knowledge of the signal to the vertices of the mesh. Nevertheless, such do-
main is exactly represented by the faces (triangles or tetrahedra) of the mesh,
which is not the case when considering a curved domain. In other words,
when we triangulate a planar domain 𝛺 we are considering a subdivision of
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𝛺 into triangles such that the union of such triangle is exactly 𝛺 , so a coarse
tessellation of 𝛺 , for example, is just a�ecting the way in which the signal
is approximated (since we assume its linearity inside the triangles), but the
underlying domain is still faithfully represented by the mesh. This is no longer
true when considering the triangulation of a smooth manifold: the triangles
are an approximation of the geometry, so in this case a poor discretization of
the domain does not a�ect just the signal, but also the accuracy in representing
the exact domain in which the signal is de�ned.

As it will be clear in the following, an accurate estimation of the gradient near
critical points is of paramount importance for our purposes, so the pathologies
that AGS and LSSD present near such points are not acceptable. On the other
hand, LR is more robust away from boundaries, since the geometry around the
vertex is used to �t a quadratic polynomial which in turn will determine the
gradient at that vertex. Nevertheless, we cannot a�ord to solve a linear system
for every vertex of the mesh whenever we need to compute the gradient of
a function, since our target are high-tessellated meshes and every operation
need to be real-time on them.
We therefore considered the approach proposed by Xu in [Xu13]. The

main idea is similar to what described for the LR algorithm, although in this
case the quadratic �tting is used not only to estimate the derivatives of the
signal, but also to approximate the local parametrization of the continuous
surface discretized by the mesh, and use such knowledge to compute the local
representation of the metric.

Our implementation follows this exact construction, except for the choice of
points used to �t the quadric. At the end of this section, we will present some
examples that show how our choice improve the accuracy of the algorithm.
Based on such technique, we also implemented a discrete Riemannian Hessian
operator which, at the best of our knowledge, has never been proposed before.

Local Representation of the Metric through Quadric Fitting

Let us consider an embedded surface 𝑆 ⊂ ℝ3 as in De�nition 2.17. Then, for
every 𝑝 ∈ 𝑆 , we know that we can consider a local parametrization 𝑥 : 𝑈 → 𝑆

in a neighborhood 𝑉 of 𝑝 . In order to simplify the notations, sometimes we
may write the coordinates (𝑢, 𝑣) of ℝ2 as (𝑢0, 𝑢1), consistently with what done
in Chapter 2.

We will start by introducing some notations and re-writing some quantities
in a more convenient way. In particular, if

𝑥𝑢𝑖 =
𝜕𝑥

𝜕𝑢𝑖
, 𝑥𝑢𝑖𝑢 𝑗 =

𝜕2𝑥

𝜕𝑢𝑖𝜕𝑢 𝑗
, 𝑖, 𝑗 = 0, 1,

then 𝑔𝑖 𝑗 = 〈𝑥𝑢𝑖 , 𝑥𝑢 𝑗 〉, where 𝑔𝑖 𝑗 denotes the local representation of the metric.
Therefore, by denoting with 𝐺 the determinant of 𝑔𝑖 𝑗 and remembering that
its inverse 𝑔𝑖 𝑗 has the form

𝑔𝑖 𝑗 =
1
𝐺

(
𝑔11 −𝑔01
−𝑔10 𝑔00

)
,
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the expression of the gradient in (2.12) may be written as

∇𝑓 = (𝑥𝑢, 𝑥𝑣)𝑔𝑖 𝑗 (𝑓𝑢, 𝑓𝑣)𝑇

= 𝑔∇𝑢 𝑓𝑢 + 𝑔∇𝑣 𝑓𝑣,
(3.9)

where 𝑔∇𝑢 = (𝑔22𝑥𝑢 − 𝑔12𝑥𝑣)/𝐺 and 𝑔∇𝑣 = (𝑔11𝑥𝑣 − 𝑔12𝑥𝑢)/𝐺 . We will also write
𝑔𝑖 𝑗𝑘 to denote the product 〈𝑥𝑢𝑖 , 𝑥𝑢 𝑗𝑢𝑘 〉. With these notations the expression
(2.11) of the Christo�el symbol may be re-written as

𝛤𝑘𝑖 𝑗 =
1
2𝑔

𝑘𝑚 (𝑔𝑚𝑗𝑖 + 𝑔 𝑗𝑚𝑖 + 𝑔𝑖𝑚𝑗 + 𝑔𝑚𝑖 𝑗 − 𝑔 𝑗𝑖𝑚 − 𝑔𝑖 𝑗𝑚)

= 𝑔𝑘𝑚𝑔𝑚𝑗𝑖 ,

(3.10)

where we exploited the fact that 𝑔𝑖 𝑗𝑘 = 𝑔𝑖𝑘 𝑗 , since the derivatives of 𝑥 commute.
Then, by (2.13), we can write

∇2 𝑓00 = 𝑓𝑢𝑢 − 1
𝐺
(𝐻 00

𝑢 𝑓𝑢 + 𝐻 00
𝑣 𝑓𝑣)

∇2 𝑓01 = 𝑓𝑢𝑣 −
1
𝐺
(𝐻 01

𝑢 𝑓𝑢 + 𝐻 01
𝑣 𝑓𝑣)

∇2 𝑓11 = 𝑓𝑣𝑣 −
1
𝐺
(𝐻 11

𝑢 𝑓𝑢 + 𝐻 11
𝑣 ) 𝑓𝑣),

(3.11)

where

𝐻 00
𝑢 = 𝑔11𝑔000 − 𝑔01𝑔100 𝐻 00

𝑣 = 𝑔00𝑔100 − 𝑔01𝑔000
𝐻 01
𝑢 = 𝑔11𝑔001 − 𝑔01𝑔101 𝐻 01

𝑣 = 𝑔00𝑔101 − 𝑔01𝑔001
𝐻 11
𝑢 = 𝑔11𝑔011 − 𝑔01𝑔111 𝐻 11

𝑣 = 𝑔00𝑔111 − 𝑔01𝑔011
Putting together the above formulas with (2.15) we have

𝛥𝑓 = 𝑔𝛥𝑢 𝑓𝑢 + 𝑔𝛥𝑣 𝑓𝑣 + 𝑔𝛥𝑢𝑢 𝑓𝑢𝑢 + 𝑔𝛥𝑢𝑣 𝑓𝑢𝑣 + 𝑔𝛥𝑣𝑣 𝑓𝑣𝑣, (3.12)

where
𝑔𝛥𝑢 = −(𝑔00(𝑔11𝑔011 − 𝑔01𝑔111) + 2𝑔01(𝑔01𝑔101 − 𝑔11𝑔001) + 𝑔11(𝑔11𝑔000 − 𝑔01𝑔100))/𝐺2,

𝑔𝛥𝑣 = −(𝑔00(𝑔00𝑔111 − 𝑔01𝑔011) + 2𝑔01(𝑔01𝑔001 − 𝑔00𝑔101) + 𝑔11(𝑔00𝑔100 − 𝑔01𝑔000))/𝐺2,

𝑔𝛥𝑢𝑢 = 𝑔11/𝐺, 𝑔𝛥𝑢𝑣 = −2𝑔01/𝐺, 𝑔𝛥𝑣𝑣 = 𝑔00/𝐺.
Even if (3.11) turned out to be very useful to obtain (3.12), which will be

used to de�ne our discrete Laplacian operator, for our purposes it is important
to �nd a similar expression for Hess𝑓 , since it will be the object we will use
to assess the positive-de�netess of the second covariant derivative. For this
reason, we observe that, by substituting (3.10) in (2.14) we can write

Hess𝑓 (𝜉) = 𝑔ℓ𝑚
( 𝜕2 𝑓

𝜕𝑢𝑚𝜕𝑢𝑖
− 𝑔 𝑗𝑖𝑚𝑔 𝑗ℎ

𝜕𝑓

𝜕𝑢ℎ

)
𝜉𝑖𝑥𝑢ℓ ,

where 𝜉 = 𝜉𝑖𝑥𝑢𝑖 ∈ 𝑇𝑝𝑆 . By de�ning the matrix H ℓ
𝑖 as the matrix having the

𝑖𝑘-th entry equal to

𝑔ℓ𝑚
( 𝜕2 𝑓

𝜕𝑢𝑚𝜕𝑢𝑖
− 𝑔 𝑗𝑖𝑚𝑔 𝑗ℎ

𝜕𝑓

𝜕𝑢ℎ

)
,

we have that Hess𝑓 (𝜉) is a linear operator from 𝑇𝑝𝑆 to itself satisfying

Hess𝑓 (𝜉) = H ℓ
𝑖 𝜉

𝑖𝑥𝑢ℓ . (3.13)
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The reader familiar with basic notions of tensor algebra may notice that we
have just switched from the notion of second covariant derivative, which
is a tensor of type (0, 2), to the one of Hessian operator, which is a tensor
of type (1, 1) (i.e. a matrix). Some authors called the Hessian operator the
former [Sak97,CE75], while others use this term for the latter [dC92,AMP08].
Since both of them are important in our context, we use the notation and
terminology consistent with [AMP08], and refer the reader to Chapter 5 of
such book for further details about this subject.
The idea proposed in [Xu13] can be seen as a mixture of the techniques

describe in the LR and the LSSD algorithm. In fact, the shape of a neighborhood
𝑉 of a vertex 𝑣𝑘 ∈ 𝑀 is approximated with a quadratic polynomial, in order
to compute the partial derivatives of the parametrization 𝑥 (similarly to what
seen in the LR algorithm), and the same techniques is used to approximate the
partial derivatives of a scalar function 𝑓 de�ned on 𝑀 exploiting its Taylor
expansion in 𝑉 (as in the LSSD methods). Since we have seen in the planar
case that both of these approaches are more accurate when the neighborhood
considered is as similar as possible to a ball, instead of considering the 1-ring
of 𝑣𝑘 as done in [Xu13], we perform a uniform sampling of𝑚 points around
on a geodesic circle of radius 𝑟 around 𝑣𝑘 . In this way, we considerably reduce
the dependence on the connectivity of the mesh. At the end of this section we
will present some examples that show how this choice considerably improves
the accuracy of the method and we will give more details about the choice of
𝑚 and 𝑟 .

We start by considering a uniform sampling {𝜃1, . . . , 𝜃𝑚} of the interval
[0, 2𝜋], and we trace 𝑘 straightest paths of length 𝑟 with initial direction
(𝑟 cos(𝜃𝑎), 𝑟 sin(𝜃𝑎)) ∈ 𝑇𝑣𝑀 , 𝑎 = 1, . . . ,𝑚. Let B := {𝑝1, . . . , 𝑝𝑚} be endpoints
of such geodesics. In order to simplify the notation, we put 𝑝0 = 𝑣𝑘 . Since in
this case we want more �exibility, instead of �xing a quadratic polynomial as
done before, it is more practical to consider the basis functions

{𝑄ℓ (𝑢, 𝑣)}5ℓ=0 := {1, 𝑢, 𝑣, 12𝑢
2, 𝑢𝑣,

1
2𝑣

2},

where the factor 1
2 is present just to simplify the computations. Our �rst step

is to �nd an approximation of 𝑥 using these basis functions. To do that, we
put 𝑞0 = (0, 0) and 𝑞𝑎 = (𝑟 cos(𝜃𝑎), 𝑟 sin(𝜃𝑎)), 𝑎 = 1, . . . ,𝑚, and we look for
coe�cients 𝑐ℓ ∈ 𝑅3 such that∑︁

𝑐ℓ𝑄ℓ (𝑞𝑎) = 𝑝𝑎, 𝑎 = 0, . . . ,𝑚,
in the least-squares sense. To do that, we consider the matrix 𝐴 ∈ M𝑚+1×6(ℝ)
of the form

©­­­­«
1 0 0 . . . . . . 0
1 𝑟 cos(𝜃1) 𝑟 sin(𝜃1) 1

2𝑟
2 cos2(𝜃1) 𝑟 2 cos(𝜃1) sin(𝜃1) 1

2𝑟
2 sin2(𝜃1)

...
...

...
...

...
...

1 𝑟 cos(𝜃𝑚) 𝑟 sin(𝜃𝑚) 1
2𝑟

2 cos2(𝜃𝑚) 𝑟 2 cos(𝜃𝑚) sin(𝜃𝑚) 1
2𝑟

2 sin2(𝜃𝑚),

ª®®®®¬
i.e 𝐴(ℓ, 𝑎) = 𝑄ℓ (𝑞𝑎), ℓ = 0, . . . , 5, 𝑎 = 0, . . . ,𝑚. We know that if

𝐶 = (𝐴𝑇𝐴)−1𝐴𝑇 ∈ M6×𝑚+1(ℝ),
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then (𝑐0, . . . , 𝑐5) = 𝐶 (𝑝0, . . . , 𝑝𝑚)𝑇 . Note that, in this case, we are not using the
weight matrix𝑊 , since the points are at the same distance from 𝑣𝑘 . This choice
turned out to be more robust in our experiments, although it seems interesting
to investigate how other options may a�ect or ameliorate the accuracy of the
method. It is important to point out that the technique used to sample the
points ensure that, if𝑚 ≥ 5, then 𝐴 has full rank, and hence 𝐴𝑇𝐴 is always
invertible.
We can thus de�ne our local parametrization around 𝑣𝑘 as

𝑥 (𝑢, 𝑣) =
5∑︁

ℓ=0
𝑐ℓ𝑄ℓ (𝑢, 𝑣) .

Moreover, given discrete function 𝑓 sampled at the vertices of 𝑀 , we can
consider the values 𝑓 (𝑝𝑎), obtained by linear interpolation, 𝑎 = 0, . . . ,𝑚.
Similarly to what done in the LSSD algorithm, by considering the second order
Taylor expansion of 𝑓 at 𝑣𝑘 , we can de�ne 𝑓 (𝑢, 𝑣) = ∑5

ℓ=0 𝑑ℓ𝑄ℓ (𝑢, 𝑣), where
𝑑ℓ = 𝐶 (𝑓0, . . . , 𝑓𝑚)𝑇 . A straightforward computation shows that, if we denote
with𝐶1,𝐶2,𝐶11,𝐶12 and𝐶22 the second, third, fourth, �fth and sixth rows of𝐶 ,
respectively, then at (0, 0) the following identities hold

𝑥𝑢𝑖 = 𝐶𝑖 (𝑝0, . . . , 𝑝𝑚)𝑇 , 𝑖 = 0, 1
𝑓𝑢𝑖 = 𝐶𝑖 (𝑓0, . . . , 𝑓𝑚)𝑇 , 𝑖 = 0, 1

𝑥𝑢𝑖𝑢 𝑗 = 𝐶𝑖 𝑗 (𝑝0, . . . , 𝑝𝑚)𝑇 , 0 ≤ 𝑖 ≤ 𝑗 ≤ 1
𝑓𝑢𝑖𝑢 𝑗 = 𝐶𝑖 𝑗 (𝑓0, . . . , 𝑓𝑚)𝑇 , 0 ≤ 𝑖 ≤ 𝑗 ≤ 1

(3.14)

By substituting (3.14) into (3.9), we get an approximation of the gradient
operator as follows

∇𝑓 (𝑣𝑘 ) ≈
𝑚∑︁
𝑎=0

𝑤𝑎 𝑓 (𝑝𝑎), 𝑤𝑎 = 𝑔∇𝑢 𝑐
(𝑎)
1 + 𝑔∇𝑣 𝑐

(𝑎)
2 , (3.15)

where 𝑐 (𝑎)
𝑖

is the 𝑎-th component of 𝐶𝑖 . We can thus build a sparse matrix
G ∈ M3𝑛×𝑛 (ℝ) such that, if 𝐹 = (𝑓1, . . . , 𝑓𝑛)𝑇 are the discrete values of 𝑓
sampled at the 𝑛 vertices of𝑀 , then

©­­­­­­­­­­­­­­­­­«

∇𝑓 (𝑣1)𝑥
...

∇𝑓 (𝑣𝑛)𝑥
∇𝑓 (𝑣1)𝑦

...

∇𝑓 (𝑣𝑛)𝑦
∇𝑓 (𝑣1)𝑧

...

∇𝑓 (𝑣𝑛)𝑧

ª®®®®®®®®®®®®®®®®®¬

≈ G𝐹,

where ∇𝑓 (𝑣𝑘 ) = (∇𝑓 (𝑣𝑘 )𝑥 ,∇𝑓 (𝑣𝑘 )𝑦,∇𝑓 (𝑣𝑘 )𝑧), 𝑘 = 1, . . . , 𝑛. However, in
order to do that, we need to distribute the contribution of every point 𝑝𝑎 in
(3.15), since the 𝑝𝑎’s are mesh point and not vertices. In details, by denoting
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with {𝑣𝑎ℓ0 , 𝑣𝑎ℓ1 , 𝑣𝑎ℓ2 } the vertices of the triangle 𝑡𝑎 containing 𝑝𝑎 , 𝑎 = 0, . . . , 𝑘 ,
we denote its barycentric coordinates in 𝑡𝑎 as 𝜆𝑎ℓ0 , 𝜆𝑎ℓ1 , 𝜆𝑎ℓ2 , so that

𝑝𝑎 = 𝜆𝑎ℓ0𝑣𝑎ℓ0 + 𝜆𝑎ℓ1𝑣𝑎ℓ1 + 𝜆𝑎ℓ2𝑣𝑎ℓ2 , 𝑎 = 0 . . . , 𝑘 .
By assuming the piecewise linearity of 𝑓 within the triangles of𝑀 , (3.15) may
be re-written as

∇𝑓 (𝑣𝑘 ) ≈
𝑛∑︁

ℎ=1

𝑚∑︁
𝑎=0

𝑤̄𝑎ℎ 𝑓 (𝑣𝑎ℎ ), 𝑤̄𝑎ℎ =

{
(0, 0, 0) 𝑣𝑎ℎ ∉ 𝑡𝑎

𝜆𝑎ℎ𝑤𝑎 𝑣𝑎ℎ ∈ 𝑡𝑎
So far, we did not express the dependence from 𝑣𝑘 of the 𝑤̄𝑎𝑖 ’s in order to keep a
notation as light as possible. However, since the points {𝑝1, . . . , 𝑝𝑚} obviously
depend on 𝑣𝑘 , we shall now make such dependence explicit by writing 𝑤̄𝑘

𝑎𝑖
.

Moreover, since 𝑤̄𝑘
𝑎𝑖
is a vector in ℝ3, we will write 𝑤̄𝑘

𝑎𝑖
= (𝑤̄𝑘𝑥

𝑎𝑖
, 𝑤̄𝑘𝑦

𝑎𝑖
, 𝑤̄𝑘𝑧

𝑎𝑖
) We

can therefore de�ne G as the sparse matrix such that

G(𝑖, 𝑗) =
𝑚∑︁
𝑎=0

𝑤̄ 𝑖𝑥

𝑎 𝑗

G(𝑛𝑖, 𝑗) =
𝑚∑︁
𝑎=0

𝑤̄ 𝑖𝑦

𝑎 𝑗

G(2𝑛𝑖, 𝑗) =
𝑚∑︁
𝑎=0

𝑤̄ 𝑖𝑧

𝑎 𝑗
.

The sparsity of G is due to the fact that the only vertices contributing to
the estimation of ∇𝑓 (𝑣𝑘 ) are the ones of the triangles containing the points
{𝑝1, . . . , 𝑝𝑚}.
For the sake of brevity, we will not enter into the details about state-of-the-

art methods for the computation of the Laplacian on discrete surfaces, referring
to the work of Wardetzky et al. [WMKG07] in which the variety of discrete
Laplace operators are described. Essentially, a discrete Laplace operator is
described by its linear action on vertex based functions:

(𝐿𝑓 )𝑖 =
∑︁
𝑗

𝜔𝑖 𝑗 (𝑓𝑗 − 𝑓𝑖),

where usually 𝑗 varies in the set of indices of the vertices in the 1-ring of 𝑣𝑖 .
Among the various discretizations of the Laplace operator, the most popular is
the so called cotangent Laplacian, introduced in [Mac49]. Since the weights
𝜔𝑖 𝑗 in the cotangent Laplacian are estimated measuring the cotangent of the
angles opposite to the edge 𝑒𝑖 𝑗 , the robustness of this method depends on
the tessellation of 𝑀 (see for example [SSC19b, Section 5.4]). This has been
further con�rmed in our experience while working on the cut locus (Chapter
5), where an accurate estimation of the Laplacian was crucial for our purposes.
Our implementation turned out to be more resilient to the tessellation of the
mesh (see Section 5.4).

We are now ready to de�ne our discrete Laplace operator. Similarly to what
done with gradient, by substituting (3.14) in (3.12) we obtain

𝛥𝑓 (𝑣𝑘 ) ≈
𝑚∑︁
𝑎=0

𝜔𝑎 𝑓 (𝑝𝑎), (3.16)
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where 𝜔𝑎 = 𝑔𝛥𝑢 𝑐
(𝑎)
1 + 𝑔𝛥𝑣 𝑐

(𝑎)
2 + 𝑔𝛥𝑢𝑢𝑐

(𝑎)
11 + 𝑔𝛥𝑢𝑣𝑐

(𝑎)
12 + 𝑔𝑣𝑣𝑐 (𝑎)22 and 𝑐 (𝑎)

𝑖 𝑗
is the 𝑎-th

component of 𝐶𝑖 𝑗 .
As before, we can build a sparse matrix 𝐿 ∈ M𝑛×𝑛 (ℝ) such that

©­­«
𝛥𝑓 (𝑣1)

...

𝛥𝑓 (𝑣𝑛)

ª®®¬ ≈ 𝐿𝐹 .
Of course, also in this case we need to suitably distribute the contribution at
the vertices of𝑀 . Therefore, with the notations consistent with above, we will
have that 𝐿 will be such that

𝐿(𝑖, 𝑗) =
𝑚∑︁
𝑎=0

𝜔̄𝑖
𝑎 𝑗
, 𝜔̄𝑖

𝑎 𝑗
=

{
0 𝑣𝑎 𝑗

∉ 𝑡𝑎

𝜆𝑎 𝑗
𝜔𝑖
𝑎 𝑣𝑎 𝑗

∈ 𝑡𝑎
.

Concerning the Hessian operator, the advantage of Eq. (3.13) is that when
considering a vertex 𝑣𝑘 ∈ 𝑀 , by (3.14) we can write

H ℓ
𝑖 (𝑣𝑘 ) ≈ 𝑔ℓ𝑚

(
𝐶𝑖+1𝑚 − 𝑔 𝑗𝑖𝑚𝑔 𝑗ℎ𝐶ℎ

)
(𝑓0, . . . , 𝑓𝑚)𝑇 ,

where the dependence from 𝑣𝑘 is just to keep in mind thatH ℓ
𝑖 (𝑣𝑘 ) maps vectors

from 𝑇𝑣𝑘𝑀 into vectors of𝑇𝑣𝑘𝑀 . This allows us to store a matrixH ∈ M4𝑛×𝑛ℝ
such that

H𝐹 = 𝐻,

where 𝐻 is a 4𝑛 × 1 vector having at the 𝑘-th, 2𝑘-th, 3𝑘-th and 4𝑘-th entry
the value H 0

0 (𝑣𝑘 ), H 1
0 (𝑣𝑘 ), H 0

1 (𝑣𝑘 ) and H 1
1 (𝑣𝑘 ), respectively, 𝑘 = 1, . . . , 𝑛. For

the sake of brevity, we omit the details about how constructingH , since the
procedure is similar to what seen for the gradient and the Laplacian.

3.2 .3 Discussion

Even if it is a minor change with respect to what proposed by Xu in [Xu13], the
uniform sampling {𝑝1, . . . , 𝑝𝑚} is of paramount importance for the robustness
of the algorithms described above. In fact, relying on the connectivity of the
mesh to sample the signal lead to similar problems discussed in Section 3.2.1:
the accuracy of the estimation at 𝑣𝑘 heavily depends on the geometry of its
neighborhood, and, according to the directions such neighborhood spans, we
may lack important pieces of information. Moreover, this problem becomes
more evident near singularities. On the other hand, by using the 1-ring of a
vertex, one does not need to assume piecewise linearity of the signal inside the
triangle, since its partial derivatives are estimated using a second-order version
of LSSD (Section 3.2.1), while in our case we basically only values obtained
through linear interpolation of the input function within the triangles of the
mesh. Nevertheless, the experiments made so far suggest that it is better to
have a less accurate information, but uniformly sampled around a point, rather
than working with the exact values of the function but sampled according to
the geometry of the mesh. Figure 3.7 show two examples. In both examples,
the input signal is the distance function 𝑑𝑥 sourced at some point 𝑥 ∈ 𝑀 , where
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Figure 3.7: The estimation of the gradient of a distance �eld 𝑑𝑥 using the approach
proposed in [Xu13] (red) and the one described in the previous section(blue). Even in
regions far from the cut locus, estimating the gradient by relying on the connectivity
of the mesh may give poor results (left). In proximity of the cut locus, this behavior is
more evident (right).

𝑀 , in this particular case, is the Stanford bunny1. The gradient estimated with
our approach is depicted with blue arrows, while red arrows are used for
the gradient computed with the algorithm proposed in [Xu13]. Estimating
the gradient using the 1-ring (or the 2-ring in case the matrix 𝐶 is singular),
may lead to a poor estimation of the gradient at several vertices. Interestingly
enough, the error is more evident when the vertex at which we are estimating
the gradient has a dual edge that points towards the direction of steepest ascent
of 𝑑𝑥 , consistently with what observed in the planar case (see Figure 3.5). This
kind of problem is more evident while approaching the cut locus. Even if the
point of the cut locus are not critical points of the 𝑑𝑥 , since 𝑑𝑥 at those point
is not even di�erentiable, the estimation of the gradient at the vertices around
𝐶 (𝑥) seems always to be poor when using stencils based on the geometry of
the mesh. In Figure 3.7(right), we can see two fronts of ∇𝑑𝑥 meeting at 𝐶 (𝑥).
Even if our method is not the groundtruth, the behavior seems consistent with
what should happen in the continuous setting: since 𝑑𝑥 is smooth away from
𝐶 (𝑥), which has Hausdor� dimension 1, one expects to see the two fronts of
the gradient to “break” at just one polyline across some vertices at which the
discontinuity is evident (which is what happens for the blue arrows). When
looking at the red arrows instead, we see that the discontinuities around 𝐶 (𝑥)
are less localized. We think that this happens because using a stencil whose
geometry is dictated by the one of𝑀 around a vertex inhibits the possibility
of catching the variations to which 𝑑𝑥 undergoes around𝐶 (𝑥), similar to what
observed with 𝑃𝑇𝐸,𝐴𝐺𝑆 and 𝐿𝑆𝑆𝐷 near critical points.
Concerning our approach, we estimated the gradient by sampling𝑚 = 36

point and by choosing 𝑟 as the average edge length of the 1-ring of 𝑣𝑘 (see

1 Courtesy of the Stanford University Computer Graphics Laboratory
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inset).
This choice gave good results in all our exper-

iments, although a thorough analysis to assess
the optimal values for𝑚 and 𝑟 has not been car-
ried out yet. For example, it is reasonable to think
that, on highly anisotropic meshes, choosing 𝑟 as
the average edge length may lead to stencils that
are too big, in the sense that, in some directions,
we may consider points lying on triangles hav-
ing vertices that do not belong to the 1-ring of the vertex we are considering.
Nevertheless, also the Laplace operator de�ned with this technique turned
out to be more robust than the cotangent Laplacian, as brie�y discussed in
Section 5.5. On this regard, it seems interesting to compare our discrete Laplace
operator with the diamond Laplacian proposed by Bunge et al. in [BBA21],
which, in a nutshell, discretize the Laplace operator using a more balanced
stencil than the cotangent Laplacian.

In the future, we plan to perform a thorough analysis in the spirit of [MLP19],
considering surfaces meshes and extending the study to second order di�eren-
tial operators.



4
Geodesic Paths and Distances

Most of the algorithms presented in this thesis have been designed and im-
plemented with one conditio sine qua non: e�ciency on highly-tessellated
meshes. This means that such algorithms are required to be compatible with
real-time interaction on complex meshes (few millions of triangles), i.e. to be
able to produce the output in less than 0.1𝑠 . In every case, the most expensive
operations, which need particular care in order to achieve such a goal, are
the computations of geodesic paths and distances. In this chapter, we will
describe how such queries can be answered in the discrete setting. Di�erently
from what has been seen in the smooth setting, where geodesics are both
auto-parallel (i.e. straight) and locally shortest, this is not always true on
meshes. For this reason, the algorithms required to trace straightest geodesics
will be di�erent from the ones that compute shortest geodesics. We will also
describe various techniques to compute a geodesic distance �eld on 𝑀 , i.e.
scalar function de�ned at the vertices of𝑀 that associates to every vertex its
(geodesic) distance from the source, which may consist either in a point or a
set of points on𝑀 .

Broadly speaking, there exists two major classes of methods that address
the problems mentioned above, which di�er on how the mesh𝑀 is considered.
In one case, 𝑀 is viewed as an exact description of the geometry, hence the
domain is polyhedral; while in the other case,𝑀 represents an approximation
of a smooth surface. Neither class of approaches is to be preferred a priori,
since each may be best-suited to a particular task and in a particular setting
according to a variety of trade o�s in terms of accuracy, storage cost, run time
performances, and scalability. We will therefore describe the main algorithms
present in the literature to address such problems keeping into account the
di�erent setting in which they solve them.Wewill then conclude by presenting
the approaches used in our implementations, which have been obtained by
mixing and/or modifying well known state-of-the-art methods, in order to
obtain an optimal trade-o� between accuracy and e�ciency.

For the sake of brevity, the description of the state of the art will focus on
the ideas behind the main methods, entering into details only when needed
for the description of our algorithms. For any further details about this subject,
we refer to the surveys [CLPQ20,BMSW11].

61
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4.1 PDE-based Methods
Many methods for computing geodesic distances are based on formulating
the problem in terms of partial di�erential equations (PDEs) on a smooth
manifold M. By discretizing and solving these PDEs, a solution on a mesh
𝑀 representing the smooth surface can be found. These methods are usually
suitable to compute the geodesic distance �eld from a point or a set of points.
To explicitly trace a shortest geodesic between two points, one needs to exploit
the knowledge of the geodesic distance �eld sourced at one of them and, for
example, trace a suited integral curve of the gradient �eld of such function. In
fact, by Proposition 2.37 we know that the integral curves of the vector �eld
on M ∇𝑑𝑝 are geodesic emanated from 𝑝 ∈ M. On this regard, we have also
seen that ‖∇𝑑𝑝 (𝑞)‖ = 1 for every 𝑞 ∈ M \ {𝐶 (𝑝) ∪ {𝑝}}. Roughly speaking,
all PDEs methods leverage on this fact, since they are all trying to minimize
the residual of the eikonal equation, de�ned as

‖∇𝑢 (𝑥)‖ = 1 𝑥 ∈ 𝛺
𝑢 (𝑥) = 0 𝑥 ∈ 𝜕𝛺.

(4.1)

By identifying 𝛺 withM, the solution 𝑢 of the above equation will be a scalar
function 𝑢 onM such at any point of 𝜕M, which can be thought as the source
set,𝑢 should be zero, while at every other point the gradient of𝑢 should equate
one, just as the geodesic distance �eld sourced at 𝜕M.
PDE-based methods can be categorized according to the type of equation

considered when formulating the problem in the smooth setting. At a high
level, there are two basic classes of methods: wavefront-based and di�usion-
based. We will describe only one method for each category and refer the reader
to [CLPQ20] for further details on this type of methods.

Fast Marching

The idea behind the fast marching
method for triangle meshes [KS98]
is to solve the eikonal equation (4.1)
by propagating a front starting from
the source. In fact, since solving the
eikonal equation using standard lin-
ear FEM is far from being trivial
due to its non-linearity, the approach
used consists in iteratively updating
the solution while the front is propagated. Such a strategy is very similar to
Dijkstra’s algorithm, which can be described as follows. We start by putting
the distance at the source set to zero, and to in�nity anywhere else. We then
use a region-growing strategy to update the remaining distances in an “up-
wind” order, i.e. we consider the node with smallest distance �rst. The fast
marching method proceeds similarly. The key di�erence is that distances are
not updated according to paths along arcs, but by solving an equation that
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approximates through �nite di�erences the eikonal equation. If the values
𝑢𝑖 , 𝑢 𝑗 of two vertices 𝑣𝑖 , 𝑣 𝑗 are known, one picks a third value 𝑢𝑘 for the third
vertex 𝑣𝑘 such that the gradient of 𝑢 inside the triangle computed with PTE
has unit norm.

Heat Method

The heat method has been introduced in [CWW13] and exploits a relationship
between the geodesic distance function 𝑑 and the short-time heat kernel
𝑘𝑡 (𝑥,𝑦), where the latter measures the heat transferred from a source 𝑥 to a
destination 𝑦 after time 𝑡 . Such a relationship is dictated by the Varadhan’s
formula [Var67]:

𝑑 (𝑥,𝑦) = lim
𝑡→0

√︁
−4𝑡 log𝑘𝑡 (𝑥,𝑦) .

Such formula can be interpreted as follows: if a point-wise source of heat
centered at point 𝑥 di�uses for a very short time 𝑡 , then the resulting heat
distribution looks nearly identical to the geodesic distance function, up to a
simple transformation of the value at each point. Since computing a numerical
approximation 𝑢𝑡 of the heat kernel such that the Varadhan’s transformation
𝑢𝑡 ↦→

√︁
−4𝑡 log𝑢𝑡 yields to a good approximation of𝑑 (𝑥,𝑦) is quite challenging,

the idea behind the heat method is to leverage the knowledge of the magnitude
of the gradient of the distance function, and estimating its direction by solving
the heat equation

𝑑

𝑑𝑡
𝑢𝑡 = 𝛥𝑢𝑡 (4.2)

𝑢0 = 𝛿𝑥 , (4.3)

where 𝛿𝑥 is a Dirac delta centered at 𝑥 . Therefore, the pipeline of the heat
method can be described as follows. First, it determines an approximation
𝑢𝑡 of the heat kernel by solving the heat equation above. De�ne the vector
�eld 𝑋 = −∇𝑢𝑡/‖∇𝑢𝑡 ‖, where the minus sign accounts for the fact that 𝑑
increases when moving away from 𝑥 while the heat kernel does the opposite.
Identify 𝑑 with minimizer of

∫
M ‖∇𝑑 − 𝑋 ‖2, or, equivalently, by solving the

corresponding Euler-Lagrange equations 𝛥𝑑 = ∇ · 𝑋 .

Concerning performances, the advantage of the heat method with respect
to the fast marching method is that the matrices used to solve linear sys-
tems needed to approximate the heat kernel and to solve the Euler-Lagrange
equation can be prefactored. This means that the computation of a geodesic
distance �eld consists in two steps: a pre-processing phase in which a sparse
Cholesky factorization [CDHR08] of the matrices involved in the computation
is built, and the e�ective computation of the distance �eld by solving the above
mentioned linear systems. Note that the pre-processing phase depends only
on the geometry of the mesh𝑀 , so the query of another distance �eld sourced
at some other point of𝑀 can be answered very e�ciently once the matrix has
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been pre-factorized. On the other hand, the fast marching method needs to
propagate a new front every time the source is relocated, so it is outperformed
in terms of e�ciency. In terms of accuracy, the results reported in [CWW13]
show that fast marching tends to achieve smaller maximum error, whereas
the heat method does better on average (see [CWW13, Table 1]).

4.2 Polyhedral methods
The methods described in this section are based on the assumption that𝑀 is
an exact representation of the geometry, which means that𝑀 is viewed as a
topological manifold endowed with a piece-wise linear structure [Cai35,Whi40].
In this class we have the so called exact methods that, roughly speaking, de�ne
the distance between two points just as in the smooth case, i.e. as the length of
the shortest curve joining them, which, by the piecewise nature of the mesh,
is a polyline made of straight line segments. The idea on which most of the
methods that fall in this group rely on, is due to Mitchell et al. [MMP87], in
which a characterization of what is a shortest path (or a minimizing geodesic)
in this setting is given. The MMP (Mitchell-Mount-Papadimitriou) algorithm
proposed in this paper is commonly viewed as a landmark in the research
of polyhedral geodesic algorithms, and many subsequent approaches have
proposed methods to increase its e�ciency and robustness without violating
the constraint that the �nal result should be the exact polyhedral distance.
However, these methods can be time-consuming for large-scale applications,
so several algorithms have been proposed that approximate the polyhedral
distance, which can be applied in scenarios where the accuracy is not an
essential feature. In this class fall the graph-based and local methods, which
will both play an important role in this thesis.

Di�erently from PDE-based methods, polyhedral methods are well suited for
geodesic paths tracing. In some cases, the technique can be space-consuming
and not very useful from a practical point view when dealing with highly-
tessellated meshes. However, we will see that such query can be answered
e�ciently by combining a graph-based approach with a local method.

4.2 .1 Shortest and Straightest Paths on Triangle Meshes

As said above, polyhedral methods compute geodesic distances by consider-
ing curves of minimum length between points. Therefore, it is clear that a
characterization of such curves is needed. The piece-wise �at structure of a
triangle mesh𝑀 helps in giving an idea of what happens in some trivial cases.
For example, if two points 𝑝 and 𝑞 lie in the same triangle 𝑡 , then the shortest
path connecting is a straight line segment within 𝑡 . Similar arguments can be
made if 𝑝 and 𝑞 belong to adjacent triangles: we can unfold the two triangle
in a common plane, connect 𝑝 and 𝑞 with a straight line segment, and map
the result on𝑀 . In general, if a shortest path does not cross any vertex, once
the triangle crossed by such a path are �attened into a common plane, then it
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Figure 4.1: Due to the piecewise linear nature of the mesh, the shortest path between
𝑝 and 𝑞 is a polyline made of straight line segments, which reduces to a straight line
once the strip of triangles crossed by this path is �attened.

reduces to a straight line segment, as shown in Figure 4.1. Note that, in these
cases, we obtain a path connecting the two points which are both straightest
and shortest. However, when 𝑝 and 𝑞 get far away from each other, things get
more complicated.

Straightest Paths

Let 𝑝 ∈ 𝑀 be a point in𝑀 and let𝑢 be a direction
in 𝑇𝑝𝑀 . For the moment, suppose that 𝑝 is not a
vertex. We are interested in tracing the straight-
est possible path from 𝑝 with direction𝑢. It seems
reasonable to start by tracing the straight line
segment with direction 𝑢 until we hit an edge
of the triangle containing 𝑝 , and then unfold the
neighboring triangles to extend this ray inde�n-
itely. Here we are implicitly leveraging the fact
that the tangent space of a point 𝑞 in a triangle
is identi�ed with the plane that contains this
triangle, so it is natural to ask ourselves what
happens when the said ray hits a vertex 𝑣𝑖 of
𝑀 . In that case, the idea proposed by Polthier
and Schmies in [PS98] is, roughly speaking, to
impose the path to be “straight” in the tangent space 𝑇𝑣𝑖𝑀 . More formally, if
(1, 𝜃𝑢) are the polar coordinates of the incoming direction in 𝑇𝑣𝑖𝑀 , then we
impose the outgoing direction to have coordinates (1, 𝜋+𝜃𝑢). This is equivalent
to require that the incoming and outgoing directions splits the total angle𝛩𝑖

in half, where𝛩𝑖 is de�ned as in (3.1), see inset.
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Discrete Curvature

Before describing what characterizes a shortest path on𝑀 , it is convenient to
introduce a way of measuring the “�atness” of a vertex 𝑣𝑖 ∈ 𝑀 . We thus de�ne
the angle defect 𝛺𝑖 as

𝛺𝑖 = 2𝜋 −𝛩𝑖 ,

The angle is often viewed as a discrete analogue of the Gaussian curvature. In
fact, if we put 𝑅 := S(𝑣𝑖), then 𝜕𝑅 = 𝐿𝑘 (𝑣𝑖) (thick blue line in the inset). Since
the Gauss-Bonnet theorem holds also in this setting, we can write∬

𝑅

𝐾𝑑𝜎 +
𝑚∑︁
ℎ=0

𝛽ℎ = 2𝜋, (4.4)

where {𝑣 𝑗0, . . . , 𝑣 𝑗𝑚 } = N(𝑣𝑖) and 𝛽ℎ is the external angle of 𝐿𝑘 (𝑣𝑖) at 𝑣 𝑗ℎ ,
ℎ = 0, . . . ,𝑚 (see inset).

Note that this simpli�ed form is
due to the fact that the integral of
geodesic curvature along the piece-
wise linear boundary of 𝑅 is zero.
With notations consistent with the
ones of Section 3.1, and assuming
that indexes are meant modulo𝑚, we
have that

𝛽ℎ = 𝜋 − (𝜃 𝑖 𝑗ℎ−1
𝑗ℎ

+ 𝜃 𝑖 𝑗ℎ+1
𝑗ℎ

).

Therefore, when summing over ℎ, we can re-arrange the terms and write
𝑚∑︁
ℎ=0

𝛽ℎ =

𝑚∑︁
ℎ=0

𝜋 − (𝜃 𝑖 𝑗ℎ
𝑗ℎ−1

+ 𝜃 𝑖 𝑗ℎ−1
𝑗ℎ

) =
∑︁
ℎ

𝜃
𝑗ℎ 𝑗ℎ−1
𝑖

= 𝛩𝑖 ,

where again the indices are meant modulo𝑚. Therefore, (4.4) becomes∬
𝑅

𝐾𝑑𝜎 = 2𝜋 −𝛩𝑖 .

We will therefore refer to vertex with positive, zero and negative curvature
(or angle defect) as spherical (or cone-like), Euclidean and hyperbolic (or saddle-
like), respectively.

Shortest Path

Let us now consider two points 𝑝, 𝑞 ∈ 𝑀 directly opposite a spherical vertex 𝑣𝑖
(i.e. a vertex at which the curvature is positive). What we said about straightest
path, suggests that the shortest route between 𝑝 and 𝑞 is to consider the
straightest path from 𝑝 to 𝑣𝑖 and from 𝑣𝑖 to 𝑞. However, this is wrong, since
if we think at 𝑣𝑖 as a bump, or a hill, one can �nd a shorter path by walking
“around” it rather than walking over it. In fact, Sharir and Schorr proved
in [SS84] that, on a convex mesh, i.e. a mesh𝑀 such that every vertex 𝑣𝑖 ∈ 𝑀
is such that 𝛺𝑖 > 0, a shortest path never passes through a vertex.
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On the other hand, if 𝑣𝑖 is a saddle vertex (𝛺𝑖 < 0), then one can �nd
many shortest paths passing through it. In fact, as we thought about cone-like
vertices as hills, here we may think about hyperbolic ones as passages between
two mountains: in order to reach the other side, it is more cost-e�ective to go
through the passage than crossing the ridge of one of the mountains. In fact,
suppose that you want to �nd the shortest path connecting the red point with
the black point in the inset. It is clear that it is much quicker to pass straight
through the vertex than to walk up and down across the nearby triangles.
However, the big di�erence when consider-

ing the discrete setting, is that, in this case, the
passage “collapses” into just one vertex, so all
the shortest paths that connect two points at the
opposite side of a hyperbolic vertex will pass
through it. In fact, if we keep the red point �xed,
there will be in�nitely many outgoing directions
that yield a shortest path; these directions form
a wedge-like region of angle | 𝛺𝑖 | (red).

The above considerations have been formalized byMitchell et al. in [MMP87],
in which they give a full characterization of shortest paths in the polyhedral
setting, which is summarized in the following lemma [MMP87, Lemma 3.5].

lemma 4.1 : The general form of a geodesic path is a path which goes
through an alternating sequence of vertices and (possibly) empty edge se-
quences such that the unfolded image of the path along any edge sequence is
a straight line segment and the angle of the path passing through a vertex is
greater than or equal 𝜋 . The general form of an optimal path is the same as
that of a geodesic path, except that no edge can appear in more than one edge
sequence and each edge sequence must be simple.

In the above lemma, “optimal path” stands for shortest paths, and an edge
sequence is called simple when no edges appear more than once in it. The
condition on the angle of the path passing through a vertex exclude spherical
vertices by the de�nition. In fact, suppose that a path 𝛾 passes through a vertex
𝑣𝑖 while going from the triangle 𝑡0 to the triangle 𝑡1. Let ℓ𝑗 be the segment of 𝛾
on 𝑡 𝑗 leading to 𝑣 , 𝑗 = 0, 1. Then 𝛾 splits the star of 𝑣𝑖 in two portions: the �rst is
the strip of adjacent triangles {𝑡0, . . . , 𝑡1} that goes from 𝑡0 to 𝑡1 moving around
𝑣𝑖 in a clockwise order, the other goes from 𝑡0 to 𝑡1 in a counterclockwise order.
Let {𝑣𝑎0, . . . , 𝑣𝑎𝑚 } be the vertices in N(𝑣𝑖) that belong to the �rst portion and
{𝑣𝑏0, . . . , 𝑣𝑏𝑚 } the ones in the second portion. Let 𝜙0

𝑎 and 𝜙0
𝑏
be the angles

formed by ℓ0 with 𝑒𝑖𝑎0 and 𝑒𝑖𝑏0 , respectively. Similarly, let 𝜙1
𝑎 and 𝜙1

𝑏
be the

angles formed by ℓ1 with 𝑒𝑖𝑎𝑚−1 and 𝑒𝑖𝑏𝑚−1 . We de�ne

𝛩+
𝑖 := 𝜙0

𝑎 +
𝑚−1∑︁
𝑗=1

𝜃
𝑎 𝑗𝑎 𝑗+1
𝑖

+ 𝜙1
𝑎, 𝛩−

𝑖 := 𝜙0
𝑏
+

𝑚∑︁
𝑗=1

𝜃
𝑏 𝑗𝑏 𝑗+1
𝑖

+ 𝜙1
𝑏

(4.5)

as the total angles of these two portions. Note that the summations go from one
to𝑚 − 1 because we are measuring the clockwise and the counterclockwise
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Figure 4.2: The window is data structure𝑤 = (𝑎0, 𝑎1, 𝑑0, 𝑑1, 𝜎, 𝜏), where 𝑎0, 𝑎1 denote
the endpoints of𝑤 ;𝑑0, 𝑑1 denote the corresponding distances from 𝑎0, 𝑎1 to the pseudo-
source 𝑣𝑖 ; 𝜎 denotes the geodesic distance from 𝑣𝑖 to the source 𝑣𝑠 ; and 𝜏 denotes the
direction of the propagation. Adapted from [SSK+05].

angles from ℓ0 to ℓ1. Then the angle of 𝛾 at 𝑣𝑖 is de�ned as the minimum
between𝛩+

𝑖 and𝛩−
𝑖 . Note that, if 𝛺𝑖 > 0, then such an angle is always smaller

than 𝜋 .

4.2 .2 Exact Methods

Mitchell et al. [MMP87] proposed the �rst practical algorithm for geodesic
computation on polyhedral surfaces, which is commonly referred to as MMP
(Mitchell-Mount-Papadimitriou) algorithm. The main idea is to use the charac-
terization of a shortest path made in Lemma 4.1 to propagate a front from the
source with a technique that the authors call continuous Dijkstra. In fact, this
procedure somehow extends the well known Dijkstra’s algorithm [Dij59] from
graphs to polyhedral surfaces, since it views the edges of the mesh as nodes of
a graph. Instead of distance values, they use a dedicated data structure, called
window, which encodes all locally shortest paths in an unfolded triangle strip.
Essentially, windows are intervals on edges that a shortest path may cross.
Whenever the front hits a hyperbolic vertex 𝑣𝑖 , then a new front is propagated
from 𝑣𝑖 , which has been called in the following works a pseudosource. In this
case, the propagation of the windows starts again from 𝑣𝑖 as if it were the
original source, hence the name. This not essential but for technical reasons
it makes the algorithm faster. It may happen though, that the propagations
started from two pseudosources “intersect”, i.e. there may be edges where
windows overlap. In this case, the optimization of windows on an edge is
accomplished by trimming such windows into disjoint ones according to the
smaller distance in the overlapping part. Since the cost of the algorithm is
positively correlated to the number of windows arriving at each edge, in order
to minimize this number, the wave front propagation paradigm in Dijkstra’s
algorithm and fast marching is used. This means that windows across𝑀 are
propagated from near to far by maintaining a priority queue. This paradigm
ensures that redundant windows will be trimmed at earliest possible stage.
Then, the geodesic distances can be computed by �nding the optimal windows
on the edges of𝑀 . If 𝑥 is hyperbolic vertex, then its distance from the source
has been labeled during the propagation, since it is a pseudosource, otherwise
the distance is retrieved in 𝑂 (log𝑛), where 𝑛 denotes the number of vertices
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of𝑀 . Since the authors proved that at most𝑂 (𝑛2) windows are created by this
algorithm, it can be easily derived that MMP computes the geodesic distance
from a vertex 𝑣 to all the other vertices of𝑀 in 𝑂 (𝑛2 log𝑛).
The MMP algorithm is commonly viewed as landmark in the research of

polyhedral geodesic algorithms. Its distinct distribution is the window propaga-
tion framework which contains three major components: window propagation,
window pruning (e.g. trimming) and windowmanagement (e.g. priority queue).
Several approaches in the literature have adopted this framework in order
to propose an algorithm that computes exact geodesic polyhedral distances
in the most e�cient possible, and they di�er from their unique techniques
used in the three components. For the sake of brevity, we report the main
ones [CH90,SSK+05,XW09,XWL+15,QHY+16] and refer the reader to [CLPQ20]
for further details. In a nutshell, the best performing algorithm to date is the
VTP algorithm (Vertex-oriented Triangle Propagation), proposed by Qin et
al. [QHY+16].

4.2 .3 Graph-Based methods

Even the most e�cient method for computing exact polyhedral distances is far
from being compatible with real-time performances on average-sized meshes.
Therefore, one needs to �nd a trade o� between accuracy and e�ciency, which
means giving up on computing the exact distance between two points and
relying on more e�cient approaches that provide an estimation of it. Graph-
based methods rely on the assumption that the shortest geodesic distance
between any pair of point 𝑝, 𝑞 can be approximated by considering a set
(𝑝, 𝑣0, . . . , 𝑣𝑘 , 𝑞), where 𝑣0 . . . , 𝑣𝑘 belong to a �nite set 𝑉𝐺 of points on𝑀 , such
that the distance between any pair of points of 𝑉𝐺 is precomputed and stored
in the edges 𝐸𝐺 of a graph 𝐺 = (𝑉𝐺 , 𝐸𝑔).
To �x ideas, suppose𝑀 is made of two triangles obtained by splitting the

square𝐴, 𝐵,𝐶, 𝐷 by connecting𝐴 and𝐶 with one of the diagonal of the square
(see inset). Now suppose that we want to estimate the distance between 𝐵 and
𝐷 .

By allowing ourselves to move just along the
edges of 𝑀 (black lines), the best we can do is
to approximate such distance with 2ℓ , where ℓ is
the length of the side of the square. However, by
considering the graph 𝐺 = (𝑉𝐺 , 𝐸𝐺 ), such that

𝑉𝐺 = {𝐴, 𝐵,𝐶, 𝐷,𝑂}
𝐸𝐺 = (𝐴𝐵, 𝐵𝐶,𝐶𝐷, 𝐷𝐴,𝐴𝐶,𝑂𝐵,𝑂𝐷),

where𝑂 is the centroid of square, we can “go” from 𝐵 to 𝐷 by “walking” along
𝐵𝑂 and𝑂𝐷 (red), i.e. we obtain the correct distance

√
2ℓ . The idea behind graph-

based method is to re�ne the initial mesh𝑀 by adding nodes and connecting
them with arcs in order to improve the estimation of the distances that we
would have if we allow ourselves to move just along the edges of𝑀 .
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This idea has been probably proposed for the �rst time in the PhD thesis
of Lanthier [Lan00]. Such methods di�er for the choice of points of 𝑉𝐺 and
the edges of 𝐸𝐺 and the strategy to build the graph. Once 𝐺 is provided,
geodesic distances and shortest paths can be easily resolved though shortest
path queries on 𝐺 , most frequently with standard Dijkstra search [Dij59].
In [Lan97, LMRS01], Lanthier et al. proposed three di�erent strategies to build
a graph 𝐺 made of edges that can cross the triangles of 𝑀 . The �rst step
consists in de�ning the vertices 𝑉𝐺 of 𝐺 by adding Steiner points along the
edges of 𝑀 , while in the second one the graph of edges 𝐸𝐺 is built, which
interconnects the vertices of 𝑉𝐺 with arcs that walk either along edges or
across faces. The three above mentioned techniques di�er in how the Steiner
points are distributed along the edges (same number of points distributed
uniformly on all the edges or di�erent number of points such that the distance
between them on all the edges is the same), and in the way in which they are
connected, i.e. by which arcs one add to 𝐸𝐺 . Lanthier et al. [LMRS01] proved
that if the number of Steiner points is large enough, they can approximate the
geodesic shortest path within additive bound that is a function of the length
of the longest edge in𝑀 .

Several other techniques have been proposed that deal with the positioning
of Steiner points and with the accuracy of the resulting method [MM97,ALM00,
AMS00,AMS05]. However, the results in these works have mostly a theoretical
interest, since the proposed algorithms are too slow for practical purposes
[BMSW11].

Ying et al. [YWH13] proposed a graph based method base on the observation
made in Lemma 4.1: since a shortest path on a polyhedral mesh may cross a
vertex only if it is a hyperbolic one, they proposed to build a Saddle Vertex
Graph (SVG) having the vertices of 𝑀 as nodes, and one arc in 𝐸𝐺 for any
direct path between a pair of vertices, where a path is said to be direct if it
does not cross any vertex. Therefore, in this case the arcs are polygonal paths
across edges. However, since encoding all the direct paths between any pair
of vertices may result in a too large data structure for practical purposes, they
proposed to connect each vertex 𝑣𝑖 with the 𝐾 vertices belonging to a geodesic
disc centered at 𝑣𝑖 . They compared SVG with the heat method and report that
SVG is faster for 𝐾 < 100, comparable for 100 < 𝐾 < 500 and slower, but more
accurate for larger values of 𝐾 .

Wang et al. [WFW+17] improved the e�ciency of SVG proposing theDiscrete
Geodesic Graph, in which they relax the hypothesis that no shortest path should
cross a spherical vertex. They start by observing that cones resulting from the
window propagation in the MMP algorithm become progressively narrower.
If a cone is long enough, then any direct path from the source 𝑣𝑠 to a vertex
𝑣𝑡 in the cone can be approximated by the sum of two shortest paths 𝑣𝑠𝑣 and
𝑣𝑣𝑡 , where 𝑣 is a vertex preceding 𝑣𝑡 and lying on the boundary of the cone.
Therefore, while generating direct paths as in the SVG method, they set an
early termination of window propagation when the length of the cone reaches
a certain threshold, which depends on the parameter de�ning a window𝑊
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that bounds the cone and on a tolerance threshold 𝜀. The experiments carried
out by the authors show that DGG is the best graph-based algorithm in terms
of e�ciency and accuracy to date.

4.2 .4 Local Methods

The methods reviewed above are well suited for computing geodesic distances.
Both exact methods and graph-based methods can be used to compute a
shortest path but, as it will be clear soon enough, there are methods that are
tailored for this type of query. Therefore, in this section we will focus on
methods that compute the shortest path between two vertices 𝑣𝑠 and 𝑣𝑡 . The
idea behind local methods is to compute an initial guess 𝑃 , which is a path
connecting 𝑣𝑠 and 𝑣𝑡 which is not needed to be the shortest one, and then re�ne
𝑃 in order to turn it into a geodesic path. Note that, in the last statement we used
the term “geodesic” and not “shortest”, because these methods only guarantee
the result to be locally shortest, i.e. it is not possible to assess if another
globally shortest path exists. To clarify the previous statement, let us start by
describing how to locally assess that a given path is geodesic or not. To this end,
it is important to remember the discussion made in Section 4.2.1, where we
observed that, in the discrete setting, the concepts of shortest and straightest
do not coincide, in general. Polthier and Schmies [PS98] observed that a path
passing through vertex 𝑣𝑖 divides its total angle into two components (𝛩+

𝑖

and 𝛩−
𝑖 in (4.5)), and de�ne geodesic paths in terms of these quantities. In

particular, they state that a path is

- locally straightest if𝛩+
𝑖 = 𝛩−

𝑖 ,
- locally shortest if𝛩+

𝑖 ≥ 𝜋 and𝛩−
𝑖 ≥ 𝜋 .

Note that if 𝛺𝑖 = 0, i.e. if 𝑣𝑖 is Euclidean, both conditions hold and the
parallelism with the smooth setting is preserved. However, we notice that
there are in�nitely many shortest paths passing through an hyperbolic vertex,
i.e. any solution 𝛩+

𝑖 + 𝛩−
𝑖 = 𝛩𝑖 with 𝛩+

𝑖 ≥ 𝜋 and 𝛩−
𝑖 ≥ 𝜋 de�nes a locally

shortest path through 𝑣𝑖 .
Many local methods in the literature exploit this classi�cation to turn the

initial guess 𝑃 into a path which is locally shortest. Essentially, 𝑃 is represented
as a concatenation of mesh points 𝑝0, . . . , 𝑝𝑛 , such that 𝑝𝑖 and 𝑝𝑖+1 belong to the
same triangle 𝑡 , 𝑖 = 0, . . . , 𝑛. The idea is to iteratively �atten the mesh around
each one of these points and update their position in order to locally straighten
or shorten the path. This procedure is iterated until convergence, that it, when
all the points locally satisfy the geodesic criterion ( [Wan04,MVdC04]). Xin et
al. [XW07] strive for locally shortest geodesics, but rather than using the local
angle criteria expressed in [PS98], they adopt an equivalent concept based
on the Fermat principle, which states that light always follows the shortest
optical path. As in [Wan04,XW07], this method is guaranteed to converge to a
path that is locally shortest everywhere in the sense of [PS98]. Recently, Sharp
and Crane [SC20a] proposed an algorithm that shortens the initial guess by
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�ipping the edges of the mesh and updating the path accordingly to such �ip.
They proved that their local �ipping procedure is guaranteed to reduce the
length in the general case. The comparison made in Chapter 7 shows that our
method is, on average, one order of magnitude faster than the one proposed
in [SC20a].
Other methods in the literature address this problem by updating the all

path at each iteration. In a nutshell, instead of focusing on one point, they
move all the points in the path by minimizing a suited energy. Since we will
not use this kind of approach in the following, we omit their description for
the sake of brevity and refer to [CLPQ20] for further details.

4.2 .5 Geodesic Tracing

With geodesic tracing we mean the tracing of a curve 𝛾 which is locally
straigthest everywhere in the previously described sense. Therefore, we are
interested in �nding a piece-wise linear curve such that𝛩+

𝑖 = 𝛩−
𝑖 whenever

a vertex 𝑣𝑖 is crossed. The theoretical bases for solving this problem on a
polyhedral surface has been laid by Polthier and Schmies in [PS98], as de-
scribed above. Polthier and Schmies [PS98] proposed two alternative methods
to integrate a vector �eld on a mesh, one based on Euler integration, and the
other based on the fourth order Runge-Kutta method. In the implementation
of the algorithms described in the sequel, the former will always been used.
We report the de�nition given by the author and describe how it has been
implemented in our setting.

definition 4.2 ( [PS98, De�nition 21]): Let 𝑀 be a polyhedral surface
with a polyhedral tangent vector �eld 𝑣 on𝑀 , let𝑦0 ∈ 𝑀 be an initial point, and
let ℎ > 0 a (possibly varying) step size. For each point 𝑝 ∈ 𝑀 , let 𝛿 (𝑡, 𝑝, 𝑣 (𝑝))
denote the unique straightest geodesic through 𝑝 with initial direction 𝑣 (𝑝)
and evaluated at parameter value 𝑡 . A single iteration step of the geodesic Euler
method is given by

𝑦𝑖+1 := 𝛿 (ℎ,𝑦𝑖 , 𝑣 (𝑦𝑖)) .
The produces a sequence of points {𝑦0, 𝑦1, . . .} on𝑀 which are connected by
straightest geodesic segments of length ℎ. For each 𝑖{0, 1, . . .}, we de�ne

𝛾 (𝑖ℎ + 𝑡) := 𝛿 (𝑡, 𝑦𝑖 , 𝑣 (𝑦𝑖)), 𝑡 ∈ [0, ℎ]

and obtain a piece-wise straightest, continuous curve 𝛾 : [0, ℓ) → 𝑀 of some
length ℓ such that each segment 𝛾

��
[𝑖ℎ,(𝑖+1)ℎ] is a straightest geodesic.

Note that, in the de�nition above, the existence of a tangential vector �eld
on𝑀 is assumed. However, in our setting we always start with just one point 𝑝
and a direction𝑤 . In this case, the authors state that such a vector �eld should
be computed during a pre-processing step. On this regard, let us consider
the case in which 𝑝 lies within a triangle 𝑡0, and hence𝑤 is a tangent vector
de�ned in the plane containing 𝑡0. The unique straightest geodesic satisfying
these initial conditions is therefore the straight line segment emanating from
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𝑝 with direction𝑤 . We therefore trace such segment until we hit the boundary
of 𝑡0 at some point 𝑝0. Let us assume that 𝑝0 is not a vertex, and let 𝑡1 be the
triangle adjacent to 𝑡0 along the edge on which 𝑝0 lies. We can then �atten 𝑡0
and 𝑡1 onto a common tangent plane, and extending the straight line segment
de�ned in 𝑡0 to 𝑡1. If 𝑝0 is a vertex instead, suppose 𝑝0 = 𝑣𝑖 for some 𝑣𝑖 ∈ 𝑉 .
We parallel transport 𝑤 from 𝑡0 to 𝑇𝑣𝑖𝑀 as described in Section 3.1. With
an abuse of notation, we will call such a vector 𝑤 for simplicity, The polar
coordinates (𝜌𝑤, 𝜃𝑤) in𝑇𝑣𝑖𝑀 uniquely determine the vertices 𝑣 𝑗𝑎 and 𝑣 𝑗𝑎+1 such
that 𝜃 𝑗𝑎 ≤ 𝜃𝑤 ≤ 𝜃 𝑗𝑎+1 , where 𝜃 𝑗𝑎 and 𝜃 𝑗𝑎+1 are de�ned as in Section 3.1. We
therefore parallel transport𝑤 from 𝑇𝑣𝑖𝑀 to 𝑡1. Again, the straightest geodesic
in 𝑡1 emanated from 𝑣𝑖 with direction𝑤 is uniquely de�ned, we can therefore
trace a straight line segment within 𝑡1 and determine the next triangle 𝑡2.
In other words, we construct the tangential vector �eld in De�nition 4.2 by
parallel transporting the initial direction from cell to cell. Note that, if 𝛾 is the
piece-wise linear curve consisting of all the straight line segments traced inside
every triangle, then by construction we have that 𝛾 is a locally straigthest
curve in the sense of [PS98]. In fact, within a triangle 𝛾 is just a straight line
segment, and when moving from one triangle to another, the parallel transport
of the direction ensures that 𝛾 remains “straight”, in the sense of [PS98].

Although the above method is the most popular and used, it has some
limitations. Suppose for example that we are interested in approximating
the exponential map at some vertex 𝑣𝑖 , and, to do that, we trace straightest
geodesics in every possible direction from 𝑣𝑖 . Suppose that one of them, say 𝛾
hits a spherical vertex 𝑣 𝑗 . Then 𝛾 splits the beam of nearby curves into two
groups whichmeet discontinuously on the opposite side of 𝑣 𝑗 , since the tangent
spaces we are considering to de�ne them are di�erent and, most importantly,
it is not possible to smoothly pass from one to the other. Note that, if 𝑣 𝑗 is
hyperbolic, then we also fail in covering the wedge of all possible outgoing
directions of shortest paths beyond 𝑣 𝑗 . Kumar et al. [KSH+03] proposed a
method that uses the discrete normals of the mesh rather that tangent spaces
to de�ne stragihtest geodesics. This allows to trace beams of the curves that
leave less “blind spots” when passing a vertex, as demonstrated in [BMBZ02].
In our implementation, we do not use such techniques since we do not have the
same requirements of Biermann et al. [BMBZ02], and the method of Polthier
and Schmies [PS98] perfectly �ts our purposes.

Note that, at the best of our knowledge, none of the existing methods
ensure to have consistency between shortest and straightest paths in the
following sense. Suppose that to have a discrete exponential map constructed
as above, i.e. by tracing a �nite number of straightest paths from one vertex
𝑣𝑖 . Besides the aforementioned problems regarding the injectivity of such
mapping, the shortest paths connecting 𝑣𝑖 with the points obtained in this
way would not coincide with the geodesic rays emanated from 𝑣𝑖 . It seems
therefore interesting to investigate if there is way of de�ning a metric and a
covariant derivative such that the curves having null geodesic curvature with
respect to the said covariant derivative are also shortest paths with respect to
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such a metric. It seems reasonable to think that one needs a proper de�nition
of a (discrete) covariant derivative, instead of relying on the one obtained
through the parallel transport. On this regard, the work of Liu et al. [LTGD16]
seems a good starting point to investigate this problem. In fact, straightest
geodesics de�ned using the covariant derivative proposed in [LTGD16] would
not be straight line segments within the triangles, since, roughly speaking, the
tangent space of a triangle is not assumed to be just a plane, so one need a way
to parallel transport vectors within it. Of course, in order to have consistency,
one needs to de�ne shortest path di�erently from what done above. We plan
to investigate this possibility in future works.

4.3 Our approach

The methods described in Chapter 6 and 7 heavily rely on e�cient algorithms
to compute geodesic distance �eld and shortest paths. Besides e�ciency, these
algorithms need also be accurate, since otherwise the continuity and/or smooth-
ness of the result would be a�ected. As an example, consider the geodesic
ball in Figure 4.3. To trace it, we considered the isoline of the distance �eld
𝑑𝑝 sourced at the red point 𝑝 . Since 𝑑𝑝 is de�ned at the vertices of the mesh,
we linearly interpolate 𝑑𝑝 along the edges in order to make the ball cross the
edges and the triangles of the mesh. Since the mesh is made of 1 million of
triangles, the linear interpolation of the �eld does not visibly a�ect the result,
in the sense that triangles are small enough and the piece-wise linear nature
of the curve is not perceived (see close up on the bottom). However, since the
estimation of the distance �eld is not enough accurate, we obtain a wiggly
geodesic circle, which is not acceptable.

Nevertheless, such circle has been traced in real-time, that is, once the center
has been selected, by dragging the mouse the user can see in real-time the
isoline corresponding to the position of the mouse. Therefore, the computation
of 𝑑𝑝 must support the tracing of geodesic balls via click-and-drag. Similar
arguments apply to shortest paths tracing: the accuracy of the result is crucial
in order to obtain a pleasant output and, in most cases, we need to trace many
of them in real-time. In this section, we describe the approaches used to satisfy
these requests.

4.3 .1 Locally Shortest Paths Tracing

Themethod described below has been proposed in [MNPP22] and a comparison
with the FlipOut algorithm of Sharp and Crane [SC20a] will be presented in
Chapter 7.
Our algorithm to compute locally shortest geodesic paths is derived by

combining insights from the work of Lee and Preparata [LP84] and Xin and
Wang [XW07]. The algorithm consists of three phases: (i) extraction of an
initial strip; (ii) shortest path in a strip; and (iii) strip straightening.
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Figure 4.3: If the estimation of the distance �eld is not enough accurate, when
computing its isoline we may obtain a wiggly geodesic circle, even on high-tessellated
meshes.

Phase (i), which has been overlooked in previous approaches, is critical
as it can become the bottleneck on large meshes (see, e.g., the discussion
in [SC20a, Section 5.2.1]). Given two mesh points 𝑃 and 𝑄 , we compute a strip
of triangles that connects them, performing a search on a dual graph. This
graph is de�ned on the mesh having as nodes the centroids of the triangles of
𝑀 . Each node is connected with the centroids of the three adjacent triangles
and each arc encodes the distance between two nodes, computed by �attening
the triangles in a common plane. Since every node of this graph has valence 3,
its navigation turns out to be very e�cient.
We experienced a relevant speedup over the classical Dijkstra search by

using a shortest path algorithm based on the small-label-�rst (SLF) and large-
label-last (LLL) heuristics [Ber98], which do not require a priority queue, but
a double ended queue. Instead, the SLF heuristics adds a new node to either
the front, or the back of the queue, according to the estimated distance of
that node, compared to the distance of the �rst node in the queue. The LLL
heuristics moves a node from the front to the back of the queue if its distance
is larger than the average distance of nodes in the queue. The SLF and LLL
heuristics govern the insertion and extraction of weighted nodes in the queue.
Besides, we weight each node as in a classical A* search, with the sum of its
current distance from the source plus its Euclidean 3D distance to the target.
This heuristic prioritizes the exploration of triangles closer to the destination
in terms of Euclidean distance, improving performance on most models.
In phase (ii), the strip is unfolded in the 2D plane and the shortest path
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Figure 4.4: Shortest path computation. Given a source 𝑃 and a target 𝑄 an initial
strip of triangles is found with a search on the dual graph of the mesh. (a) A shortest
path within the strip is found by propagating a funnel, which is initialized with its
apex at 𝑃 and its front at the �rst edge crossing the strip. (b) The edges of the strip are
processed one by one, to tighten the front of the funnel. (c) When the funnel collapses,
a new vertex, called a pseudo-source, is added to the path and the apex of the funnel
is moved to the pseudo-source. (d) When 𝑄 is reached, some re�ex vertices may still
lie on the path. (e) Re�ex vertices are analyzed for possible removal, starting at the
vertex 𝑣 causing the sharpest turn. (f) The �nal path is found when no more re�ex
vertices can be removed.

within it is computed in linear time with the funnel algorithm [LP84]. See
Fig. 4.4(a-b-c) for an example.
In phase (iii), in order to obtain the locally shortest path on the mesh, we

remove re�ex vertices from the strip where possible. To this aim, Xin and
Wang �nd the re�ex vertices that can be removed by computing angles about
a vertex inside and outside the strip, respectively [XW07]. However, in our
experiments, the computation of angles slows down the algorithm, because the
star of each re�ex vertex is retrieved from a data structure that is not in cache
memory. Instead, we select the re�ex vertex 𝑣 that creates the largest turn in
the polyline and, similarly to [XW07], we update the strip by substituting the
current semi-star of 𝑣 inside the strip with its other semi-star. We perform
the unfolding and the funnel algorithm on the new strip: if 𝑣 still remains on
the path, then it is frozen; we repeat this procedure until all re�ex vertices
either are removed or become frozen. See Fig. 4.4(d-e-f) for an example. This
procedure is repeated iteratively until no turns in the path are found, at which
point the 2D path is mapped back into a surface geodesic path and returned
as result. Another special stopping case is when the larger turn is found at
the same vertex twice in a row: this happens when the path passes through a
hyperbolic vertex and nothing can be done to further shorten the path. This
iterative algorithm is usually e�cient as the input strip is made of up to a few
hundreds of faces even on dense meshes.

The comparison with [SC20a] made in Chapter 7, shows that we consistently
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Figure 4.5: Geodesic circle traced on a 200k triangles Bunny. Even if the mesh is
coarser than the one in Figure 4.3, the isoline of the distance is smooth and faithfully
represent the behavior of the geodesic distance �eld.

beat it for about one order of magnitude in speed. The breakup of times
presented suggests that the speed-up stems mostly from Phase (i).

4.3 .2 Geodesic Distance Fields Computation

The method described below has been proposed in [MP22].
Our approach to estimate geodesic distance �elds is a graph-based method

similar to the techniques described in [NPP22] and [WFW+17], on a di�erent
graph though. In fact, our graph has all the vertices of the mesh as nodes, and
arcs from each vertex to all vertices in its 𝑘-ring, where 𝑘 is a parameter. Each
arc is weighted with the length of the shortest path between two vertices,
computed as described in the previous section.
As it will be clari�ed next, we will need to compute the geodesic distance

�eld for a generic mesh point 𝑝 ∈ 𝑀 . To do that, we �rst compute the exact
distances from 𝑝 to the vertices of its containing triangle 𝑡 and to the vertices
opposite to the edges of 𝑡 , and we initialize the distances of the corresponding
nodes of the graph accordingly. We then propagate the distance �eld using
the heuristic algorithm described above for the dual graph.
The parameter 𝑘 used in building the graph provides a trade-o� between

the accuracy and the cost of the solver. A low value of 𝑘 may compromise
the smoothness of the distance �eld, hence resulting in wiggly isolines. For
example, the geodesic circle in Figure 4.3 has been traced using the graph
proposed in [NPP22], where the arcs of the graph connect a vertex 𝑣 to its
1-ring and to every vertex in its 2-ring which can be connected to 𝑣 with a dual
edges. On the other hand a too high value for 𝑘 may slow down computations
considerably, thus hindering interaction. We experimented that 𝑘 = 3, 4 are
choices compatible with real-time interaction on high-tessellated meshes (few
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millions of triangles) and provide an estimation of geodesic distances su�-
ciently accurate for our purposes. For example, the geodesic circle in Figure 4.5
has been traced on a 200k triangles mesh. Even if the resolution is way lower
than the example on the elephant showed in Figure 4.3, the result is smooth
and the tracing is performed in real-time via a click-and-drag procedure. In
future works, we plan to carry out a thorough comparison with state-of-the-art
methods. On this regard, Nazzaro et al. have compared their implementation
(which can be thought as the case 𝑘 = 1.5 of our method) with the exact
geodesic distances and experiments show that their method makes in average
an error between 0.1 and 0.2 percent (see [NPP22]).



PART II

Geometric primitives on discrete
surfaces





5
Practical Computation of the Cut
Locus on Discrete Surfaces

This section includes contents from a co-authored paper [MLP21] that
has been re-formatted for this thesis.

5.1 Introduction
Computational problems in the geodesic metric of Riemannian manifolds
are becoming more and more relevant in geometry processing [AOCBC15,
KCPS15,MRCK21,Sch13,SSC19b], optimal transport [BvdPPH11,LD11,SRGB14,
SDGP+15, Sol18,MCSK+17], and machine learning [BYF+19,MKK21,MBBV15,
RGA+20,SRC+20]. Many results, however, make assumptions about well de�n-
iteness of di�erential quantities of the distance function, uniqueness of shortest
paths, injectivity of the exponential map, etc. However, such properties are
violated at the cut loci of points.

Therefore, methods that make assumptions about staying away from the
cut locus, without properly knowing it, might be hindered not just on a global
basis, but on a local basis too. For example, the cut locus sets a tight bound to
the injectivity of the exponential map in local surface parametrization [HA19]
and it impacts the smoothness of the solution to the Monge problem in optimal
transport [Vil08,Vil11].
Surprisingly enough, there are very few algorithms for computing the cut

locus. Besides, existing algorithms are slow, or dependent on several paramet-
ers, or limited to speci�c classes of surfaces, or su�er of all such limitations
(see Sec. 5.2).

In this chapter, we focus on real analytic surfaces represented as polygonal
meshes, and propose a practical and e�cient algorithm for �nding the cut
locus in this setting. The presented algorithm is independent of the method
used to estimate the distance function, which is taken as an input and de�ned
at the vertices of the mesh. Starting from the point farthest from the source
(which surely belongs to the cut locus), we exploit Theorem 2.41 to grow a
spanning tree that �oods the entire mesh, and locally aligns with the cut locus.
The method relies on a unique parameter that the user can tune interactively
to obtain an approximation of the cut locus by pruning the spanning tree. For
surfaces of genus higher than zero, we restore the correct topology by closing
the necessary loops. As a result, we obtain a cut locus that is geometrically
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Figure 5.1:We can compute the cut locus of the geodesic distance function on any
shape. From the simplest ones (left) to the most complex, both geometrically (middle)
and topologically (right). Our output can be as smooth as the real cut locus (left,
middle), or encoded in the edges of the underlying mesh (right). Both results are
practically relevant for applications.

approximated, being made of edges of the mesh; and topologically accurate,
having the same homology of the underlying manifold. For geometrically
more accurate results, we also provide an algorithm to smooth the curves that
compose the cut locus.

This method has three key practical advantages with respect to prior art: (i)
the user can intuitively tweak a single parameter in real time with immediate
feedback; (ii) it is orders of magnitude faster, thus permitting to operate on
discrete manifolds with substantially higher complexity, both geometric and
topological; (iii) it is independent of the algorithm used to compute the distance
function, thus allowing the user to trade-o� between accuracy and speed.
The method has been evaluated on several shapes as well as di�erent al-

gorithms for computing the distance function. We demonstrate its applications
to the computation of the radius of injectivity of the exponential map, and to
visibility-aware mesh cutting for texture mapping. The code is released in the
public domain at https://github.com/Claudiomancinelli90/CutLocus.

5.2 Related Works
The �rst two tools for computing the cut locus that were proposed in the
literature are Loki [ST02] and Thaw [IS04]. They both have limited capabil-
ities, and were mainly developed with the purpose of supporting theoretical
investigations. Loki is based on a polynomial approximation of the exponential
map de�ned from a periodic parametrization of the surface, and supports only
surfaces with genus one. Thaw supports only convex surfaces.
Misztal and colleagues [MBAM11] compute a retraction of the surface to

the cut locus by means of an advecting front, represented as a piecewise linear
curve. The cut locus is detected from self-intersections of the propagated front.
Geodesics are computed by relying on a local parametrization through (2.17),
and using �nite di�erences to compute derivatives. Results are presented
just on parametrized tori, and reported running times are about half an hour.
While in principle this method scales to arbitrary surfaces, such an extension
would require developing more general ways to compute geodesics, and to
propagate the advecting front. Speci�cally, many geodesics are radially cast

https://github.com/Claudiomancinelli90/CutLocus
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during front propagation, hence it may become very expensive to maintain
the front accurate, especially far from the source, where it stretches.
Dey and Li [DL09] compute a subset of the cut locus, de�ned as the set

of points where two minimizing geodesics meet after spreading apart by a
certain amount. Geodesics are discretized with shortest paths on a graph,
and are traced from all pairs of sampled points that lie closer than a given
threshold. If two geodesics starting at nearby points diverge, then such points
are added to the cut locus. The method depends on several parameters, but it
is proven to converge to the cut locus by increasing the density of sampling
and reducing the thresholds for distances between adjacent points and spread
between geodesics. The output is just a discrete collection of points, which
may be connected to form a complex. The authors report about ten minutes to
compute the cut locus on a mesh of about 280K triangles.

Générau and colleagues [Gén20,GOV22] provide a comprehensive account
of the subject, and propose a method to compute an approximation of the cut
locus on a rigorous mathematical basis. They de�ne a 𝜆-cut locus as a regu-
larized subset of the cut locus. They prove that such set can be approximated
arbitrarily well with the solution of a variational problem, depending in turn
on another parameter𝑚. The solution converges to the exact cut locus when𝑚
goes to in�nity and 𝜆 goes to zero. The approximation is obtained by resolving
the variational problem with �nite element methods. The method can work
on general surfaces, but results are presented just on simple shapes (multi-tori
of genus 1, 2, 3); reported times are of about an hour to process a mesh with
100K triangles.

None of these previous techniques is capable of combining the performances
of the method described in this chapter with its ability to compute the cut
locus on discrete manifolds with arbitrary geometric or topological complexity.
In Sec. 5.4, we validate our geometric accuracy by comparing it against the
ground truth on the torus [GMST05], as well as against numerical methods
that converge to the exact solution [DL09,Gén20].

5.3 Method
Our method alternates discrete di�erential geometry and topology computa-
tions. We take as input an approximation of a smooth surfaceM approximated
by a polygonal mesh𝑀 = (𝑉 , 𝐹 ), where 𝑉 and 𝐹 are the vertices and faces, re-
spectively. Without lack of generality, we assume all faces of 𝐹 to be triangles.
In the following, 𝑥 ∈ 𝑀 is the source for which we evaluate the cut locus,
and 𝑑𝑥 is the distance function from it. We assume that a method is given to
compute the distance function from any given point on𝑀 to all the vertices
of 𝑉 , as this computation is orthogonal to our contribution. In Section 5.6 we
experiment with di�erent methods. The method relies on four properties of
the cut locus that has been introduced in Section 2.4.1, which we recall below.

(P1) The Laplacian 𝛥𝑑𝑥 of the distance function is −∞ in the sense of barriers
at the cut locus (Theorem 2.41);
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Figure 5.2: The distance function emanating from the red source is smooth every-
where except at the cut locus, where its gradient is discontinuous (closeup).

(P2) The cut locus is a �nite linear graph, having the local structure of a tree
(Theorem 2.42);

(P3) The cut locus has the same homology as M: it is a tree for genus zero
surfaces, and it contains 2𝑔 cycles otherwise, with 𝑔 being the genus of
M (Proposition 2.44);

(P4) The cut locus is piece-wise smooth. Speci�cally, it is 𝐶 ∞ at all cut points
which are not conjugate (Proposition 2.43).

Our method consists of two steps, plus one optional smoothing step. The
steps jointly address the properties (P1-P4) listed above. We �rst compute the
cut locus in the form of a tree, exploiting its relation with the Laplacian of the
distance function (Property P1) and its local structure (Property P2). This step
is already su�cient to provide a valid solution for objects of genus zero. In
the second step, we ensure the correct homology for objects of higher genus
(Property P3). In the third (optional) step, we smooth the cut locus, following
the gradient of the distance function (Property P4). In the following sections
we provide the technical details.

5.3 .1 Cut locus from spanning tree

We know that the distance function 𝑑𝑥 is not di�erentiable at points that can
be joined with more than one geodesic to 𝑥 (which are also called regular or
ordinary points). In fact, the gradient ∇𝑑𝑥 points towards the cut locus and
breaks at it, as illustrated in Figure 5.2. Moreover, it has been proved that
regular points are dense in 𝐶 (𝑥) [Bis77] and that the number of conjugate
points is �nite [Mye35], so the set of all regular points is for sure a good
approximation of the cut locus of 𝑥 . Our method aims to determine such a set.

The distance function 𝑑𝑥 can be approximated arbitrarily well with a smooth
function 𝑑𝑥 (barrier), whose Laplacian diverges to −∞ at the cut locus as the
approximation improves (Property P1). Therefore, if we estimate the discrete
Laplacian of the distance function sampled at the vertices of𝑀 , we expect it
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Figure 5.3: Left: cut locus of a three torus with respect to a distance function sourced
at its topmost vertex. Right: the valleys of the Laplacian of the distance function
clearly demarcate the paths of the cut locus. We catch these paths with a spanning
tree that grows by locally prioritizing lower Laplacian values (closeup).

to become highly negative close to the cut locus. We base our construction on
the above observation, designing a spanning tree that �oods the entire mesh
while aligning to the valleys of the discrete Laplacian, and then pruning its
branches in order to retain only the portions of it that are at the cut locus
(Figure 5.3).

ORG Spanning Tree

Knowing that the cut locus has the local structure of a tree (Property P2), to
retain its branches we rely on the construction of an Ordered Region Growing
(ORG) spanning tree 𝑇 . For this, we were inspired by techniques that extract
line structures from higher dimensional data, such as blood vessels from
medical images [YCS00] and curve-skeletons [LGS12].

We set the root of𝑇 at the mesh vertex 𝑦∗ that maximizes function 𝑑𝑥 . Being
the global maximum, this point is guaranteed to be in the cut locus. We then
initialize a priority queue Q with 𝑦∗, and we grow 𝑇 by iteratively extracting
the top element from Q, creating new arcs with all its neighbors that have not
been included in 𝑇 yet, and inserting these points into Q. The process stops
when the whole mesh is �ooded, hence the queue Q becomes empty. We set
the priority of each point 𝑦 at −𝛥𝑑𝑥 (𝑦). This ensures that the tree expands
following the deepest valleys of the Laplacian, thus aligning to the branches
of the cut locus (Property P1). See the closeup to the right side of Figure 5.3.

Thinning

By construction, tree 𝑇 spans the whole surface. Since we are operating in a
discrete setting, if parallel branches of 𝑇 are connected by transversal edges
of mesh 𝑀 , we consider them to span the portion of surface between them.
On the other hand, we know that the cut locus has Hausdor� dimension one
(Proposition 2.43). Therefore, we should not allow nodes of 𝑇 to contain in
their 1-ring in𝑀 any node of 𝑇 , other than their parent and siblings in 𝑇 . We
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Figure 5.4: On a sphere with a bump, the cut locus of a point 𝑥 (blue) is a geodesic
line from the top of the bump to the antipodal point 𝑥 (yellow). Despite weak in terms
of discontinuity of gradients, our Laplacian-based detection system clearly de�nes
a valley along the whole cut locus (closeups). Branches that accumulate around the
antipodal point 𝑥 may be �ltered out.

prune 𝑇 by removing the weaker nodes (in terms of their Laplacian) that do
not ful�ll this property. In order to preserve the integrity of the tree, we apply
a thinning �lter, akin [RKS00], again prioritized on the value of the Laplacian.
We insert all the leaves 𝑦 of𝑇 in a priority queue Q, this time by using 𝛥𝑑𝑥 (𝑦)
as priority. When an element 𝑦 is extracted from Q, we check whether any of
its neighbors, di�erent from its parent and siblings in 𝑇 , also belong to 𝑇 . If
there exits one such neighbor 𝑦 ′ such that 𝛥𝑑𝑥 (𝑦 ′) < 𝛥𝑑𝑥 (𝑦), then we remove
𝑦 from 𝑇 , and we add its parent to Q if it has become a leaf node. Although
this �lter does not guarantee to ful�ll the constraint above everywhere, it
maintains the integrity of the tree, avoiding to discard whole branches which
might contain strongly negative values of the Laplacian, just because some of
their intermediate nodes are weak. In practice, we found it to produce better
results than other thinning strategies that we have tried.

Filtering

Having �ooded the entire mesh, even after thinning, the tree 𝑇 contains many
spurious branches, which do not belong to the cut locus. Spurious branches
are not easy to remove automatically, because the paths of the cut locus may
be very unstable. Consider for instance the example in Figure 5.4. It is well
known that the cut locus of a point 𝑥 on a sphere consists just of its antipodal
point 𝑥 . However, if the sphere is perturbed with a bump, the cut locus of 𝑥 is
extended to a geodesic curve that connects the top of the bump to 𝑥 . Note that
the bump can be arbitrarily small and arbitrarily close to 𝑥 , hence the cut locus
on the bumpy sphere can be as extended as a maximal semi-circumference.
Since we are working on a discrete approximation 𝑀 of the manifold M,

we may easily miss existing bumps or, conversely, create arti�cial bumps.
Branches caused by small bumps will be weak in terms of Laplacian, since
geodesic lines from 𝑥 reach them at a very narrow angle, hence easily confused
with noise.

We thus decided to let the user clean the tree 𝑇 from spurious branches,
pruning it from the leaves, by means of a simple �lter that can be tuned
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Figure 5.5: Increasing the threshold on the gradient angle, we obtain progressively
simpler version of the cut locus, where "weak" branches that are nearly di�erentiable
are pruned. Pushing the threshold to the extreme, we retain only the point antipodal
to the source (right).

interactively in real time. The �lter is controlled with a geometric parameter,
which is independent of the speci�c dataset and is very intuitive: the angle
between gradients that approach the cut locus from opposite sides. For each
leaf node 𝑦 of 𝐺C , we consider the gradients ∇𝑑𝑥 (𝑦𝑖) for all neighbors 𝑦𝑖 in
the 1-ring of 𝑦, we parallel transport such gradients to the tangent plane at 𝑦,
and we compute the maximum angle between any two of them. If this angle is
below a given threshold 𝜃 , then we prune𝑦 from𝑇 , and we proceed recursively
along the branch it belongs to.
Note that, by pushing threshold 𝜃 towards relatively large angles, we may

also remove the weaker branches of the cut locus, where function 𝑑𝑥 is nearly
di�erentiable, thus obtaining progressively simpler cut loci (Figure 5.5).
This may be useful in a variety of applications, since it is equivalent to

consider a smoothed version of the manifold, or of its distance function. An
alternative to the above �lter consists of pruning the tree based on a threshold
on the value of the Laplacian. While the two �lters provide similar results,
we privilege the one based on gradients because it is most intuitive and inde-
pendent of the underlying shape. However, in some cases the �lter based on
the Laplacian allows the user to obtain better results. We therefore support
switching between the two �lters, or combining them.

Moreover, the �ltering process can use two alternative policies: one based on
pruning, in which the leaves that exceed the threshold are recursively removed;
and the other based on growing, in which the tree is expanded from the root,
including nodes that ful�ll the given threshold. Pruning is more conservative,
while growing is more aggressive. Consider again the example in Figure 5.4:
both the gradient and the Laplacian are “strong" only at the antipodal point
and at the tip of the bump. If pruning is applied, then the whole ridge shown
in the image would be retained; conversely, if growing is applied, just the
antipodal point would be retained, and the bump would be deemed noise.
The default policy, which has been applied in most of our experiments, is the
conservative one. However, with models containing many tiny details, such as
the ones in Figure 7.16, the aggressive strategy provides cleaner results.

In our experiments, we experienced the presence of spurious tiny branches
incident at the main ridges even after �ltering. We provide an additional
�lter, which can be used to remove short branches to obtain clean paths. The
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Figure 5.6: The cut locus has the same homology of the underlying manifold. We use
a �eld-aware variant of the tree cotree algorithm [EW05] to transform the spanning
tree into a system of loops, always guaranteeing the correct topology. In the upper
closeup, red and blue lines denote the tree and cotree, respectively. Light green edges
are the homology generators. The bottom closeup shows a detail of the output cut
locus.

�lter can be tuned either based on the number of edges in a branch (for high
resolution meshes, we found that removing branches shorter than three edges
is a reasonable choice in all cases), or on the length of the branch relative to
the size of the object (for coarser meshes, removing branches shorter than 0.01
the length of the diagonal of the bounding box is a reasonable choice).
The �ltered tree 𝑇C provides our �nal approximation of the cut locus for

objects of genus zero.

5.3 .2 Homology

If𝑀 has genus 𝑔 > 0, we know that its cut locus must have the same homology
(Property P3), thus it must contain exactly 2𝑔 cycles. To restore the correct
homology, we employ a variation of the greedy homotopy basis algorithm
proposed in [EW05]. The original algorithm �nds the shortest homotopy basis
centered at a mesh vertex in O(𝑛 log𝑛), by �rst growing a shortest spanning
tree emanating from a source node, and then growing a spanning tree in the
dual mesh (a.k.a. cotree [Epp03]), covering the edges not in the primal tree.
This procedure leaves exactly 2𝑔 edges that are covered neither by the primal
nor by the dual trees. These edges are the generators of the homology basis,
and – bridging disjoint branches in the primal tree – form the wanted system
of loops.
In our speci�c case, we are interested in �nding the system of loops that

best aligns with the cut locus. To this end, we initialize the tree with 𝑇C , and
extend it so as to �ood the entire mesh with a new tree 𝑇 . Next, we set the
root of the cotree 𝐶 at one of the triangles incident to the source 𝑥 , and we
expand it across edges that do not belong to the primal tree 𝑇 . Our goal is to
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position the homology generators as close as possible to the cut locus. To do
so, we ensure that both the tree and the cotree grow at constant speed in all
directions, thus forcing opposite fronts of the trees to cover roughly the same
distance before they collide. We obtain the desired result by prioritizing the
growth of the tree 𝑇 with values of 𝑑𝑥 , and the growth of the cotree 𝐶 with
−𝑑𝑥 (interpolating the function at the centroid of each triangle). In most cases,
the endpoints of a generator are already nodes of𝑇C , and it is su�cient to add
such edges to the graph to close the loop (Figure 5.6). In case a generator 𝑒
is not connected to 𝑇C at its endpoints, we climb the branches of 𝑇 until we
reach a node of 𝑇C , and we close the loop by adding the corresponding paths
to 𝑇C .
In the latter case, the portion of cut locus that closes the loop is a subset

of tree 𝑇 , hence misaligned with the valleys of the Laplacian. We explain
here why our choice to grow 𝑇 according to values of 𝑑𝑥 not only does not
sacri�ce geometric accuracy, but rather enhances it. Remembering that the
Laplacian 𝛥𝑑𝑥 is the divergence of the gradient ∇𝑑𝑥 , the previous step of the
algorithm is extremely e�ective at detecting strong branches of the cut locus,
characterized by strongly convergent gradients, but is less e�ective at detecting
weak branches, characterized by nearly parallel gradients. Weak branches of
the cut locus, which may have been missed in the previous step (e.g., due to
aggressive thresholding), roughly align with the local gradient, which provides
a valid guidance for tracing them (if a valid starting point in the cut locus is
known).

Tree 𝑇 is initialized with the subset of the cut locus selected at the previous
step, and is then expanded according to growing values of 𝑑𝑥 , hence aligning
with ∇𝑑𝑥 . As a whole, this hybrid tree aligns to the valleys of the Laplacian
where the gradients clearly converge, and to the gradients where they are
nearly parallel. This allows us to have the best of both indicators, using each
one of them in the places where it is more appropriate. With this technique, we
were able to reconstruct high quality cut loci of shapeswith non trivial topology
even operating with approximated distance functions, often characterized by
less accurate Laplacian �elds (Figure 5.11). The result of this step is a graph
𝐺C providing a discrete approximation of the cut locus.

5.3 .3 Smoothing

Graph 𝐺C is made of edges of mesh 𝑀 , thus it necessarily contains wiggly
paths. This approximation is suitable to many applications, e.g., if we want to
prevent any computational technique from crossing the cut locus. However,
we know that the cut locus of a smooth manifold M consists of smooth lines
(Property P4). We try to obtain a smoother (yet still piecewise-linear) structure
by pushing the nodes of𝐺C closer to the true cut locus, freeing them from the
edges of𝑀 , while remaining on its surface.

We apply a tangent space smoothing algorithm driven by gradient ∇𝑑𝑥 . We
know that the gradient of 𝑑𝑥 is oriented towards the cut locus from both sides
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Figure 5.7: Construction for gradient-driven smoothing. We estimate the discrete
tangential normal tn𝑦 of the cut locus at 𝑦. The displacement vector is proportional
to the component of the gradient ∇𝑑𝑥 (𝑦) along tn𝑦 . Curve 𝛾 is a geodesic line cast
from 𝑦 in direction sign(∇𝑑𝑥 (𝑦) · tn𝑦)tn𝑦 for length 𝜆 |∇𝑑𝑥 (𝑦) · tn𝑦 |.

of it ( Figure 5.2); since we actually estimate the gradient of the smooth barrier
∇𝑑𝑥 , we expect its component orthogonal to the cut locus to be null at the
cut locus. Thus, we iteratively displace each node 𝑦 of 𝐺C in the direction of
the normal to the curve through 𝑦 in its tangent plane, for an amount that
depends on the component of ∇𝑑𝑥 (𝑦) along this normal, until such component
becomes null. Note that, a displaced node 𝑦 is no longer a vertex of𝑀 , but it
lies inside a triangle 𝑡𝑦 of𝑀 , and it is encoded with barycentric coordinates
wrt 𝑡𝑦 ; we estimate the gradient at 𝑦 by linearly interpolating the gradients at
the vertices of 𝑡𝑦 , parallel transported at 𝑦. Consecutive nodes are connected
with shortest geodesic paths to obtain the �nal cut locus.

Refer to Figure 5.7 for a visual explanation of the smoothing step. Let𝑦𝑝 , 𝑦,𝑦𝑛
be three consecutive nodes of𝐺C , 𝑦 being a regular node. We �rst estimate the
normal of the 3D curve through 𝑦𝑝 , 𝑦,𝑦𝑛 with standard �nite di�erences, as
in [LBS05], then we project such a vector to the tangent plane at 𝑦 to recover
the tangential normal tn𝑦 . We displace 𝑦 by casting a geodesic path from 𝑦

in tangent direction tn𝑦 for a length 𝜆ℓ (∇𝑑𝑥 (𝑦) · tn𝑦) where 𝜆 is a damping
parameter, which is initialized at 0.5 and halved at each iteration, and ℓ is the
average edge length. Note that the sign of the dot product may reverse the
direction of tn𝑦 according to the component of the gradient along it. Note
also that the geodesic path will hardly cross more than one edge per iteration,
while it provides a safe way to follow the intrinsic metric.

For a leaf node 𝑦𝑙 the algorithm is analogous, just the displacement of 𝑦𝑙
occurs in the opposite direction wrt the parallel transport of the normal at its
neighbor. A branching node 𝑦𝑏 is simply displaced tangentially towards the
centroid if its neighbors on 𝐺C , as the gradient estimated at branching points
is usually not reliable.

The proposed approach readily pushes the discrete cut locus to the smooth
cut locus in areas where the former has a non vanishing angle with the local
gradient ∇𝑑𝑥 (𝑦). Extremely weak portions of the cut locus are less a�ected,
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Figure 5.8: Visual comparison with the analytic cut loci showed in [GMST05] (top),
and with the numerical method described in [Gén20] (bottom). We manually tried
to replicate the same sources, obtaining visually indistinguishable results. For the
comparison with [Gén20], both meshes contain 100K triangles. We computed our cut
locus in less than one second. Our competitor is based on a convoluted numerical
FEM scheme, which requires 17 Gauss quadrature points per element. The author
declares that the computation terminated in less than 1 hour.

because the tangent curve and the local gradient are nearly parallel. We even-
tually apply one step of classical tangent space smoothing to relax these areas,
too.

5.4 Results
We have implemented our algorithm in C++, using libraries Yocto/GL [PNC19],
CinoLib [Liv19] and libigl [JP+18] for geometry processing. We have validated
our results in a variety of experiments reported in this section. The method
performs e�ciently on meshes with a complexity up to a few million triangles,
and demonstrates to produce plausible results on all models, correctly locating
the cut locus even in places where the distance function seems rather smooth
upon visual analysis (see, e.g., Figure 5.6 and Figure 5.10).

Validation

From a topological standpoint, our method is always guaranteed to produce
the correct result, meaning that the cut locus has the same homology of the
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Figure 5.9:Visual comparisonwith themethod proposed in [DL09] (left).Wemanually
pinpointed the source on a di�erent mesh. The mesh used in [DL09] contains about
60K triangles and the computation takes about 12 seconds, while our model contains
250K triangles and computation takes about 3 seconds. Reported times in [DL09] are
about ten minutes for other meshes of complexity comparable to ours.

underlying manifold. From a geometric point of view, the algorithm has a
strong theoretical foundation in the continuous setting, but in practice it relies
on a discretization of the Laplace-Beltrami operator, and on heuristics to build
the connectivity of the cut locus. Therefore, we cannot guarantee the exact
location of the cut locus on the manifold. In Figures 5.8 and 5.9, we validate
the geometric accuracy of our algorithm by comparing our outputs with the
ground truth on a torus [GMST05], and with the output of prior approximated
methods, which are guaranteed to converge to the exact solution [DL09,Gén20].
We obtain visually indistinguishable results on the torus, and a very similar
result on the kitten. For the latter, based on our understanding and practical
experience, we ascribe the tiny di�erences in the actual paths to the di�erent
mesh tessellations.

Scalability and performances

We experimented our method on a variety of meshes, ranging from about
100K to about 2M triangles. High-resolution meshes for all models have been
obtained via isotropic remeshing in Meshlab [CCC+08], to warrant a stable
estimation of di�erential properties. All experiments are executed on a laptop
equipped with a 2.9 Ghz quad-core Intel Core i7 and 16 GB RAM, running on
a single core. Table 5.1 reports running times for the various phases of the
method. Considering time for pre-processing (once per mesh) and computation
of the distance function (once per source point, possible with three di�erent
methods), on large meshes our method runs at least two and up to three orders
of magnitude faster than any other competitor. The time for the part due to
our contribution (i.e., excluding the computation of the distance function) is
interactive, and several orders of magnitude faster. Note that this is relevant
because, while the other methods require to run the algorithm again from the
beginning each time the parameters are changed, we can do parameter tuning
interactively after the time consuming part (i.e., computation of the distance



5.4 results 93

Pre-processing Distance function Cut locus computation Total
model triangles genus min-max VTP heat graph spanning tree homology min-max
torus 100K 1 1.13 - 2.78 0.78 0.03 0.01 0.06 0.10 0.17 - 0.95
diamond 160K 0 1.86 - 5.46 3.11 0.06 0.01 0.12 – 0.13 - 3.23
block 170K 0 1.90 - 5.62 3.20 0.06 0.01 0.13 – 0.14 - 3.33
2-torus 200K 2 2.35 - 6.41 2.55 0.07 0.01 0.16 0.21 0.38 - 2.91
3-torus 200K 3 2.17 - 6.84 2.29 0.07 0.01 0.14 0.19 0.33 - 2.88
raindeer 200K 0 2.45 - 5.08 1.92 0.06 0.02 0.18 – 0.20 - 2.10
sphere 240K 0 2.82 - 10.04 5.64 0.10 0.02 0.22 – 0.24 - 5.86
kitten 250K 1 2.70 - 7.73 2.67 0.09 0.02 0.18 0.24 0.44 - 3.09
nefertiti 460K 0 5.37 - 17.77 3.97 0.19 0.04 0.42 – 0.46 - 4.39
bunny 500K 0 5.52 - 19.45 8.16 0.19 0.04 0.39 – 0.43 - 8.55
fertility 500K 4 5.55 - 19.21 7.92 0.20 0.04 0.41 0.50 0.95 - 8.83
pyramid 660K 0 8.46 - 38.24 11.64 0.30 0.08 0.73 – 0.81 - 13.45
bust 700K 0 9.18 - 39.89 10.65 0.32 0.09 0.78 – 0.87 - 11.43
octopus 800K 0 9.93 - 28.10 14.42 0.31 0.09 0.87 – 0.95 - 15.29
basket 1.1M 260 13.94 - 97.98 13.87 0.62 0.12 1.18 1.36 2.66 - 16.41
fertility 2.0M 4 22.92 - 173.68 66.09 2.99 0.20 1.81 2.10 4.11 - 70.00

Table 5.1: Statistics on models used in the experiments and related running times
in seconds. Preprocessing includes times for: evaluating metric tensors and related
vectors for di�erential computations; pre-factorization in case the heat method is used;
construction of the graph in case the graph method is used (the latter is one order of
magnitude smaller than the rest). Spanning tree computation includes also the thinning
�lter. The total time depends heavily on the method used for the distance function
(min with graph, max with VTP [QHY+16]) and does not include pre-processing times;
graph achieves minimum times even including pre-processing; while heat becomes
the most expensive for large meshes because of the cost of pre-factoring. Applying a
�lter upon parameter tuning works in real time, taking less than 0.01 seconds on all
models, and it is not included in the table.

function) is complete.

Impact of mesh resolution

As any other technique that approximates continuous entities with a �nite
discretization, our method performs best on dense and regular samplings. In
particular, in our experiments we noticed that even though theory ensures
that the Laplacian goes to −∞ at the cut locus, the discrete Laplace-Beltrami
may yield values near zero where the local gradients are almost parallel, hence
the cut locus is very weak. In Figure 5.10 we show a typical failure case.
Notwithstanding the feeble signal in the Laplacian, our method was able to
reconstruct the corresponding loop and enforce the correct topology. Similar
issues that arise outside closed loops cannot be recovered. Considering the
computational e�ciency of our method, the easiest way to overcome these
issues is to operate on dense meshes.

Impact of distance computation

We have experimented with three di�erent methods for computing the dis-
tance function: VTP [QHY+16], which provides an e�cient variant of the
original MMP algorithm [MMP87]; the heat method [CWW13]; and a simple
graph-based solver [NPP20]. VTP requires no pre-processing, and provides an
exact solution in the polyhedral metric, but it is rather slow on large meshes.
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Figure 5.10:Mesh resolution may impact the result of our algorithm. In the denser
mesh, the Laplacian �eld (left closeup) clearly identi�es a weak path. In the coarse
mesh the same path is more blurred. Since that portion belongs to a closed loop, our
topological step correctly reconstructs it, but if the same path was open, it would have
been di�cult to retain it because the gradients are almost parallel, as the level sets of
the distance function suggest.

The heat method requires solving a linear system of the same size of the mesh.
The matrix can be pre-factorized once per mesh, and the solution after fac-
torization amounts to a matrix vector multiplication, hence it is quite fast. It
provides an approximated estimate of the distance function for an underlying
smooth manifold, and converges to the exact solution as a parameter 𝑡 tends
to zero. We used the implementation in [JP+18] with the default parameter, as
recommended by the authors [CWW13]. The graph-based solver relies on a
graph with one node per vertex, and one arc for each edge and dual edge of the
input mesh. The graph is built during pre-processing, and a solve consists of a
Dijkstra-like visit, which is quite fast, too. We have used the implementation
in [PNC19]. Compared with the exact polyhedral solution, the accuracies of
the heat method and of the graph solver are similar, but with di�erent artifacts,
as discussed below.

All images in the paper, except 5.11, were generated by using VTP. In 5.11, we
compare results obtained with the three methods on two objects. We were able
to successfully compute the cut locus with all three methods. Nevertheless, we
could observe some interesting di�erences between the alternative approaches,
especially in terms of the Laplacian they yield. VTP consistently produces a
neat Laplacian that is completely free from noise. The paths of the cut locus are
very sharp and easy to identify. The graph based approach produces a Laplacian
with biased noise, where the propagation paths can be clearly identi�ed. Apart
from that, the paths of the cut locus remain sharp and easy to identify. On the
positive side, the noise-level stripes produced by this method turn out to be
useful to trace the weak branches of the cut locus, because they align with the
gradient of the function. The heat method was the most challenging for us
because, by solving a Poisson problem, it generates a function that is smooth



5.4 results 95

Figure 5.11: Cut loci computed with two approximated methods (the heat
method [CWW13] and a graph solver [NPP20]), and an exact polyhedral method
(VTP [QHY+16]). We show the distance function with the output (top), and its Lapla-
cian (bottom). The exact method produces �elds that clearly demarcate the branches
of the cut locus. With approximated methods, noise occasionally blurs the Laplacian
around the branches of the cut locus.

everywhere, cut locus included. This results in a blurred Laplacian �eld, where
strong branches of the cut locus are still clearly identi�ed, but weaker ones
fade away (e.g. the three green paths in the upper part of the diamond), or
completely disappear (e.g. the closure of the inner loops in the double torus).
As a result, the paths of the cut locus computed with the heat method tend to
slightly misalign from the other methods, albeit the result is still acceptable
for most applications.

In terms of speed, we report timings in Table 7.1. The cost of VTP is dominant
over all other phases of our algorithm. The heat method and the graph solver
are quite fast (after pre-processing); the graph method scales better on large
meshes, though, in terms of both pre-processing and solve times. All in all,
for non time critical applications where quality dominates timing, VTP is by
far the best solution. On the other hand, the graph based approach provides
a good balancing between accuracy and running times, also proving to scale
better than the other methods on meshes containing millions of elements.

Impact of �ltering

The interactive �lter described in Sec. 5.3.1 ranks each edge of the ORG span-
ning tree according to the angle formed by the gradients of the distance
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Figure 5.12: Our method can cope with complex shapes with small details and a
rough surface, too. In these cases, it may be necessary to tweak the �lter to a higher
threshold in order to remove spurious branches and obtain a clean cut locus.

Figure 5.13:Given a mesh and a point of view (yellow dot), cutting the mesh along the
cut locus positions texture seams furthest from it, making discontinuities least visible.
We provide three alternative examples on complex shapes containing elongated struc-
tures. UV maps (shown in the middle insets) were computed with ARAP [LZX+08].

function at its two sides. For free branches, this is a quite reliable estimate of
their “strength" in the cut locus, namely of whether or not they are caused
by relevant features of the model, or just by noise. However, even important
branches may fade into regions with nearly parallel gradients.
The reconstruction of homology loops is quite robust and independent of

�ltering. We consistently experienced correct reconstructions even if parts
of the loops were �ltered out before the homology part is performed. On the
contrary, weak free branches are quite unstable and may need to be recovered
by tweaking the �lter properly. The exact position of terminal points of such
branches, which are all conjugate points in the exact cut locus, are hard to
detect. Therefore, the length of such branches is necessarily approximated.
This is especially evident for rough surfaces containing many small details, as
the ones depicted in Figure 5.12.

Meshes with open boundaries

Our current implementation supports watertight meshes only. In principle, its
extension to meshes with open boundaries is straightforward. Of course, the
methods for computing the distance �eld must support meshes of this kind;
and some shortest paths would contain boundary edges and not be geodesics in
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Figure 5.14: Starting from a geodesic distance function emanating from a single
source, our method allows to precisely retrieve its distance from the cut locus, thus
de�ning the radius of the maximal ball under which the exponential map is injective.
This construction is relevant for many techniques in machine learning and optimal
transport (Sec. 5.1).

a geometric sense. In terms of the algorithm, the point furthest from the source
is no longer guaranteed to belong to the cut locus, if it lies on the boundary.
In that case, the root of the ORG spanning tree could be set at the point with
the lowest Laplacian, which is the best guess in this scenario. Besides these
tiny details, perhaps the most critical issue concerns the reliable estimate of
the Laplacian �eld. As already observed for di�erential quantities of the �rst
order, the absence of a complete neighborhood for boundary points makes the
estimate of gradients unreliable [MLP19]. We expect the estimate of second
order di�erential quantities to be even worse, possibly a�ecting the e�cacy of
our method. Thus, special care would be needed to process boundary points.

5.4 .1 Applications

Being a fundamental descriptor of a distance function living on a surface
manifold, the cut locus lends itself to a variety of alternative uses. While
demonstrating them all is outside of the scope of this paper, in this section we
showcase two practical applications involving the cut locus, in the context of
global and local surface parameterization.

POV-aware texture mapping

In texture mapping, objects that are not topological disks must be cut open
prior being �attened to the plane. Cuts introduce discontinuities in the map,
and often accumulate distortion, resulting in visual artifacts. Techniques for
texture mapping try to hide cuts in the least visible parts of the surface, so that
the weak spots of the map are not immediately perceived [SH02]. To this end,
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Figure 5.15: Alternative cut loci computed with our method using progressively
�ner meshes (rows) and wider angle thresholds 𝜃 (colums). With enough �ltering,
our method recovers the cut locus correctly on all models. Short branches have been
�ltered and smoothing have been applied to models in the last column only.

the cut locus reveals itself to be a practical tool. For objects that are largely
observed from a known viewpoint – e.g., for digital sculptures in a virtual
museum, or for objects for which a visual saliency map is known – one can
initialize a distance function that emanates from a speci�c point of interest,
and cut the mesh open through the cut locus of such function. There are two
nice consequences: (i) since the cut locus and the manifold are homotopic,
cutting through the cut locus will provably generate a topological disk, suitable
to texture mapping; (ii) since the cut locus maximizes the distance from the
source, cuts will be naturally hidden when the mesh is observed from the
selected viewpoint. We implemented an interactive tool that allows the user to
select a saliency point on a mesh, and automatically cuts it at the cut locus of
the distance function that emanates from it. 5.13 shows a few results obtained
with our tool.

Maximal injectivity disk

Methods that exploit a local parameterization of the surface typically rely on a
heuristically computed radius, under which the exponential map is supposed
to remain injective (Sec. 7.1). Considering its minimal computational overhead,
our method allows to enhance these methods, providing a precise estimate
of the maximum radius that veri�es this assumption. The check is pretty
straightforward: considering a point 𝑥 and the distance function 𝑑𝑥 emanating
from it, the maximum radius 𝑟max can be computed as

𝑟max = argmin
𝑝
𝑑𝑥 (𝑝) 𝑠 .𝑡 . 𝑝 ∈ C(𝑥) .

Note that a disk having radius 𝑟max centered at 𝑥 will be tangent to itself at
the cut locus. In practice, one may want to consider a slightly smaller radius
𝑟 ′ = 𝑟max − 𝜖 , which guarantees the full injectivity of the map. In 5.14 we
show a few examples of nearly maximal disks centered at di�erent points of a
manifold with complex genus.
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(pruning) (growing) (pruning)
or

Figure 5.16: Cut loci computed on the Stanford bunny with its original tessellation
and �lled holes (left) and a regular isotropic remeshing of it (right), computed with
Meshlab [CCC+08]. Left: because of the artifacts shown in the closeups in Fig. 5.17,
the pruning and the growing policies are not able to retain the cut locus and, at the
same time, �lter the spurious branches of the spanning tree. Right: on a regular mesh
all versions of the �lter perform equally well

5.5 Limitations

Our method assumes a fairly accurate estimate of �rst and second order
di�erential quantities of the distance function. The discrete methods discussed
in Sec. 5.3.1 achieve this on meshes with high resolution and isotropic elements.
Since our method is fast, we found it easy to remesh unsatisfactory models
prior processing.

On coarse meshes, our algorithm still reconstructs the cut locus correctly, as
long as the resolution is not too low and the mesh elements are slightly regular
(5.15). On coarse meshes, or when the elements are poor(e.g. badly shaped,
vertices with low-valence and/or irregular 1-ring, etc.), the weak branches
of the cut locus are hard to distinguish from noise. In that case, while the
homology is always recovered correctly, the geometry may become imprecise,
some weak branches may be lost, and some spurious branches may be retained.
For instance, the Stanford bunny has a complicated cut locus with many free
branches that are hard to detect (5.16). On the original mesh, the irregular
tessellation may interrupt the valleys of the Laplacian that demarcate the cut
locus, or introduce bumps along them, or spurious local minima (5.17). Such a
poor estimation may cause some points to become either too strong, or too
weak, thus hindering the action of �lters. Note that the “strength” of a branch
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max

min

Figure 5.17: Estimating the Laplacian on an irregular (left) and regular (right) mesh:
a poor tessellation may break the valleys of the Laplacian (discontinuous blue line)
and introduce spurious local minima. Both types of artifacts may hinder the action of
our �lters, as exempli�ed in 5.16

depends on the location of the source, the geometry of the shape, and the
discretization. Therefore, in general it is not possible to determine a priori
which mesh density is suitable to detect all branches. The pruning policy needs
an aggressive threshold to �lter the branches ending at spurious local minima,
also missing the weak branches of the cut locus (5.16, left). On the other hand,
with the growing policy some branches of the cut locus are truncated too
soon, because of bumps and cracks along the valleys of the Laplacian (5.16,
middle). On a regular tessellation, both policies allow us computing an accurate
estimate of the cut locus with reasonable thresholds (5.16, right).

At this regard, it is worth pointing out that the discrete Laplacian operator
described in Section 3.2.2 turned out to be more resilient to irregular tessella-
tion. Although even on regular tessellation the valleys slightly more evident
with respect to the cotangent Laplacian (Figure 5.18, left), the di�erence is way
more evident when computing the Laplacian of a distance �eld on the original
Stanford bunny (Figure 5.18, right). Even if the branches are not identical
in the two cases, since the tessellation are di�erent and the source is not
placed exactly in the same point, we can notice that our method still manage
to clearly identify the main branches of the cut locus, while the cotangent
method provides mostly weak branches that often blur away. Moreover, the
presence of “false local minima” (isolated blue regions in the heat map of the
bunny in the bottom-right of Figure 5.18) in this latter case may a�ect the
expansion of the spanning tree, while, modulo the limitations discussed above,
is more robust from this point of view.
We did not experiment with extreme cases characterized by very sparse

meshing and long and skinny elements, such as many of the meshes found
in the Thingi10k repository [ZJ16]. In that case, it may be convenient to use
intrinsic triangulations [SSC19a] and related di�erential estimators [SC20b].
The rest of our methodwould work unchanged, but it needs being implemented
in the framework of intrinsic triangulations.
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Ours

Cotangent

Regular Original

Figure 5.18: Estimation of the Laplacian with the operator described in Section 3.2.2
(top) and the cotangent Laplacian (bottom. On regular meshes (left), the performances
of two methods is comparable, whereas on the original Stanford bunny our method
demonstrate higher resilience to irregular tessellations.

5.6 Concluding remarks
We have presented a novel method to compute the cut locus that is practical
and fast. The method depends on a unique intuitive parameter that can be
tuned interactively to �lter out artifacts arising from small details of the surface,
or from discretization. The method works on surfaces of any genus, always
recovering the correct topology of the cut locus; it works on shapes with sharp
creases; and on rough shapes with many small details, too.

We conjecture that out method converges to the true cut locus as the mesh
becomes denser, but proving this fact requires further work. In summary, all
methods we adopted for computing the distance �eld can be shown to converge
to the true geodesic distance; and the method to compute the di�erential
quantities also converges for smooth functions. By applying such estimators
to a denser and denser mesh, the estimated Laplacian should converge to the
Laplacian of the distance function away from the cut locus, and to the Laplacian
of a smooth barrier function near the cut locus. Thus, we expect that for any
given value 𝐴 < 0 there exists a mesh dense enough that 𝐿(𝑦) < 𝐴 for all 𝑦
at the cut locus. However, since no bound from below to the Laplacian away
of the cut locus is known, in general the Laplacian alone is not su�cient to
characterize all and only the points of the cut locus. This fact further motivates
the additional criteria that we apply in our method. We foresee two interesting
avenues for future work. For the computation of the cut locus, we plan to
improve on our current method to achieve a reliable fully automatic detection
that works well in all practical scenarios. The most challenging issue in this
direction is to determine where the weak free branches end. It would also be
interesting to exploit the boundary structure provided byMMP-like algorithms,
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as in [LCT11]. Based on such structure, the exact cut locus in the polyhedral
metric can be computed. However, such a cut locus would consist of a dense
tree, with one leaf at each parabolic vertex, thus being useful only for strictly
polyhedral objects without any curved surface. It is an open problem how to
de�ne suitable pruning strategies to obtain a cut locus that is descriptive for
curved objects approximated with a mesh, too.
Finally, we plan to explore the capabilities of our approach for the compu-

tation of the medial axis, which is a widely popular shape descriptor used
for shape compression, matching and skeletonization [TDS+16]. Indeed, the
medial axis can be de�ned as the cut locus of a distance �eld emanating from
the boundaries of a geometric domain, growing inwards. Despite in this work
we focused our attention on distance �elds emanating from a single (point-like)
source, in his work Générau showed that the Laplacian goes to −∞ also for
distance �elds emanating from a general hypersurface embedded in the mani-
fold domain [Gén20], creating a connection with the 𝜆-medial axis [CL05]. In
its current state, our algorithm is not able to reconstruct a proper connectivity
for this more general case, but since the theoretical foundation still holds, it
would be interesting to work at di�erent tools to �lter the Laplacian �eld and
generate the medial connectivity, both for 2D and 3D manifolds.



6
Vector Graphics on Surfaces Using
Straightedge and Compass
Constructions

This section includes contents from a co-authored paper [MP22] that
has been re-formatted for this thesis.

6.1 Introduction
The ancient Greek mathematicians developed a set of geometric techniques,
which go under the name of straightedge and compass constructions, to draw
planar geometric �gures. Such constructions do not require taking any explicit
measure, they are granted by Euclid’s �rst three postulates, and are based
on two idealized tools: the straightedge, which can extend inde�nitely the
straight-line through any pair of points; and the compass, which can trace
circles with its needle and pencil points at any two points in the plane. Besides,
all intersections between straight lines and circles drawn with such tools can
be found.
In the Euclidean setting, the straightedge and compass constructions can

be substituted with simpler closed form solutions, though, as it is customary
in 2D drawing systems. However, when addressing similar operations on a
surface, one must rely on the computation of distance �elds and geodesic lines.
Such building blocks are indeed similar in nature to those available in the
straightedge and compass framework. In the context of our e�ort to bring
vector graphics to surface domains [MNPP22,NPP22], we thus investigate how
to port such constructions to the manifold setting.
We address the problem with two complementary approaches. The �rst

approach performs constructions in a tangent plane and then maps the result
to the surface. The second approach extends the concepts of straightedge and
compass to the geodesic metric and operates directly on the surface.
Euclidean constructions rely on properties that no longer hold under the

geodesic metric, due to the intrinsic curvature of the surface. Because of that,
both approaches fail in producing results that preserve all properties of their
Euclidean counterpart. In fact, even the topological properties of straight lines
and circles do not hold on a surface without additional conditions: geodesic
lines may self-intersect or mutually intersect multiple times; and a generic
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Figure 6.1: Examples of drawings obtained interactively with our prototype system
on two meshes, each consisting of 1M triangles.

isoline of the distance �eld is not even guaranteed to be homeomorphic to a
circle.
In order to address the topological limitations, we constrain our construc-

tions to occur on su�ciently local subsets of the surface domain. Concerning
the metric aspects, the �rst approach su�ers from geodesic distortion, which is
caused by the curvature when mapping Euclidean geometries from the tan-
gent plane to the surface domain. On the contrary, geodesic lines and circles
are well-behaved while working directly on the surface, as long as they the
are “small enough”. This fact increases our leeway in imposing some local
properties.
We integrate all our constructions in a prototype system that supports

interactive drawing with geodesic polygons and circles. We also support a�ne
transformations of primitives and all the usual editing operations, such as copy,
paste, and delete. We achieve real time interaction on meshes consisting of up
to a few million triangles. This is made possible thanks to e�cient algorithms
to compute geodesic distances and shortest paths.

6.2 Related work

6.2 .1 Intrinsic Geometry of Surfaces

The straightedge and compass constructions rely on basic theorems of the
Euclidean geometry that relate lengths and angles. When trying to de�ne sim-
ilar relations on a surface, curvature must be taken into account. This subject
was thoroughly investigated in the classical theory of intrinsic geometry of
surfaces. See the books by Cheeger and Ebin [CE75] and by Chavel [Cha06] for
comprehensive accounts. Referring just to the cases addressed in this paper, the
local version of the Gauss-Bonnet theorem (Theorem 2.33) relates the internal
angles of a geodesic polygon to the curvature of the region it encloses. Such
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result explains the challenge in addressing constructions that require geodesic
lines of given lengths and forming given angles. See, e.g., the isosceles triangle
in 6.5.4.

Alexandrov investigated thoroughly the relations between quantities meas-
ured on a surface with their counterpart on surfaces with constant curvature
(a.k.a. CAT – Cartan-Alexandrov-Topogonov – spaces) [Ale48]. In a nutshell,
geodesic lines, which are cast from a common source along di�erent directions,
tend to converge if the curvature of the space is positive, and to diverge if it is
negative. Based upon these facts, many comparison theorems involving Alex-
androv and CAT spaces have been proposed in the literature. See Alexander
et al. [AKP19] for a recent account on this subject; interestingly enough, the
title of the chapter addressing geodesic triangles is The ghost of Euclid.

6.2 .2 Vector Graphics

Vector graphics in 2D is a consolidated subject, supported in many systems and
tools at industrial level [W3C10,Ado21,Ink21,Aut21,Pil21,Pix22]. Until recently,
vector graphics on surfaces under the geodesic metric was considered too
computationally expensive to be supported. Traditional methods to decorate
a surface resort to parametrization and mapping, but this approach is prone
to seams and distortion, as discussed by Nazzaro et al. [NPP22] and Yuksel
et al. [YLT19]. The literature concerning tools for geodesic computations is
vast, though, and has been recently surveyed by Crane et al. [CLPQ20]. Some
recent contributions demonstrated that such technology is mature enough to
support interactive editing directly on surfaces [MNPP22,NPP22, SC20a].

6.3 Basic Straightedge and Compass Constructions
in the Plane
Straightedge and compass constructions involve just points, (segments of)
straight lines, and (arcs of) circles in the Euclidean plane. They consist of
iteratively applying the following �ve basic constructions:

• line through two existing points;
• circle through one point with center another point;
• intersection point of two non-parallel lines;
• intersection points of a line and a circle;
• intersection points of two circles.

Typical constructions usually start from few objects in the plane. In the most
complex constructions – e.g., for polygons with many sides – the �ve opera-
tions above may be iterated many times, producing a number of intermediate
objects, possibly much larger than the number of objects in the �nal result.
Figure 6.2 illustrates the manifold counterparts of the �ve basic constructions
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Figure 6.2: The �ve basic constructions on a sphere. The black curves are geodesic
lines, while the curves in magenta are geodesic circles. We denote with 𝐷 (𝑝, 𝑞) the
geodesic circle centered at point 𝑝 and passing through point 𝑞.

on a sphere: straight-line segments are substituted with shortest geodesic
paths; and circles are substituted with isolines of the distance �eld from a
point.

6.3 .1 The Geodesic Arsenal

Throughout the paper, we will rely on the following primitive operations to
be performed on the surface 𝑆 under the geodesic metric. The implementation
has been described in Chapter 3.

• Geodesic-tracing: given point 𝑝 ∈ 𝑆 and a tangent direction 𝑡 ∈ 𝑇𝑝𝑆 , trace
a geodesic through 𝑝 with tangent vector 𝑡 at 𝑝; this is equivalent to a
point-wise evaluation of the exponential map at 𝑝 .

• Tangent: given a curve 𝛾 on 𝑆 and one of its points 𝑝 , return the direction
𝑡 ∈ 𝑇𝑝𝑆 tangent to 𝛾 at 𝑝; if 𝛾 is a geodesic line, this is indeed equivalent
to a point-wise evaluation of the log map at 𝑝 .

• Shortest-path: given points 𝑝, 𝑞 ∈ 𝑆 , return the shortest geodesic path 𝛾𝑝𝑞
connecting them;

• Distance-�eld: given 𝑝 ∈ 𝑆 , compute the distance �eld 𝑑𝑝 : 𝑆 −→ ℝwhere
𝑑𝑝 (𝑞) := 𝑑 (𝑝, 𝑞);

• Isoline: given the distance �eld 𝑑𝑝 and a point 𝑞 ∈ 𝑆 return the isoline of
𝑑𝑝 that goes through 𝑞;

• Intersect: given any two lines on 𝑆 , not necessarily geodesic, return their
intersection points.

In the context of 6.4, we will only rely upon the �rst three primitives, namely
the point-wise evaluation of the exp and log map and the shortest path between
two points. In Section 6.5 we will also make use of the other primitives, to
reproduce the straightedge and compass tools directly on the surface 𝑆 .

6.4 Constructions in Tangent Space
The constructions described in this section are based on the following idea:
given an initial con�guration of points of 𝑆 , we use the log map centered at
a suited point 𝑐 ∈ 𝑆 to map such points onto the tangent space 𝑇𝑐𝑆 . We then
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apply the Euclidean construction in 𝑇𝑐𝑆 , and �nally map the result onto 𝑆
through exp𝑐 . In order to preserve topological consistency, we assume all the
points involved in a construction to be contained in a convex ball centered at
𝑐 . Some constructions may work on a large neighborhood as well, though.

Since 𝑇𝑐𝑆 is a 2-dimensional vector space, we do not need any extension of
the straightedge and compass tools. However, most of the properties of a given
construction will be lost after applying the exponential map. Remarkably, this
approach and the one described in Section 6.5 are somehow complementary:
in many cases, the properties that one looses by using the former, can be
preserved by using the latter, and vice-versa, Table 6.1 summarizes the results
obtained with both approaches.

6.4 .1 Operations with segments

Figure 6.3 shows some basic constructions in the Euclidean case, which are
extended to the manifold setting in a straightforward way. These constructions
are the only ones addressed in this paper, which are also insensitive to the
method used to implement them. Everything works �ne because they are
based solely on distance and collinearity, whose properties are preserved in
the manifold setting.

Figure 6.3: Transferring the length of a segment onto another one (left); adding two
segments (center); and subtracting two segments (right).

Given a line segment 𝑎𝑏 in the plane and a line ℓ̄ through another point 𝑐 ,
�nd a point 𝑑 on ℓ̄ such that 𝑎𝑏 and 𝑐𝑑 have the same length. In the plane, the
aperture of the compass is taken at 𝑎𝑏, then the needle point is placed at 𝑐 and
a circle is traced; point 𝑑 is taken at an intersection of the circle with line ℓ̄ .1 In
the manifold case, we start with geodesic line segment 𝑎𝑏 and a geodesic line ℓ
on 𝑆 . We �rst lift 𝑏 to a point 𝑏 on the tangent plane 𝑇𝑎𝑆 through the log map;
likewise, we lift ℓ to a radial line ℓ̄ on 𝑇𝑐𝑆 . Then we use a standard compass to
�nd the length of segment 𝑎𝑏 on 𝑇𝑎𝑆 ; and we use the same compass to draw a
circle centered at 𝑐 on 𝑇𝑐𝑆 . We �nd the intersection between this circle and
line ℓ̄ ; and �nally we map the intersection point to 𝑆 with the exp map.

Given two line segments 𝑎𝑏 and 𝑐𝑑 in the plane, extend 𝑎𝑏 at 𝑏 for a length
equal to 𝑐𝑑 . In the plane, segment 𝑎𝑏 is extended to a line with the straightedge;
the aperture of the compass is taken at 𝑐𝑑 and a circle is traced by placing
the needle point at 𝑏; the intersection 𝑥 of this circle with the line is taken,

1 We are assuming a non collapsible compass here; the same result can be also achieved with
a collapsible compass, through a more involved procedure though.
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Figure 6.4: Two geodesic lines 𝛾 and 𝛾 ′ intersecting at point 𝑝 ∈ 𝑆 form an angle
de�ned by their tangents at 𝑝 on the tangent plane 𝑇𝑝𝑆 (red and blue arrows)

which lies on the opposite side of 𝑎 wrt 𝑏; line segment 𝑎𝑥 is the result. The
construction in the manifold case is analogous to the previous and is omitted
for brevity.

Given two line segments 𝑎𝑏 and 𝑐𝑑 in the plane, shorten 𝑎𝑏 at 𝑏 by the length
of 𝑐𝑑 . In the plane, the aperture of the compass is taken at 𝑐𝑑 and a circle is
traced by placing the needle point at 𝑏; the intersection 𝑥 of this circle with 𝑎𝑏
is taken; line segment 𝑎𝑥 is the result. The construction in the manifold case
is also analogous to the previous ones and is omitted for brevity.

6.4 .2 Operations with angles

Let 𝛾0 and 𝛾1 be two geodesics intersecting at 𝑝 ; the angle between them at 𝑝
is de�ned from their tangent directions in the tangent plane 𝑇𝑝𝑆 . See Fig. 6.4
for an example.

In the plane, an angle is de�ned by two half-lines ℓ̄𝑎 and ℓ̄𝑏 incident at a point
𝑐 , which can be built with the straightedge, given two points 𝑎 and 𝑏 lying
on them, respectively. This angle can be bisected as follows. Place the needle
point of the compass at 𝑐 , trace any circle and let 𝑝 and 𝑞 be its intersections
with ℓ̄𝑎 and ℓ̄𝑏 . Place the needle point at 𝑝 , and next at 𝑞, with aperture 𝑝𝑞 trace
another two circles; let 𝑦 be any of their two intersection points. The line ℓ̄𝑦
through 𝑐 and 𝑦 bisects the angle at 𝑐 . An additional property of the bisector
is that all its points are equidistant from ℓ̄𝑎 and ℓ̄𝑏 .
Analogously, given two geodesics 𝛾𝑐𝑎 and 𝛾𝑐𝑏 intersecting at 𝑐 , we extend

their tangent vectors at 𝑐 to lines ℓ̄𝑎 and ℓ̄𝑏 in 𝑇𝑐𝑆 , and use the Euclidean con-
struction to �nd line ℓ̄𝑦 as above; then we map ℓ̄𝑦 to a geodesic 𝛾𝑐𝑦 emanating
from 𝑐 and through 𝑦 = exp𝑐 (𝑦). Line 𝛾𝑐𝑦 bisects the angle, in the sense that
the angles formed by its tangent at 𝑐 and the tangents of the two input lines
𝛾𝑐𝑎 and 𝛾𝑐𝑏 at 𝑐 are equal, by construction. Figure 6.5 (left) illustrates this
construction.

However, the points of 𝛾𝑐𝑦 in general will not be equidistant from the input
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Figure 6.5: Euclidean constructions of the angle bisector(top left), segment bisector
(top center) and perpendicular to a line at a point (top right). The corresponding
constructions in the manifold case (bottom) are obtained by mapping the lines, which
are obtained with the Euclidean constructions in the tangent plane at 𝑐 , to 𝑆 through
the exp map.

lines. In fact, the locus of equidistant points from the two lines is not a geodesic
line in general, and �nding it is beyond the scope of this paper, as it requires
using the distance �elds from 𝛾𝑐𝑎 and 𝛾𝑐𝑏 , while we limit our distance �elds to
have their sources at single points (see Section 6.3.1).
A number of other constructions deal with operations on angles, such as

copying an angle, adding or subtracting angles, or creating angles of a few
speci�ed amplitudes. These problems are somehow local to the point 𝑐 at the
tip of the angle, and can be addressed by �nding the tangents of the geodesic
lines that de�ne the angles at play, resolving the Euclidean construction in the
tangent plane, and using the resulting directions to map the geodesics to the
surface 𝑆 . For this reason, we do not analyze such constructions in detail.

6.4 .3 Perpendicular to a line and the Square-set operator

Perpendicular bisector and midpoint

In the plane, the bisector is constructed as follows. Given points 𝑎,𝑏 ∈ ℝ2,
�rst use the straightedge to trace the straight-line segment joining them. Then
place the needle point of the compass at 𝑎 and the pencil point at 𝑏 and trace
a circle; repeat the same operation with needle at 𝑏 and pencil at 𝑎. Let 𝑐, 𝑑 be
the intersection points of the two circles; use the straightedge to trace segment
𝑐𝑑 . The straight line line through 𝑐, 𝑑 intersects segment 𝑎𝑏 orthogonally and
at its midpoint 𝑐 ; this is also the locus of points that have equal distance from 𝑎

and 𝑏. The Euclidean construction is depicted at the top of Figure 6.5(middle).
Let now 𝑎, 𝑏 be two points in 𝑆 and let 𝛾 be the shortest geodesic connecting

them. We cannot apply the Euclidean construction in either tangent plane 𝑇𝑎𝑆
or 𝑇𝑏𝑆 and then map the result to 𝑆 , as it would not have any of the above
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Figure 6.6: Line tangent to a circle centered at 𝑥 and through 𝑎: the square set is
placed at 𝑎 and oriented according to the tangent of 𝛾𝑥𝑎 at 𝑎.

properties in general, and we would also obtain di�erent results in the two
cases. We rather apply the Euclidean construction in tangent plane𝑇𝑐𝑆 , where
𝑐 is the midpoint of 𝛾 . In order to �nd 𝑐 , we �rst �nd point 𝑐 in the Euclidean
construction on𝑇𝑎𝑆 and we map it to 𝑆 through the exp map; 𝑐 is the midpoint
of 𝛾 by construction. Now we consider the tangent 𝑡𝑐 of 𝛾 at 𝑐 , and we proceed
as before to �nd the vector 𝑡⊥𝑐 orthogonal to 𝑡𝑐 . The result 𝛾⊥ is the geodesic
line tangent to 𝑡⊥𝑐 at 𝑐 . The result is shown at the bottom of Figure 6.5 (middle).
Note that this construction satis�es just two of the three propertie of its

Euclidean counterpart, since our result it is not the locus of points equidistant
from 𝑎 and 𝑏. In Section 6.5.2 we propose a method that constructs a curve
whose points satisfy this last property, without being a geodesic though.

Perpendicular to a line at a point

In the plane, let ℓ̄ be a line and 𝑐 a point on it, we want to �nd a line through
𝑐 and orthogonal to ℓ̄ . To this aim, it is su�cient to trace any circle centered
at 𝑐 , �nding its intersections 𝑎,𝑏 with ℓ̄ , and then �nding the bisector of line
segment 𝑎𝑏.
Such construction can be ported to the manifold setting as above. The

advantage in this case is that we already know the position of 𝑐 on the geodesic
𝛾 , so we just work in 𝑇𝑐𝑆 . Fig. 6.5 (right) shows both constructions. The same
method can be used to �nd the tangent at a point 𝑎 to a circle centered at 𝑥
and through 𝑎. This is in fact the perpendicular to geodesic segment 𝑎𝑥 and
passing through 𝑎. Fig. 6.6 shows such construction.

The Square-set as derived operator

Given a curve 𝛾 on 𝑆 and a point 𝑐 on it, the above construction can be used
to compute the vector 𝑡⊥ ∈ 𝑇𝑐𝑆 orthogonal to the tangent 𝑡𝑐 of 𝛾 at 𝑐 . This
procedure implements an operation that we call Square-set, which will be used
as an atomic operation in the following.
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6.4 .4 Regular Polygons

In the Euclidean setting, the construction of a regular 𝑛-gon boils down to
construct a straight line segment of length cos( 2𝜋

𝑛
). If one starts with two

points 𝑂, 𝑒 on the plane, and set the length of the straight line segment 𝑂𝑒 to
be 1, then it is well known that a segment of length ℓ is constructible using
straightedge and compass if and only if ℓ can be obtained from 1 using the
operations +,−, ·, ·· and

√·. By the law of cosines, we have that the side of an 𝑛-
gon inscribed in the unit circle centered at𝑂 has length 𝑑 =

√︁
2 − 2 cos(2𝜋/𝑛).

Hence, if we can construct a segment of length cos( 2𝜋
𝑛
), then 𝑑 is constructibile.

In 1796, Gauss stated a su�cient condition for cos( 2𝜋
𝑛
) to be constructible, and

in 1837 Pierre Wantzel proved that such condition is also necessary. The �nal
result states that a regular 𝑛-gon can be constructed with straightedge and
compass if and only if 𝑛 is of the form

𝑛 = 2𝑗 · 𝑝1 · 𝑝2 · · · 𝑝𝑚,

where 𝑝𝑖 is a prime number of the form 𝑝𝑖 = 22𝑘𝑖 +1, 𝑘𝑖 ∈ ℕ, for all 𝑖 = 1, . . . ,𝑚.
Once a chord of length 𝑑 has been constructed, then we can use the compass
to transfer such length 𝑛 − 1 times on the circle. Of course, the result will
be a regular 𝑛-gon because we are just duplicating the triangle of vertices
(0, 0), (1, 0), (cos( 2𝜋

𝑛
), sin( 2𝜋

𝑛
)) 𝑛 − 1 times. Note that, since sin(𝛼)2 = 1 −

cos(𝛼)2, the constructability of cos(𝛼) implies the one of sin(𝛼).
In the manifold case, given two points 𝑐, 𝑣1 ∈ 𝑆 , if 𝑟 is the length of the

geodesic connecting them, then the above construction can be used to de-
termine the 𝑛 vertices {𝑣1, . . . , 𝑣𝑛} ∈ 𝑇𝑝𝑆 of a regular 𝑛-gon, and then de�ne
𝑣𝑖 := exp𝑝 (𝑣𝑖) for 𝑖 = 1, . . . , 𝑛. In fact, since 𝑇𝑝𝑆 is a 2-dimensional vector
space, we can de�ne a system of coordinates having 𝑐 as origin, an putting
𝑣1 = 𝑙𝑜𝑔𝑐 (𝑣1) = (0, 𝑟 ). Then the �nal result can be obtained by connecting
𝑣𝑖 to 𝑣𝑖+1 with shortest paths, for 𝑖 = 1, . . . , 𝑛 (here and in the folllowing, we
implicitly mean that the subscripts have to be considered modulo 𝑛). In this
way, we are constructing a geodesic 𝑛-gon which satis�es just two of the
properties of its Euclidean counterpart: if 𝑡𝑖 ∈ 𝑇𝑝𝑆 is the tangent of the radial
geodesic 𝛾𝑖 connecting 𝑐 with 𝑣𝑖 at 𝑐 , then the angle formed by 𝑡𝑖 and 𝑡𝑖+1 is 2𝜋

𝑛
,

and the length of 𝛾𝑖 is 𝑟 , 𝑖 = 1, . . . , 𝑛. We will see that the former property is
ensured by construction and the de�nition of angle given in Section 6.4.2 and
the latter is a consequence of the fact the exponential map is a radial isometry
(see Section 2.2).

The �rst advantage of retrieving the points {𝑣1, . . . , 𝑣𝑛} through a con-
struction that takes place in 𝑇𝑝𝑆 is that such points will be always de�ned.
Nervetheless, the topological correctness of the result depends on the radius
of injectivity of 𝑝 (think about the case of a cylinder of radius 𝑅 and 𝑟 ≥ 2𝑅).
Moreover, this method seems well suited to de�ne a�ne transformations. In
fact, rotation by angle 𝜃 and scaling by a factor 𝜆 can be applied in 𝑇𝑐𝑆 by
choosing 𝑣1 = (cos(𝜃 ), sin(𝜃 )) and by multiplying 𝑟 by 𝜆. Also translation is
straigtforward: it su�ces to parallel transport the vector 𝑣1 ∈ 𝑇𝑐𝑆 to𝑇𝑐′𝑆 along
a shortest path connecting 𝑐 to 𝑐 ′ and then repeat the construction in 𝑇𝑐′𝑆 ,
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where 𝑐 ′ is another point on 𝑆 . The details on the implementation of such
operations are given in Section 6.7.

We will now describe the constructions implemented in our drawing system.
There are many straightedge and compass constructions for regular polygons,
We limit ourselves to describe the Euclidean constructions and presenting
the results obtained by mapping such constructions on 𝑆 as described above.
Details about the implementation of the exponential mapping and shortest
paths tracing will be given Section 6.7. From now on, 𝑟 will denote the length
of the geodesic 𝛾 (𝑡) connecting two �xed points 𝑐, 𝑣1 ∈ 𝑆 . All the constructions
below will take place the tangent plane 𝑇𝑐𝑆 , within which we de�ne a system
of coordinates having 𝑐 as origin, the straight line having 𝑙𝑜𝑔𝑐 (𝑣1) as tangent
at the origin as 𝑥-axis, and the perpendicular to such line at 𝑐 = (0, 0) as 𝑦-axis.
In such a reference frame, we de�ne 𝑣1 := (𝑟, 0) and we denote with 𝐶 the
circle centered at 𝑐 with radius 𝑟 .

eqilateral triangle Let 𝑣1, 𝑣 ′1 be the points at which 𝐶 intersect the
𝑥-axis, i.e 𝑣1 = (𝑟, 0) and 𝑤 = (−𝑟, 0). Place the compass at 𝑤 and trace a
circle with radius 𝑟 . Let 𝑣2, 𝑣3 be the intersections of such circle with 𝐶 . Then
{𝑣1, 𝑣2, 𝑣3} is an equilateral triangle.

sqare By proceeding as above, we construct two points 𝑣1 = (𝑟, 0) and
𝑣3 = (−𝑟, 0). The points 𝑣2 and 𝑣4 are the intersection of 𝐶 with the 𝑦-axis, i.e
𝑣2 = (0, 𝑟 ) and 𝑣3 = (0,−𝑟 ).

pentagon Let 𝑣1 = (𝑟, 0), 𝑣 ′1 = (−𝑟, 0) and 𝑠 = (0, 𝑟 ) constructed as above.
Let 𝑚̄ be the midpoint of the line segment 𝑠𝑐 . Place the needle of the compass
at 𝑚̄ and the pencil at 𝑠 and trace a circle. Let 𝑛0, 𝑛1 be the intersection of such
circle with the line through 𝑣 ′1 and 𝑚̄. W.l.o.g, we assume 𝑛0 to be the closest
one to 𝑣 ′1, and let us denote with 𝑟𝑖 the distance between 𝑣 ′1 and 𝑛𝑖 , 𝑖 = 0, 1. Let
𝐶𝑖 be the circle centered at 𝑣 ′1 with radius 𝑟𝑖 , 𝑖 = 0, 1. Then {𝑣3, 𝑣4} = 𝐶0 ∩𝐶
and {𝑣2, 𝑣5} = 𝐶1 ∩𝐶 .

hexagon Let 𝑣1 = (𝑟, 0) and 𝑣4 = (−𝑟, 0) constructed as above. Place the
needle at 𝑣1 and trace a circle of radius 𝑟 . Let 𝑣2, 𝑣6 be the intersections of such
circle with𝐶 . Place the needle at 𝑣4 and construct 𝑣3, 𝑣5 in the same way. Then
{𝑣1, 𝑣2, . . . , 𝑣4} is a regular hexagon.

octagon Once a square is constructed as described above, an octagon can
be obtained by intersecting the angle bisector of every quadrant with 𝐶 .

decagon Proceed as in the construction of the pentagon until the circle
centered at 𝑚̄ through 𝑠 is traced. Let 𝑛 the intersection with such circle with
the straight line segment connecting 𝑣1 with 𝑚̄. Let 𝑟1 be the length of the
segment 𝑛𝑣1 on 𝐶 . Then the vertices 𝑣2 and 𝑣10 are the intersections of the
circle 𝐶1 centered at 𝑣1 with radius 𝑟1 with 𝐶 . The other vertices can be found
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Figure 6.7: Euclidean construction of an inscribed regular 𝑛-gon for 𝑛 = 3, 4, 5, 6, 8, 10
(left) and the results obtained by mapping such constructions on a mesh (right).

by iteratively intersecting a circle with the same radius 𝑟1, centered at vertices
found at the previous iteration.
Figure 6.14 summarizes the constructions described in this section both in

the Euclidean and in the manifold setting.

6.4 .5 Parallelogram, rhombus and rectangle

With the notations used in the previous section, let 𝑣1 = (𝑟, 0) and 𝑣3 = (−𝑟, 0).
Place the needle at the origin and trace any circle, which we will denote with𝐶 .
Pick any point 𝑣2 on𝐶 and consider the line through 𝑣2 and 𝑐 . If 𝑣4 is the other
point at which this line intersects𝐶 then Q := {𝑣1, 𝑣2, 𝑣3, 𝑣4} is a parallelogram.
Note that if 𝑣2 = (0, 𝑅), with 𝑅 being the radius of 𝐶 , then Q is a rhombus,

while if 𝑣2 does not lie on the 𝑦-axis but 𝑅 = 𝑟 , then Q is a rectangle. In the
particular case in which 𝑣2 = (0, 𝑟 ) then Q is a square. See Figure 6.8.

Also in this case, we have no guarantees of equal length of opposite sides or
equal angles at opposite corners; let alone the notion of “parallel sides”, which
is ill de�ned on a manifold. The only guarantee is that opposite semi-diagonals
lie on a geodesic through 𝑐 and have equal lengths, and, consequently, opposite
angles at the center are equal. The rhombus has the additional property that
the diagonals are orthogonal. And the rectangle has all four semi-diagonals
with the same length.

In summary, all constructions above can guarantee only properties related
to lengths and angles that depend just on the radial geodesics emanating from
the center 𝑐 , at which the tangent plane is placed. This is a consequence of the
fact the exponential map is a radial isometry, and that the angles between two
geodesics are de�ned in the tangent space of their interesection. Note that the
sides of the geodesic polygons are traced only after their corners have been
mapped to 𝑆 through the exp map. The length of such lines, as well as the
angles they form at the corners, are in�uenced from the Gaussian curvature



114 vector graphics on surfaces using straightedge and compass constructions

v1
<latexit sha1_base64="YyWSuCw3cup+HiKZ9P9bcSH6jlI="></latexit>

v1
<latexit sha1_base64="YyWSuCw3cup+HiKZ9P9bcSH6jlI="></latexit>

v1
<latexit sha1_base64="YyWSuCw3cup+HiKZ9P9bcSH6jlI="></latexit>

v2
<latexit sha1_base64="z46kmzlrPHOV1AepuqTCzVSTzOo=">AAACmnicZVHLbtQwFPWEVxleLSxhEZENQmU0CUjtsiosQGhEEZ220jgaOZ6bjDV+RPbNVMjNgg9gC9/G3+AMsyDtXdjH57587i1qKRyOx38G0a3bd+7e27k/fPDw0eMnu3tPz5xpLIcpN9LYi4I5kELDFAVKuKgtMFVIOC9W7zv/+RqsE0af4vcacsUqLUrBGQbq23qezXeT8Wi8sfgmSLcgIVs7me8NftCF4Y0CjVwy52bpuMbcM4uCS2iHQ9o4qBlfsQo8U04xXO6HuzQaXd89a7A8zL3QdYOgeefUcMmNUkwv6MR72iVzJuNJ2/Z8FhzaWZZ7P4xjKqHEEV2B1W+obqRchIEogUF4aARxCEnS7qTresk0GuVpIaqrdsNZUS3xau6TbPPuGn2AoMzCJDT/UoNlaOxrT5mtlNBtUFrR/Q71lHY/RWOk69NFoULZ/zXXzJZCytwH4FaivlamkSisuQysg7BPXeHS0xAq9CJMvPVh2G1YWnp9RTfBWTZK346yr++So+Pt+nbIc/KSvCIpOSBH5CM5IVPCSUV+kl/kd/QiOo4+RZ//hUaDbc4z0rPo9C/AF8z6</latexit>

v2
<latexit sha1_base64="z46kmzlrPHOV1AepuqTCzVSTzOo="></latexit>

v2
<latexit sha1_base64="z46kmzlrPHOV1AepuqTCzVSTzOo="></latexit>

v3
<latexit sha1_base64="6dhB0OWvE41zPZxaEj4C1r9Yj9k="></latexit>

v3
<latexit sha1_base64="6dhB0OWvE41zPZxaEj4C1r9Yj9k="></latexit>

v3
<latexit sha1_base64="6dhB0OWvE41zPZxaEj4C1r9Yj9k="></latexit>

v4
<latexit sha1_base64="hYjxCMzhFGlxxt4cr63lc3QvJi8="></latexit>

v4
<latexit sha1_base64="hYjxCMzhFGlxxt4cr63lc3QvJi8="></latexit>

v4
<latexit sha1_base64="hYjxCMzhFGlxxt4cr63lc3QvJi8="></latexit>

Figure 6.8: Euclidean constructions of a parallelogram, a rhombus and a rectangle
(top) and the results obtained by mapping such constructions to a mesh (bottom).

of 𝑆 in the region covered by the polygon: the more the Gaussian curvature
around 𝑐 varies, the more the shape of the geodesic polygon will di�er from
its Euclidean counterpart.

6.4 .6 Remarks

Overall, the constructions of inscribed polygons cannot ensure any property
concerning the length of their sides as well as their internal angles. However,
some considerations can be made about both quantities in order to understand
how much the curvature of the surface a�ects the shape of a regular 𝑛-gon
obtained with the above constructions. For the sake of brevity, we restrict
ourselves to a high-level discussion, with the purpose of just giving an idea of
what kind of results may be used to better understand how the shape of our
polygons may be in�uenced by the curvature around the center 𝑐 . For more
details about such result, we refer to [CC89, pages 197-198] and [Ber07, Sec.
6.4].

With the notations used above, let consider two points 𝑣1, 𝑣2 ∈ T𝑐M picked
on the circle𝐶 centered at 𝑐 . Let𝑇 be triangle having vertices {𝑐, 𝑣1, 𝑣2} and T
the one having vertices {𝑐, 𝑣1, 𝑣2}. Then both𝑇 and T have two sides of length
𝑟 and the angle formed by such sides is equal to 2𝜋/𝑛. However, 𝑇 is a plane
triangle, while T is not. So one could say that the all the di�erences between
these two triangles are somehow localized in the length ℓ of the geodesic
connecting 𝑣1 to 𝑣2 and in the angles 𝛼1, 𝛼2 at such vertices. For what said in
Section 2.3.2, it is clear ℓ depends on how much exp𝑐 fails in being an isometry,
and, therefore, it can be estimated by considering a Jacobi �eld along 𝛾𝑐𝑣1 . In
the case of manifolds with constant curvature, Jacobi �elds have a closed form,
which have been used to prove the well known Toponogov triangle comparison
theorem.
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Figure 6.9: Two examples of squares drawn in bumpy regions of a mesh. In some
cases, the geodesic distortion is more evident when the length of the sides is considered
(left), in other instances we better notice it by looking at the angles (right).

After introducing some notations, we will state this latter result in our
speci�c setting and refer to [Ber07] for further details about this subject. In
the following, we assume 𝑟 < 𝑟𝑝 . If 𝐾 denotes the Gaussian curvature on 𝑆 , let
us put

𝛿 := inf 𝐾 𝛥 := sup𝐾,
and let us denote with 𝑆 (𝜎) the surface having constant curvature 𝜎 . Let 𝑇𝛿
and𝑇𝛥 be the triangles with vertices {𝑐 ′, 𝑣 ′1, 𝑣 ′2} ∈ 𝑆 (𝛿) and {𝑐 ′′, 𝑣 ′′1 , 𝑣 ′′2 } ∈ 𝑆 (𝛥),
respectively. Suppose these triangles have two sides of length 𝑟 and the angle
between such sides is 2𝜋/𝑛. Then, by the Toponogov triangle comparison
theorem we have

𝑑𝑆𝛥 (𝑣 ′′1 , 𝑣 ′′2 ) ≤ ℓ ≤ 𝑑𝑆𝛿 (𝑣 ′1, 𝑣 ′2),
where 𝑑M (·, ·) denotes the geodesic distance measured with the metric of the
manifold M. This means that the more 𝐾 varies around 𝑐 , the more ℓ could
di�er from ‖𝑣2 − 𝑣1‖. Concerning the angles at 𝑝1 and 𝑝2, by re-writing (2.23)
for the case 𝑘 = 2 we have that

3∑︁
𝑖=1

𝛼𝑖 =

∬
T
𝐾𝑑𝜎 + 𝜋,

where 𝛼0, 𝛼1, 𝛼2 are the angles at 𝑐, 𝑣1, 𝑣2, respectively. This means that the sum
of the internal angles of T di�ers from 𝜋 by an amount which is equal to the
integral of the curvature in its interior. To �x ideas, one can think about the
case in whichM is a unit sphere. Then 𝐾 ≡ 1 and the above formula tells us
that the excess of

∑3
𝑖=1 𝛼𝑖 over 𝜋 is equal to the area of T .

Summarizing the above considerations, we can say that the more the surface
is far from being �at, i.e. the more the Gaussian curvature is great in norm, the
more the shape of T would di�er from the one of its Euclidean counterpart 𝑇 .
Figure 6.9 show two examples of two squares drawn in bumpy regions of a
mesh, which look very di�erent from the one shown in Figure 6.7.

6.5 Direct Constructions on the Surface
We now change approach, by de�ning the equivalent tools for the straightedge
and compass directly on 𝑆 . Referring to the geodesic arsenal de�ned in Section
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Figure 6.10: The Euclidean construction to bisect an angle (left) fails when ported to
a surface: the resulting lines (center and right) do not bisect the angle at 𝑐 and they
are di�erent depending on the choice of points 𝑝 and 𝑞.

6.3, the operator Shortest-path allows us to trace geodesic segments between
any two endpoints; and the joint use of Tangent and Geodesic-tracing allows
us to extend such a segment inde�nitely from both sides. We thus de�ne the
derived operation Geodesic-line that traces an arbitrarily long line through a
pair of points, generalizing the straightedge to the manifold setting.

Likewise, the Geodesic-compass is a derived operation de�ned as the Isoline
through a given point of the Distance-�eld from another center point. Note
that, the Distance-�eld alone does not belong to the straightedge and compass
framework, because it implicitly takes measures. On the other hand, since this
operator is anyhow necessary to implement the Geodesic-compass, we will use
it also directly to address constructions where the basic tools fail.
We address the �ve basic constructions listed in Section 6.3 by means of

Geodesic-line (1); Geodesic compass (2); and Intersect (3, 4, 5), as depicted in
Figure 6.2. Besides, we will make use of the Square-set operator, as de�ned in
Section 6.4.3.
Since we need topological consistency between the result of our construc-

tions on 𝑆 and their Euclidean counterpart, we will always assume that we are
considering strongly convex objects in the sense of Section 2.4.

In the following, we review some straightedge and compass constructions,
showing their extension to the manifold setting with this approach, as an
alternative to the constructions in tangent plane presented in the previous
section. Again, we will see that these constructions can preserve only some of
the properties that are guaranteed in the Euclidean case.

6.5 .1 Angle bisection

The Euclidean construction depicted in Figure 6.5 (top-left) fails when ported
to a surface with our geodesic tools. See Fig. 6.10. The geodesic line through
𝑐 and 𝑦 neither bisects the angle at 𝑐 , nor its points are equidistant from the
input lines. Moreover, the result depends on the radius chosen to �nd 𝑝 and 𝑞.
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Figure 6.11: The bisector of a geodesic segment computed by reproducing the
Euclidean construction (left); by the zero isoline of the di�erence of distance �elds
from 𝑎 and𝑏 (center); and by tracing a geodesic from themidpoint of the segment along
the orthogonal direction computed with the Square-set (right). The last construction
is equivalent to the one in Section 6.4.3.

6.5 .2 Line segment bisector and midpoint

The Euclidean construction described in Section 6.4.3 also fails on a surface.
If we use Geodesic-line and Geodesic-compass to obtain points 𝑝, 𝑞, the two
geodesic paths 𝛾𝑎𝑏 and 𝛾𝑝𝑞 in general will not intersect at the midpoint of 𝛾𝑎𝑏 ,
nor they will be orthogonal at 𝑐 . Concerning distances, we only know that 𝑝
and 𝑞 are equidistant from 𝑎 and 𝑏, but distances can be di�erent at all other
points of 𝛾𝑝𝑞 . See Figure 6.11 (left).
We thus resort to our additional tools. Let 𝑑𝑎, 𝑑𝑏 be the two distance �elds

with sources at 𝑎 and 𝑏, respectively. Compute the di�erence �eld 𝑑𝑎𝑏 = 𝑑𝑎−𝑑𝑏 ;
the point 𝑝 computed before belong to the zero isoline of this �eld. If we extract
the Isoline of 𝑑𝑎𝑏 through 𝑝 , the resulting line 𝛾⊥

𝑎𝑏
will intersect orthogonally

𝛾𝑎𝑏 at its midpoint. See Figure 6.11 (center). This construction has the further
property, which we did not have with the construction in Section 6.4.3, that all
points of 𝛾⊥

𝑎𝑏
are equidistant from 𝑎 and 𝑏. However, 𝛾⊥

𝑎𝑏
is not a geodesic line,

hence not straight in the manifold sense. Finally, the construction presented in
Section 6.4.3 can be replicated by �rst �nding the midpoint 𝑐 of geodesic 𝛾𝑎𝑏 , as
above, and then applying the Square-set operator at 𝑐 to �nd the perpendicular
line. See Figure 6.11 (right).

6.5 .3 Circle through three non-collinear points

In the plane, given three non-collinear points 𝑎, 𝑏, 𝑐 , this construction can be
done by �rst computing the perpendicular bisectors of segment 𝑎𝑏 and 𝑏𝑐;
then intersecting such two bisectors at point 𝑜 ; and �nally tracing the circle
centered at 𝑜 and through 𝑎 (and, consequently, through 𝑏 and 𝑐). See Figure
6.12(left). The same procedure trivially gives the circle circumscribed to a
triangle 𝑎𝑏𝑐 .

This construction relies on the fact that all points on a bisector are equidistant
from the endpoints of the input segment, a property which is not ful�lled in
the manifold case when the bisector is a straight line, as in Figure 6.12(middle).
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Figure 6.12: Euclidean constructions of a circle through three points 𝑎, 𝑏, 𝑐 (left).
A straightforward reproduction of the Euclidean construction fails because the in-
tersection 𝑜 of the two thin black lines is not equidistant from 𝑎, 𝑏, 𝑐 (center). The
intersection of curves obtained as isolines of the di�erence distance �elds from pairs
of points gives the correct center of the geodesic circle (right).

However, if the two bisectors are obtained as isolines of the di�erence distance
�eld, as described above, then their intersection will indeed be equidistant
from the three points, hence we can use it as the center for a geodesic circle
through them. See Figure 6.12(right).
Note that this construction cannot be replicated while working in tangent

space, because one would need to know the center 𝑜 of the circle in advance.

6.5 .4 Polygons

We already observed that the constructions in Section 6.4.4 and Section 6.4.5
do not ensure any property concerning the length of the sides and/or the
amplitude of the internal angles of the resulting polygons. We now address
some of those properties with direct constructions on 𝑆 . To this aim, we rely
on di�erent Euclidean constructions, which do not work inside a circle.

Triangles

A triangle can be copied to another place with the same construction, both
in the planar and in the manifold setting. Let 𝑎𝑏𝑐 be a triangle, ℓ̄ a line and
𝑎′ a point on ℓ̄ . We want to copy the triangle in such a way that 𝑎 goes to
𝑎′, 𝑏 goes to a point 𝑏 ′ on ℓ̄ , and 𝑐 is placed at a point 𝑐 ′ accordingly. We
�rst draw a circle with amplitude 𝑎𝑏 centered at 𝑎′ and we select a point 𝑏 ′
as one of the two intersections of the circle with line ℓ̄ . Next we trace two
more circles, one with amplitude 𝑎𝑐 centered at 𝑎′ and another with amplitude
𝑏𝑐 centered at 𝑏 ′; we select point 𝑐 ′ as one of the intersections of such two
circles. In the manifold setting, the result is a triangle with edges of the same
length of 𝑎𝑏𝑐 , but nothing can be said about its angles. Moving a triangle while
preserving the amplitude of its angles is inherently impossible in general, for
consequences of the Gauss-Bonnet theorem.

Creating an equilateral triangle is among the simplest constructions: given
an edge 𝑎𝑏, intersect the two circles with radius 𝑎𝑏 and centered at 𝑎 and 𝑏,
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Figure 6.13: Straightedge and compass constructions of an equilateral (left) and
isosceles triangle given the length of the sides (center) and the height (right) in the
Euclidean (top) and manifold setting (bottom).

respectively. Any of their two intersections can be chosen as the third vertex 𝑐
of the triangle. The same procedure works in the manifold setting too, if we
aim at obtaining a triangle with three edges of the same length. This does not
guarantee any other of the properties of the equilateral triangles, e.g., having
three equal angles, having three equal heights that bisect the angles and bisect
the edges, etc. Constructions ful�lling even one of such requirements seem
not easy to obtain in the manifold setting.
Likewise, it is easy to build an isosceles triangle on a basis 𝑎𝑏 with the

diagonal edges of a given length (transferredwith the compass from some given
segment). Alternatively, one can build an isosceles triangle of a given height,
by �rst constructing the perpendicular bisector of 𝑎𝑏 and then transferring
the height on it with the compass. Both such constructions work to some
extent in the manifold setting, too. However, the �rst construction will not
warrant anything about either equality of the angles at the basis, or the height
from 𝑐 to bisect 𝑎𝑏. While the second construction will just warrant the latter
property, but neither that the diagonal edges, nor that the angles at the basis
are equal. In our system, we implemented a more practical, yet equivalent,
variant of the �rst construction: we consider the Isoline of points equidistant
from 𝑎 and 𝑏, as in Section 6.5.2, and we let the user choose the length of
the sides by dragging point 𝑐 along such bisector. Figure 6.13 (bottom) shows
Euclidean constructions for equilateral and isosceles triangles, together with
their counterparts on a surface.

Squares and rectangles

A square can be built from one of its edges 𝑎𝑏 as follows. A line perpendicular
to 𝑎𝑏 and through 𝑎 is built �rst. Then the the length of 𝑎𝑏 is transferred to
segment 𝑎𝑑 on such a line by placing the needle point of the compass at 𝑎.
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Figure 6.14: Rectangles obtained with di�erent constructions: by tracing two perpen-
dicular lines 𝛾 and 𝛾 ′ intersecting at 𝑎 and tracing opposite sides of the same length
(left); by tracing two lines 𝛾 ′ and 𝛾 ′′ perpendicular to 𝛾 at 𝑎 and 𝑏 and setting points 𝑑
and 𝑐 on 𝛾 ′ and 𝛾 ′′ at equal distance from 𝑎 and 𝑏, respectively (center); by tracing
the diagonal 𝑎𝑐 , transferring angle 𝑏𝑎𝑐 to 𝑎𝑐𝑑 and tracing two lines perpendicular to
𝑎𝑏 and 𝑐𝑑 at 𝑎 and 𝑐 , respectively (right). The constructions are shown both in the
Euclidean (top) and in the manifold (bottom) setting.

Finally, the needle point of the compass is placed at 𝑏 and at 𝑑 with the same
aperture 𝑎𝑏, and the intersection 𝑐 of the two circles gives the last vertex of
square 𝑎𝑏𝑐𝑑 .
This same construction works in the manifold setting too. However, the

resulting polygon will have four edges of equal length, but only angle 𝑑𝑎𝑏 is
guaranteed to be a square angle. An alternative construction consists of tracing
perpendicular lines at both 𝑎 and 𝑏, by means of the Square-set, transferring
the length of 𝑎𝑏 on both of them, and connecting the points 𝑐 and 𝑑 obtained
in this way. In this case, in the manifold setting we obtain a quadrilateral with
three edges of the same length, namely 𝑎𝑏, 𝑎𝑑 and 𝑏𝑐 , and two right angles 𝑑𝑎𝑏
and 𝑎𝑏𝑐 ; but nothing can be said about the length of edge 𝑐𝑑 and the amplitude
of angles at 𝑐 and 𝑑 .

The same constructions apply to draw a rectangle, except that the aperture
of the compass to obtain the vertical edges can be di�erent than the length of
𝑎𝑏. The outcome in the manifold setting has the analogous (lack of) properties.

We describe a third construction, which is more appropriate to the GUI of
drawing systems. Given a basis line ℓ̄ and a point 𝑎 lying on it, a diagonal
segment 𝑎𝑐 is traced �rst. Then the angle between such segment and line
ℓ̄ is transferred at 𝑐 , to obtain a line ℓ̄ ′ parallel to ℓ̄ . Finally, two lines are
traced through 𝑎 and 𝑐 , which are perpendicular to ℓ̄ and ℓ̄ ′, respectively. The
intersections of such lines with the �rst two lines give the other two vertices
𝑏 and 𝑑 of the rectangle. This construction applies to the manifold setting,
too, by copying the angle in the tangent planes, as described in Section 6.5.1,
and using the square set to trace perpendicular lines. However, the resulting
quadrilateral has two square angles at 𝑎 and 𝑐 , but nothing can be said on
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Figure 6.15: Ellipse (red curve) computed as an isoline of the sum of the distance
�elds from its foci (black dots).

the amplitude of the other two angles, and opposite edges are not congruent
in general. A number of other constructions can be devised, which are all
equivalent in the Euclidean setting, while none of them can warrant congruent
opposite edges and four right angles. Each such construction privileges some
of the properties of rectangles, at the expense of others.

Figure 6.14 shows examples of rectangles obtained with the three construc-
tions described above.

6.5 .5 Ellipse

An ellipse cannot be constructed using the straightedge and compass. The
best one can do is to compute the position of a point on the ellipse, using the
so called de La Hire’s construction. However, since the ellipse can be de�ned
as an isoline of the sum of the distance �elds from its foci 𝑎 and 𝑏. In details,
once the foci have been chosen, we use the Isoline operator to compute the
isoline of the �eld 𝑓 = 𝑑𝑎 + 𝑑𝑏 equal to 𝛼ℓ , where ℓ is the distance between
the two foci and 𝛼 is a scaling factor. We therefore added this primitive to our
drawing system for practical reasons. An example is shown in Fig.6.15.

6.6 Unresolved Contructions
We could not �nd a straightforward way to port further constructions to a
surface by relying just on the basic tools available in our arsenal. For com-
pleteness, we brie�y discuss some such constructions, which may be relevant
in the applications, leaving their investigation to future work.

Perpendicular to a line through a point not on the line

This is a basic construction, which is also useful in the con-
text of more complex constructions in the Euclidean plane.
Given a line ℓ̄ and a point 𝑥 not on the line, �nd a line
through 𝑥 and perpendicular to ℓ̄ . In the plane, we trace a
circle centered at 𝑥 , with an aperture larger than its distance
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from ℓ̄ ; we �nd the intersection points 𝑎, 𝑏 of this circle with ℓ̄ ; and we trace
another two circles centered at 𝑎 and 𝑏 with the same aperture. The result is
the line through 𝑥 and 𝑦.

In the geodesic setting, the orthogonal projection of a point 𝑥 onto a geodesic
𝛾 in general will not be the midpoint of the segment intercepted on 𝛾 with a
circle centered at 𝑥 . We rather have to de�ne the problem in terms of distances:
if point 𝑧 on 𝛾 minimizes the distance from 𝑥 , then the geodesic path 𝛾𝑥𝑧 meets
𝛾 orthogonally at 𝑧, because it is a radial path of the circle centered at 𝑥 and
tangent to 𝛾 .

This problem could be tackled by computing the distance �eld from𝛾 (which
is not part of our arsenal, though) and evaluating it at 𝑥 : the geodesic circle
centered at 𝑥 with radius 𝑑𝛾 (𝑥) is tangent to 𝛾 at 𝑧. Alternatively, one could
restrict the distance �eld𝑑𝑥 to𝛾 and �nd its minimum along it. Notice that both
such solutions take measures, thus violating the rules of the straightedge and
compass framework. A possible workaround consists of growing a geodesic
circle centered at 𝑥 until it becomes tangent to 𝛾 . The radius of the circle can
be halved or doubled by relying on the basic constructions and a bisection
technique can be followed. A similar problem is mirroring a point 𝑥 about
a line 𝛾 not containing it. Once we have found the projection 𝑧 of 𝑥 on 𝛾 , it
is su�cient to trace a circle centered at 𝑧 and through 𝑥 and then �nd the
intersection between such circle and the geodesic line through 𝑥 and 𝑧.

Parallel lines

A number of constructions in the plane deal with parallel lines. In the manifold
setting, the concept itself of parallel lines is ill-de�ned. Given a geodesic line
𝛾𝑥 and point on 𝑥 ∈ 𝛾𝑥 , the tangent 𝑡𝑥 of 𝛾𝑥 in 𝑥 belongs to the tangent plane
𝑇𝑥𝑆 , and it is well de�ned its parallel transport to the tangent plane 𝑇𝑦𝑆 of
another point 𝑦 ∈ 𝑆 . The parallel transport is a fairly complex operation that
we have not considered in our preliminaries. Once the parallel transported
direction 𝑡𝑦 is given, we could trace the geodesic through 𝑦 tangent to 𝑡𝑦 and
consider it “parallel” to 𝛾𝑥 . The trouble here is, that the direction 𝑡𝑦 will be
di�erent depending both on the starting point 𝑥 on 𝛾𝑥 , and on the trajectory
that we choose to transport 𝑡𝑥 to𝑇𝑦𝑆 . Therefore, the result is not unique and it
is somehow arbitrary. Another straightforward possibility it to take a reference
line 𝛾 and de�ne a bundle of “parallel” lines as all those lines that intersect 𝛾
with a given angle. Given points 𝑥0, . . . , 𝑥𝑛 along 𝛾 and the reference angle, it
is possible to use the construction in Section 6.5.1 to trace such parallel lines
through the points 𝑥𝑖 . Note that, even if we were allowed to take distances,
the locus of points that have a given distance from a geodesic line 𝛾 consists
of two curves that in general are not geodesic lines. Addressing this problem
thus requires �rst a robust notion of parallelism on a manifold.
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Tangent Space Geodesic Tools

Angle Bisection
is a geodesic 3

bisects the angle 3

is equidistant from sides 7

is a geodesic 3

bisects the angle 7

is equidistant from sides 7

Segment Bisector

is a geodesic 3

bisects the segment3
is orthogonal 3

is equidistant from endpoints 7

is a geodesic 7

bisects the segment 3

is orthogonal 3

is equidistant from endpoints 3

Circle through 3 points 7 3

Isoscele Triangle 7
2 equal sides 3

apex belonging to the perpendicular bisector of the base 7

2 equal sides 7

apex belonging to the perpendicular bisector of the base 3

Equilateral Triangle

equal sides 7

equal angles 7

radial geodesics of the same length 3

angles at the center of 120◦ 3

equal sides 3

equal angles 7

radial geodesics of the same length 7

angles at the center of 120◦ 7

Square

equal sides 7

equal angles 7

radial geodesics of the same length 3

angles at the center of 90◦ 3

diagonals intersect at their midpoints 3

4 equal sides 3

1 right angle 3

radial geodesics of the same length 7

angles at the center of 90◦ 7

diagonals intersect at their midpoints 7

2 equal sides 3

2 right angles 3

radial geodesics of the same length 7

angles at the center of 90◦ 7

diagonals intersect at their midpoints 7

Rectangles

equal sides 7

equal angles 7

radial geodesics of the same length 3

diagonals intersect at their midpoints 3

4 equal sides 3

1 rigth angle 3

radial geodesics of the same length 7

diagonals intersect at their midpoints 7

2 equal sides 3

2 right angles 3

radial geodesics of the same length 7

diagonals intersect at their midpoints 7

Polygons

equal sides 7

equal angles 7

radial geodesics of the same length 3

equal angles at center (only regular ones) 3

7

Table 6.1: Summary of the supported constructions, with the properties preserved
by the algorithms described in Sec. 6.4 (Tangent Space) and in Sec. 6.5 (Geodesic
Tools). Where more than one construction is available, we report the main di�erences
between them splitting the corresponding columns. In most cases, the properties that
fail with one approach are preserved by the other.

More constructions

Several other constructions exploit relations between angles and distances,
which do not hold in the manifold case. For this reason, we could not �nd a
straightforward way to reproduce such constructions in terms of our geodesic
arsenal:

• Tangents to a circle through an external point: the construction in the
plane is based on the fact that an angle at the circumference in a half
circle measures 𝜋/2. This is no longer true in the manifold case.

• Circle inscribed in a triangle: the construction in the plane is based on
the fact that all points in the bisectors of angles are equidistant from the
edges. This is no longer true in the manifold case. It is not clear how the
locus of points that are equidistant from two edges can be constructed,
unless the distance �elds from the edges can be computed (see also the
discussion in Sec. 6.5.1).

Note also that constructions like the trisection of an angle or doubling the
volume of a cube are not possible using the straightedge and compass while
they can be achieved by using amarked ruler. This suggests that in themanifold
case, too, more constructions could be supported be allowing the explicit
computation of distances from curves.

6.7 Implementation
All the constructions described in the previous sections, which apply to the
manifold setting, have been implemented by means of the primitives de�ned
in Section 6.3 and included as an extension of an existing library [PNC19].
We have developed a prototype system that supports their interactive usage
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on meshes up to the size of millions of triangles. We refer to Chapter 3 for
the de�nition of basic concepts such as tangent spaces and parallel transport,
as well as the description of the algorithm for geodesic paths and distances
computation.

data structures The surface 𝑆 is represented with a piecewise �at tri-
angular mesh 𝑀 , which is represented with an indexed data structure – i.e.,
encoding a list of vertices𝑉 and a list of triangles 𝐹 – augmented with triangle-
to-triangle adjacencies to support mesh navigation.
A mesh point 𝑝 is encoded as a triple (𝑡, 𝛼, 𝛽) where 𝑡 is the index of the

triangle containing 𝑝 , and 𝛼, 𝛽 are two barycentric coordinates of 𝑝 in 𝑡 (while
the third barycentric coordinate is computed by di�erence to the unit).

A curve 𝛾 on 𝑆 is discretized as a polyline having vertices at all intersections
with edges of𝑀 . A curve connecting points 𝑝 and 𝑞 is encoded with a strip of
triangles (𝑡0, . . . , 𝑡ℎ) of𝑀 , where 𝑡0 and 𝑡ℎ contain 𝑝 and 𝑞, respectively, and
an array of scalars (𝑙0, . . . , 𝑙ℎ−1), where 𝑙𝑖 encodes the intercept of the polyline
with the edge common to 𝑡𝑖 , 𝑡𝑖+1 parametrized along such edge.

tangent Let 𝛾 be the shortest path connecting two points 𝑞0, 𝑞1, represen-
ted as described above. Given the representation of polylines described above,
the tangent vector 𝑤𝑝 at a point 𝑝 on 𝛾 is computed as follows. If 𝑝 lies in a
triangle 𝑡𝑖 then 𝑤𝑝 belongs to the plane containing 𝑡𝑖 , and it is computed as
𝑤𝑝 = 𝑝𝑖 −𝑝 , with 𝑝𝑖 := (1−𝑙𝑖)𝑣0+𝑙𝑖𝑣1 where 𝑣0, 𝑣1 are the endpoints of the edge
shared by 𝑡𝑖 and 𝑡𝑖+1. If 𝑝 belongs to an edge, we proceed in a similar way: the
only di�erence is that𝑤𝑝 will be of the form 𝑝𝑖+1 − 𝑝𝑖 , with obvious meaning
of the notations. If 𝑝 is a vertex, we �rst compute 𝑤𝑝 as before, obtaining a
vector de�ned in the plane containing a triangle 𝑡𝑖 in the one-ring of 𝑝 . Then
we map 𝑤𝑝 to the tangent space of 𝑝 in the same way we have mapped its
neighbors.

isoline We linearly interpolate a �eld inside each triangle of𝑀 . For each
triangle 𝑡 , which crosses a given isovalue, the segment of isoline crossing 𝑡 is
computed independently. While linear interpolation is good enough on high
resolutionmeshes, it might be too rough on coarsemeshes. Better results can be
achieved by supersampling the polyline while using a more accurate estimate
of the distance �eld inside 𝑡 . For instance, isolines can be approximated as arcs
of circle in the plane containing 𝑡 , where the center of the circle is estimated
on the basis of the values of the distance �eld at the vertices of 𝑡 .

intersect Lines on 𝑀 are encoded as paths, as described before. Inter-
sections between a pair of lines are found in linear time in the total number
of triangles in the corresponding paths. Each triangle intersecting one of the
paths is assigned a unique tag; next the triangles forming the other path are
scanned, and intersections are computed just at tagged triangles.
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convexity balls As already remarked, we assume that our constructions
occur within a convex set. We thus provide an algorithm to test the radius of
convexity about a given point 𝑝 . This is computed by considering the largest
ball 𝐵 centered at 𝑝 within which the Hessian of 𝑑2𝑝 (𝑥) is de�nite-positive for
every 𝑥 ∈ 𝐵. This boils down to test the positive-de�niteness of

(
Hess𝑑2𝑝)𝑖 𝑗

)
by checking its eigenvalues while applying a growing-region procedure from
𝑝 . Note that, while a test of convexity guarantees correctness, in practice
many constructions may work well also on larger neighborhoods. Since all
constructions are interactive, we leave freedom to the user to apply them over
arbitrarily large regions.

rotation, translation, scaling In order to support interaction, we
allow the user to edit a drawing by translating, rotating and scaling geometric
objects over the surface. Geometric transformations are applied to the control
points that de�ne our constructions, while the objects are generated each time
from the updated points. Given an anchor point 𝑝 , we use the log map to
represent all control points of the object at hand in the tangent plane of 𝑝 .
This is implemented point-wise by evaluating the shortest paths between 𝑝
and each such point, and �nding the tangent of each path at 𝑝 . Rotation and
scaling are implemented trivially, by changing one of the polar coordinates
of the points in tangent space: the angle for rotation and the distance for
scaling. Then we map the updated points to the surface with the exp map,
which is implemented point-wise by tracing geodesic lines from 𝑝 either in the
updated directions, or with updated lengths. Translation consists of dragging
the anchor point while parallel transporting the reference frame of its tangent
space along the trajectory. Upon dragging, the control points are regenerated
likewise from the transported frame.

For most constructions described in Section 6.4, a natural choice for the
anchor point is the center 𝑐 where we locate the tangent space for the con-
struction. For the remaining constructions, we select as anchor point one of
the control points participating in the construction.

macros We provide some macro-operations, which combine di�erent prim-
itive constructions to obtain complex decorations at once. Some examples of
macros are shown in the decorations in Figure 6.1. For instance: a wreath is
obtained by multiple instances of a polygon rotated about the same center;
similarly, we allow the user to draw nested shapes like circles or polygons; a
�ower is built by drawing arcs of circles centered at the vertices of a polygon
and trimming them at their intersections. The cross and the spider net on the
skull are also generated by macros that intersect circles. Macros are controlled
interactively with simple parameters that tune, e.g., the number of polygons
forming a wreath, the number of nested shapes, the number of petals in a
�ower, etc.
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6.8 Concluding remarks
We have presented two approaches – namely, constructions in tangent space
and direct constructions on the surface – to port straightedge and compass
constructions to the manifold setting. It follows from our analysis that not all
constructions can be ported successfully, and also those that can be ported
may guarantee only some of the properties they have in the Euclidean case.
We extended the scope of basic constructions by exploiting our Distance-�eld
operator beyond the limitations of the straightedge and compass framework,
yet remaining compatible with it, since we neither take explicit measures nor
do arithmetic computations. The constructions we propose already support
several operations in the context of interactive vector graphics on surfaces.
A few relevant constructions are still not supported. Such operations may

require explicit measures, which are forbidden in the straightedge and compass
framework and may require further tools beyond our geodesic arsenal, such
as computing the distance �eld from a curve.

A further challenge is extending our primitives to work over larger regions.
However, even basic properties of lines and circles can be lost outside strongly
convex regions. See Figure 2.8 for some examples. Some operations have been
addressed already in the literature, including primitives that can be computed
with distance �elds [NPP22], and Bézier splines [MNPP22].

A relevant limitation, stemming from the intrinsic curvature of surfaces,
is the impossibility to warrant the congruence of both lengths and angles
together. Regular tilings, which are hard to apply because of this limitation,
can be addressed by relaxing some conditions on angles and/or lengths, but
they remain challenging to extend over large regions. This problem is tightly
related to the design of N-RoSy �elds [VCD+17], in particular to the presence
of �eld singularities, which cannot be avoided, as a consequence of the Gauss-
Bonnet theorem.

A possible avenue is to relax the constraint of lines to be straight, in geodesic
terms, trading some straightness for other properties. This leads to the concept
of as-straight-as-possible lines under given constraints, e.g., joining their end-
points with a prescribed length or with given tangent directions. This approach
entails investigating Jacobi �elds [PHD+10, Le 19] and related optimization
problems.
We plan to address the above challenges in future work.



7
b/Surf: Interactive Bézier Splines
on Surface Meshes

This chapter includes contents from a co-authored paper [MNPP22]
that has been re-formatted for this thesis.

7.1 Introduction
Bézier curves are the building blocks of most vector graphics packages, since
most other primitives can be converted into Bézier splines (chains of Bézier
curves) and edited as such [Far01].
In many design applications, it would be bene�cial to edit vector graphics

directly on surfaces, instead of relying on parametrization or projections that
have inherent distortions [NPP22,PSOA18]. Yet, bringing vector graphics to
surfaces is all but trivial, since basic rules of Euclidean geometry do not hold
under the geodesic metric on manifolds; and distances, shortest and straightest
paths cannot be computed in closed form, as seen in the previous chapter. In
particular, in spite of several attempts to de�ne curves under the geodesic
metric, a complete computational framework that supports their practical
usage in an interactive design setting is still missing.
In this work, we present the �rst practical method, which supports the

interactive and robust design and editing of Bézier splines on high resolution
meshes,without any limitation on the position of their control points. For the sake
of simplicity, we restrict our study to cubic Bézier curves. Our contributions
tackle di�erent aspects of the problem, as outlined in the following.

7.1 .1 Curve schemes in the manifold setting

To the best of our knowledge, all existing extensions of Bézier curves to the
manifold setting have been proven to work just “in the small”, i.e., when
control points are su�ciently close to one another. However, such limitation
is incompatible with a practical usage. We show that, indeed, the manifold
extensions of the de Casteljau and Bernstein evaluation algorithms may fail
and lead to discontinuous curves for general sets of control points. On the other
hand, we show that some existing subdivision schemes may be generalized to
manifolds “in the large”, too. We show that the recursive de Casteljau (RDC)
subdivision scheme proposed by Noakes [Noa98] indeed works for any set
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Figure 7.1:We propose algorithms to interactively edit Bézier splines on large meshes,
including curve editing, curve transformations and import and editing complex SVG
drawings. All computations occur in the intrinsic geodesic metric of the surface. All
splines in this �gure have been drawn interactively. Control points and tangents of
curves under editing are shown in the zoomed insets. Asian Dragon ∼7.2M triangles;
Nefertiti ∼500K triangles.

of control points, always producing 𝐶1 curves. And we propose a manifold
extension of an open-uniform Lane Riesenfeld (OLR) subdivision scheme;
we elaborate on results of Duchamp et al. on the manifold extension of the
standard Lane Riesenfeld scheme for B-splines [DXY18], to show that our
OLR scheme is the �rst one to produce 𝐶2 Bézier segments in the manifold
setting. Curves from both the RDC and the OLR schemes can be joined with
𝐶1 continuity to form Bézier splines.

7.1 .2 Algorithms

We provide the basic tools for curve design and rendering with the RDC and
OLR subdivision schemes. To the best of our knowledge, all previous proposals
in the manifold setting provided only algorithms for curve tracing, i.e., to
produce a discrete approximation of the curve. Besides such algorithms, we
give the algorithms for evaluating the curve at a given parameter; and for
splitting a curve at a given point, by approximating a single Bézier segment
with a spline of two segments.

7.1 .3 Computational framework and system

While the curve schemes and related algorithms are de�ned on smooth man-
ifolds, our implementation addresses triangulated surfaces. As remarked by
Wallner and Pottmann [WP06], “after discretization the question of smoothness
does no longer make sense in the strict mathematical sense. Even so, it is important
to know that ... the ideal geometric object one tries to approximate is smooth.”
All our algorithms rely on the computation of repeated manifold averages,
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Figure 7.2: The GUI of our system. Curves on the eye and on the arm consist of a
single cubic segment each, while the two splines on the ears consist of two cubic
segments each, with a sharp corner to the left and smooth junction to the right. A
control tangent (in blue) is depicted on the curve under editing.

which involve �nding geodesic shortest paths. Such computations are known
to converge to the equivalent measures in the smooth setting as the geometric
mesh is re�ned, e.g., through subdivision [DGDT16]. In order to target meshes
with millions of triangles, we need a very e�cient framework for geodesic
computations. We develop an algorithm for computing locally shortest paths
that is robust and beats the performances of the other methods at the state
of the art. In particular, we greatly improve the step to �nd an initial guess,
which is the bottleneck of all local methods.

We integrate our algorithms in a user interface, thus providing the �rst
prototype system that supports the robust interactive design of Bézier splines
on manifold meshes for any choice of control points. We support all basic
operations that 2D editors have, including: click-and-drag of control points and
tangents; point insertion and deletion; and translation, rotation and scaling
of curves. We also support mapping of 2D SVG drawings onto the surface.
Fig. 7.2 shows the interface of our system with some simple curves traced on
a model. The supplemental video shows a full editing session. Our system
remains interactive on meshes made of millions of triangles, such as the ones
shown in Fig. 7.1.

7.1 .4 Assessment and comparisons

To assess the robustness and performance of our algorithms, we trace curves
on the more than �ve-thousands watertight, manifold, meshes of the Thingi10k
repository [ZJ16] with one hundred randomly generated control polygons for
each mesh. Our algorithms handle all cases well. We discuss the sensitivity
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Figure 7.3: Curves that wind about the object or require large control polygons may
be challenging to draw with an approach based on parametrization. The collar and
the curl consist each of a single cubic segment, while the spiral is a spline of four
segments joined with smooth (𝐶1) continuity. Control polygons are depicted in blue.

of our algorithms to the input mesh, and how to deal with critical meshes
containing nearly degenerate triangles. We run an extensive comparison to
the methods at the state of the art, in terms of both robustness and time
performance, consistently beating their results.

7.2 Related work

The design of spline curves onmanifolds has been addressed by several authors,
both from a mathematical and from a computational perspective. We review
only methods addressing general surfaces.

A traditional approach to circumvent the problems of the Riemannian metric
consists of linearizing the manifold domain via parametrization, designing
curves in the parametric plane, and mapping the result to the surface. Paramet-
rization introduces seams, and drawing lines across them becomes problematic.
Moreover, distortions induced by parametrizations are hard to predict and
control. The exponential map can provide a local parametrization on the �y
for the region of interest [BMBZ02,HA19, Sch13, SZZ+13, SGW06]. However,
its radius of injectivity can be small (e.g., in regions of high curvature), while
control polygons and curves may extend over large regions. Even curves as
simple as the ones depicted in Fig. 7.3 may be hard to control using either local
or global parametrizations.

As reported in [WP06], another common approach consists of relaxing the
manifold constraint, resolving the problem in Euclidean space, and projecting
the result back to the surface. Panozzo et al. [PBDSH13] use an embedding in
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a higher-dimensional Euclidean space, followed by Phong projection. These
methods may support user interaction, but they provide only approximate
results, are prone to artifacts, and are hard to scale to large meshes.

The design of curves can also be addressed as an optimization problem in
a variational setting. Noakes et al. [NHP89] and Camarinha et al. [CSLC95]
provide the basic variational theory of splines on manifolds. This approach
is adopted in several other papers [AGS+15, GSA14,GMA18,HP04, JSW+19,
PH05, SASK11]. While most such works do not address implementation and
performance, [HP04] and [JSW+19] eventually resort to projection methods.
Overall, the variational approach is too computationally expensive to support
user interaction on large meshes. Moreover, these curves are harder to control
interactively than traditional Bézier splines.

Concerning the speci�c case of Bézier curves, Park and Ravani [PR95]
�rst extended the de Casteljau algorithm to Riemannian manifolds, without
developing the computational details. Later on, the de Casteljau algorithm on
surfaces has been explored by several other authors [GMA18,LW01,MCV08,
NYP13,PN07]. Among these, Morera et al. [MCV08] extend the recursive de
Casteljau bisection, and Sharp et al. [SC+19] achieve interactive performance
on the same algorithm, by using a fast method for evaluating locally shortest
geodesic paths [SC20a]. We adopt the same structure of [MCV08] for curve
tracing with the recursive de Casteljau (RDC) subdivision. In Section 7.6.3, we
further discuss the method of [SC+19, SC20a] and compare their results and
performances with our method. Absil et al. [AGSW16] de�ne Bézier curves
both with the de Casteljau algorithm and with the Riemannian center of mass
(RCM), and show that they may produce di�erent results. A method for the
direct computation of the RCM through gradient descent has been proposed
in [SSC19b], which is computationally intensive, though. Conversely, the
method proposed in [PBDSH13] is very e�cient (after pre-processing), but
provides just an approximation of the RCM. In Section 7.6.3, we compare to
both such methods in terms of robustness and performance.

Several authors have investigated the theoretical aspects of the subdivision
approach to splines in the manifold setting. We refer to Wallner [Wal20]
for a detailed analysis, reporting just the results most relevant to our work.
Noakes [Noa98] proves that the recursive de Casteljau subdivision converges
and produces a 𝐶1 curve in the cubic case, subject to strong constraints on the
control polygon. Most recent results [DXY18,DS17,DGL19] focus on Lane-
Riesenfeld schemes and show that a scheme of order 𝑘 is convergent and
𝐶𝑘 in the manifold and functional settings. These latter approaches motivate
our approach to the open-uniform Lane-Riesenfeld (OLR) subdivision. We
exploit observations reported in [Wal20] to show that such schemes can be
generalized to deal with any control polygon.
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7.3 Bézier Curves on Manifolds
We consider di�erent constructions of Bézier curves, all of which produce the
same curves in the Euclidean setting, and we analyze their extensions to the
manifold setting. We provide just the basics of each construction, referring the
reader to [Far01, Sal06] for further details. All de�nitions are given in general,
while results are given just for cubic Bézier curves, for the sake of simplicity;
extensions to curves of a di�erent order are just outlined. In the following,
we denote byM a smooth, compact and connected surface embedded in ℝ3,
endowed with the Riemannian metric induced by the embedding.

7.3 .1 Preliminaries and notations

In the Euclidean setting, a Bézier curve is the image of a polynomial parametric
function of degree 𝑘

b𝑘 : [0, 1] −→ ℝ𝑑 ,

which is de�ned by means of a control polygon 𝛱 = (𝑃0, . . . , 𝑃𝑘 ), where all
𝑃𝑖 ∈ ℝ𝑑 . Curve b𝑘 interpolates points 𝑃0 and 𝑃𝑘 , and it is tangent to 𝛱 at
them. All constructions of Bézier curves in the Euclidean setting rely on the
computation of a�ne averages of points of the form

𝑃 =

ℎ∑︁
𝑖=0

𝑤𝑖𝑃𝑖 (7.1)

where the𝑤𝑖 are non-negative weights satisfying the partition of unity. For
ℎ = 1, the a�ne average reduces to linear interpolation

𝑃 = (1 −𝑤)𝑃 +𝑤𝑄. (7.2)

By analogy with the Euclidean setting, a control polygon 𝛱 in the manifold
setting consists of a polyline of shortest geodesic paths, connecting the control
points that lie onM.

A�ne averages are not available on manifolds, since they lack the structure
of a vector space, but they can be substituted with the Riemannian center
of mass [GK73,Kar77]. Given points 𝑃0, . . . , 𝑃ℎ ∈ M and weights𝑤0, . . . ,𝑤ℎ ,
their Riemanninan Center of Mass (RCM) on M is de�ned

𝑅𝐶𝑀 (𝑃0, . . . , 𝑃ℎ ;𝑤0, . . . ,𝑤ℎ) = argmin
𝑃 ∈M

ℎ∑︁
𝑖=0

𝑤𝑖𝑑 (𝑃, 𝑃𝑖)2 (7.3)

where 𝑑 (·, ·) is the geodesic distance on M. If M is a Euclidean space, then
the solution to Eq.(7.3) is the usual a�ne average of Eq. (7.1).
The RCM requires that Eq. (7.3) has a unique minimizer. Karcher [Kar77]

provides a condition of existence and uniqueness of the solution, which re-
quires all points 𝑃𝑖 to be contained inside a strongly convex ball, whose max-
imum radius depends on the curvature ofM. In the following, we will refer
to this condition as the Karcher condition. If such condition is satis�ed, then
the RCM is smooth in both the 𝑃𝑖 ’s and the𝑤𝑖 ’s [Afs09]. Unfortunately, the
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Figure 7.4: The cut locus 𝐶 (𝑃) of a point 𝑃 on a torus (red). For a point 𝑄 ′ on 𝐶 (𝑃)
there exist two di�erent shortest geodesics joining 𝑃 to 𝑄 ′ (green).

Karcher condition restricts the applicability of the RCM to relatively small
neighborhoods in the general case.
For any two points 𝑃,𝑄 ∈ M, which are connected with a unique shortest

path 𝛾𝑃,𝑄 with 𝛾 (0) = 𝑃 and 𝛾 (1) = 𝑄 , their RCM with weights (1 −𝑤) and
𝑤 is always de�ned and lies at 𝛾𝑃,𝑄 (𝑤). This provides the analogous of the
a�ne average of Eq. (7.2) for pairs of points that do not lie on each other’s cut
locus [WP06].

7.3 .2 Extension of the weighted average

Figure 7.4 shows an example of cut locus of a point 𝑃 lying on a torus. If point
𝑄 lies on the cut locus of 𝑃 , then there is ambiguity on which shortest path
should be taken to compute their average. We extend the pairwise average
to the cut locus, too, by picking one arbitrary, but deterministically selected,
shortest path connecting 𝑃 to 𝑄 . We thus de�ne the manifold average between
two points

A : M ×M × [0, 1] −→ M; (𝑃,𝑄 ;𝑤) ↦→ 𝛾𝑃,𝑄 (𝑤) (7.4)

where 𝛾𝑃,𝑄 is a (deterministically selected) shortest geodesic path joining 𝑃
to 𝑄 . We have that A(𝑃,𝑄 ;𝑤) = 𝑅𝐶𝑀 (𝑃,𝑄 ; (1 −𝑤),𝑤) as long as 𝑃 and 𝑄
do not lie on each other’s cut locus; while at the cut locus it returns a point,
which depends on the selected shortest path 𝛾𝑃,𝑄 . The averaging operator of
Eq. (7.4) provides the analogous of Eq. (7.2) in the manifold setting for any
pair of points.

Notice that, the operator A remains smooth everywhere in its𝑤 parameter,
but it fails to be continuous at pairs (𝑃,𝑄) ∈ M ×M that lie on each other’s
cut locus. Such a discontinuity may a�ect the manifold constructions, as we
will see in the following.
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Figure 7.5: Top: example of a failure case of direct de Casteljau evaluation. The
black bullets at the discontinuities correspond to consecutive parameter values near a
critical value, and the blue/purple/pink lines provide the de Casteljau construction.
Note how the pink line jumps from one side of the pole to the other as 𝑡 passes critical
values, causing discontinuities. Bottom: our method always produces a smooth curve
regardless of the positioning of the control points. The same control polygon of the top
�gure generates the curve in the center; dragging the handles we may force the curve
to pass behind the pole (left) or further shrink (right). Note how the control polygon
to the right also switches to the front of the pole, while leaving the smoothness of the
curve una�ected.

7.3 .3 de Casteljau point evaluation

The de Casteljau construction provides a recursive de�nition, which evaluates
a Bézier curve as b𝑘 (𝑡) = b𝑘0 (𝑡), where

b0𝑖 (𝑡) = 𝑃𝑖
b𝑟𝑖 (𝑡) = (1 − 𝑡)b𝑟−1𝑖 (𝑡) + 𝑡b𝑟−1𝑖+1 (𝑡)

(7.5)

for 𝑟 = 1, . . . , 𝑘 and 𝑖 = 0, . . . , 𝑘 − 𝑟 . A curve is traced by computing Eq. (7.5)
for 𝑡 varying in [0, 1].
This construction can be extended to the manifold setting in a straightfor-

ward way by substituting the a�ne averages between pairs of points with the
manifold average A de�ned above. This extension was proposed �rst by Park
and Ravani [PR95]. As shown by Popiel and Noakes [PN07], if all consecutive
pairs of points in the control polygon 𝛱 lie in a totally normal ball, then the
resulting curve is smooth. However, if the constraint is violated, the resulting
curve can be discontinuous. In fact, even if all shortest geodesics paths in 𝛱
are unique, some pairs of intermediate points involved in the construction
may lie on each other’s cut locus, for some value of the parameter 𝑡 . As 𝑡
passes such critical value, the manifold average A returns a discontinuous
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result, thus causing a discontinuity in the curve. Fig. 7.5(top) illustrates the
construction near failure points; Fig. 7.6(a) provides another example of failure
on a more complex shape.

7.3 .4 Bernstein point evaluation with the RCM

A Bézier curve can be evaluated in closed form as an a�ne sum of all its control
points:

b𝑘 (𝑡) =
𝑘∑︁
𝑖=0

𝐵𝑘𝑖 (𝑡)𝑃𝑖 (7.6)

where the 𝐵𝑘𝑖 (𝑡) are the Bernstein basis polynomials of degree 𝑘

𝐵𝑘𝑖 (𝑡) =
(
𝑘

𝑖

)
𝑡𝑖 (1 − 𝑡)𝑛−𝑖 .

This expression can be rewritten for the manifold case as

𝔟𝑘 (𝑡) = 𝑅𝐶𝑀 (𝑃0, . . . , 𝑃𝑘 ;𝐵𝑘0 (𝑡), . . . , 𝐵𝑘𝑘 (𝑡)) (7.7)

where the Riemannian center of mass RCM has been de�ned in Eq. (7.3).
Again, a curve is traced by computing Eq. (7.7) for 𝑡 varying in [0, 1]. This
construction was addressed in [PBDSH13], where an approximation of the
RCM is proposed, which is based on an embedding in a higher dimension and
Phong projection (see Sec. 7.6.3 for further details). A direct evaluation of the
RCM is also possible through gradient descent on the energy of Eq. (7.3). A
method has been proposed in [SSC19b], which requires computing a log map
at each iteration, though.

If the control points are close enough to ful�ll the Karcher condition, then the
resulting curve is smooth, since both the RCM and the Bernstein polynomials
are smooth. However, if the Karcher condition is not ful�lled, then the energy
in Eq. (7.3) is no longer guaranteed to be convex, and it might even have
in�nitely many minima. In this case, the curve may be undetermined at some
intervals. Fig. 7.6(b) provides an example of failure, where the RCM has been
computed directly by gradient descent. Note that, the failure is independent of
the method used to implement the RCM, being intrinsic to the non-convexity
of the energy for some values of the weights. More examples of failure for the
method of [SSC19b] and for the approximation of [PBDSH13] are demonstrated
in Section 7.6.3.

7.3 .5 Recursive de Casteljau subdivision (RDC)

One step of the de Casteljau construction subdivides polygon 𝛱 into two
control polygons 𝛱𝐿 and 𝛱𝑅 . See Fig. 7.7 (RDC) for an example. The junction
point of𝛱𝐿 and𝛱𝑅 lies on the curve. The recursive application of this procedure
for 𝑡 = 1/2 de�nes a sequence of subdivision polygons 𝛱𝑛

𝐷𝐶
, which converges

to the Bézier curve.
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Figure 7.6: An example of failure in tracing a curve with the direct de Casteljau
(top-left), and the RCM evaluation (top-right). The same control polygon gives two
smooth and nearly identical curves with the Recursive de Casteljau (bottom-left) and
the Open-uniform Lane-Riesenfeld schemes (bottom-right) described in Sections 7.3.5
and 7.3.6, respectively.

In the manifold setting, this algorithm produces a curve, which is di�erent
from the one obtained with the direct evaluation by varying the value of
parameter 𝑡 , as reviewed in Sec.7.3.3. This scheme in the manifold setting
was studied �rst by Noakes [Noa98], and implementations were proposed
in [MCV08, SC+19]. Noakes proved that this subdivision converges to a 𝐶1

limit curve, provided that the initial control points lie in a convex set [Noa98].
We extend this result to any set of control points.

proposition 7.1 : For any given control polygon 𝛱 = (𝑃0, 𝑃1, 𝑃2, 𝑃3), the
RDC subdivision implemented with the A operator converges to a limit curve
that is 𝐶1 continuous.

Proof: As observed by Wallner [Wal20] (Sec. 2.4), a result “in the small” can
be generalized to any control polygon, if the control points in the sequence
of subdivided polygons become su�ciently close after a �nite number of
subdivisions. This is straightforward from the following two facts:

• the RDC scheme always satis�es the contractivity property, in particular,
the greatest distance between two consecutive points of 𝛱𝑛+1

𝐷𝐶
is not

greater than half the greatest distance between two consecutive points
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in 𝛱𝑛
𝐷𝐶

. This property depends only on the triangular inequality of the
geodesic distance function, which holds everywhere, including at the
cut locus.

• On a compact manifold of bounded curvature there exists 𝛿 > 0 s.t.
every ball of radius 𝑟 ≤ 𝛿 is convex (Section 2.4).

Therefore, in a �nite number of subdivision steps, we obtain a sequence of
control polygons such that each of them is contained in a convex set, hence
undergoes the hypothesis of [Noa98]. Moreover, by construction, every two
consecutive segments have the same tangent at their junction point, thus
their limit curves join with 𝐶1 continuity. �

Note that the constraints imposed by Noakes [Noa98] have the purpose of
warranting the uniqueness of a geodesic and its smooth dependence from
its endpoints. In our case, if such constraints are violated, the limit curve
is just one of the possible curves, which one obtains by the arbitrary, but
deterministic, choices made by operator A at the cut locus. Once the choice
is made, the resulting curve is guaranteed to be 𝐶1. However, the result may
not be continuous in the space of curves while varying the control points. The
consequences of this fact will be discussed in Sec. 7.3.7.
Concerning curves of di�erent order, Noakes [Noa99] proved that the 𝐶1

continuity holds also for quadratic curves. It remains an open question whether
the RDC scheme produces curves with higher smoothness.

7.3 .6 Open-uniform Lane-Riesenfeld Subdivision (OLR)

In [DXY18], a uniform subdivision scheme has been proposed, which ports
to the manifold setting the well known Lane-Riesenfeld (LR) scheme [LR80].
Such a scheme converges to B-splines and cannot be used directly to design
curves with �xed endpoints. We generalize their result to a scheme with
end conditions, which de�nes Bézier curves, and we show that, in the cubic
case, it converges to segments that are 𝐶2 everywhere, possibly except at the
endpoints, where they are at least 𝐶1.

We brie�y review the Euclidean scheme [CDS07, Sal06]. A cubic Bézier can
be represented with an open-uniform B-spline1 of order 4, having the same
control polygon 𝛱 , and knot vector (0, 0, 0, 0, 1, 1, 1, 1). Repeated knot insertion
at the midpoint of all non-zero intervals produces a sequence of open uniform
B-splines, all describing the same curve; and the sequence of control polygons
𝛱𝑛
𝐿𝑅

converges to the curve itself.
The corresponding subdivision requires four special stencils at each end of

1 A B-spline is said to be open-uniform, or uniform with end conditions, if it is uniform,
except at its endpoints, where repeated knots are inserted to make the curve interpolate the
endpoints of its control polygon.
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RDC

P0
<latexit sha1_base64="DmyI5jIl/o2Qe+ONBU9XkPhN8LQ="></latexit>

P3
<latexit sha1_base64="p4pDNsB++nB0bU+IbNzJvIw06jA="></latexit>

P1
<latexit sha1_base64="VQoXtdjf4y+NOezbKBMV1kcmRDU="></latexit>

P2
<latexit sha1_base64="WCyDzOnpCHjHtxr0wAU3T46/Cbk="></latexit>

b1
0

<latexit sha1_base64="kRYkiFCeoIEFlyFin7B/+0zBEuU=">AAACjXicZVFNbxMxEHWWrxI+2sKRS8ReECrRbgqCA0IVILWXiCKRtlK8RF5nsrHWX7Jni5C7f4Mr/C3+Dd6QA0vnYD+/GXv83pRWCo9Z9nuQ3Lh56/adnbvDe/cfPNzd23905k3jOMy4kcZdlMyDFBpmKFDChXXAVCnhvKw/dPnzS3BeGP0Fv1soFKu0WAnOMFKUlkYuQ9kusq/5Yi/NxtkmRtdBvgUp2cbpYn9Q06XhjQKNXDLv53lmsQjMoeAS2uGQNh4s4zWrIDDlFcP1QdxXRqPvp+cNrt4UQWjbIGjeJTV840Ypppd0GgLtLnMmR9O27eUceHTzSRHCcDSiElY4pjU4/YLqRspldEYJjA7ERjCKJWnerfTSrplGowItRXXVbjgnqjVeLUI62Zy7Rh8hKnMwjc0/WXAMjXseKHOVErqNSit60KGe0u6naIz0fbosVXz2X82WuZWQsggR+FrYWO8hjlBXuA40kkIvo7dtiLa2cTz5/8O4Ds4m4/xwPPn8Mj16vx3UDnlCnpJnJCevyRE5IadkRjix5Af5SX4lu8mr5G3y7m9pMtjeeUx6kRz/AeXOx0Q=</latexit>

b<latexit sha1_base64="g4Cka2xt9qpAHxE1hEOvkIyPwMQ="></latexit>

b2
0

<latexit sha1_base64="uVhvrwNUFzL2qBuP07bdnUqi2b0="></latexit>

b1
1<latexit sha1_base64="VyRlp3svealJEIEX7m1aM3wyiDE=">AAACjXicZVFNbxMxEHWWrxI+2sKRy4pcECrRbgqCA0IVILWXiCKRtlK8RF5ndmOtv2TPFiF3/wZX+Fv8G7whB0LnYD+/GXv83pRWCo9Z9nuQ3Lh56/adnbvDe/cfPNzd23905k3rOMy4kcZdlMyDFBpmKFDChXXAVCnhvGw+9PnzS3BeGP0Fv1soFKu1qARnGClKSyOXoewW+dd8sTfKxtk60usg34AR2cTpYn/Q0KXhrQKNXDLv53lmsQjMoeASuuGQth4s4w2rITDlFcPVQdwro9Fvp+ctVm+KILRtETTvkxq+caMU00s6DYH2lzmT6bTrtnIOPLr5pAhhmKZUQoVj2oDTL6hupVxGZ5TA6EBsBGksGeX9Si/timk0KtBS1FfdmnOiXuHVIowm63Pf6CNEZQ6msfknC46hcc8DZa5WQndRaU0PerSltP8pGiP9Nl2WKj77r2bLXCWkLEIEvhE21nuII9Q1rgKNpNDL6G0Xoq1dHE/+/zCug7PJOD8cTz6/HB293wxqhzwhT8kzkpPX5IickFMyI5xY8oP8JL+S3eRV8jZ597c0GWzuPCZbkRz/Aefux0U=</latexit>

b2
1<latexit sha1_base64="rOgSCXjq4cdQJJHeWH7y+PiJkjo="></latexit>

b1
2<latexit sha1_base64="48hzb+AznY96mcFqciOBrOA3jW8=">AAACjXicZVHLbtQwFPWEVxkebWHJJiIbhMooSUGwQKgCpHYzokhMW2kcRo5zk7Hil2ynCLn5DbbwW/wNzjALQu/CPj732tfn3FJzZl2a/p5EN27eun1n5+703v0HD3f39h+dWdUZCguquDIXJbHAmYSFY47DhTZARMnhvGw/DPnzSzCWKfnFfddQCNJIVjNKXKAwLhWvfNmv8q/Zai9JZ+km4usg24IEbeN0tT9pcaVoJ0A6yom1yyzVrvDEOEY59NMp7ixoQlvSgCfCCuLWB2GvlXR2nF52rn5TeCZ150DSISnhG1VCEFnhufd4uEwJj+d9P8oZsM4s88L7aRxjDrWb4RaMfIFlx3kVnBHMBQdCI4hDSZINK77UayKdEh6XrLnqN5xhzdpdrXySb85Do48QlBmYh+afNBjilHnuMTGNYLIPSht8MKCR0uGnTilux3RZivDsv5o1MTXjvPAB2JbpUG8hjFA2bu1xIJmsgre9D7b2YTzZ/8O4Ds7yWXY4yz+/TI7ebwe1g56gp+gZytBrdIRO0ClaIIo0+oF+ol/RbvQqehu9+1saTbZ3HqNRRMd/AOoOx0Y=</latexit>

OLR

P0
<latexit sha1_base64="DmyI5jIl/o2Qe+ONBU9XkPhN8LQ="></latexit>

P 3
1<latexit sha1_base64="INT9cYrDKgGAQtUZnp/nfvyF7pA="></latexit>

P 2
1<latexit sha1_base64="5Od1GhbcHI/7C8fxD/zxb2gQroY="></latexit>

P 3
2<latexit sha1_base64="VzxVOjiDcaDTXkuxEG+nAMqWe2I="></latexit>

P 2
2<latexit sha1_base64="H2L5//NcqPkNa/YUpahgTeTFfMw=">AAACh3icZVHLctMwFFXMo615tbBk48EbhinBNkzpsjwWbDKEGZJ2JgoZWbl2hPUaSS7DqP4HtvBn/A1yyALTu5COzrnS1bm31JxZl2W/R9GNm7du7+0fxHfu3rv/4PDo4dyq1lCYUcWVuSiJBc4kzBxzHC60ASJKDudl867Xzy/BWKbkZ/ddw1KQWrKKUeICNZ+uii9FvDpMs3G2jeQ6yHcgRbuYro5GDV4r2gqQjnJi7SLPtFt6YhyjHLo4xq0FTWhDavBEWEHc5jjslZLODuVF66rTpWdStw4k7UUJ36gSgsg1nniP+8uU8GTSdQPNgHVmUSy9j5MEc6jcGDdg5HMsW87XoSeCueA9FIIkpKR5v+JLvSHSKeFxyeqrbssZVm/c1cqnxfbcF3oPwZmBSSj+UYMhTplnHhNTCya74LTGxz0aOO1/6pTidkiXpQjP/utZE1Mxzpc+ANswHfIthOHJ2m08DiST69Dbzoe2dmE8+f/DuA7mxTh/OS4+vUrP3u4GtY8eoyfoKcrRa3SGPqApmiGKvqIf6Cf6FR1EL6KT6PRvajTa3XmEBhG9+QOg9cQO</latexit>

P 3
3

<latexit sha1_base64="8zYbadBMpmOhar6scd2A0btBoSY="></latexit>

P 3
4<latexit sha1_base64="n49Pw4YehXj1TxufITQxpbXAEoA="></latexit>

P 3
5

<latexit sha1_base64="zpMKUsZZP7lVSNKNPmXKm4ZsUVE="></latexit> P 3
6

<latexit sha1_base64="Yavte+6bXTwwhX4JaHZSeCigaPw=">AAACh3icZVHLctMwFFXMqzWvFpZsPHjDMCXYKVO6LI8FmwxhhqSdiUxGVq4dYb1Gksswqv+BLfwZf4McssD0LqSjc650de4tNWfWZdnvUXTj5q3bd/b247v37j94eHD4aGFVayjMqeLKXJTEAmcS5o45DhfaABElh/Oyedfr55dgLFPys/uuoRCklqxilLhALWarky/H8eogzcbZNpLrIN+BFO1itjocNXitaCtAOsqJtcs8067wxDhGOXRxjFsLmtCG1OCJsIK4zVHYKyWdHcrL1lWnhWdStw4k7UUJ36gSgsg1nnqP+8uU8GTadQPNgHVmOSm8j5MEc6jcGDdg5AssW87XoSeCueA9FIIkpKR5v+JLvSHSKeFxyeqrbssZVm/c1cqnk+25L/QegjMD01D8owZDnDLPPSamFkx2wWmNj3o0cNr/1CnF7ZAuSxGe/dezJqZinBc+ANswHfIthOHJ2m08DiST69Dbzoe2dmE8+f/DuA4Wk3F+PJ58epWevd0Nag89QU/RM5Sj1+gMfUAzNEcUfUU/0E/0K9qPXkYn0enf1Gi0u/MYDSJ68wermMQT</latexit>

Q3
2<latexit sha1_base64="Hkwz/lw0ioOcqR3ZHUoMk+VWQu4="></latexit>

P 2
3

<latexit sha1_base64="FMtJvBKSFUET3g56rsEoGPxoyI4="></latexit>

P 3
7

<latexit sha1_base64="k0lzKdZL5w5ZbOzxeCrKtAlci5s="></latexit>

P 3
8

<latexit sha1_base64="sMUnMjayDX3qhFA1rvFRM/EdUBc="></latexit>

P 3
9

<latexit sha1_base64="HG4ImGekvwj6P8tjAZbJsuMMb6Y="></latexit>

P3
<latexit sha1_base64="p4pDNsB++nB0bU+IbNzJvIw06jA="></latexit>

Q3
3

<latexit sha1_base64="O45W+DaAOHWb4ZOfZzWzgxhFxHU="></latexit>

Q3
4<latexit sha1_base64="gaXtx2BWcMYRv7RoQ5u/IdPIWw4="></latexit>

Q3
5

<latexit sha1_base64="KXcyGwgOIBIdVSYw4eWtpeCh+xQ="></latexit>

Q3
6

<latexit sha1_base64="Juw8S40Ill6hEHH3rDkE+rQOKkQ="></latexit>

Q3
7

<latexit sha1_base64="Hk0cL0ZCrY5d87FAknrbx8mITWY="></latexit>

P 2
5

<latexit sha1_base64="8b817G9Wmo9ZJmHe44oPq+OQLDE="></latexit>

P 2
4<latexit sha1_base64="32vjFGusKAp0SeX0rWZw/4ukRWY="></latexit>

Figure 7.7: The constructions at the basis of the RDC and OLR schemes for the same
control polygon for the cubic case. RDC (left): The control polygon (blue) is split into a
chain of two control polygons (purple and pink) by computing three shortest geodesic
paths. The limit curve is depicted in red. Here we show only the �rst subdivision. OLR
(right): One step of subdivision from 𝛱 2 (blue) to 𝛱 3 (red polygon). The even points
𝑃32𝑗 , as well as the intermediate points 𝑄3

𝑖 lie on segments of 𝛱 2 and are evaluated
�rst. The evaluation of each odd point 𝑃32𝑗+1 requires computing one shortest geodesic
path (purple). This construction corresponds to one midpoint subdivision followed by
two steps of smoothing by averaging consecutive points.

the polygon, and it is de�ned as follows:

𝑃𝑛+12𝑗 = 1
2𝑃

𝑛
𝑗 + 1

2𝑃
𝑛
𝑗+1 𝑗 = 2...2𝑛 − 2

𝑃𝑛+12𝑗+1 =
1
8𝑃

𝑛
𝑗 + 3

4𝑃
𝑛
𝑗+1 +

1
8𝑃

𝑛
𝑗+2 𝑗 = 2...2𝑛 − 3

𝑃𝑛+10 = 𝑃0

𝑃𝑛+11 = 1
2𝑃

𝑛
0 + 1

2𝑃
𝑛
1

𝑃𝑛+12 = 3
4𝑃

𝑛
1 + 1

4𝑃
𝑛
2

𝑃𝑛+13 = 3
16𝑃

𝑛
1 + 11

16𝑃
𝑛
2 + 2

16𝑃
𝑛
3

(7.8)

where, for the sake of brevity, we have omitted the end conditions to the right
end side, which are symmetric to the ones on the left. We also omit the special
stencils that are needed at the �rst and second levels of subdivision, which
can be derived easily, and treated analogously in the context of the following
extension. Note that, the �rst two stencils in Eq. (7.8) give the uniform LR
scheme with two smoothing steps, which is applied to all central points. Here,
the stencils are written in compact form, instead of the usual sequence of one
average step followed by two smoothing steps, because this leads to the same
result in the linear scheme.



7.3 bézier curves on manifolds 139

In order to port such a scheme to the manifold setting, we �rst observe that
some of the stencils appearing in Eq. (7.8) involve more than two control points.
Since, in general, we cannot rely on the RCM, we need to factorize such stencils
with repeated averages, computed with operator A. In the manifold setting,
di�erent factorizations may lead to di�erent curves. We adopt a factorization
that “in the middle” (i.e., for 𝑗 = 2 . . . 2𝑛 −2) gives the same scheme of [DXY18]:

𝑃𝑛+12𝑗 = 𝑃𝑛𝑗 𝑃𝑛+12𝑗+1 = A(𝑃𝑛𝑗 , 𝑃𝑛𝑗+1,
1
2 )

𝑄𝑛+1
2𝑗 = A(𝑃𝑛+12𝑗 , 𝑃

𝑛+1
2𝑗+1,

1
2 ) 𝑄𝑛+1

2𝑗+1 = A(𝑃𝑛+12𝑗+1, 𝑃
𝑛+1
2𝑗+2,

1
2 )

𝑃𝑛+12𝑗 = A(𝑄𝑛+1
2𝑗 , 𝑄

𝑛+1
2𝑗+1,

1
2 ) 𝑃𝑛+12𝑗+1 = A(𝑄𝑛+1

2𝑗+1, 𝑄
𝑛+1
2𝑗+2,

1
2 ).

This factorization indeed consists of one average step followed by two smooth-
ing steps. Note, however, that 𝑄𝑛+1

2𝑗 and 𝑄𝑛+1
2𝑗+1 lie on the shortest geodesic

path 𝛾 𝑗 connecting 𝑃𝑛𝑗 to 𝑃𝑛𝑗+1, and that averages between points lying on
𝛾 𝑗 are in fact linear with respect to its arc length. Consequently, we have
that 𝑃𝑛+12𝑗 = 𝑃𝑛+12𝑗+1, and we can rewrite the above formulas more compactly as
follows:

𝑄𝑛+1
2𝑗 = A(𝑃𝑛𝑗 , 𝑃𝑛𝑗+1,

3
4 ), 𝑄𝑛+1

2𝑗+1 = A(𝑃𝑛𝑗+1𝑃𝑛𝑗+2,
1
4 )

𝑃𝑛+12𝑗 = A(𝑃𝑛𝑗 , 𝑃𝑛𝑗+1,
1
2 ), 𝑃𝑛+12𝑗+1 = A(𝑄𝑛

2𝑗 , 𝑄
𝑛
2𝑗+1,

1
2 ) .

(7.9)

We factorize the end stencil for 𝑃𝑛+13 (and its symmetric point to the other end
of the polygon) in a similar way. We require that this point is again obtained
with one averaging step followed by two smoothing steps, and we apply the
considerations above to express repeated averages along the same geodesic
in a compact way. In order to accommodate for the other end conditions, the
averaging step between 𝑃𝑛1 and 𝑃𝑛2 must be unbalanced, while all other steps
can be maintained balanced. The only factorization ful�lling these constraints
is given by the following equations:

𝑃𝑛+10 = 𝑃0

𝑃𝑛+11 = A(𝑃𝑛0 , 𝑃𝑛1 ,
1
2 )

𝑃𝑛+12 = A(𝑃𝑛1 , 𝑃𝑛2 ,
1
4 )

𝑄𝑛+1
2 = A(𝑃𝑛1 , 𝑃𝑛2 ,

5
8 ), 𝑄𝑛+1

3 = A(𝑃𝑛2 , 𝑃𝑛3 ,
1
4 )

𝑃𝑛+13 = A(𝑄𝑛+1
2 , 𝑄𝑛+1

3 , 12 )

(7.10)

where, as above, the expressions of 𝑄𝑛+1
2 and 𝑄𝑛+1

3 incorporate the averaging
step and the �rst smoothing step.

In summary, Equations 7.9 and 7.10 provide the stencils that generalize Eq.
(7.8) to the manifold case. One step of subdivision for 𝑛 = 3 is exempli�ed in
Figure 7.7 (OLR).
We generalize the results of [DXY18] to the above scheme, as follows:

proposition 7.2 : For any given control polygon 𝛱 = (𝑃0, 𝑃1, 𝑃2, 𝑃3), the
manifold OLR subdivision converges to a limit curve that is 𝐶2 continuous,
possibly except at its endpoints. The limit curve interpolates the endpoints of
polygon 𝛱 and it is tangent to it.
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Proof: We show that everywhere, except at the endpoints, the results of
[DXY18] apply after a �nite number of subdivision steps. To this aim, we
recall that our scheme is the result of repeated knot insertion, which bisects
all non-null intervals at each iteration. We exploit the relation between knots
and points of the subdivision polygon to show that for every 𝑡 ∈ (0, 1)
the limit curve exists and is 𝐶2. For any given value of 𝑡 , after 𝑛 iterations,
we have that 𝑡 ∈ (2−𝑛̄ ( 𝑗 − 1), 2−𝑛̄ ( 𝑗 + 1)) for some 𝑗 ∈ ℕ. We can always
choose 𝑛 large enough that 𝑗 > 7 and 𝑗 < 2−𝑛̄ − 3. In this case, the �ve
consecutive control points 𝑃 𝑛̄𝑗−4, . . . , 𝑃 𝑛̄𝑗 , will undergo the uniform LR stencils
at all subsequent levels of subdivision. Next we proceed as in the proof of
Proposition 7.1. By triangular inequality, it is easy to show that the manifold
OLR scheme is contractive. Thus, in a �nite number of subdivision steps, say
𝑛̃, all 5-tuples of consecutive points in 𝛱 𝑛̃

𝐿𝑅
, are contained in a totally normal

neighborhood. If we take 𝑛 = max(𝑛̃, 𝑛) then, by [DXY18], it follows that the
polygon 𝑃𝑛𝑗−4, 𝑃𝑛𝑗−3, 𝑃𝑛𝑗−2, 𝑃𝑛𝑗−1, 𝑃𝑛𝑗 converges to a𝐶2 limit curve, corresponding
to interval (2−𝑛 ( 𝑗 −1), 2−𝑛 ( 𝑗 +1)), which contains 𝑡 . The end conditions in Eq.
(7.10) trivially guarantee that the limit curve interpolates the initial control
polygon 𝛱 at 𝑃0, and it will be tangent at 𝑃0 to the geodesic connecting 𝑃0𝑃1.

�

It follows from the proposition above that a single cubic Bézier segment has
𝐶2 continuity, while di�erent segments can be joined to form splines with 𝐶1

continuity. It remains an open problem how to build splines with𝐶2 continuity
at junction points.

7.3 .7 Limitations

Since the operator A is deterministic, the curve obtained with either the RDC
or the OLR scheme is uniquely de�ned by its control points. However, the
curve may jump to a di�erent con�guration for small displacements of control
points, which make some of the paths in the construction cross a cut locus. In
Fig. 7.8 (left, center), a tiny displacement of one control point takes one of the
shortest paths in the control polygon to a drastically di�erent route, resulting
in a di�erent curve; see the bottom part of Fig. 7.5 for another example. In
the accompanying video we provide more dynamic examples of jumps. Note
that jumps occur quite rarely, as the cut locus of each point covers a set of
zero measure. This fact is intrinsic to the discontinuity of the manifold metrics
and constitutes an essential limitation to the design of splines in the manifold
setting, independently of the approach adopted.

This limitation can be circumvented easily, by means of splines containing
more control points, instead of single Bézier segments. See Fig. 7.8 (right).
Point insertion can be used to constrain the curve to a desired path, as is
customarily done in curve design, and motivates the algorithms we present in
Sections 7.4.1 and 7.4.2. Note that, in general, the spline obtained with point
insertion is just an approximation of the original curve. This is also an intrinsic
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Figure 7.8: Left, center: the geodesic line corresponding to the central segment of
the control polygon can take two di�erent routes at the cut locus of its endpoints,
thus producing two di�erent curves; in practice, the curve will jump between the two
con�gurations when dragging a control point across a cut locus. Right: splitting the
curve by point insertion makes the selected con�guration stable upon dragging.

limitation of the manifold setting, where a sub-segment of a Bézier curve is
not necessarily a Bézier curve itself. Automatic solutions would be possible. It
is easy to check when a curve “jumps” while dragging a control point; in this
case, the control polygon may be split, e.g., by adding a point on the curve
before displacement as a new control point. In our user interface, we decided
to avoid using automatic methods to warrant maximum �exibility to the user.

7.4 Practical Algorithms
We now focus on the RDC and OLR schemes. We provide algorithms for:
approximating the curve with a geodesic polyline (curve tracing); evaluating a
point on the curve for a given parameter value (point evaluation); and splitting
a curve at a given point into a spline approximating it with two segments
(point insertion). The algorithm for curve tracing with the RDC scheme is
equivalent to the one proposed in [MCV08], while the other �ve algorithms
are novel.

To develop our algorithms, we assume to have procedures for (1) computing
the point-to-point shortest path between pairs of points ofM; (2) evaluating a
point on a geodesic path at a given parameter value; and (3) casting a geodesic
path from a point in a given direction. The computational details of such
procedures, as well as additional algorithms to support interactive control, are
provided in Section 6.7.

7.4 .1 Algorithms for the RDC scheme

Curve tracing

The tracing algorithm recursively subdivides a geodesic polygon 𝛱 into two
sub-polygons 𝛱𝐿 and 𝛱𝑅 . Recursion is initialized by computing the three
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shortest paths that constitute the polygon connecting the initial control points
𝑃0, 𝑃1, 𝑃2, 𝑃3. Referring to Fig. 7.7 (RDC), one step of subdivision entails com-
puting three geodesic paths, and evaluating six midpoints of existing geodesics.
The polygons𝛱𝐿 and𝛱𝑅 are built by collecting the sub-paths depicted in violet
and in pink, respectively.
For uniform subdivision, a maximum level of recursion is either chosen

by the user, or computed on the basis of the total length 𝐿(𝛱 ) of the initial
polygon 𝛱 , and a threshold 𝛿 . Since the paths in the subdivided polygon are
shrinking through recursion, then after dlog2(𝐿(𝛱 )/𝛿)e recursion levels, the
length of a geodesic path in the output will be bounded by 𝛿 . For adaptive
subdivision, we stop recursion as soon as the angles between tangents of
consecutive segments of 𝛱 di�er for less than a given threshold 𝜃 . For a small
value of 𝜃 , this suggests that the curve can be approximated with a geodesic
polyline connecting the points of 𝛱 . Note that angles are computed in tangent
space, hence accounting just for the geodesic curvature of the curve while
disregarding the normal curvature induced from the embedding. This approach
works even when a curve crosses sharp creases on polyhedral objects. Like in
the Euclidean case, cusps may appear at the transition between a simple and a
self-intersecting con�guration of a curve. We resolve cusps by stopping the
recursion after a maximum number of levels.

Point evaluation

We support the evaluation of the point at a value 𝑡 on the curve. This requires
traversing the recursion tree with a bisection algorithm. We split the control
polygon at each level as described above, but only compute the sub-polygon
that contains 𝑡 . We stop recursion with the same criteria listed above.
The point at 𝑡 is computed by direct de Casteljau evaluation on the leaf

control polygon. Here we are assuming that the control polygon in the leaf
node is short enough to support direct de Casteljau evaluation, and we use it
to approximate the limit point on the subdivided curve. By using arguments
of proximity, as in [Wal06,Wal20], it can be shown that this approximation
converges to the limit curve, as the subdivision polygon is subdivided further.

Point insertion

With point insertion, a user can split a curve at a given point 𝑃𝑡 , and obtain a
spline consisting of two Bézier curves, from 𝑃0 to 𝑃𝑡 and from 𝑃𝑡 to 𝑃𝑘 , which
substitutes the input curve. This is used to add detail during editing. While
this computation is exact in the Euclidean setting, the identity of curves before
and after point insertion cannot be guaranteed in the manifold setting. Here
we provide a solution that approximates the input curve by interpolating its
endpoints, as well as point 𝑃𝑡 , and preserving the tangents at such points. We
place the unconstrained points by mimicking the algorithm in the Euclidean
setting, trying to obtain a spline that closely approximates the input curve.

We refer to the construction illustrated in Fig. 7.9. We descend the recursion
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P0
<latexit sha1_base64="EkprC9ga72C3CQQ4eFlLFrP7AWM="></latexit>

P̄1
<latexit sha1_base64="sLRS89VR4Cmx9biJHrJGA6irTXg="></latexit>

P1
<latexit sha1_base64="VQoXtdjf4y+NOezbKBMV1kcmRDU="></latexit>

P̄2
<latexit sha1_base64="F3tgr09xPB6pWFycObahvBuSPVA="></latexit>

P 0
<latexit sha1_base64="A0KzD1bz3VHM4iPLbyMcq9zUmfo="></latexit>

PL,1
<latexit sha1_base64="jncbdp5qQI+vqb6i+eDJO3xjA4g="></latexit>

PL,2
<latexit sha1_base64="6VIAI1ML7vVdazuTsukzVhFL3xU="></latexit>

Pt̄
<latexit sha1_base64="sjTPO1xBmVSoHRFmx7Ajd8tYx64="></latexit>

P3
<latexit sha1_base64="6lSqEXEg6ca3Oh765Me43nGHRwU="></latexit>

P2
<latexit sha1_base64="WCyDzOnpCHjHtxr0wAU3T46/Cbk="></latexit>

⇧0
<latexit sha1_base64="4MdV3/o9TKmDiSeKvoG+gq/0bnI="></latexit>

⇧̄L
<latexit sha1_base64="tYxDumgtV1QFdpNnQU/HQivawYA="></latexit>

⇧L
<latexit sha1_base64="2DIJRfzbJJsaaZKgt1jdMgckdcI="></latexit>

⇧
<latexit sha1_base64="rsqw/WWZWKE4Y5adYdiK/LJP2NY="></latexit>

⇧0
<latexit sha1_base64="4MdV3/o9TKmDiSeKvoG+gq/0bnI="></latexit>

<latexit sha1_base64="6m+RfNUfgpXEqT3LgfBfsDfcw7M=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh15D9MsVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8NrPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2nZEPwll9eJa2LqndZrd3XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gAiC422</latexit>

⇧

Figure 7.9: The point insertion algorithm for a cubic curve (left side only). The control
polygon 𝛱̄𝐿 (light blue) de�ning the left side of the curve upon split at 𝑃𝑡 is built by
shortening the �rst segment of 𝛱 0 (dark blue) and extending the last segment of 𝛱𝐿

(purple).

tree as in the previous algorithm, in order to �nd the leaf 𝛱 containing the
splitting point 𝑃𝑡 . Assuming, as above, that 𝛱 is small enough, we split it at
value 𝑡 by direct de Casteljau evaluation, thus obtaining the two polygons 𝛱𝐿

and 𝛱𝑅 , in purple and magenta in the �gure. We process the two halves inde-
pendently. Here we show the algorithm for �nding the polygon 𝛱̄𝐿 de�ning
the curve between 𝑃0 and 𝑃𝑡 . The construction of the other half is symmetric.
Let us denote

𝛱𝐿 = (𝑃 ′, 𝑃𝐿,1, 𝑃𝐿,2, 𝑃𝑡 )
the polygon in purple in Fig. 7.9, and let 𝑡 ′ be the the parameter corresponding
to 𝑃 ′ on the input curve. In order to interpolate the endpoints and the related
tangent directions, we must have

𝛱̄𝐿 = (𝑃0, 𝑃1, 𝑃2, 𝑃𝑡 )
where 𝑃1 must lie along the geodesic line connecting 𝑃0 and 𝑃1, and 𝑃2 must lie
along the extension of the geodesic line connecting 𝑃𝐿,2 and 𝑃𝑡 . The remaining
degrees of freedom concern where to place 𝑃1 and 𝑃2 along such lines. We
place such two points by maintaining the same proportions that would be
used in the Euclidean case.

Since 𝑃𝑡 is an endpoint of the curve de�ned by 𝛱̄𝐿 , and it lies at parameter 𝑡
on the input polygon 𝛱 , then 𝑃1 is found at distance 𝑡 · 𝑑 (𝑃0, 𝑃1) from 𝑃0. Now
we place 𝑃2 in such a way that, once 𝛱̄𝐿 is split at the parameter corresponding
to 𝑃 ′, the polygon 𝛱𝐿 is generated as its right sub-polygon. The parameter of
𝑃 ′ with respect to the sub-curve from 𝑃0 to 𝑃𝑡 is 𝑡 ′/𝑡 , thus we have

𝑑 (𝑃𝑡 , 𝑃𝐿.2) = (1 − 𝑡 ′

𝑡
) · 𝑑 (𝑃𝑡 , 𝑃2).

Therefore, we conclude that 𝑃2 is obtained by extending the geodesic line from
𝑃𝑡 to 𝑃𝐿,2 for a length 𝑑 (𝑃𝐿,2, 𝑃𝑡 ) · 𝑡 ′

(𝑡−𝑡 ′) .
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While we do not provide any bound on the approximation of the input curve,
we tested this algorithm on many curves and the results were mostly very
close to the input. Except, as all other editing operations (e.g., dragging control
points) a split may cause a jump of one sub-curve, discussed in Sec. 7.3.7.
Jumps can be easily recovered either with further splits or by dragging the
handle points that control tangents. Notice that, for practical applications,
point insertion is aimed at adding more degrees of freedom to the spline:
interpolation of pinned points and control of tangents at them are in fact all a
designer requires.

7.4 .2 Algorithms for the OLR scheme

Curve tracing

For uniform subdivision, our OLR scheme can be easily expanded up to a
certain level 𝑛, and the curve approximated with the geodesic polygon 𝛱 𝑛̄ .
The maximum expansion level 𝑛 is set as in the corresponding RDC algorithm.
At each level of subdivision, we obtain the vertices of the re�ned polygon by
applying the subdivision stencils of Equations 7.9 and 7.10. The construction
of the third level of subdivision is shown in Fig. 7.7 (OLR).
Notice that the uniform subdivision, as described above, de�nes a (vir-

tual and in�nite) binary tree of intervals, that we call the expansion tree: the
root of the expansion tree corresponds to the whole interval [0, 1], while a
generic node [𝑡𝑖𝑗 , 𝑡𝑖𝑗+1] at level 𝑖 is split in the middle into two intervals at
level 𝑖 + 1. The node [𝑡𝑖𝑗 , 𝑡𝑖𝑗+1] encodes a segment of B-spline, de�ning the
curve in the corresponding interval, with control points (𝑃𝑖𝑗−3, . . . , 𝑃𝑖𝑗 ). One
more level of subdivision splits this interval into two sub-intervals [𝑡𝑖+12𝑗 , 𝑡

𝑖+1
2𝑗+1]

and [𝑡𝑖+12𝑗+1, 𝑡
𝑖+1
2𝑗+2] and generates 5 new control points, which depend just on

(𝑃𝑖𝑗−3, . . . , 𝑃𝑖𝑗 ): the �rst 4 points are associated to the interval to the left, and the
last 4 to the interval to the right, with an overlap of 3 control points between
the two sets. The expansion tree is de�ned implicitly and it needs not being
encoded.
We exploit the structure of the expansion tree to design an algorithm for

adaptive subdivision, which is controlled by the same stopping criterion used
for the RDC scheme, i.e., we stop the expansion of a node as soon as the angle
between consecutive segments of the polygon is small enough. The algorithm
corresponds to visiting a subtree of the expansion tree in depth-�rst order; a
leaf of the subtree is a node of the expansion tree where we stop recursion.
During the visit, at each internal node, we split the interval as described above,
and generate the control points for its two children to continue the expansion;
while at each leaf, we generate the nodes of the output polygon.

Depth-�rst traversal guarantees that leaves are visited left to right: the
leftmost leaf in the expansion tree is the �rst one to produce an output, adding
all its control points; all other leaves add just their rightmost control point to
the output. The �nal approximation of the curve is obtained by connecting
the output points pairwise with shortest geodesic paths.
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Note that, it is not necessary to encode the subtree visited by the algorithm.
It is just su�cient to encode the path in the expansion tree connecting the
root to the current node, storing at each node its corresponding interval, and
its control polygon.

Point evaluation

The point evaluation algorithm is analogous to the one for the RDC scheme,
by descending a path in the expansion tree described above. Given interval
[𝑡𝑖𝑗 , 𝑡𝑖𝑗+1] containing 𝑡 at subdivision level 𝑖 , we only need to compute, with the
proper stencils, the 4 points corresponding to its sub-interval containing 𝑡 at
the next level.

Once recursion stops, we assume that all pairs of consecutive control points
in the current interval lie in a totally normal ball. Here we evaluate the curve
directly with a manifold version of the de Boor algorithm [Far01], which works
on repeated averages and can be obtained by substituting the a�ne averages
with the manifold average A, just like the direct de Casteljau evaluation.

The same remarks we made for the RDC scheme about approximation and
convergence in the limit apply here, too.

Point insertion

This algorithm is analogous to the one described for the RDC scheme. We
descend the recursion tree as in the point evaluation algorithm.When reaching
the leaf containing the splitting point 𝑃𝑡 , we convert the control polygon of
the uniform B-spline in that leaf into the corresponding control polygon of the
Bézier curve, by applying the well known conversion formula [Sal06](Sec.7.5),
where a�ne averages are substituted with the manifold average A. Then we
proceed as described for the RDC scheme.

7.5 Implementation and User Interface
We implemented the algorithms described in the previous section for discrete
surfaces represented as triangle meshes, targeting interactivity for long curves
and meshes of millions of triangles. Our algorithms are implemented on top of
a few geodesic operations that we describe in this section together with opera-
tions required to support the user interface. All operations are implemented in
C++ and released as open source in [PNC19]. The triangle mesh𝑀 discretizing
M is encoded as describe in Section 6.7, as well as the geodesic paths. The
shortest and straightest paths are computed as described in Sections 4.3.1 and
4.2.5, respectively.

7.5 .1 User interface

Leveraging the proposed algorithms, we developed a graphical application,
demonstrated in the supplemental video, which allow users to interactively
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Figure 7.10: Example of importing a large SVG, made of 2056 curves, onto the
pumpkin model, consisting of 394k triangles. Our algorithm takes 289 milliseconds to
trace all curves.

edit cubic splines on meshes, with the same interaction metaphors used in 2D
vector graphics. Our application supports moving, adding, and deleting control
points, and by translating, scaling and rotating whole splines on the surface
domain. Here we describe the main editing feature, referring the reader to the
supplemental video for a demonstration.

Curve editing

Borrowing the editing semantic from 2D tools, control points are distinguished
in anchor points and handle points. Anchors are those points where two Bézier
curves are joined, while handle points are the ones preceding and following
the anchor points. We connect each handle point with its corresponding
anchor with a geodetic segment. A spline is tangent to those segments at the
anchor points. In the 2D setting, when an anchor is dragged, the two tangent
segments move with it and so do the associated handle points. To obtain the
same behavior on the surface, when moving an anchor point from 𝑃 to 𝑃 ′, we
�nd the two tangent directions of the tangent segments at 𝑃 . Then, for each
such segment, we trace a straightest geodesics starting at 𝑃 ′ and for the same
length of the segment, in the direction of its tangent, rotated by the parallel
transport from 𝑃 to 𝑃 ′. The endpoint of each segment is the new position
of the corresponding handle point. In the 2D setting the user can impose an
anchor to be "smooth", i.e. the two associated tangent segments are always
colinear, which automatically ensure 𝐶1 continuity at the anchor point. To
provide the same functionality on the surface, whenever the handle point 𝑄1
is moved, the opposite handle point 𝑄2 is recomputed by tracing a straightest
geodesic from the anchor 𝑃 along the tangent direction de�ned from segment
𝑄1𝑃 to �nd the new position of handle 𝑄2.
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algorithm percent of trials times at percentile
< 0.001s < 0.1s 90% 99%

RDC Uniform 43.1% 99.0% < 0.0122 < 0.097
OLR Uniform 44.7% 98.9% < 0.0123 < 0.105
RDC Adaptive 43.9% 99.0% < 0.0120 < 0.095
OLR Adaptive 30.0% 98.1% < 0.0215 < 0.185

Table 7.1: Time performances of our algorithms in 556,700 trials. We report the
percentage of trials in which tracing a curve takes less than 0.001 and 0.1 seconds,
and the running times at the 90th and 99th percentiles.

Rotation, Scaling and Translation

We support translation, rotation and scaling of awhole spline. In the 2D settings
these operations are obtained by just applying the same a�ne transform to all
control points. In the surface setting, we de�ne the transformation about the
mesh point 𝐶 under the mouse pointer. The normal coordinates of the control
points are computed with respect to 𝐶 , in a sort of discrete exponential map.
Then, the linear transformation is applied on these 2D coordinates, which
are �nally converted back into mesh points by tracing straightest geodesic
paths outward from 𝐶 . Translation needs special handling, as the center of
the transformation 𝐶 is dragged to a new position 𝐶 ′. To compensate for the
change of reference frame, the normal coordinates are rotated by the opposite
angle of the parallel transport given by the tangent vector from 𝐶 to 𝐶 ′.

Importing SVG drawings

Sometimes, it is helpful to map a collection of 2D splines onto the surface.
To this aim, we map the 2D control points onto surface, and then trace the
splines on the manifold. See Figures 7.1 and 7.10 and the accompanying video
for examples. We map control points with a method analogous to Biermann et
al. [BMBZ02] that is based on the conversion between polar coordinated in
2D and normal coordinates on the manifold. Each control point of the SVG
drawing is converted into a mesh point by taking its polar coordinates, and
tracing a geodesic from a center point in the given tangent direction, for the
given distance.

Notice that this is intended just as a rough initialization. Since we map only
the control points, the intersections between lines will be preserved only at
the interpolated points of the splines, while they may di�er elsewhere. The
advantage here is that all distortions and artifacts that might arise in this
phase can be adjusted by editing the result, which is provided in vector format
directly on the surface. While this would be impossible with parametrization
approaches that just map the discretized splines.
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Figure 7.11: Three views of a random curve generated during trials on a model from
the Thingi10k repository: in all experiments the control points of each curve were
randomly selected over the surface of the object.

7.6 Results and Validation
We validate our work by tracing curves over a large number of meshes, by
comparing it with state-of-the-art solutions, and by performing interactive
editing sessions. Our algorithms always produce a valid output, in a time
compatible with interactive usage in over 99% of the trials (Table 7.1). We
overcome the limitations of state-of-the-art methods, producing valid results
with any control polygon on any surface (Fig. 7.17); and our running times are
comparable or faster than state-of-the-art methods (Table 7.2 and Fig. 7.21). Our
system supports editing for meshes of the order of one million triangles on a
laptop computer. Interaction is still supported on meshes with several millions
of triangles, provided that single curves do not span too large a fraction of the
model (see Figures 7.1 and 7.23, Table 7.3, and the accompanying video). Very
long segments are rare in actual editing sessions, as real designs are usually
made of many splines, each consisting of several small segments.

7.6 .1 Robustness and performance

We tested our algorithms for robustness by running a large experiment on
the Thingi10k repository [ZJ16]. We extracted the subset of meshes that are
manifold and watertight, for a total of 5567 models. The models are used as is,
without any pre-processing. For each model, we consider 100 random cubic
curves. For each curve, we take the model in its standard pose, and pick points
on it by casting random rays orthogonal to the view plane, until we �nd four
points that lie on the surface. These become the control points of the curve.
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<0.1s<0.001s<0.1s<0.001s<0.1s<0.001s<0.1s<0.001s

Figure 7.12: The distributions of running times of our four algorithms for curve
tracing in 556,700 trials on 5,567 models from the Thingi10k repository, tracing 100
random curves on each model. All algorithms provide a valid output in all trials. The
di�erent algorithms have similar behavior and are compliant with interaction (< 0.1
seconds/curve) in about 99% of the trials. For uniform subdivision, the OLR algorithm
is slightly faster than the RDC algorithm; while for adaptive subdivision, the RDC
algorithm performs slightly better than the OLR algorithm. Adaptive algorithms have
slightly narrower distributions than uniform algorithms.

We place no restriction on the arrangement of the control points. This gives us
a total of more than half million control polygons. Fig. 7.11 shows a random
curve generated on one of the objects during trials.

For each test, we run both the RDC and the OLR tracing algorithms, in their
uniform and adaptive con�gurations. The uniform RDC algorithm is expanded
to 4 levels of recursion, which generates a geodesic polyline consisting of 48
geodesic segments. The uniform OLR algorithm is expanded to 6 levels of
recursion, which generates a geodesic polyline consisting of 66 geodesic seg-
ments. In fact, because of the di�erent subdivision rules, we cannot generate
the same number of segments for both schemes. For the adaptive variants, we
set a threshold 𝜃 = 5◦ for the maximum angle between consecutive geodesic
segments along the polyline. In this case, the number of geodesic segments
in output is variable, depending on the curve and on the method. Since all
algorithms generate very similar curves, the �nal tessellated paths that ap-
proximate the curve on the mesh have about the same number of segments in
all four cases. Since we have no ground truth to compare with, we indirectly
assess the correctness of the results with the following tests:

• Termination: the algorithm must complete;
• Continuity: all pairs of consecutive points along the output polyline must
lie either inside or on the edges of the same triangle (notice that points
on edges are forced by the algorithm to go across adjacent triangles).

• Smoothness: the angle between consecutive segments of the polyline,
measured in tangent space, must be lower than a given threshold (5
degrees).

All our algorithms passed all the tests in all experiments.
Trials were executed on a Linux PC with an AMD Ryzen 5 2600x and 32GB

memory, running on a single core. In Table 7.1 and Fig. 7.12, we compare
the timing performance of the four algorithms. All algorithms perform quite
similarly, and remain interactive in all cases, with roughly 40% of trials running
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at less than 1 millisecond per curve, and 99% of the trials running faster than
0.1 second/curve. The few trials in which they take more time are concerned,
with very few exceptions, either with very long curves on large meshes (>1M
triangles), or with meshes containing many topological holes, in which �nding
shortest paths between points is more expensive.

There are small di�erences in the performances of the di�erent algorithms.
For uniform subdivision, the OLR algorithm generates results as fast as the RDC
algorithm, beside generating a more re�ned geodesic polyline. For adaptive
subdivision, the RDC algorithm runs slightly faster than the OLR algorithm.
These di�erences are probably due to the simpler structure of the OLR uniform
algorithm in one case, and to the more involved structure of the OLR adaptive
algorithm in the other. In fact, both variants of the RDC algorithm follow the
same recursive pattern. On the contrary, the OLR uniform algorithm expands
the curve level by level, following a simpler pattern; while the OLR adaptive
algorithm requires a recursive pattern, with a slightly more involuted structure
than the RDC algorithms.
In the previous experiments, the cost of computing a curve depends on

both the length of the curve and the size of the mesh, with trends that are not
linear. Roughly speaking, the cost of �nding the initial path depends on both
the length of the curve and the size of the mesh, while the subsequent cost
of �nding the shortest path depends just on the length of the curve. As the
relative length of the curve grows, the cost of �nding the initial path prevails,
since it may requires exploring most of the mesh. Statistics on the relative
costs of the two phases are shown in Fig. 7.22.
For the sake of brevity, we do not present here results on the algorithms

for curve tracing and point insertion, which run much faster than the tracing
algorithms.

7.6 .2 Sensitivity to the input mesh

All the algorithms presented in Sections 4.3.1 and 4.2.5 are driven by the con-
nectivity of the underlying mesh. In particular, all intersections between the
traced lines and the mesh are computed locally to each triangle and forced
to lie on its edges, so that each traced line consistently crosses a strip of tri-
angles. With this approach, we could process even meshes containing nearly
degenerate triangles, with angles near to zero and edge lengths near to the
machine precision, by relying just on �oating point operations, without in-
curring in numerical issues. While this is usually not the case with models
used in a production environment, such meshes are common in the Thingi10k
repository and provide stress tests for the robustness of our algorithms. On
the other hand, our algorithm for point-to-point shortest path assumes the
initial guess obtained during Phase (i) to be homotopic to the result. This
assumption is common to all algorithms for computing locally shortest paths,
and it is reasonable as long as the mesh is su�ciently dense and uniform
with respect to the underlying surface [SC20a]. If, conversely, the mesh is
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Figure 7.13: The shortest path algorithm is driven by mesh connectivity and uses
a re�ned dual graph, providing correct results even on highly anisotropic meshes
containing long edges and narrow angles.

too coarse and anisotropic, then Phase (i) may provide an initial guess, which
cannot be homotopically shortened to the correct solution. In this case, a naive
application of the algorithm may get stuck in local minima of the space of
shortest paths, leading to a wrong curve.

This limitation is quite rare in practice formeshes used in design applications,
which is our target, but did happen for some meshes in the Thingi10k dataset.
We overcome this limitation simply by creating a more accurate graph for
computing the initial guess when dealing with meshes with long edges.

When we build the dual graph to be used in Phase (i), we split mesh edges
that are too long at their midpoint, until all edges are shorter than a given
threshold, and we symbolically subdivide their incident triangles accordingly.
We chose the 5% of the diagonal of the bounding box of the model as threshold.
Note that this subdivision is done just for the purpose of building the graph,
without changing the underlying mesh. In this augmented graph, a single
triangle may be represented by multiples nodes, giving us a more accurate
approximation of paths. This approach has the e�ect of densifying the graph
without changing the mesh upon which we run Phase (ii). Once the strip is
computed on the augmented graph, we reconstruct the strip on the mesh using
the graph’s node provenance, i.e. the mesh triangle corresponding to each
node, which we store during initialization. Fig.7.13 shows examples on highly
anisotropic meshes from the Thingi10k repository.

An alternative approach to cope with the same problem would be to pre-
compute an intrinsic Delaunay triangulation in the sense of [SSC19a] and do
all computations by using intrinsic triangulations.
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Figure 7.14: Curves traced by positioning the control points in a similar way on two
meshes representing the same object, one consisting of ∼ 700 triangles (left) and the
other consisting of ∼ 70k triangles (right). Our method produces similar curves in
both cases.

model WA ours (OLR)
name triangles pre-proc. (s) tracing (ms) tracing (ms)

cylinder 10k 54 2–2 1–1
kitten 37k 234 3–3 3–3
bunny 140k 665 2–2 10–12
lion 400k 2316 3–3 4–24
nefertiti 496k 2571 6–64 25–67

Table 7.2: Compared time performances of curve tracing with the WA method and
our OLR, on the curves shown in Fig. 7.17 and Fig. 7.18. Each curve is sampled at 67
points; curve tracing times are averaged on each curve repeating tracing 1000 times
per curve; we report minimum and maximum times over the di�erent curves shown
in the images.

Coarse meshes, boundaries, bumps and creases

Our algorithms are insensitive to the resolution of the mesh and work equally
well on coarse as well as re�nedmeshes. Fig. 7.14 shows similar curves obtained
on two meshes representing the same shape at two very di�erent resolutions.
We can draw curves on meshes with boundaries, too, as shown in Fig. 7.15.
In this case, some shortest paths, hence the curves they generate, may be
constrained to follow convex portions of the boundary. Since our algorithms
work in the intrinsic metric of the surface, they are insensitive to creases and
bumps, as shown in Fig. 7.16.
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Figure 7.15: Curves traced on a mesh with boundary. The three curves have di�erent
anchor points and the same handle points on the front of the shirt (black bullets). The
green and the red curves are constrained to partially follow the boundary at the neck.

7.6 .3 Comparison with the state-of-the-art

Weighted Averages (WA) [PBDSH13]

Panozzo et al. presented a method to estimate the RCM on a surface, by
approximating the geodesic distance on the input mesh𝑀 with the Euclidean
distance on a higher-dimensional embedding of 𝑀 [PBDSH13]. Given a set
of control points and weights, instead of resolving our Eq. 7.3 on 𝑀 , they
compute the standard a�ne average of Eq. 7.1 in the embedding space. Then
they use a special technique, called Phong projection, to bring the resulting
space curve to the embedded mesh. Finally they recover the corresponding
points on𝑀 . We compare with this technique by using the implementation
provided by the authors, with the same sampling used in our experiments.
The embedding and the data structures to support Phong projection are

computed in a pre-processing step, which is quite heavy in terms of both time
and space, and can hardly scale to large datasets (see Table 7.2). We managed
to pre-process datasets up to about 500K triangles, but we could not process
some of the larger datasets we use in our work, because memory limits were
exceeded. The embedding is built by sampling a small subset of the vertices �rst
(�xed to 1000 by the authors), computing all-vs-all geodesic distances on𝑀 for
such subset, and embedding such vertices in a 8D Euclidean space by keeping
their mutual Euclidean distances as close as possible to their geodesic distances
on𝑀 . The remaining vertices are embedded next, by using the positions of the
�rst embedded vertices as constraints. The connectivity of𝑀 is preserved, and
the positions of vertices are optimized, so that the distances between adjacent
vertices remain as close as possible to their distances on𝑀 .

The online phase of WA is very fast, and it is insensitive to the size of the
input and the length of the curve (see Table 7.2). However, we experienced a
case that took one order of magnitudemore time than the others.We conjecture
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Figure 7.16: Splines traced on meshes with many creases or bumps. Our algorithms
work in the intrinsic metric of the surface and are oblivious of normal curvature
caused from the embedding.

this is due to some unlucky con�guration for the Phong projection, slowing
its convergence. On the contrary, the performance of our method is dependent
on both the size of the dataset and the length of the curve, being faster than
WA on small datasets and shorter curves, and slower on large datasets and
long curves. In terms of speed, both methods are equally compatible with
interaction on the tested models.

Concerning the quality of the result, the smoothness of the WA embedding,
which is necessary to guarantee the smoothness of the Phong projection,
cannot be guaranteed, hence the WA method su�ers of limitations similar
to the RCM method analyzed in Sec. 7.3.4. As soon as the segments of the
control polygon become long, relevant artifacts arise, and the curve may even
break into several disconnected segments. Some results obtained with the
WA method, compared with our results, are shown in Figures 7.17 and 7.18.
In particular, Fig. 7.18 exempli�es the behaviors of the two methods as a
control polygon becomes larger. While our curve remains smooth and stable
throughout, except for the necessary jump between the “reversed S” and the
spire, theWA curve becomes unstable and breaks in most con�gurations where
the control points are far apart.

RMC based on vector heat [SSC19b]

Sharp et al. presented the vector heat method, which supports the e�cient
computation of the log map at an arbitrary point on the surface [SSC19b].
Algorithm 3 in the same paper uses such a log map to estimate the RCM by
gradient descent, starting at an initial guess and iteratively converging to the
point that minimizes the same energy of our Eq. 7.3. We have implemented
the algorithm for tracing a Bézier curve de�ned with the RCM, by using the
authors’ implementation of the vector heat, and plugging their Algorithm 3
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model control subdivided time (ms)
name triangles polygons segments total per curve

veil 132k 2 402 2.3 1.1
arm 145k 2 856 35.6 17.8
boot 175k 2 755 21.1 10.5
deer 227k 4 1511 21.8 5.4
lady 281k 9 1917 11.4 1.2
car 282k 2 670 28.0 14.0
pumpkin 394k 5 1750 30.0 6.0
rhino 502k 7 2395 39.8 5.6
owls 641k 14 3224 20.8 1.4
alexander 699k 5 1560 20.5 4.1
vase 754k 8 1677 9.0 1.1
nike 5672k 7 4147 253.8 36.2

nefertiti 496k 463 64110 73.4 0.2
dragon 7218k 221 60656 761.7 3.4

Table 7.3: Time performances for curve tracing on the models in Fig. 7.23 and in the
teaser, using the uniform OLR algorithm with 5 levels of subdivisions. We report the
total time of computing all the curves and the average time of computing a single
curve. For all the reported models, our algorithm achieves performance compatible
with real-time editing, since the time per curve is at most in the order of tens of
milliseconds.

into a loop, where parameter 𝑡 of Eq. 7.7 varies between 0 and 1, and the point
returned at each iteration is taken as initial guess to the next. Figures 7.19
and 7.20 show examples of failure, where curves are either discontinuous or
highly perturbed, because the energy has more than one local minimum for
certain values of 𝑡 . The zoom-ins of Fig. 7.20 show the gradient �elds before
and after the jump. We remark again that such failures stem from an intrinsic
limitation of the RCM and are independent of the method for computing it.
Concerning e�ciency, this algorithm requires computing a log map at each
iteration during gradient descent, thus becoming rather slow when applied to
curve tracing. We do not report the detailed time performance of this method,
which takes minutes to evaluate a few tenths points on a curve in the reported
examples.

RDC based on �ipOut [SC+19, SC20a]

Sharp and Crane proposed recently the �ipOut algorithm as a fast solution
to the computation of locally shortest geodesic paths [SC20a]. On the basis
of the �ipOut algorithm, the same authors have implemented the algorithm
of [MCV08], which uses the same recursive scheme of our RDC algorithm for
curve tracing [SC+19].
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Figure 7.17:Comparisons between theWAmethod [PBDSH13] (green curves) on ours
(red curves); control polygons in blue. The WA curves may contain heavy artifacts
(bunny), lose tangency at the endpoints (bunny, nefertiti), or be broken (kitten, lion,
nefertiti).

Figure 7.18: Evolution of a curve while dragging handle points about a cylinder (top
to bottom, rotated views left to right) with the WA method [PBDSH13] (green curves)
and ours (red curves). Our curve jumps from the “reversed S” con�guration to the
spire and remains stable throughout. The WA curve is stable only in the “reversed S”
con�guration, next it breaks, then it forms a spire, and eventually it breaks again.

While our algorithms have no limitations, and could provide a valid output
in all 556,700 trials, the algorithm in [SC+19] requires that the control polygon
does not contain self-intersections, a case which is pretty common with cubic
curves, and happens in 33% of the randomly generated polygons. This is due to
an intrinsic limitation of the �ipOut algorithm, which was discussed in [SC20a].

We have used the authors’ implementation [SC+19] to run the same exper-
iments of Sec. 7.6.1, with the same parameter used for our RDC algorithm
with uniform expansion. Because of the above limitation, we excluded from
the comparison all the trials for which their algorithm could not provide an
output, keeping a total of 78,854 out of 556,700 trials. From a visual inspection
of random samples of the results, it seems that both their algorithm and ours
generate the same curves. In Fig. 7.21, we present a comparison between the
performances of the two algorithms. Our RDC uniform algorithm exhibits a
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Figure 7.19: The same curves of Fig. 7.17 on the kitten and bunny models have
been traced with the RMC based on vector heat [SSC19b]. Some results are either
discontinuous or highly perturbed because of non-convex con�gurations withmultiple
local minima.

Figure 7.20: Left: A curve traced with the RCM based on vector heat [SSC19b] has a
big jump. Center (zoom-in): the gradient of the energy (blue needles) corresponding
to the last point of the left branch, where two minima are present (black circles). Right
(zoom-in): gradient �eld corresponding to the �rst point of the right branch, just one
minimum has remained, which is found by gradient descent, causing the jump. Curve
tracing occurs from left to right.

speedup of more than 10x on average.

Shortest paths: comparison with �ipOut [SC20a]

The speedup in the previous experiment is totally due to our shortest path
algorithm described in Section 4.3.1. Note that the �ipOut algorithm is one
of the fastest available at the state of the art for computing locally shortest
paths [SC20a]. We compared the two algorithms by substituting the authors’
implementation of �ipOut [SC+19] in our curve tracing algorithm in all the
trials above, and measuring the times necessary just for the shortest path
computations in the two cases. The comparison is shown in Fig. 7.22. Indeed,
on average, our algorithm is one order of magnitude faster than �ipOut. More
precisely, while the times for path shortening (Phases (ii) and (iii) of our
algorithm) are comparable with those of �ipOut, our speedup is mostly due
to the computation of the initial guess (Phase (i)), which is a well known
bottleneck for all this class of algorithms.
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10x 1x100x

Figure 7.21: The graph shows the distribution of the ratio of the running times
between our RDC uniform algorithm and the implementation from [SC+19], which
is based on the �ipOut method for computing geodesics [SC20a]. Here we report
only the 78,854 trials, out of 556,700, for which [SC+19] could provide an output.
On average, our RDC algorithm implementation provides more than a 10x speedup
over [SC+19].
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Figure 7.22: Left (2 charts): On average, our algorithm for shortest paths beats by one
order of magnitude the �ipOut algorithm: the speedup is related to the computation
of the initial guess, while the two algorithms have comparable speed for the path
shortening stages. Right (2 charts): The initial guess is a bottleneck for both algorithms,
but the ratio between the di�erent stages is much more favorable for our algorithm.

7.6 .4 Interactive use

We have used extensively our system on a variety of models. All editing
sessions where performed on a MacBook laptop with a 2.9GHz Quad-Core
Intel Core i7 with 16GB memory, running on a single core.

Fig. 7.23 presents a gallery of curves drawn interactively on objects picked
from the Thingi10k collection. Statistics for each example are summarized
in Table 7.3. Interaction is quite intuitive, being supported with a GUI that
mimics the drawing of spline curves in standard 2D systems, as described in
Sec. 7.5.1. The most tricky aspects, with respect to the standard 2D case, are
concerned with using tangents that consist of geodesic lines instead of straight
lines. In our experience, the use of geodesic tangents, which is intrinsic to the
manifold metric, becomes intuitive quickly.
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Figure 7.23: A gallery of models and splines drawn with our method. Both smooth
(𝐶1) and corner (𝐶0) continuity at junction points are exempli�ed. The selected models
span a wide range of shapes and the sizes of meshes vary between about 130k and
5.7M triangles.

We have stressed our system by working on very large meshes as shown
in Fig. 7.1. Even on meshes of a few million triangles, our implementation
remains interactive, as shown in Table 7.3.

7.7 Concluding remarks
In this chapter, we described methods for interactively drawing and editing
of Bézier curves on meshes of millions of triangles, without any limitation
on the curve shape and extension of control polygons. Our algorithms are
robust, having been tested on over �ve thousands shapes with over half a
million randomly generated control polygons, and they are compatible with
interactive usage even on large meshes. Both subdivision schemes we have
presented are simple to implement and produce𝐶1 splines. The Open-uniform
Lane-Riesenfeld scheme provides the smoothest practical solution so far for
Bézier segments in the manifold setting. It remains an open question how such
segments could be chained to obtain 𝐶2 Bézier splines.

The main limitation of these methods lie in the discontinuities of the space
of curves with respect to their control points: curves are always smooth,
but they may jump between di�erent con�gurations during editing. Such a
discontinuity is inherent of the geodesic metric, and it can be overcome by
using a spline with shorter control polygons, instead of a single large polygon,
to de�ne the curve. Our algorithms for point insertion greatly help in this task.
In the future, we want to consider other types of splines. An extension of

our approach to B-splines is straightforward. An extension to interpolating
splines seems easy, but it requires manifold extrapolation, which may become
unstable. The most complex extension would be to handle NURBS, which at
this point remains unclear how to do. More generally, the smoothness analysis
in the non-uniform case needs a thorough investigation.





8
Concluding Remarks

The algorithms proposed in this thesis ful�ll the requests formulated in Chapter
1: they generate geometric primitives on highly-tessellated meshes in real-
time, and all of them are de�ned without resorting to any kind of local/global
parametrization or projection. Summarizing, we have described algorithms for
the tracing of: straighest and shortest geodesic paths, geodesic circles, geodesic
polygons, cubic Bézier curves. Moreover, we proposed e�cient and robust
methods for the estimation of di�erential quantities and the computations of
normal and strongly convex balls. All of these methods have been integrated
in a prototype drawing system endowed with a GUI which can be used to
interactively draw on highly-tessellated meshes.

Nevertheless, with respect to Euclidean vector graphics, we are missing two
very important features. The �rst one, is a global coordinate system in which
all the primitives of a given mesh can be de�ned. The fact that, the Euclidean
case, geometric all the geometric primitives are de�ned in ℝ2 (or ℝ3), allows
the user to copy a given shape from one “paper” to another. The second one, is
the possibility of considering regions bounded by certain number of primitives,
with the purpose of, e.g., coloring it or performing some boolean operation
with it. We think both of these features could greatly improve the usability of
our drawing system, and we are currently work on how to solve the �rst of
these two problems, as described below.

8.1 Future works
Concerning the de�nition of a global system of coordinates in which the
primitives de�ned on two di�erent meshes can be de�ned, we are currently
trying to solve a simpler instance of such problem, nonetheless far from being
trivial. We aim at mapping geometric primitives from one mesh𝑀 to another
mesh 𝑁 representing the same shape of𝑀 . To �x ideas, we are addressing the
problem of understanding how to map the primitives on the skull of Figure 6.1
to another mesh representing the same skull, but with a di�erent tessellation.
The ideawe are exploring consists in de�ning an intrinsic system of coordinates
on reference mesh, which is assumed to be good enough representation of the
continuous shape 𝑆 , and then �nd a way of expressing every point on a given
mesh𝑀 representing 𝑆 in such system of coordinates. This in fact would allow
the mapping of geometric primitives between two meshes representing the
same shape, since such primitives could be expressed in a common reference
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frame.
Another problem we are currently addressing, is the computation of Rieman-

nian weighted averages. In fact, we did not manage to endow our drawing
system with a tool that compute such averages, which would extremely widen
the range of possible operations. For example, one may think to all the spline
curves de�nes through weighted averages such as rational Bézier curves,
NURBS, etc. The main problem encountered at this regard is the fact the
Riemannian center of mass has a unique and well de�ned minimum if the
control points are contained in a strongly convex ball, which doesn’t allow the
user to pick the points wherever on the mesh. Since we are able to compute
strongly convex balls, we can assess whether such an average is well de�ned,
but this is not satisfactory, since we would like to produce a result for an
arbitrary positioning of the control points, as done in the case of Bézier curves
and as is in the 2D setting. Solving this problem essentially means �nd a way
of approximating the RCM outside strongly convex balls. We are currently
investigating an idea similar to the one proposed by Grohs in [Gro13], which
basically consists in subdividing the space of the weights into simplicial cells
and compute 𝑅𝐶𝑀 through repeated geodesic averages.
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