
N
N

T
:2

02
2I

P
PA

T0
27 Interactive Authoring of 3D Shapes

Represented as Programs

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à Télécom Paris

École doctorale n◦626
École Doctorale de l’Institut Polytechnique de Paris (ED IP Paris)

Spécialité de doctorat : Signal, Images, Automatique et Robotique

Thèse présentée et soutenue à Palaiseau, le 11/07/2022, par

ÉLIE MICHEL
Composition du Jury :

Marie-Paule Cani
Professor
LIX, CNRS/École Polytechnique Présidente

Eric Galin
Professor
LIRIS, CNRS/Université Claude Bernard Lyon 1 Rapporteur

Sylvain Lefebvre
Research director
Inria Nancy Rapporteur

Adrien Bousseau
Researcher
Inria Sophia-Antipolis Examinateur

Damien Rohmer
Professor
LIX, CNRS/École Polytechnique Examinateur

Olga Sorkine-Hornung
Professor
ETH Zurich Examinatrice

Tamy Boubekeur
Professor
Adobe Research Directeur de thèse

Remerciements

Ma gratitude va bien sûr en premier lieu à mon directeur de thèse, Tamy Boubekeur,

qui a su me faire confiance dès notre premier échange, et m’a guidé avec une grande

efficacité dans l’expérience de la thèse. Je suis ensuite très reconnaissant envers les

différents membres de mon jury d’avoir accepter d’y prendre part, à commencer

par les deux rapporteurs, Eric Galin et Sylvain Lefevbre, Adrien Bousseau, Marie-

Paule Cani – à qui je dois en particulier ma première entrée en contact avec notre

communauté de recherche, Damien Rohmer et Olga Sorkine-Hornung. Je suis

sincèrement honoré par la composition de cette assemblée.

Mes remerciements vont ensuite au Computer Graphics Group de Télécom Paris, à

tous ceux avec qui j’ai pu partager un bureau, ou une de ces pauses si précieuses à

la réflexion scientifique, et avec qui je continuerai de partager le souvenir d’une

grande convivialité : Chloé Paliard et Alban Gauthier, qui ont accompagné une

grande partie de ma thèse, Gilles Laurent, pour ses nombreux éclairages techniques

alors que je débutais, Jean-Marc Thiery et Thibaud Lambert, avec qui j’ai noirci

quelques tableaux blancs, Jérémie Schertzer, Tong Zhao, Yassine Mankai, Corentin

Mercier, Thibault Lescoat, Sylvain Rousseau, Adrien Kaiser, Hélène Legrand, Malik

Boughida, Théo Thonat, Victor Lucquin et les permanents Kiwon Um et Amal Dev

Parakkat, ainsi que le reste de l’équipe IMAGES.

Je tiens à remercier mes pairs, la communauté de recherche en informatique

graphique dans son ensemble, et en particulier sa part, très française, que la récente

pandémie a bien voulu me laisser rencontrer, ou celle, très anonyme, qui a assuré

des revues toujours justes de mes propositions de publication. La conscience de

partager ses questionnements au delà des murs de son bureau est une force de

motivation à ne pas sous-estimer.

Je ne pourrais pas oublier de chaleureusement remercier la formation Arts et

Technologies de l’Image, à l’Université Paris 8, pour toutes les belles rencontres que

j’y ai faites au cours des deux années qui ont précédé ma thèse et pour le recul

que son enseignement m’a permis d’avoir dans l’appréhension de mon sujet de

3

thèse. Pour le plongement dans les applications artistiques de mon domaine de

recherche, je remercie également tous les membres et sympathisants du collectif

Cookie, et toutes celles et ceux qui on voulu croire en ma propre capacité à créer.

Je conclue par saluer celles et ceux que j’ai des raisons de remercier bien au delà

du cadre de ce travail. Mes parents, mes frères, et plus généralement ma famille, et

mes amis, que je ne vais pas énumérer mais dont la présence, l’écoute, les rires et

les riches échanges ont été d’un indispensable soutien. Sachez toutes et tous que

vous comptez pour beaucoup.

Abstract

Although hardware and techniques have considerably improved over the years

at handling heavy content, digital 3D creation remains fairly complex, partly

because the bottleneck also lies in the cognitive load imposed over the designers. A

recent shift to higher-order representation of shapes, encoding them as computer

programs that generate their geometry, enables creation pipelines that better

manage the cognitive load, but this also comes with its own sources of friction. We

study in this thesis new challenges and opportunities introduced by program-based

representations of 3D shapes in the context of digital content authoring.

We investigate ways for the interaction with the shapes to remain as much as

possible in 3D space, rather than operating on abstract symbols in program space.

This includes both assisting the creation of the program, by allowing manipulation

in 3D space while still ensuring a good generalization upon changes of the free

variables of the program, and helping one to tune these variables by enabling

direct manipulation of the output of the program.

We explore diversity of program-based representations, focusing various paradigms

of visual programming interfaces, from the imperative directed acyclic graphs

(DAG) to the declarative Wang tiles, through more hybrid approaches. In all

cases we study shape programs that evaluate at interactive rate, so that they fit

in a creation process, and we push this by studying synergies of program-based

representations with real time rendering pipelines.

We enable the use of direct manipulation methods on DAG output thanks to

automated rewriting rules and a non-linear filtering of differential data. We help

the creation of imperative shape programs by turning geometric selection into

semantic queries and of declarative programs by proposing an interface-first

editing scheme for authoring 3D content in Wang tiles. We extend tiling engines

5

to handle continuous tile parameters and arbitrary slot graphs, and to suggest new

tiles to add to the set. We blend shape programs into the visual feedback loop by

delegating tile content evaluation to the real-time rendering pipeline or exploiting

the program’s semantics to drive an impostor-based level-of-details system.

Overall, our series of contributions aims at leveraging program-based represen-

tations of shapes to make the process of authoring 3D digital scenes more of an

artistic act and less of a technical task.

6

Résumé

Malgré la constante amélioration de la technique et du matériel informatique,

permettant de manipuler du contenu numérique de plus en plus volumineux, la

création de scènes virtuelles 3D reste une tâche complexe ; du fait notamment

de la charge cognitive qu’elle impose aux artistes. Afin de fluidifier la création,

des représentations d’ordre supérieur des formes 3D ont vu le jour : une forme

est encodée en tant qu’elle est un programme qui génère sa géométrie. Cela rend

possible une meilleure organisation de la charge cognitive lors de la création, mais

possède néanmoins ses propres sources de friction. Nous étudions au cours de

cette thèse les défis et opportunités induits par la représentation par programme

des formes 3D, dans le contexte de la création de contenu numérique.

Nous cherchons à ce que l’interaction avec les formes reste autant que possible

dans l’espace 3D, au lieu d’être une manipulation de symboles abstraits dans un

espace de programmation. Il est question d’une part d’assister la création des

programmes décrivant les formes, de permettre à l’artiste d’opérer dans l’espace

3D tout en assurant une bonne généralisation de ses actions lorsque les variables

libres du programme sont modifiées, et d’autre part d’aider au contrôle de ces

variables en permettant la manipulation directe de la géométrie générée par le

programme.

Nous explorons la diversité de possibilités de représentation des formes par un

programme, en nous focalisant sur différents paradigmes de programmation vi-

suelle, allant des graphes orientés acycliques (DAG), impératifs, aux tuiles deWang,

déclaratives, en passant par des approches plus hybrides. Dans tous les cas, nous

étudions des programmes de forme capables d’être évalués en temps interactif, de

sorte qu’ils aient leur place dans un processus de création ; aussi étendons-nous

notre étude aux synergies que ces représentations par programme peuvent établir

avec les systèmes de rendu en temps réel.

7

Nous rendons possible l’utilisation de méthodes de manipulation directe sur la

géométrie générée par DAG grâce à un jeu de règles de réécriture automatique et un

filtre non linéaire de donnée différentielle. Nous aidons la création de programmes

de forme impératifs en transformant des sélections d’éléments géométriques en des

requêtes sémantiques, et la création de programmes déclaratifs en proposant un

mode d’édition du contenu géométrique de tuiles de Wang centré sur les sections

aux interfaces entre tuiles. Nous étendons les moteurs de pavage par tuiles pour

prendre en compte des paramètres continus et suggérer automatiquement de

nouvelles tuiles à ajouter. Nous intégrons les programmes de forme à la boucle de

retour visuel en délégant l’évaluation du contenu des tuiles au système de rendu

en temps-réel, et exploitons la sémantique du programme pour dériver un système

de niveau de détails par imposteurs visuels.

En résumé, notre série de contributions vise à tirer parti des représentations par

programme des formes pour faire du processus de création de scènes numérique

3D une tâche plus artistique et moins technique qu’elle ne l’est.

8

Contents

I Introduction 14
I.1 The creation process: from intent to content 14

I.2 Representing shapes as programs 16

I.2.1 Shape programs help the creation process 17

I.2.1.1 Postponing artistic decision-taking 17

I.2.1.2 Non-destructive modeling in practice 18

I.2.2 Related types of parametric assets 18

I.2.3 Other creation workflows 20

I.2.4 Challenges specific to program-based representations of

shapes . 20

I.3 A taxonomy of shape programming paradigms 22

I.3.1 Terminology . 22

I.3.2 Imperative Directed Acyclic Graphs 22

I.3.3 Declarative programs . 24

I.3.4 Hybrid programming . 25

I.3.5 Limits of our scope . 27

I.3.5.1 About determinism 27

I.3.5.2 Real-time feedback 27

I.3.5.3 Non program-based higher-order representations 27

I.4 Outline . 28

I.5 Contributions . 28

I.6 Publications . 29

I.6.1 Peer-reviewed papers . 29

I.6.2 Released source code . 30

II Related Work 31

9

II.1 Shape programming in the wild 31

II.1.1 Rigging . 32

II.1.1.1 Definition . 32

II.1.1.2 Assisted rigging 33

II.1.1.3 Real-time evaluation 34

II.1.2 Procedural Modeling . 35

II.1.2.1 Definition . 35

II.1.2.2 Use cases . 35

II.1.2.3 Constructive Solid Geometry 38

II.1.2.4 Grammars-based modeling 38

II.1.3 Inverse Procedural Modeling 39

II.1.3.1 Symmetry detection 39

II.1.3.2 Program synthesis 40

II.1.3.3 Domain-specific methods 40

II.1.4 Latent Space . 41

II.2 Interactive shape manipulation 42

II.2.1 Geometry-level manipulation 42

II.2.1.1 Direct mesh deformation 42

II.2.1.2 Inverse Control 43

II.2.2 Program-level manipulation 43

II.2.2.1 Visual Programming 43

II.2.2.2 DAG Rewriting 44

II.2.2.3 Bidirectional Editing 45

II.2.3 Authoring systems . 45

II.3 Optimization in hyper-parameter space 46

III Imperative programming of shapes 47
III.1 Introduction . 47

III.2 Automatic Synthesis of Semantic Selection Queries 48

III.2.1 Problem setting . 49

III.2.2 Related work . 50

III.2.3 Overview . 50

III.2.4 Per-element trace recording 51

III.2.4.1 Predicates . 51

III.2.4.2 DAG Amendment 52

III.2.5 Domain Specific Language for Selection Query 53

III.2.6 Query Synthesis . 54

III.2.6.1 Best program selection 55

III.2.6.2 Program space exploration 55

III.2.7 Results . 58

III.2.7.1 Experimentation 58

III.2.7.2 Discussion . 60

III.2.8 Future Work . 61

III.2.8.1 Variants of the query language 62

10

III.2.8.2 Integer expressions 62

III.2.8.3 Variants of the synthesis algorithm 63

III.3 Co-parameterization for the differentiation of parametric shape . 63

III.3.1 Introduction . 63

III.3.1.1 Problem Setting 65

III.3.1.2 Related Work 66

III.3.2 Co-parameterization . 67

III.3.2.1 Co-parameter definition 67

III.3.2.2 Automatic DAG Amendment 68

III.3.3 Results . 71

III.3.3.1 Implementation 71

III.3.3.2 Limitations . 73

III.3.3.3 Future Work . 74

III.4 Jacobian Filtering: Applying Inverse Kinematics to Parametric

Shapes . 76

III.4.1 Introduction . 78

III.4.1.1 Overview . 78

III.4.1.2 Sampling and differentiation 78

III.4.2 Solving . 79

III.4.2.1 Inversion . 79

III.4.2.2 Jacobian buffer filtering 81

III.4.3 Results . 84

III.4.3.1 Performances 84

III.4.3.2 Ablation study 85

III.4.4 Discussion . 86

III.4.4.1 Properties . 86

III.4.4.2 Limitations . 87

III.4.4.3 Future prospects 87

III.4.5 Conclusion . 88

IV Tiles-based declarative programming of shapes 89
IV.1 Introduction . 89

IV.1.1 Constrained layout . 89

IV.1.2 Wang Tiles . 90

IV.1.2.1 Definition . 90

IV.1.2.2 Related Work 91

IV.2 Tile-based geometric amplification 93

IV.2.1 Problem Setting . 93

IV.2.1.1 Geometric amplification 93

IV.2.1.2 Related Work 94

IV.2.2 Method . 94

IV.2.2.1 Design workflow 95

IV.2.2.2 Procedural mesostructure model 96

IV.2.2.3 Tiling . 97

11

IV.2.2.4 Shell Mapping 100

IV.2.3 Results . 102

IV.2.3.1 Experiment . 102

IV.2.3.2 Discussion . 103

IV.2.3.3 Future Work . 104

IV.3 Parametric tile content . 104

IV.3.1 Introduction . 104

IV.3.2 Method . 105

IV.3.2.1 Constraint propagation 106

IV.3.2.2 Representation of a tile superposition 109

IV.3.2.3 Sampling tile superposition 109

IV.3.3 Results . 109

IV.3.3.1 Watershed generation 110

IV.3.3.2 Discussion . 111

V Visual feedback of shape programs during authoring 112
V.1 Introduction . 112

V.1.1 A two-way integration of rendering and generation 112

V.1.2 Related works and background 113

V.2 Tile-based Mesostructure Rendering 114

V.2.1 Method . 115

V.2.1.1 Render Pipeline 115

V.2.1.2 Caching . 116

V.2.2 Results . 116

V.2.2.1 Performance . 116

V.2.2.2 Surface representation 117

V.2.3 Discussion . 118

V.2.3.1 Properties . 118

V.2.3.2 Future work . 118

V.3 Multiscale Rendering of Dense Dynamic Stackings 118

V.3.1 Introduction . 118

V.3.2 Pipeline overview . 120

V.3.3 Impostors for dense stackings 121

V.3.3.1 General rendering pipeline 121

V.3.3.2 Parametrization 122

V.3.3.3 Sampling quasi-spherical impostors 124

V.3.4 Model discrimination . 125

V.3.4.1 Impostors’ validity range 125

V.3.4.2 Dynamic grain splitting 126

V.3.5 Occlusion Culling . 128

V.3.5.1 Grain-level culling 128

V.3.5.2 Fragment-level culling 130

V.3.6 Results . 131

V.3.7 Discussion . 135

12

V.3.7.1 Properties . 135

V.3.7.2 Limitations . 136

V.3.7.3 Future work . 136

VI Conclusion 138
VI.1 Contributions . 138

VI.2 Future prospects . 139

Bibliography 142

Appendices 166
A Extra DAG Amendments . 166

B OpenMfx: Standardization of shape operators 166

B.1 Technical approach . 166

B.2 Design Choices . 169

B.3 Future prospects . 171

C Proof A . 172

D Tile Rendering Statistics . 174

E Grain Rendering . 174

E.1 Impostor resolution . 174

E.2 Tables . 175

13

I
Introduction

I.1 The creation process: from intent to content

Empowering creative people with the ability to author 3D content is one of the core

goals of the field of Computer Graphics. Although hardware and techniques have

increasingly improved over the years at handling heavy content (high amounts of

polygons, complex lighting, etc.), digital 3D creation remains fairly complex. This

is because the bottlenecks of a creation process do not only lie in compute power

or memory limitations, they also include the saturation of the cognitive load on

the designer. Addressing technical limitations consists in finding new algorithms

to better solve existing problems, but reducing the cognitive load consists in

identifying new problems, to reorganize the creation pipeline.

Unlike an engineering process, a creation process is not exclusively specified by a

list of expected features. The only way to fully judge a creation is to face the result

– or at least a relevant proxy
1
of it – and feel its impact. Hence, this inherently

involves loops of trial and error: the designer tries a creation gesture, or a series of

gestures – like brush strokes or mesh manipulation operations – then appreciates

the result and often decides to backtrack and try something different. This dialog

has a cost, especially when working as a team, where backtracking may require to

ask multiple people to do retakes.

We intend to reduce the cost of this creative backtracking. Of course, this can partly

be done by improving computing performance, because slow visual feedback or

lagged interactions clearly increase the cost of the loops and interrupt the designer

in their creative flow. But our key axis is different: we explore the possibility to

postpone artistic decision taking at a later stage of the authoring plan, thus making

interaction loops shorter. This is enabled by representations of shapes centered on

1
We use the term proxy in the generic sens of an indirect substitute of a more accurate but less

accessible goal, not specifically in the sens of a coarser geometry.

14

goalinitial
scene

various
modeling
strategies

final
scene

downstream
editing

(b)

(a)
(c)

Figure I.1: The process of creating a 3D scene or object requires the designer’s

anticipation at multiple levels: (a) local anticipation of the effect of each authoring

gesture, (b) anticipation of the most appropriate modeling strategy and (c) anticipation

of downstream use of their work.

a program, namely a recipe leading to a shape, rather than the baked result itself.

NB This culinary metaphor is widespread among 3D modeling tools. One

says that a geometry is baked or cooked to mean that it is the result of an

automated process, i.e., the output of a shape generating program. This

term means that the geometry is stored only for caching purpose, it may be

freed at any time as long as we still have the recipe. It is opposed to editable

geometry, which does not have an underlying generative model.

Addressing sources of cognitive load

During the creation of 3D content, a designer’s mind is busy anticipating the

behavior of the tool and planning its modeling strategy, and is thus less dedicated

to creative concerns (Figure I.1). This dialog between a digital tool and its user

is studied by the field of Human-Computer Interaction (Beaudouin-Lafon, 2000),

which serves as context to motivate our research.

Anticipation is needed locally, to choose a given authoring action. For instance, a

tool that runs technically very fast but has a very chaotic response – a response

that is hard to predict – is not an efficient tool. As a consequence, digital tools

often adopt metaphors that mimic the physical world, because these are easier to

anticipate for a human – who obviously is experiencing the physical world on a

daily basis. And this is why we are interested in providing direct manipulation of

the geometry in Chapter III.

15

Anticipation is needed more widely when splitting a goal into sub-targets cor-

responding to simple actions. This kind of gesture planning is called workflow.

A good workflow avoids repetitive tasks, avoids stacking up too many nested

sub-goals in the designer’s memory, and allows for the serendipitous discovery

of unplanned details without breaking the overall expected result. The creation

tool is responsible for inducing a good workflow, hence multiple contributions of

this thesis are presented as systems, rather than focusing solely on a particular

algorithm. Nonetheless, workflow is also a matter of designer’s craftsmanship,

and actually the choice of the tool itself is part of the gesture planning.

Anticipation is needed even beyond the outcome of the designer’s work, because

3D scenes are often produced in teams. For instance, when modeling a 3D mesh

with the intent of animating it, the designer must keep in mind how their choice

of polygon connectivity will affect deformation and light simulation applied later

in the pipeline. In such a case, the designer is not producing a final creation but

rather a proxy, so they must be able to evaluate whether it is good without being

able to even try by themselves the later stages of the process. We focus on the

use of parametric shapes as these proxies, so that they can be adapted later in the

process rather than requiring one to fully anticipate downstream usage.

I.2 Representing shapes as programs

There are multiple ways of representing shapes, and in particular surfaces. Some

are better suited for real-time rendering (triangle meshes), some are closer to raw

acquisition devices (points clouds), some handle volumetric data (voxels), some

ensure valid topology (implicit surfaces). In this thesis, we study higher-order

representations, where the stored information is a logical program implementing a

function F such that its output F () is one of the above-mentioned representations.

By opposition, meshes, voxels, etc. are called first-order representations. For

instance instead of storing a list of vertices and faces to describe a mesh, we store

a program, which in turn generates a list of vertices and faces when executed. We

call a program that outputs 3D geometry a shape program.

The first strength of this approach is to be able to turn internal constants of the

program into free variables, provided as inputs to F . For instance, if the program
generates a 3-storey building by first generating a floor and then duplicating it, we

can expose the number of duplicates as an input𝑛 and F then represents an𝑛-storey

building. We call these inputs hyper-parameters and note them 𝝅 = (𝜋1, . . . , 𝜋𝐾).
The function F thus becomes a parametric shape rather than a single fixed shape.

An output 𝐺 = F (𝝅) is called an instance of the parametric shape.

Representing a shape as a program is also in general much more compact that

a first-order model. In the worst case, the program is just an enumeration of

geometric elements and is thus equivalent to a fixed shape. But, in general, shapes

may feature a lot of symmetries that can get factorized into a compact program. A

16

Input hyper‐parameters (a)

(b)
Floor unit block

Roof unit block

Output geometry

Join

Transform

Duplicate

Move edge

Duplicate

Duplicate

Floor width
Floor count

Roof slope

Figure I.2: An example of a parametric shape and its program-based representation,

displayed as an imperative DAG (a). We show two different instances of this shape,

for different values of its hyper-parameters (b). Node inputs are typed: large discs are

slot carrying geometric information, whereas small discs carry numbers. For the sake

of legibility, the latter are generally omitted in our examples.

program is also often resolution independent: the program "intersecting a sphere

of radius 1 with a box of size 0.5 × 0.5 × 2" remains a 12-word sentence, whether

the representation of the sphere uses a high definition or not.

When the shape program is compact, and/or when it has been carefully authored by

a designer, it contains information beyond its sole output: the program’s structure

tells a lot about the meaning of the shape and its parts. This semantic information

is particularly required to ensure the consistency of the shape upon changes of

the hyper-parameters, and reciprocally if a parametric shape behaves well, its

program likely contains relevant semantic information. This observation is at the

heart of our DAG amendment method presented in Section III.3.

I.2.1 Shape programs help the creation process

I.2.1.1 Postponing artistic decision-taking

When a designer crafts a regular static asset, they first define their intent, and then

implement it through a series of authoring gestures. As they see their creation

unfolding, they take many additional decisions on the fly, and burn them into the

scene. For instance, when drawing a house, they eventually choose whether the

slope of the roof is rather steep or flat and then build further, adding for instance

tiles on the roof. Once done, if they realize that the slope does not feel right,

backtracking almost means starting over, because all the actions happening after

17

this artistic decision depended on it.

On the contrary, if creating a parametric shape – represented as a program –

the designer can leave all these decisions for a later stage by creating hyper-

parameters that can still be tuned afterwards. Since we store a program, i.e., a

series of instructions, we are able to automatically replay downstream gestures

whenever the hyper-parameter defining the roof’s slope changes.

The designer thus focuses separately on first the technical implementation of the

shape program and second the detailed artistic choices. This reduces the need

for the designer to go back and forth between high level intent planning, and

lower level authoring actions, which is cognitively intensive. However it makes

the process of building the initial shape more complex because one must account

for all the possible values of the hyper-parameters, so in Section III.2 we explore

one possibility to ease this process.

I.2.1.2 Non-destructive modeling in practice

The split between these two tasks, as well as the use of program-based representa-

tions for shapes to handle it, naturally emerged from the practice of 3D modeling

in industrial contexts. Operations called non-destructive are available in all major

3D modeling tools, often called modifiers or deformers. They are effects applied as

post processes, between the geometry actually manipulated by the designer and

the output or display of the shape. They may be chained, and even reference the

output geometry of other objects, for instance if the non-destructive operation is a

Boolean difference. When used intensively, the combination of these modifiers

constitute a graph of operations, that is in essence no less than a program.

Some tools pushed the use of non-destructive modeling one step closer to the idea

of representing shapes as programs by basing their user interface mainly on the

manipulation of a directed acyclic graph (DAG) of geometry processing operations,

an interaction commonly described as visual programming. Some examples of this

approach are SideFX’ Houdini, the model graphs of Adobe Substance 3D Designer

or the Geometry Nodes in Blender, plebiscited after the success of a third party

extension called Animation Nodes (Figure I.3). Houdini has even been awarded an

Oscar by the Academy of Motion Picture Arts and Sciences in 2018 precisely for its

choice of a DAG-centric workflow, proving once again the practical relevance of

this approach. Such imperative DAGs are the focus of our Chapter III.

I.2.2 Related types of parametric assets

Shapes are not the only kind of digital content that has been turned into parametric

assets. The manipulation of procedural graphs of image filters is quite popular,

either for texture design with tools such as Adobe Substance Designer or for video

compositing like in Foundry’s Nuke, Natron or Autodesk Flame. Parametric textures

are of great value to help designers quickly explore variations of a texture, which

18

(a)

(c)(b)

Figure I.3: Examples of production-grade 3D modeling tools whose user interface

is based on the manipulation of a DAG encoding a shape program: (a) Blender, (b)

Houdini and (c) Substance 3D Designer.

is not easy to do manually using an image editing program because a material

is composed of multiple closely related maps (albedo, roughness, normal, etc.).

For video compositing, the programmatic nature of the operations is important to

ensure that effects are consistently applied to each frame of a video, something that

would be very hard to achieve if the user would bemanually drawing on each image

individually. Actually even when the user interface of a compositing program is

not explicitly showing a graph, e.g., in Adobe After Effects, the composition can

still be thought as a program. Animation results from the progressive modification

of the input hyper-parameters of the composition.

Sound processing is also a good client for parametric effects and program-based

representations, especially in the context of live performances. From the very

beginning of computer aided music, in the late 50s, with the MUSIC and Csound

family of domain-specific languages, musical content was split into the description

of parametric synthesizers on one hand and the specification of the temporal

evolution of the so-defined parameters on another hand. These languages then

inspired more visual approaches like Max/MSP and PureData (sometimes called

patcher programming languages) which directly expose a visual DAG to the sound

designer. Nonetheless text-based programming of music tracks is still in use, even

for DJ-like live programming performances. This often relies on tools built around

the SuperCollider programmable sound synthesizer (TidalCycles, SonicPi, etc.).

Patchers like PureData and vvvv were also extended to handle rhythm-based real-

time graphic composition through visual programming, and a highly parametric

19

interface is actually found in all VJing tools, e.g., Resolume or Smode, or even Notch

for live 3D effects. Indeed, a live performance set is typically prepared by building

a set of dedicated parametric effects in advance and then on stage everything is

achieved through parameter-tuning.

This thesis focuses on parametric 3D shapes used in the context of authoring

objects or scenes for motion pictures and video games. This means we need shape

programs to evaluate in interactive time, although true real-time is not as critical

as in a live performance.

I.2.3 Other creation workflows

Parametric shapes are not the only way of mitigating the cost of creative loops.

Tools as simple as layers, in 2D image manipulation applications like in Adobe

Photoshop, are also meant for limiting destructive actions. Using different layers for

sketching, coloring, lining, lighting, etc. also follows the principle of decoupling

tasks.

Non-destructive workflows do not fit all situations. Virtual clay approaches (e.g., Z-

Brush) are still relevant in some cases, for instance for concept arts at earliest stages

of a production. This class of tools, including also virtual painting application,

limits frictions in the creative process by pushing as far as possible the metaphor

reproducing the feel of tangible tools like brushes and clay. Thus, the user can rely

on their experience of the real world to anticipate the behavior of the tool. We

use to some extent this metaphoric approach as a mean to make shape program

manipulation more intuitive in Section III.4.

I.2.4 Challenges specific to program-based representations of shapes

Representing shapes as program has a lot of potential, but comes with a lot of

challenges. Most of the difficulties are related to the fact that a program is meant

to capture the semantic structure of a shape and that, with its hyper-parameter

freed, a parametric shape is an object of very high dimension – too high to be

visualized all at once.

Ensuring generalization Authoring a parametric shape is programming, and

programming is a notably hard task, even if it is visual programming. Building a

shape program is trickier than designing a single fixed shape because in order to

evolve in a relevant way when the hyper-parameters later vary, the program must

have a good power of generalization. The designer must at any time reason about

all the possible variations of the shape and not just its current state.

For instance, when placing a jar on top of a table, the designer should not move it

by a fixed amount. They should rather specify in the program that the jar moves

vertically by a value equal to the height of the table, so that whenever this height

20

changes the jar remains on the table. The information actually stored in the model

– the shape program – is then closer to the semantic assertion "being on top of the

table" than it is a geometric piece of information. This is particularly visible in the

case of declarative programming.

Assisted authoring of shape programs One of the challenges of shape pro-

grams is thus to assist the creation of the programs, make it feel as much as possible

like crafting a single fixed shape, but without loosing the ability to generalize and

produce relevant variations. This means being able to locally extract the semantic

intent behind each edition of a shape, and providing atomic operations that operate

at the scale of the whole program rather than on geometry.

However this assistance may introduce more constraint for the designer. Since

finding the intent is an under-specified problem, we may need to integrate some

domain-specific prior in the authoring tool. This raises the question of the artistic

freedom of the designer: the modeled shape must be perceived as a creation of

the artist, not a creation of the tool. A trade-off can consist in only suggesting

several possible changes to the program, following different priors, and leaving the

final word to the user. It is also important that the assistance does not completely

prevent the user from manually editing the program. This two-way manipulation

of a program and its output is sometimes referred to as bidirectional programming.

Shape manipulation Once written, the shape program still raises challenges.

In the spirit of splitting the technical task of creating the program from the more

art-oriented manipulation of the hyper-parameters, the latter should be as intuitive

as possible for the user of the shape program – who is potentially not the same

person as the program’s designer. The main source of friction in this manipulation

is that the degrees of freedom are hyper-parameters expressed in the space of the

program, usually displayed as a list of sliders, but the intent of the user is better

expressed in the 3D space, by directly manipulating the geometry output by the

program. Interacting with raw hyper-parameters requires the user to anticipate

the behavior of the parametric shape, which is one of the source of cognitive load

that we intend to mitigate.

Integration with other programs A shape is processed by other tools than

3D modeling software; for instance it interacts with render engines or physic

simulations. A straightforward way of ensuring the compatibility between shapes

represented as programs and other tools is simply to evaluate the shape program

and provide the resulting fixed geometry to, e.g., rendering algorithms. But the

rendering pipeline could actually be adapted to benefit from the extra information

embedded in the program. Real-time rendering in particular is important in

authoring tools, since they must provide constant visual feedback to the designer.

21

I.3 A taxonomy of shape programming paradigms

I.3.1 Terminology

We make no particular distinction throughout this thesis between a shape rep-

resenting a single object, often made of a single connected component, and a

whole 3D scene containing many different pieces. We however associate a different

meaning to the terms shape and geometry: the former is the concept of the object,

or scene, whereas the latter is a formal subset 𝐺 of R3
, i.e., a set of 3D points. In

particular, we can talk about a parametric shape as one entity, because however

the hyper-parameters vary, we assume that the result still represents the same

conceptual object. But we would not talk about a "parametric geometry" because

for each value of the hyper-parameters, the output of the shape program is a

different subset of R3
, so a completely different geometry. Note that when dealing

with a fixed shape, which has no possible variation, the notions of shape and

geometry become equivalent. To summarize, usual first-order representations of

shapes are meant to encode geometries, while higher-order representations (e.g.,

shape programs) encode a whole parametric shape.

NB The term parametric is also used in geometry to qualify splines encoded

as a function 𝑢 ∈ (0, 1) ↦→ 𝑥 ∈ R3
and surfaces encoded as (𝑢, 𝑣) ↦→ 𝑥 ∈ R3

.

To avoid confusions with the parameters 𝑢 and 𝑣 , we stick to the term

hyper-parameter to qualify the input 𝝅 of our parametric shapes.

A parametric shape F : 𝝅 ↦→ 𝐺 is a function. A shape program is a possible

implementation of this function. In other terms, it is a symbolic representation

of F . These symbols may take multiple forms and follow different paradigms:

imperative, listing a sequence of operations to perform, or declarative, stating a

set of constraints to fulfill; deterministic or stochastic; visual or text-based.

I.3.2 Imperative Directed Acyclic Graphs

An imperative program is a sequence of effective actions, given in the order in

which they must be performed to compute the output of F given its input 𝝅 . This
is in a way the recipe of the shape. Imperative programming directly describes

the control flow of the program and is thus close to the low level execution of the

program – even though it also allows for higher-level abstractions. Although in

other contexts a computer program is primarily seen as a text formatted with a

specific syntax, in the case of shape programs we more naturally focus on Directed

Acyclic Graphs (DAG). Manipulating a program as a DAG rather than as text may

be called visual programming and is more common than text-based programming

in the practice of shape programming.

Such a DAG is defined as a tuple (𝑁,𝐶) composed of a set 𝑁 of nodes and a set𝐶 of

oriented connections. A node represents a processing operation, and a connection

22

Figure I.4: Our representation of nodes (1a) differs visually from the strict definition

of a DAG, but is equivalent when encoding each slot as a node in the strict way (1b).

In some contexts, dependency connections internal to our nodes are specified (2a)

making encoding it as a slightly different strict DAG (2b).

carries geometry from one operation to another. Each node has zero or more input

slots, and one or more output slots, and a connection links one output slot to an

input slot. An input slot may have at most one connection but an output slot can

be connected to multiple inputs, because the geometry generated by an operation

might be read by multiple other operations. Although the traditional mathematical

definition of a DAG does not include this notion of slot, Figure I.4 shows that slots

can be encoded in the pure definition, provided we can order the connections of

internal nodes. In practical DAG editors, it is actually possible to nest a whole

sub-graph inside a node, and to instantiate sub-graphs, providing an equivalent

of function calls in a text-based program. Yet, this remains equivalent to a strict

DAG when it comes to mathematical analysis.

Benefits of visual programming The original motivation for developing visual

languages is likely the accessibility. When writing code as text, a programmer has

to keep in mind constraints at two different conceptual levels: the syntax level,

and the semantic level. Visual programming ensures the syntactic soundness of a

program by-construction, leaving the developer with only the semantic part to

think about. Of course, this part itself ranges over multiple levels of abstraction,

from simple atomic operations to design pattern and software architecture, but

23

Output geometry

Join

Duplicate

Extrude

Transform

Box

a = box()
b = duplicate(a)
c = transform(a)
d = extrude(c)
e = join(b, d)
return e

(b)(a)

1
2
3
4
5
6

Figure I.5: The same shape program, represented either as a visual DAG (a) or as an

imperative text-based program (b). The former contains the extra information that

operations Duplicate and Transform for instance may be executed in any order,

or even in parallel, while the text-based representation required an arbitrary choice.

at least syntax is no longer an issue. Furthermore, representing a program as a

DAG is slightly more expressive than as a text in a purely imperative language: as

illustrated in Figure I.5 and highlighted by Johnston et al. (2004), the DAG naturally

provides information about what can be parallelized.

Seasoned programmers who developed habits with text-based programs easily

feel frustrated when trying visual programming. It is in the best case slower

to manipulate visual nodes than characters, but this is mostly because visual

programming does not benefit from a base of productivity tools as large as what

as been developed in the context of IDEs
2
for text manipulation.

I.3.3 Declarative programs

Explicit definition of the control flow of a program is not always the most conve-

nient way to specify a program. Imperative programming requires to learn and

explicitly implement a whole family of algorithms (although this effort can be

shared through libraries of functions). But the designer of a shape often wants

to express an intent that is not an algorithm but rather a set of constraints and

requirements that the resulting shape must fulfill.

Declarative programming consists in declaring a series of facts and rules, and

then letting a problem-agnostic engine solve the unknowns to provide a valid

2
IDE: Integrated Development Environment

24

output. The engine can range from a solver of pure logic formulas to discrete or

even continuous optimization. The former is the object of specific programming

languages like Prolog or Datalog, while the later tends towards model fitting, where

a template defined and constrained by the designer and/or by domain specific

knowledge, and an optimizer finds the most relevant values for filling the template.

Since we are interested in visual programming, we focus on the framework of

Wang tiles. A Wang tile is a square whose edges are marked with colors, and the

only rule governing how tiles can be laid out is that only edges of matching colors

are allowed to be in contact. Programming with Wang tiles consists in defining the

set of slots that must be covered with tiles, as well as stating the edge colors for the

set of tiles that can be used by the tiling engine. This constitutes a Turing-complete

programming paradigm, so it is very expressive, while remaining fully visual. But

this comes at the cost of being hard to solve in general.

I.3.4 Hybrid programming

In practice, the frontier between imperative and declarative paradigms is not

as strict as presented above. For instance, Krs et al. (2020) proposes a powerful

combination of imperative, declarative and example-based ways of modeling

shapes. We illustrate the cohabitation of paradigms with a little case study of a

video tutorial about shape programmingwhere the author expresses their modeling

strategy, which gives us insights about their reasoning. Figure I.6 shows steps

extracted from this tutorial and we invite the reader to follow the video linked in

its caption.

The first noticeable point is that, although they use a DAG-based imperative

programming language, they actually recreate a shallow tile-based engine within

this framework. The rules determining which tile belongs in a particular slot are

very simple, purely contextual: they only consist in using the coordinates of the

slot and the presence or absence of neighbors, and they don’t involve advanced

constraint solving. Yet this is one example among others showing that tile-based

programming of shapes is an artist-approved creation tool.

The author mentions the term "semi-procedural modeling" to mean that the cre-

ation pipeline combines a shape program with static elements that have been

manually authored, namely the tiles. This point is important to ensure that the

artists can express themselves with enough freedom, that the result of the procedu-

ral modeling will wear their artistic signature. This ability to combine automated

behaviors with hand-tailored elements is a strength of tile-based creation.

Furthermore, the artist deems some mensuration of the tile’s content as "flexible".

They do not really use it in practice because their framework does not make this

easy enough, but they thus mean that the tile’s content features hyper-parameters

which may be tuned to create variations. Interestingly, this means that within the

declarative framework of Wang tiles, the content of tiles can be parametric shapes

25

(a) (b) (c) (d) (e)

ResultTile set

Figure I.6: Steps (a) to (e) are captured from the explanation of the procedural

modeling strategy adopted by the designer to create the result shape. Although this

is in practice implemented using an imperative DAG (Blender’s Geometry Nodes),

this approach is close to tile-based modeling, where step (a) describes a graph of

slots where tiles of geometry are instanced following specific adjacency rules such as

placing shops and doorways if there is no slot bellow. Courtesy of Chong 3D (https://

www.youtube.com/watch?v=-rexNuTap44).

described by an imperative program.

One challenge raised by this idea is that some neighboring constraintsmay entangle

the hyper-parameter values of one tile with those of another tile. For instance here

the "flexible" value is the height of the tiles used for the top-most row: although

it may vary from one building to another, it must be the same for two neighbor

tiles. We investigate this idea of making tiles themselves parametric shapes in

Section IV.3.

Lastly, on a slightly different topic, this practical example of shape programming

shows the importance of the semantic selection scheme that we will explore in

Section III.2. A consequent part of the tutorial focuses on the problem of selecting

the top-most row of tile slots. They first use a threshold on the vertical coordinate

of the slot, but as they highlight, hardcoding the threshold fails at generalizing

to a change in the number of floors. They then switch to a procedurally defined

threshold that depends on the floor count, thus representing the selection as a

program. This selection program behaves well in all cases, but the process for

defining this selection query is far from being as simple as manually selecting the

intended row. We intend in Section III.2 to simplify this process thanks to a query

synthesis method able to generate a semantic selection given a manual selection.

26

https://www.youtube.com/watch?v=-rexNuTap44
https://www.youtube.com/watch?v=-rexNuTap44

I.3.5 Limits of our scope

I.3.5.1 About determinism

Whether it is declarative or imperative, a shape program – like any other program –

may be either deterministic or stochastic. A deterministic program always outputs

the same geometry when it is given the same input, whereas a non-deterministic

program features random behaviors. This non-determinism can come from the

intentional use of a random generator in the program, or in the case of a declarative

program it may be caused by the use of random algorithms in the core engine,

when multiple solution can fulfill the constraints.

Although randomness can contribute a lot to the visual diversity of a program-

generated shape, it requires more anticipation effort from the user, or arouse

frustration if they want to roll back to a previous result that pleased them better.

It is hence common to turn non-deterministic programs into deterministic ones

by exposing the random seed of an internal pseudo-random generator as an input

hyper-parameter. This way, the user can change unrelated hyper-parameters

without triggering the re-sampling of all (pseudo-)random values. Hence we focus

on deterministic programs.

I.3.5.2 Real-time feedback

We focus on programs that evaluate at interactive rates, so that they fit in a fluent

creation loop. As a consequence simulation and heavy procedural generation,

although being programs which output geometry, are out of the scope of this

thesis.

I.3.5.3 Non program-based higher-order representations

Representing a higher order shape F – which is a function – through its imple-

mentation as a program is the most natural option, and the one we focus on in

this thesis, but it is not the only one.

Besides the symbolic approach, a function can be represented by its graph. In our

case, the graph of F : 𝝅 ↦→ 𝐺 is a subset of Π×R3
. A key difference though is that

we very often need to query slices (at constant 𝝅), which is not something usual

representation have been optimized for. There is thus no obvious representation

for efficiently encoding the graph of a parametric shape F .

Another class of non-symbolic representations of parametric shapes is the case of

learnt representations (a.k.a. data-based representations), and in particular neural

networks.

27

I.4 Outline

The remainder of this thesis is organized as follows. Chapter II presents previous

work related to representing shapes as programs. In particular, we see that although

the wordingmay vary, many assets typically found in modeling work are in essence

parametric shapes.

Chapter III explores possibilities to bring the interaction with DAG-based impera-

tive parametric shapes back in their output 3D space, rather than in program space

as it is usually the case. We address this issue both at design time, assisting the

creation of such shape programs, and at manipulation time, by providing inverse

control of the input hyper-parameters.

Since imperative DAGs, with explicit control flow, are not the only programming

paradigm, we study in Chapter IV another class of shapes, based on constraint

programming. We focus in particular on tile-based modeling, a versatile framework

for discrete constraint programming of shapes, and hybrid it with the previous

chapter by turning tiles into imperative shape programs themselves.

Since our motivation to study shape programs is their positive impact on the

creative loop, we see in Chapter V how to integrate them more deeply in the

pipeline for real-time visual feedback critical to the efficiency of an interactive

tool. This coupling enables us to either defer the evaluation of some parts or the

shape program or anticipate rendering within this program, and thus increase the

performance of rendering.

Finally, Chapter VI concludes this thesis by opening to new prospects that seeing

shapes as program may offer.

I.5 Contributions

Our main contributions are summarized in this section. A first part unifies the

manipulation and automatic processing of imperative DAG-based shape programs:

• An automatic DAG amendmentmechanism for defining shape differentiation

with respect to the hyper-parameters even when the DAG outputs geometry

of varying connectivity.

• A non-linear kernel for filtering jacobians when applying inverse kinematics

on procedural geometry with high-frequency spatial variations, rather than

on a coarse control structure.

• A program synthesis method for turning selections of geometric elements

that were hand-picked on a particular instance into semantic selection

queries generalizing consistently when the program is altered.

Some other contributions focus on declarative tile-based programming, illustrated

28

on a design workflow for authoring mesostructure along surfaces:

• A bottom-up approach to the creation of the geometric content for Wang

tile-based modeling, bringing the interfaces between tiles as the primary

area of edition and ensuring continuity by construction.

• A tile suggestion mechanism to assist the creation of a set of Wang tiles,

mitigating the difficulty of tiling being NP-hard.

• The hybridization of tile-based modeling and imperative procedural models

thanks to a tiling engine solving for per-tile continuous hyper-parameters.

At last come contributions on the integration of shape programs whose output

features a lot of self-similarity with real-time visual feedback:

• A compact tile-based mesostructure model where geometry evaluation and

mapping are delegated to the GPU, enabling real-time user feedback and de-

livering hundreds of millions of polygons per-second on standard hardware.

• An efficient rendering pipeline for dense stackings of similar procedural

objects, leveraging their quasi-spherical geometry to enable advanced culling

at both object and fragment level.

I.6 Publications

I.6.1 Peer-reviewed papers

A large proportion of the contributions discussed in this thesis has been presented

as standalone papers in international scientific journals, and thus validated by our

peers:

• Élie Michel and Tamy Boubekeur. 2020. Real Time Multiscale Rendering

of Dense Dynamic Stackings. In Computer Graphics Forum (Proceedings of

Pacific Graphics), volume 7-39, pages 169–179. (É. Michel & Boubekeur,

2020b)

• Élie Michel and Tamy Boubekeur. 2021. DAG Amendment for Inverse

Control of Parametric Shapes. In ACM Transactions on Graphics (Proceedings

of SIGGRAPH), volume 4-40, pages 173:1–173:14. (É. Michel & Boubekeur,

2021a) Awarded best scientific production for the STIC prize (by Paris-

Saclay doctorate schools).

We also presented two posters:

• Élie Michel and Tamy Boubekeur. 2020. Real time multi-scale sand ren-

dering. Poster in Symposium on Interactive 3D Graphics and Games (I3D).

(É. Michel & Boubekeur, 2020c) Awarded best poster.

29

• Élie Michel. 2021. OpenMfx: An API for cross-software non-destructible mesh

effects. Poster in SIGGRAPH. (É. Michel, 2021)

And we presented each year our ongoing work in the local French conference of

Computer Graphics:

• Élie Michel and Tamy Boubekeur. 2019. Rendu de sable multi-échelle en

temps réel. In proceedings of Journées Françaises d’Informatique Graphique

et de Réalité Virtuelle (JFIGRV). (É. Michel & Boubekeur, 2019)

• Élie Michel and Tamy Boubekeur. 2020. Formes paramétriques différen-

tiables. In proceedings of Journées Françaises d’Informatique Graphique

(JFIG). (É. Michel & Boubekeur, 2020a)

• Élie Michel and Tamy Boubekeur. 2021. Synthèse par pavage de méso-

structure surfacique. In proceedings of Journées Françaises d’Informatique

Graphique (JFIG). (É. Michel & Boubekeur, 2021b) Awarded second best
paper.

I.6.2 Released source code

Throughout the making of this thesis, multiple prototype have been released as

open source programs. This section briefly points the reader to the chapters they

relate to.

DagAmendment An add-on for Blender enabling the direct manipulation of

parametric shapes built using non-destructive tools such as modifiers and con-

straints. It regroups the contributions of sections III.3 and III.4.

MesoGen Standing for Mesostructure Generator, it is a modeling tool for au-

thoring complex mesostructure along the surface of quad meshes, following the

tile-based approach of Section IV.2. Its real-time visual feedback is ensured by the

method from Section V.2.

GrainViewer A standalone viewer focusing on dense stackings of pseudo-

spherical items which demonstrates the multi-scale real-time rendering pipeline

presented in Section V.3.

30

II
Related Work

Our choice of studying shapes that are represented as programs is grounded in the

observation that, despite a variety of wording to designate them, such shapes are

already present in diverse contexts. The notion of program is indeed wide enough

to be the common denominator of many representations. It might sometimes even

feel too generic to be informative, so in each chapter we will particularize our

analysis, nevertheless we draw up in Section II.1 a landscape of program-based

representations to stress out the potential of our overall approach.

Furthermore, we have identified that the strength of shape programs lies in the

shape manipulation workflow they enable. Section II.2 introduces interactive mesh

deformation methods and then focus on authoring tools that involve parametric

shapes and their programmatic nature. Both geometry-level and program-level

manipulation of shape can be combined together in bidirectional authoring sys-

tems.

Lastly, we review in Section II.3 techniques that pragmatically explore the hyper-

parameter space of a parametric shape, looking for a solution optimal with respect

to some problem-specific criterion. This setting is typical from Computer-Aided

Design, a field where shapes are often represented as programs and the correct

variation is selected based on physical constraints rather than artistic choices.

Although this might sound different from our area of study, Section III.4 treats

user’s input gestures, during shape manipulation, as a particular case of problem-

specific criterion to automatically optimize for.

II.1 Shape programming in the wild

Many objects manipulated in a shape modeling pipeline can be thought as para-

metric shapes, and thus naturally represented as programs. Parametric shapes

are indeed a natural way to represent 3D objects in a space of lower dimension

31

and higher meaningfulness than giving direct access to e.g., raw vertex positions.

Section II.1.1 highlights that rigging is the de facto tool used in practice to build a

large part of parametric shapes.

More generally, programming is the most effective framework for representing

complex and multifarious intents; Section II.1.2 presents shape programming

idioms developed in the context of Procedural Modeling.

A program carries semantic information about the shape it generates. Inversely,

semantic information can be used to build a program given its output. This

extraction is the challenge addressed by Inverse Procedural Modeling techniques

presented in Section II.1.3.

Lastly, we review in Section II.1.4 how the product of Machine Learning tools

such as auto-encoders can be thought as parametric shapes. They are however

parametric shapes whose representation is not a symbolic program but rather a

numerical model.

II.1.1 Rigging

II.1.1.1 Definition

Rigging is the act of transforming a given static geometry into a parametric shape.

This step comes after the static modeling and prior to the animation of a shape,

and its main purpose is to restrain the possible deformations of the geometry, to

ensure that whoever animates it may use only meaningful poses.

The most common use of rigged deformation is character animation. The rig

ensure for instance that an elbow cannot be bent in the wrong direction, or that a

foot cannot suddenly become twice as big as it usually is. The terminology used

by the rigging literature is thus inspired by its application to characters, although

the notion of rigging is actually more general. Any model meant to be articulated

can be rigged, including for instance mechanical structures.

Rigging is a three-way process. At first one defines a coarse kinematic structure

called skeleton or armature. It is a graph of joints – 3D points with an orientation

and a scale – connected to each other by bones. Joints are equipped with various

constraints and expressions that reduce their degrees of freedom and expose them

as higher-level semantic values to the animator. For instance, the direction of the

eyes of a character is better exposed as a position to look at rather than an angle

of rotation of the eyeballs. Secondly, one attaches the actual surface of the object

to these bones, a process commonly refer to as the skinning. And finally, building

a rig includes the creation of controllers. Controllers are visual handles whose

position, orientation and scale drive the joints; they enable spatial interaction with

the abstract degrees of freedom of the skeleton.

The result of rigging is a parametric shape. The semantic degrees of freedom of

32

the skeleton are what we call hyper-parameters, and the deformed character or

object is the output of this shape. The rig itself is in a way a program. It is at

first glance a declarative program since building a skeleton consists in defining

constraints. But the rig engine does not intend to solve these constraints using an

advanced optimization scheme, because it is important that the program executes

in real time for the animators to do their job. Instead, it treats the constraints as

imperative operations and figures out in which order they must be executed.

The rig engine thus compiles a declarative program into an imperative one, which is

by the way usually exposed to the designer as a DAG. Of course this has limitations,

it fails as soon as there are dependency loops in the constraints, because topological

sorting is then not possible. It covers nonetheless a wide range of common use

cases, and more advanced scenarios can be addressed by manually interacting

with the DAG.

II.1.1.2 Assisted rigging

Some of the difficulties of shape programming that we identified previously have

been studied in the context of rigging. We focus here on assisting the rigging

process, and shape manipulation will be discussed later on, in Section II.2.

We distinguish the kinematic parameters, which are the raw degrees of freedom

of the joints of a coarse skeleton, or control cage, and the higher-level hyper-

parameters 𝝅 on which the animator has control. Wording varies among papers,

for instance Capell et al. (2005) calls them respectively pose parameters 𝛼 and

abstract parameters 𝛽 . Hyper-parameter space is also sometimes called embedding

space, rig space (Hahn et al., 2012), design space (Talton et al., 2009) or animation

space (Merry et al., 2006).

Kinematic parameters can be estimated automatically using geometric analysis

for skeleton extraction, especially in the case of organic objects. This can be based

for instance on path finding in the medial surface of a voxelized object (Tsao &

Fu, 1984; Wade & Parent, 2000), or using the Reeb graph of the geodesic distance

to a single user input point (Lazarus & Verroust, 1999; Hilaga et al., 2001; Tierny

et al., 2006; Pascucci et al., 2007; Aujay et al., 2007). Some extraction methods

may produce loops (Au et al., 2008), which is not ideal for rigging but still enables

animation.

On the other hand, determining semantic hyper-parameters requires a domain

specific prior. One possibility is to fit an existing hand-made rig space to a new

input geometry (Baran & Popović, 2007; H. Li et al., 2010; Ali-Hamadi et al., 2013),

typically for motion re-targeting (Avril et al., 2016). This works for shapes that are

common to many different scenes, such as human bodies for instance, and enable

the use of animation databases such asAdobeMixamo. For less common shapes, e.g.,

imaginary creatures, Miller et al. (2010) developed Frankenrigs, which composes

parts of different example rigs. For more examples Rumman and Fratarcangeli

33

(2016) surveys auto-skinning methods and includes discussions about skeleton

extraction.

The other way of injecting prior knowledge is through the use of Machine Learning.

It has been applied to most common use cases of rigging like human bodies

(Anguelov et al., 2005; Loper et al., 2015; L. Liu et al., 2019; Osman et al., 2020),

human faces (Blanz & Vetter, 1999; T. Li et al., 2017; Vesdapunt et al., 2020; Song et

al., 2020) or even generic shapes (Z. Xu et al., 2019). For instance L. Liu et al. (2019)

automatically skin characters using Graph Convolution Networks, even when the

skeleton varies. Holden et al. (2015) learns how to place semantic manipulators to

reach a given kinematic pose. Generally a subset of the hyper-parameters gives

the morphological identity of the character and the remainder is related to posing

and animation.

NB Softwares like lucky3d’s AutoRigPro
1
shows the large variety of tools

that can be used to help the tedious process of rigging. In practice this

kind of assisted tools seems to be preferred by artists over fully automated

approaches.

II.1.1.3 Real-time evaluation

Animators work with time, they compose a temporal signal, and the human eye is

very sensitive to tiny variations of delays and synchronization. The ability for a rig

to evaluate in real-time is thus critical. However, a production-grade rig can easily

be composed of several hundreds of operations, in order to account for numerous

details and cases of non-linear deformation.

Watt et al. (2012) reports how the animation studio Dreamworks schedules the

evaluation of the nodes of a rig in order to exploit multi-threading. Similarly, Pixar

developed a rig execution engine called Presto (ElKoura & Studios, 2013) and Disney

Animation also addressed these challenges (Lin et al., 2015). A Siggraph 2014 course

on multi-threading (Watt et al., 2014) surveys these solutions centered on computer

engineering. This can be combined with on-GPU rigging/skinning that is used in

the context of video games (Tarini, 2017), as well as memory management methods

to reduce the I/O complexity (Marchal, 2018).

When optimizing the evaluation of the rig is not enough, for instance because

there are multiple characters moving together, a solution is to replace the rig with

a faster but equivalent model of deformation. For instance Bailey et al. train a

deep learning model to mimic the behavior of complex rigs but at interactive

rates (Bailey et al., 2018, 2020). Their work intervenes between the creation of the

rig and its use by the animator, similarly to our DAG amendment in Section III.3

(see Figure III.20).

1https://blendermarket.com/products/auto-rig-pro

34

https://blendermarket.com/products/auto-rig-pro

II.1.2 Procedural Modeling

II.1.2.1 Definition

Repeated patterns and systematic behavior in the designer’s authoring gestures

and observations are common during 3D modeling. The automation of these

creation rules is called procedural modeling, and its outcome naturally takes the

form of a shape program. It enables the production of heavy content that would

take too much time to craft manually, like immense landscapes, cities, diverse

crowds, complex trees, etc. As highlighted by R. Smelik et al. (2010), procedural

modeling papers study, for a particular application, the tension between artistic

freedom i.e., the versatility of the procedure, and the degree of automation and

speed of creation.

Our intent on the other hand is to abstract the process of developing procedural

models. We need the shape to be represented as a program, but try to remain

agnostic in the specific domain it was developed for. In the case of imperative

procedural models, Schinko et al. (2011) and before them Havemann’s thesis (2005)

stated a similar intent. In particular the Chapter 5 of the later, about Generative

Modeling Language, describes a program-based representation of shapes.

The boundaries of procedural modeling are somewhat fuzzy. On one side, it fades

into heavier simulation methods. Although technically a rigid body simulation is a

procedure that automates creation (specifically the animation), it is not considered

as a case of procedural modeling. A simulation algorithm reproduces a physical

phenomenon, but does not embed any artistic bias. It may however be a part of a

procedural modeling system. On its other side, we start calling parametric shape a

procedural model when the program evaluates in interactive time. But when the

procedure has a chaotic behavior i.e., when its output is hard to predict, subject to

a lot of pseudo-randomness, the term procedural modeling remains preferred.

II.1.2.2 Use cases

Procedural generation is used to model virtually any kind of shape in practice,

but its use cases that end up in the academic literature are centered around a few

particularly challenging tasks. We introduce some of them here and for a more

exhaustive overview we refer the reader to dedicated surveys like R. M. Smelik et

al. (2014) and Krispel et al. (2014), or the state-of-the-art section of previous thesis

centered on procedural modeling (Emilien, 2014).

Terrain generation The fractal beauty of natural landscapes has long been a

source of both fascination and challenge for artists and researchers. Earliest work

consisted in crafting fractal noise models generating mountain-looking elevation

maps (Prusinkiewicz & Hammel, 1993; Ebert et al., 1994), whose hyper-parameters

were amplitude, lacunarity, recursion depth.

35

These models were missing important visual features caused by weathering, so

shallow simulation algorithms for thermal and hydraulic erosion were later intro-

duced and refined (Beneš & Forsbach, 2002; Mei et al., 2007; Št’ava et al., 2008). They

are usually constrained to layered heightmap representation of terrains (which is

well described by Cordonnier (2018)), although some also use more general fluid

simulation techniques, e.g., smoothed-particle hydrodynamics (SPH) (Krištof et al.,

2009).

As mentioned above, this kind of time-consuming simulation-based algorithm no

longer fits our conceptual framework of parametric shapes, supposed to evaluate

in interactive time. So other approaches were developed to give water streams a

primary role in landscape shaping from the bottom up (Kelley et al., 1988; Belhadj

& Audibert, 2005), leading to large-scale consistent watersheds (Génevaux et al.,

2013, 2015; Peytavie et al., 2019).

Tile-based methods, on which we focus in Chapter IV, have also been used for

terrain generation, as well as other combinatorial approaches (Maung & Crawfis,

2015). It is particularly used in the context of video games (Stalberg, 2018), where

tiling also provide gameplay-related features, e.g., path-finding (Scurti & Verbrugge,

2018; Sandhu et al., 2019). We use terrain generation as an example of application

of our parametric tiling method in Section IV.3.

A more complete view of procedural modeling methods can be found in surveys

from R. M. Smelik et al. (2009) and Galin et al. (2019).

Data-based generation Another edge of procedural modeling is the use of

existing data, either as a prior, a set of examples or a bank of samples to query

from. For instance, H. Zhou et al. (2007) introduced a powerful way to create

elevation maps using existing samples that comply with a complex user input. The

rise of machine learning techniques, which started around the same time, lead

more people to look into this kind of data-based approach to terrain generation

(É. Guérin et al., 2017; E. Guérin et al., 2022).

In a way, data-based procedures may feel like a degenerate cases of procedural

generation, because they have to either embed their whole dataset or use a compact

representation of its data that is hardly human-interpretable (e.g., neural networks),

but when the latter rely on automatic differentiation tools, it can actually fit the

approach we use in Section III.4. Search-based procedural generation is surveyed

by Togelius et al. (2011).

Trees and plants Foliage is a particular feature of landscape that is a research

field in itself. Here again, the challenge lies in the highly fractal nature of shapes,

leading this time to the use of L-Systems (Lindenmayer, 1968). Initially intro-

duced in the field of botany and biology, this grammar-based method has quickly

been reused for procedural plant generation in computer graphics (Mech, 1997;

36

Prusinkiewicz, 1999; Prusinkiewicz et al., 2000). Conceptual simple yet quite versa-

tile, L-Systems enable the interactive manipulation of their input hyper-parameters

(e.g., average branching angle), as opposed to methods leaning more towards simu-

lation (de Reffye et al., 1988). Interactive authoring eventually became the focus of

tree modeling techniques, leading to production tools like the one of Lintermann

and Deussen (1999) or the award-winning SpeedTree, which is centered on a declar-

ative programming model. Historical plant generation methods are surveyed in

Deussen and Lintermann (2005).

Buildings and cities Less natural than mountains and forests, cityscapes are

nonetheless a source of fascination as well. The combination of seemingly sys-

tematic rules and huge amounts of varying content makes them a good fit for

procedural generation, both at the scale of whole cities and individual buildings,

and even for room layout. As for plants, grammar-based programming is often

used to represent buildings, especially following Müller andWonka’s work (Wonka

et al., 2003; Müller et al., 2006). Shape grammars are also used for facades, and it is

noticeable that Haegler et al. (2010) integrate such a program-based representation

in a real-time rendering pipeline, similarly to what we discuss in Chapter V.

At the scale of a building, procedural modeling is used by architects themselves,

as largely reviewed by the Parametric Architecture publishing platform (Parametric

Architecture, 2016) and supported by node-based modeling tools like Rhino’s

Grasshopper (Rutten, 2007).

There is here again a wide variety of approaches to city generation. Some use tiling

(Gaisbauer et al., 2019; Stålberg, 2020), some use data-based approaches (Aliaga

et al., 2008), some target villages, interacting with terrain and natural landmarks

(Emilien et al., 2012), maybe focusing only on roads (Galin et al., 2010) or bridges

(Patow, 2011). For further details, city generation is surveyed by G. Kelly and

McCabe (2006). In our context, the boundaries of parametric shapes usually stop at

the scale of buildings or bridges, but generating a whole city on the fly is possible

as well (Steinberger et al., 2014).

Going down to the level of interior layout, procedural models generally conform

to a more declarative paradigm, like Le Roux et al. (2001) which clearly state their

contribution as a layout solver. This solver might be data-based (Merrell et al.,

2010) and this apply to both room layout and furniture arrangement (Germer &

Schwarz, 2009; Merrell et al., 2011).

Garment and fabric It is also a common target of procedural modeling, espe-

cially when modeling up to the scale of individual yarns (Yuksel et al., 2012). It

usually includes some sort of simulation (for relaxation), might feature tile-based el-

ements (Leaf et al., 2018), and is challenging to include in real-time viewport (K.Wu

& Yuksel, 2017). We will present other types of intricate mesostructures in Sec-

tion IV.2.

37

II.1.2.3 Constructive Solid Geometry

A Constructive Solid Geometry (CSG) tree (Requicha, 1977) is a representation

of a shape where internal nodes represent boolean operations (union, difference,

intersection) and leaf nodes are primitive shapes (spheres, cylinders, boxes, etc.).

Primitives are generally parameterized with a few dimensions. It is a simple yet

powerful program-based representation, which is at the heart of Computer Aided

Design (CAD) modeling.

A CSG tree does not depend on an underlying first-order representation of the

geometry. Although it can be converted into a mesh (Laidlaw et al., 1986), this

is not needed for rendering. A CSG tree may be directly raytraced (Roth, 1982),

evaluated as a signed distance field for sphere tracing (Hart, 1996), or drawn using

screen-space CSG rendering (Goldfeather et al., 1986; Kirsch & Döllner, 2004;

Zanni et al., 2018). The latter are well suited for interactive visual feedback, and

yet an example of synergy between a shape program and a real-time rendering

pipeline (Chapter V).

Nevertheless, when extending CSG trees with other operations than booleans,

which is a natural path towards more generic imperative DAG-based shapes, one

needs efficient polygonal CSG like QuickCSG (Douze et al., 2017).

II.1.2.4 Grammars-based modeling

We mentioned above multiple cases of grammar-based programming of shapes.

These approaches are inspired by the formal grammars, originally developed by

Chomsky (1956) in theoretical linguistics and largely used in the programming

language literature.

Such a program is expressed as a set of production rules operating on string

of abstract symbols. For instance, a rule 𝑋 → 𝑎𝑋𝑏 states that any occurrence

of the string 𝑋 will be replaced with the string 𝑎𝑋𝑏. Starting from an initial

symbol, the recursive application of production rules creates a word. In an L-

System (Lindenmayer, 1968), this word is interpreted as drawing instructions. In

a shape grammar Stiny and Gips (1971), each symbol has a spatial embedding

(e.g
˙
, a bounding box) and terminals (symbols that are allowed in the end word)

correspond to a primitive shape.

A grammar-based program is imperative, but also often non-deterministic, because

in general multiple rules may be applied at the same location in the word. As

suggested in Section I.3.5.1, we can consider that using a pseudo-random generator

with a fixed seed is enough to see it as a deterministic program. Nevertheless,

recursive stochastic makes the behavior of ambiguous grammars very chaotic, so

Talton et al. (2011) proposes a Metropolis-Hasting (Metropolis et al., 1953; Hastings,

1970) algorithm to enable a more direct control of the output. This purely discrete

inverse problem is at the opposite end of the range of direct manipulation methods;

38

in Section III.3 we rather focus on continuous hyper-parameters.

Shape grammars can be encoded into imperative DAGs, as illustrated by Patow

(2012) and others (Silva et al., 2013, 2015). Hence, we will not particularly focus

on shape grammars in our formalism. For a deeper review of grammar-based

procedural methods, the reader may refer to Lienhard’s thesis (2017).

II.1.3 Inverse Procedural Modeling

Each specific domain of application requires its own procedural models, but de-

veloping such a model is a very technical and time consuming task. Inverse

procedural modeling (Aliaga et al., 2016) aims at automating, or at least assisting,

this challenge. It transforms a static geometry, for instance a 3D scan, into a

semantic program. Inverse and forward procedural modeling are very related

because, as we stressed already, the edges of procedural modeling are blurry: a

procedural system may integrate inverse tools to handle advanced user input such

as sketches (Nishida et al., 2016).

An inverse procedural modeling pipeline is a combination of geometrical analysis

and program synthesis. The analysis part identifying symmetries that could be

factorized, both locally and at the scale of larger structures, and program synthesis

assembles this information into a program that can provide semantic control

and produce variants of the original shape. Both steps might be helped with

domain-specific priors.

II.1.3.1 Symmetry detection

The local geometrical analysis of a shape for inverse procedural modeling can be

based on the detection of self-similarities or local symmetries, which are reviewed

by Mitra et al. (2012). It might also be based on primitive fitting (Kaiser et al., 2019;

Lê et al., 2021). The latter uses a slight prior that fosters manufactured objects,

whereas symmetry detection is purely intrinsic, thus well suited for organic shapes.

However, the choice of which of these approaches to use also depends on the

synthesis method one targets.

Detecting self-similarities can also come as a by-product of compression algorithms.

For instance, compressing voxel data leads to a DAG-based representation where

similar parts are factorized at all scales (Kämpe et al., 2013). As a matter of fact,

in information theory a lower bound of the size of a compressed signal is the

Kolmogorov complexity, defined as the minimal size of a program that generates

the signal.

Symmetries can be extracted at multiple levels and consolidated into higher-level

blocks (Kalojanov et al., 2016). This is in a way a first step towards the construction

of a program.

39

II.1.3.2 Program synthesis

Figuring out the declarative rules, or imperative process, behind the structure

identified by symmetry detection methods is a particular case of Program Synthe-

sis (Winston, 1970; Summers, 1977). This branch of the programming language

literature addresses the problem of automating the tedious task of programming

itself. Naturally, this is an overly difficult problem in general, so it usually focus

on particular cases. Here we review computer graphics research that lean towards

program synthesis, although sometimes not presenting it as such. For a more

general introduction to program synthesis, see Solar-Lezama (2018).

A good example of program synthesis for inverse procedural modeling are CAD

decompilation (Nandi et al., 2018) and InverseCSG (Du et al., 2018). The latter

first uses simple primitive extraction using a RANSAC-based method, before

leveraging program sketching (Solar-Lezama, 2008) to efficiently explore the space

of CSG programs whose leaves are the fitted primitives. They thus decouple the

combinatorial problem of primitive assembly from the continuous optimization of

the dimensions of primitives.

Automatic construction of CSG trees has also been addressed using reinforcement

learning (Sharma et al., 2018, 2020). Actually, reinforcement learning is more

generally used to help program synthesis (Johnson et al., 2017; Bunel et al., 2018),

and sometimes it is even the other way around (Yang et al., 2021). Reinforcement

learning is used by Ganin et al. (2018) to auto-encode images in program-based

representations, instead of the usual latent vector. It can also be used to learn

shape grammars for instance (Teboul et al., 2011; Martinovic & Van Gool, 2013).

Part-based modeling (Ritchie et al., 2018) learns the rules for laying out existing

building blocks. Sometimes the rule inference is only used as a sub step to directly

re-synthesize content, without providing an explicit program-based representa-

tion (H. Liu et al., 2015). On the contrary, ShapeAssembly (Jones et al., 2020) learns

to synthesize and interpolate shape programs from a larger database of examples.

ShapeMOD (Jones et al., 2021) refines this by improving the factorization, carrying

self-similarity detection in the space of programs rather than geometry.

We come back on program synthesis in Section III.2, with the more specific intent

of generating database queries – where the database is a mesh, in our case.

II.1.3.3 Domain-specific methods

Inverse procedural modeling techniques can hardly be fully agnostic in the content

they handle, and some of them utilize strong priors: for trees (Št’ava et al., 2010;

Stava et al., 2014), for facades (F. Wu et al., 2014), for buildings (Demir et al., 2016),

for cities (Vanegas et al., 2012), etc. Model-fitting can be thought as an extreme

case of domain-specific inverse procedural methods where existing procedural

methods are adapted to the input geometry. Zhao, Luan, and Bala (2016) follows

40

this approach for yarn-level inverse modeling of clothes, and many automatic

rigging methods like Frankenrigs (Miller et al., 2010) are in essence model-fitting.

When the prior is strong enough, the input may differ from 3D geometry. For

instance, Nishida et al. (2018) uses an image as input to extract procedural building

models, following a long history of image based modeling (Debevec et al., 1996).

In a similar spirit, the same authors had proposed a powerful interactive workflow

for authoring buildings from sketches (Nishida et al., 2016). It becomes difficult to

consider this as inverse procedural modeling per se, but it sure follows the same

intent of assisting the creation of advanced parametric models from simple data.

There has been recently a growing attention for the inverse procedural modeling

of materials (Hu et al., 2019; Shi et al., 2020; Hu et al., 2022). As for InverseCSG,

these methods generally disentangles the discrete exploration of possible program

structures from the optimization of its continuous parameters. Possible structures

are often sampled from a bank of predefined programs, making this a case of model-

fitting. When targeting 3D rendering, materials and geometry are very related,

so there is room for bringing these work to cooperate with inverse procedural

geometry.

II.1.4 Latent Space

Our tour of fields whose output is shape program ends with the edge case of

latent-space encoding. In the context of machine learning, it is common to learn

a low dimensional abstract space, called latent space or embedding space, to rep-

resent a set of shapes. The decoder model, which generates a geometry given a

particular point of this latent space, is an example of parametric shape: the latent

vector is the set of hyper-parameters. A decoder may operate on any first-order

representation: voxels (Girdhar et al., 2016), surface patches (Groueix et al., 2018),

signed distance field (Z. Chen & Zhang, 2019; Eisenberger et al., 2021), vector

displacement (Eisenberger et al., 2021).

This approach is nevertheless particularly interesting in the case of complex but

very common shapes, such as human bodies. SMPL (Loper et al., 2015) and

STAR (Osman et al., 2020) learn skinning weights and blend shapes from ac-

tual data, and produces a model that fits the usual rigging pipeline. Mahmood et

al. (2019) uses these model to unify human representations from multiple datasets.

FLAME (T. Li et al., 2017) follows a similar path to build a parametric human face.

Latent spaces often have more dimensions than a human designer can handle

though (typically a few hundreds). Dimensions can be sorted by importance or

reduced to a sub-manifold (Chiu et al., 2020; Abdrashitov et al., 2020) to reduce

the number of dimensions, bringing latent space even closer to our conception of

hyper-parameter.

Similarly to our notion of hyper-parameter, it intends to model semantic axes of

41

variation of the shape. Latent space is fully continuous, which provides shape

interpolation, and decoders are automatically differentiable, which fits well into

learning pipelines. However, the decoder provides no direct access to the logic

linking these semantic dimensions to the end geometry. We thus have parametric

shapes that are not represented as what we call a program.

As a consequence, learned embeddings shifted to the goal of shape decompo-

sition into high level parts (Paschalidou et al., 2021). This can replace sym-

metry detection in inverse procedural modeling, extracting semantic building

blocks with strong priors, like volumetric primitives (Tulsiani et al., 2017), su-

perquadrics (Paschalidou et al., 2019), structured implicit functions (Genova et al.,

2019, 2020), convex shapes (Deng et al., 2020) or even partly interpretable space

partitioning trees (Z. Chen et al., 2020). The self-similarity analysis is in a way

shared across a whole dataset.

II.2 Interactive shape manipulation

We study program-based representations of shapes in the context of content

authoring. We hence put our goal in perspective with other means of manipulating

shapes on one hand, and program on another hand.

II.2.1 Geometry-level manipulation

II.2.1.1 Direct mesh deformation

Deforming raw geometries that are not the output of an underlying parametric

shape requires extra prior knowledge. Some methods try to maximize rigidity

(Igarashi et al., 2005; Levi & Gotsman, 2015), sometimes based on examples (Sumner

et al., 2005; Wampler, 2016). Linear variational methods (Botsch & Sorkine, 2008)

deform the input by solving a linear system capturing the intrinsic properties of

the mesh, enriched with direct control constraints coming in the form of vertex

handles. Non-linear methods (Botsch et al., 2006; Sorkine & Alexa, 2007) further

develop this concept, to better preserve volumes and cope with large handle

motions. Alternatively, linear blend skinning (Baran & Popović, 2007; Jacobson

et al., 2011) offers a scalable framework where no system is solved at run time,

and the bulk of the shape analysis yielding the handles influence is located at the

initial per-vertex weight computation.

When manipulating a parametric shape, we want to provide such direct control

capabilities but our case differs significantly, as our a priori is the space of possible

embeddings a shape can undergo through variations of its hyper-parameters. This

is somehow an extreme case of structure-aware shape processing (Mitra et al.,

2014), although such method usually couples the user deformation (change of the

hyper-parameters) with the extraction of symmetries (X. Wu et al., 2014; Kurz et

al., 2014), of coarse control structures from the geometric analysis of one (Gal et

42

al., 2009; Bokeloh et al., 2012) or many similar shapes (Gadelha et al., 2020).

Improving interaction with parametric shapes has been explored by T. Kelly et al.

(2015) who automatically places the hyper-parameter controllers in the 3D view,

but the controllers themselves must have been hand-designed first.

II.2.1.2 Inverse Control

Manipulating the output of a shape program can be seen as a case of Inverse

Kinematics (IK). IK takes its source in robotics (Saab et al., 2013) and has been

extensively studied for skeletal animation (Aristidou et al., 2018). Although their

announced scope is often limited to trees of rigid transforms, the methods proposed

in the IK literature may be applied to more complex mesh deformations like

human face posing (Lewis & Anjyo, 2010). The main requirement is indeed only

to access the jacobian matrix of the action of hyper-parameters onto a point of

the mesh. With this jacobian at hand, methods have been developed to solve

robustly the inverse problem (Deo & Walker, 1992) and account for boundaries

of the hyper-parameters (Baerlocher & Boulic, 1998; Raunhardt & Boulic, 2007).

Inverse kinematics can be done online or off-line (especially for motion planning

in robotics). Since we are designing an interactive tool, we are interested in online

solutions.

A major issue, which we address in Section III.3, is the difficulty to define a reli-

able way to measure this jacobian matrix when the connectivity of the geometry

changes and so vertex indices cannot be used to identify points. Some hyper-

parameters are not even continuous. In this case, IK can only apply on proxies,

or even not apply at all and strategies like sampling-based exploratory model-

ing Talton et al. (2009) can be adopted.

II.2.2 Program-level manipulation

In program-level manipulation, the designer edits the shape by altering its pro-

gram rather than operating on baked first-order geometry. There exists multiple

modalities of program-level manipulation, depending on the paradigm of shape

programming, the domain of application and the type of user input.

We deal with the same kind of tension than for geometry-level manipulation: we

want to apply more constraint during manipulation, to reduce the boilerplate, but

without paying a price in generality and ambiguity.

II.2.2.1 Visual Programming

The most straightforward solution to program-level manipulation is raw edi-

tion of a text-based program. But more advanced tools tend to leverage visual

programming in order to mitigate syntactic friction (a lot of valid texts are not

43

valid programs) and high level of abstraction. The strengths and variety of vi-

sual programming are well introduced by Burnett (1999), and the problem of

the cognitive load of text-based interaction was largely studied in the Human

Computer Interaction (HCI) literature when advocating for direct manipulation

approaches (Shneiderman, 1981; Hutchins et al., 1985).

Visual programming can take any form, from early executable charts (Ellis et al.,

1969) to data-flow visual programming (Hils, 1992; Johnston et al., 2004), through

block-based programming, like Boxer (diSessa & Abelson, 1986), Scratch (Resnick

et al., 2009) or domain-specific languages derived from Blockly (Marron et al., 2012).

Visual programming has been applied early to computer graphics (Haeberli, 1988)

in order to reach more easily a creative audience. There used to be reviews of

visual programming in general (Myers, 1990) but the ubiquity of the concept led

research to focus on more restricted scopes.

The HCI literature also coined the notion of End-User Programming (EUP) to mean

that a large part of computer programming is performed by users who just need

to express their intention but do not aim at becoming professional programmers

ever (Lieberman et al., 2006; Myers et al., 2006). Authoring shape programs clearly

is a case of EUP since we expect the expertise of designers to be more about art

than about computer science.

NB EUP is closely related to program synthesis, and in particular to Pro-

gramming by Example (Myers, 1986) or by Demonstration (Lieberman, 2001).

The latter is applied to shape programming by Girard (2001) to assist the

creation of CAD models.

II.2.2.2 DAG Rewriting

It is sometimes not needed to start a shape program from scratch; one can rather

start from an example – or a previous work – and incrementally edit it. This has

been particularly studied for the edition of shape grammars (Barroso et al., 2013),

for instance to perform program-space shape interpolation (Lienhard et al., 2017).

Lipp et al. (2019) transforms edits applied by the user on a particular instance of a

procedural shape into edits of the original split grammar.

For more generic imperative shape programming languages, Jones et al. (2021)

achieves automatic factorization of shape programs using machine learning, and

Mathur et al. (2020) assists the creation of generative programs by transforming

hand selections into semantic queries. The latter highlights precisely what makes

interactive editing of shape programs challenging: spatial interaction is more

intuitive, but always ambiguous. This is the main motivation of our Chapter III,

and in particular their program synthesis approach is closely related to Section III.2.

44

II.2.2.3 Bidirectional Editing

The relevance of bidirectional editing is well illustrated by Gruber et al. (2020),

which shows that in a character modeling workflow the artist may want to alter-

natively modify semantic hyper-parameters (the shape program’s input) or edit

spatial features (in the program’s output).

The notion of bidirectional programming as theorized in the programming lan-

guages literature is largely reviewed in Foster’s thesis (Foster et al., 2007; Foster,

2009). The term has been ported to shape programs by Chugh and Hempel when

designing Sketch-n-Sketch (Chugh, 2016) and its follow-ups (Chugh et al., 2016;

Hempel & Chugh, 2016; Mayer et al., 2018; Hempel et al., 2019). This tool enables

the modification of procedural 2D vector graphics either by manipulating code or

through direct spatial interaction with the output.

In its simplest form, bidirectional programming enables the modification of the

scalar constants of the program, and it can already be challenging to apply to 3D

shapes, as presented by our Section III.3 or by Cascaval et al. (2022) and Gaillard

et al. (2022).

More advanced bidirectional programming intends to enable changes in the struc-

ture of the program. But as this is often way too ambiguous, an interesting trade-off

is to help the designer locate "good edit locations" in the program and let the de-

signer do the changes by themselves. This can be applied to web pages (X. Wang

et al., 2012), shape grammars (Lipp et al., 2019), or CAD programs (Mathur et al.,

2020).

The translation of the concept of bidirectional programming to a declarative

paradigms a bit unclear, but for instance smart snapping tools (Schulz et al., 2014;

Ciolfi Felice et al., 2016) are in a way an adaptation to constrained-based program-

ming.

II.2.3 Authoring systems

The main goal [...] is to develop a system whose representation and processing

facilities correspond to and assist themental processes that occur during creative

thought.

— David C. Smith, in PYGMALION (1975)

Like Smith, in this thesis we consider the task of content authoring as a whole, from

the expression of an intent and its interpretation by the tool to the visual feedback

(Chapter V). Although their work is now dated, Smith presented a system that

was already relying on visual programming (Iconic Programming) and program

synthesis (a sort of Programming by Demonstration). Their implementation was

limited to specific engineering applications, but their philosophical introductory

discussion about the relationship between creation and computers resonates with

45

artistic applications.

We consider program-based representations of shapes because they are a concept

broad enough to cover many cases of authoring systems. Even the earliest interac-

tive graphic creation systems like Sketchpad (Sutherland, 1964) included features

akin to constrained shape programming and instancing.

Nevertheless, the means of human computer interaction can take so many forms

(Beaudouin-Lafon et al., 2021) that some systems hardly fit in this framework. For

instance, AttribIt (Chaudhuri et al., 2013) proposes a verbal design workflow, where

natural language is used to tune the semantic attributes of the edited object’s parts.

Facade (Debevec et al., 1996) is a modeling tool which combines a coarse program-

based representation of shapes as well as photograph, fromwhich program’s inputs

and additional geometric details are extracted. Another example is the whole body

of work that focuses on sketch-based modeling e.g., for landscapes (Ponjou Tasse

et al., 2014), plants (Longay et al., 2012), or for shape retrieval (Shin & Igarashi,

2007; Eitz et al., 2012; Nishida et al., 2016).

II.3 Optimization in hyper-parameter space

We presented parametric shapes and their program-based representations as object

manipulated by human designers. However they can be used in contexts where

the space of input hyper-parameters is automatically explored by an optimizer.

Typically, the user designs a parametric shape that represents a space of acceptable

shapes, and a solver looks for the most suitable output according to some additional

criterion.

The optimized criterion can be provided by a mechanical simulation, for instance

to ensure equilibrium (Whiting et al., 2009) or to express physical phenomena

in the rig space, so that they cooperate with hand-tuned animation (Hahn et al.,

2012).

The constraint can also consist in matching photographs, for human pose esti-

mation (Zhang et al., 2020), or to determine the hyper-parameters of a shape

program (Debevec et al., 1996).

Lastly, one can combine user interaction and automated optimization to help the

exploration of design space (Shugrina et al., 2015; Schulz et al., 2018), or to match

a user gesture, as in any inverse kinematic scenario. For a goal similar to ours

Section III.4.3, Gaillard et al. (2022) automatically explores the hyper-parameter

space to identify multiple directions matching a spatial user edit and cluster related

solutions. For machine learned models, or more generally any differentiable model,

optimization can be used to move in the input latent space by dragging output

vertices (Umetani, 2017).

46

III
Imperative programming of
shapes

III.1 Introduction

This first core chapter focuses on imperative DAGs, which are the most common

visual language used for shape programming. Designing and tuning a shape repre-

sented as a DAG is canonically done in program space, by manipulating symbolic

nodes and abstract value sliders. We intend to bring some of the interaction back

into the 3D space, which is more intuitive to interact with.

Although we tried to remain to some extent agnostic in the first-order representa-

tion of the geometry produced by the shape program, this chapter mainly treats

the case of 3D meshes. Some experiments with signed distance fields are also

presented to show the potential of generalization of our approach.

The first two sections present techniques based on DAG amendments. They are

shallow DAG rewriting mechanisms applied on the fly to augment the output

of the DAG with extra information. In a sense, a DAG amendment is a meta-

modifier, referring to Blender’s meaning of "modifier", namely a procedural mesh

post processing effect.

In Section III.2 we amend the DAG to record a trace in each element that we

use to assist the creation of a DAG in the specific case of procedural selection of

geometry. Section III.3 presents a DAG amendment that enables a differentiation

of parametric shapes, telling how the input hyper-parameters affect each element

of the geometry. Section III.4 uses this differential information to provide a mean

to directly manipulate the output of a DAG, bridging the gap with usual Inverse

Kinematics setups. A less research-oriented outcome of our work on DAG is

presented in Appendix B, which addresses the more practical problem of formaliz-

47

ing a common programming interface for DAG operators, in order to harmonize

representations of DAGs across modeling toolkits and enable interoperability.

III.2 Automatic Synthesis of Semantic SelectionQueries

There are two ways of editing a shape resulting from the evaluation of a DAG.

One of them consists in applying an operation to the output geometry as if it was

any static geometry: deforming an area, extruding a face, etc. This is equivalent to

appending a new node at the very end of the initial generation DAG. The other

possibility consists in altering more deeply the DAG, changing arbitrary internal

nodes.

The first option can easily be automated: each time the user interacts in the 3D

space with the shape, a new node is created. This is what a lot of tools actually do

to keep track of the edition history. The operations do not need to be aware of the

programmatic nature of the shape, all they process is the previous output, so any

usual mesh processing technique can be applied.

However, such an history-based approach to DAG creation results in programs that

are very unlikely to return a meaningful output when one alters past operations.

There are twomain reasons that explain this lack of generalization: (i) this approach
produces a degenerate graph, whichmisses factorization and, more importantly, (ii)
the values of node parameters are too specific to the very instance of the parametric

shape that was being visualized when appending the node. For instance if the

designer translates some geometry by 5 units along the X axis, the value 5 is

recorded as-is in the history-based DAG, rather than recording the process that

led the designer to chose this value.

We have no direct access to this decision process, since it runs mainly in the

designer’s mind, but we can try to guess. For real or integer valued parameters,

this problem relates to alignment detection methods, e.g., StickyLines (Ciolfi Felice

et al., 2016).

But there is a specific type of node parameter that requires a different approach:

selection parameters. Many operations take as input a selection parameter, that

states which area of the geometry must be affected. It is a set of vertices, edges

and/or faces, and the most straightforward way to represent it is as a list of indices.

For instance an extrusion operation is usually not meant to extrude all faces, so it

takes a list of face indices as input. But if upstream operations are modified and

produce a mesh with a different number of faces or a different connectivity, the

index of the faces that the designer intends to extrude is very likely to change.

We propose to replace the index-based representation of selections with a program-

based representation. We call this program a selection query, and we synthesize

48

this query from an example of input mesh and output selection set.

Contributions

• A method that turns a hand-picked selection of geometric elements into a

selection query i.e., a program that output a list of vertices, edges or faces.

This program can be applied to other geometries resulting from the same or

a similar upstream DAG of operations.

• A procedure that automatically augments the DAG to provide per-element

history features to help the query synthesizer.

III.2.1 Problem setting

Let F : 𝝅 ↦→ 𝐺 be a parametric shape whose output 𝐺 = F (𝝅) = (𝑉 , 𝐸, 𝐹) is a
3D mesh containing vertices 𝑉 , edges 𝐸 and faces 𝐹 . We focus on vertices in this

section, but the same applies to edges and faces. Let S be a selection of vertices,

namely a subset of 𝑉 . Let us now consider another instance 𝐺 ′ = F (𝝅 ′), and
its vertices 𝑉 ′. Our problem is to build a selection S′ ⊂ 𝑉 ′ that is semantically

equivalent to S (Figure III.1).

To define the notion of semantic equivalence, we first define the program-based

equivalence. For a program 𝑄 : 𝑣 ↦→ {true, false}, we deem S and S′ as 𝑄-
equivalent if S = {𝑣 ∈ 𝑉 | 𝑄 (𝑣) = true} and S′ = {𝑣 ∈ 𝑉 ′ | 𝑄 (𝑣) = true}. This

means that 𝑄 encodes the process that leads to selecting some vertices and not

some others, and that this process is the same for S and S′.

We say that S and S′ are semantically equivalent if there exist a well formed

program 𝑄 such that S and S′ are 𝑄-equivalent. A well formed program is a

program that could have written by a human and fully represents their intent.

Although this definition seems as ill-posed as just claiming that two point sets are

semantically equivalent, it turns our specific case into the fundamental problem

addressed by the Program Synthesis literature.

Our problem thus becomes to synthesize a program 𝑄 that behaves well on the

examples of𝑉 . For each vertex 𝑣 ∈ 𝑉 wewant𝑄 (𝑣) = true if 𝑣 ∈ S and𝑄 (𝑣) = false

otherwise. This set of examples enables us to draw from techniques of Programming

by Example.

This problem is well illustrated in our introductory example (Section I.3.4, Fig-

ure I.6), when the designer spends a lot of time ensuring that they split correctly

the top row from the other of slots: 𝐺 is a grid and S is its first row, and if 𝐺 ′

is a different grid, S′ must still be the first row. The best representation of the

selection is the sentence "the first row", rather than point indices. Although it is

conceptually a very simple query, actually encoding it into the program-based

representation critically affects the creation flow.

49

III.2.2 Related work

Creation workflows commonly rely on an alternation of selection and opera-

tion (Nishida et al., 2016), so the importance of a good selection process not

restricted to program-based representations (Guy et al., 2014). Nevertheless, the

problem of generalization to unseen instances of a shape program brings in specific

challenges. It is not sufficient to transfer the selection attribute across instances

using shape correspondence (van Kaick et al., 2011) because (i) it does not take
into account the information embedded in the program and (ii) does not enable
symbolic manipulation and audit of the selection rules.

The CAD literature identified the problem of automatically naming entities pro-

duced by a shape program (X. Chen & Hoffmann, 1995; Capoyleas et al., 1996;

Kripac, 1997; Agbodan et al., 2000), which is the point addressed by our trace

mechanism, but generally without proposing a creation workflow around. In the

specific case of shape grammars, Lipp et al. (2019) transform spatial changes into

program-space edits. Mathur et al. (2020) concurrently made the same observation

than ours, and developed a similar approach, leveraging program synthesis and

the notion of bidirectional programming. They use a different query language,

which is more focus on CAD applications and geometric patterns, and a different

synthesis algorithm. A key difference is our use of a trace-based entity naming.

Our algorithm is inspired by bottom-up recursive program synthesis (Albarghouthi

et al., 2013), and we maintain explicit copies of individual partial programs – as

opposed to Version Spaces for instance (Lau et al., 2003). Program synthesis easily

focuses on database queries (C. Wang et al., 2017) as it usually implies an more

constrained program-space to explore. Also, instead of using a pre-existing query

language, we tune ours in order to ease the synthesis.

The idea of recording traces has already been used, for bidirectional programming

of 2D vector graphics (Chugh, 2016), or as a mean to augment the input of subse-

quent stages that rely on machine learning (Yang et al., 2022), even post rendering

(e.g., denoising). In our case, it is used to augment the input of a more symbolic

learning process, namely program synthesis.

III.2.3 Overview

We intend to synthesize a program 𝑄 whose input is a vertex 𝑣 and which outputs

a boolean 𝑏 ∈ {true, false}, given a set {(𝑣𝑖 , 𝑏𝑖)} of examples. We first present

in Section III.2.4 the input features that 𝑄 receives to describe 𝑣 , which we call

the trace of 𝑣 . This is all 𝑄 may use to decide whether 𝑣 should be selected.

Secondly we define the Domain Specific Language (DSL) that 𝑄 is implemented

with (Section III.2.5). Lastly, we detail the program synthesis algorithm that we

use to explore the program space of this DSL and find the right 𝑄 (Section III.2.6).

50

1. The user
designs a DAG

2. The user
selects points

for humans

for machines

4. The user
alters the DAG

5. Our seman�c query
selects relevant points

3. Our system synthesize
a seman�c query

Figure III.1: Our query synthesis takes place in the following workflow: the designer

defines S by hand selecting geometry in one instance of a DAG-generated shape (2.),

then our methods infers a program 𝑄 which is equivalent to the selection (3.) such

that when the DAG changes (4.) our program 𝑄 produces a semantically equivalent

selection S′ in the new geometry (5.).

III.2.4 Per-element trace recording

When we say that the target program 𝑄 takes as input a vertex 𝑣 , we must define

more exactly which data it receives. Except for really simple cases, the index of

𝑣 is not enough, so we provide other input features to 𝑄 . These features are (i)
geometric information and (ii) historic information.

Geometric information consists in both spatial data, such as the position of a vertex

or the normal of a face, as well as connectivity data e.g., a number of neighbors. In

this report though, we focus mainly on historic information, leaving geometric

properties to Mathur et al. (2020) and future work.

III.2.4.1 Predicates

Historic information tells which modeling operations affected the elements of

geometry, and what role the element was playing during the operation. Each

element e.g., face 𝑓 of the geometry is thus labeled with a trace T𝑓 , namely a list

of predicates of the form Operator (Role). For instance, in an extrusion operation,

the face that was extruded plays a different role than the new side faces created by

the extrusion. This role is represented as a list of parameters.

Symbolic role Predicate parameters can be abstract symbols; for instance, in

the previous example, extrusion faces are labeled with the predicates respectively

Extrude (FRONT) and Extrude (SIDE).

51

Integer role Predicate parameters may also be integers; for instance to differen-

tiate duplicates in a repetition operation or to loops in a loop cut operation. Integer

parameters are also used for predicates representing primitive generators: a grid

generator initializes the trace of each vertex (𝑖, 𝑗) with a predicate Grid (i, j).

In a selection query, integers can be either treated as if they were abstract symbols,

or be involved in integer expressions, using modulo to carry on dashed selection

such as "select one point every three points".

III.2.4.2 DAG Amendment

In order to compute the trace T of each geometric element, we must alter the

nodes of the DAG, so that they append their associated predicate to the geometry

they process. In practice we do not need to fully rewrite DAG nodes, but rather to

wrap them into trace wrangling operations. This non invasive approach, which

we call DAG amendment, enables ones to integrate easily into existing DAG-based

frameworks, and we will use it again in Section III.3.

There are two points to consider to assign a trace T𝑒 to an element 𝑒 generated by

a node 𝑛, namely (i) the role that 𝑒 played in 𝑛, and (ii) the previous trace of 𝑒 , to
which the new predicate must be appended.

Role The first point must be treated for each node type individually (each

possible operation), but is usually quite straightforward. For instance for the

extrusion operation, when implementing our method in Houdini we use the groups

that the extrusion node can create for the side and the front geometry, and in

Blender we can rely on vertex indices to characterize the front geometry. We call

𝑃𝑛𝑒 the predicate produced by the node 𝑛 for its output element 𝑒 .

Parent trace Difficulties arise when it comes to finding the history of 𝑒 prior to

𝑛. We need to related elements of the output mesh of a node to the elements of its

input mesh (or meshes). Here we make the assumption that, either by wrapping

the node or in its core behavior, we can find a weighted set {(𝑒′
1
,𝑤1), . . . , (𝑒′𝑘 ,𝑤𝐾)}

of elements 𝑒′
𝑘
of the input meshes with weights𝑤𝑘 ∈ (0, 1) which sum to 1.

When 𝐾 = 1, we define the trace T𝑒 of 𝑒 as the input trace T𝑒′
1

appended with 𝑃𝑛𝑒 .

When 𝐾 = 0, we are unable to relate the new element to any previous one, so we

initialize T𝑒 to [𝑃𝑛𝑒]. When 𝐾 > 1, we compute the longest common subsequence

LCS of the T𝑒′
𝑖
.

T𝑒 = LCS

𝑖<min(𝐾,4)

(
T𝑒′

𝑖

)
+ [𝑃𝑛𝑒] (III.1)

Since the LCS problem is NP-hard for an arbitrary number of traces, we use at

most 4 traces, discarding the ones with a lower weight 𝑤𝑖 . We can thus use

52

dynamic programming algorithm from Hirschberg (1975). A short history of other

approaches to the LCS problem can be found in Bergroth et al. (2000).

Importantly, we compute the LCS on the sequence of predicate names, ignoring

the role part. The roles in the output trace are set either to their original value if

it was the same in all traces T𝑒′
𝑖
, or the special wildcard value ’_’ otherwise. For

instance:

LCS (
[Circle (1), Extrude (FRONT), Extrude (_), LoopCut (1)] ,
[Circle (2), Extrude (FRONT), LoopCut (2)]

) = [Circle (_), Extrude (FRONT), LoopCut (_)]

NB The need need to relate the elements of the output mesh of a node to the

elements of its input meshes is also a requirement of our DAG amendment

of Section III.3.

III.2.5 Domain Specific Language for Selection Query

The language that we define for representing queries is composed of patterns, which

select geometric elements based on their trace or spatial properties. Patterns are

combined together using basic boolean operations, namely Union and Difference.

In case no pattern-based query can be found, indices can be used to define a

selection, thus falling back to the naive solution. The syntax of our query language

is summarized as follow:

query := MatchIndex (int)

| MatchPattern (pattern)

| Union (query, query, . . .)
| Difference (query, query)

pattern := Predicate (role, role, . . .)

| Geometric (expression)

role := int

| symbol

| wildcard

53

(a) (b) (c)

Figure III.2: The example selection S from (a) can be matched by multiple queries

𝑄 like the examples of (b). These query generalize in different ways when the shape’s

hyper-parameters change, as shown in (c). We use a weighted size to define which

one is the best option.

Predicate-based patterns Such a pattern matches an element if the element’s

trace contains a predicate of the same name, with matching roles. For instance, the

query MatchPattern (Subdivide) means to select all elements that were involved in

a subdivide operation. This is refined when the predicate is parameterized with a

role. Pattern’s role parameters can be symbols or integers, or the special wildcard

symbol to match any role.

Geometric patterns A geometric pattern selects elements based on spatial

properties (proximity to a certain location, maximum in a given direction, etc.) or

connectivity (number of corners to a face, number of neighbors, etc.). The syntax

of the expression provided to a Geometric pattern varies whether the query is meant

to select points, edges or faces. Our experiments do not make use of geometric

pattern, we leave it here for future developments.

III.2.6 Query Synthesis

Synthesizing a query 𝑄 consists in (i) exploring the space of all programs that

can be formed using the above-defined language, (ii) keeping the ones that re-

spect the positive examples 𝑃 and negative examples 𝑁 and (iii) returning the

program that is the most likely to be written by a human. The main challenges are

that the program space is so huge that its exhaustive exploration is not possible

(Section III.2.6.2), and the question of what a human would have programmed is ill-

defined (Section III.2.6.1). We start with the later because knowing which programs

are most relevant drives the way we optimize our program-space traversal.

54

FilterPa�erns()

BuildPa�erns()

BuildUnions()

rec Synthesize(

MatchPattern

Union

Difference

),

Synthesize():,

Figure III.3: Main steps of our query synthesis method, presented in Algorithm 1.

III.2.6.1 Best program selection

To distinguish which query the user intends to express among all queries that

correctly match the input examples, we rely on a simple priors, known as Ockham’s

razor: the shorter the better. The shorter program that performs a task is the

most likely to grasp the semantic intent that led to selecting elements. On the

contrary, longer programs are in danger of over-fitting the examples, as illustrated

in Figure III.2.

The size of a program is defined recursively as the number of nodes in its abstract

syntax tree: aMatchPattern (...) has size 1, aUnion (A, B) has size 1+size(𝐴)+size(𝐵),
etc. We encode in this measure our intent to foster pattern-based selection over

naive index-based selection by assigning a size of 3 to a MatchIndex (...) node.

III.2.6.2 Program space exploration

Given the grammar of our query language, we adopt bottom-up approach to

generate queries. We first enumerate possible programs by starting from terminals

nodes to build unions of patterns. Then we follow the spirit of synthesis through

unification (Alur et al., 2015) to extend to the Difference operation by recursively

synthesizing a query correcting false positives.

55

The main outline of our method is summarized in Algorithm 1 and illustrated in

Figure III.3. It takes as input a set of positive examples 𝑃 = S (traces that must

be selected) and a set of negative examples 𝑁 (traces that must not be selected).

Throughout the algorithm, we also encounter false positives of a query 𝑞, which

are elements that are matched by 𝑞 but belong to 𝑁 , and inversely false negatives

of 𝑞, which are not matched by 𝑞 but belong to 𝑃 .

ALGORITHM 1: The outline of our recursive query synthesis algorithm. Calls

(1) and (2) contain heuristics that reduce the program space exploration in order

to speed up synthesis. Each union query returned by (2) comes with its set of false

positives 𝑃− .

Data: Positive examples 𝑃 and negative examples 𝑁

Result: A query 𝑄 such that ∀𝑝 ∈ 𝑃,𝑄 (𝑝) = true and ∀𝑛 ∈ 𝑁,𝑄 (𝑛) = false

fn rec Synthesize 𝑃 , 𝑁 :
patterns← BuildPatterns(𝑃 , 𝑁);

if FindPerfectPatterns(patterns) as 𝑝 then
return MatchPattern (𝑝);

end
patterns← FilterPatterns(patterns) ; (1)

unions← BuildPatternUnions() ; (2)

candidates← {};
foreach (query, 𝑃−) ∈ unions do

if 𝑃− ≠ ∅ then
exception← Synthesize(𝑃− , 𝑃);
query← Difference (query, exception);

end
candidates← candidates + {query};

end
return argmin

𝑐∈candidates
size(𝑐);

end

Pattern construction In the function BuildPatterns(), we build all predicate-

based patterns that match at least one of the positive points. For each selected

element 𝑒 ∈ 𝑃 , it iterates through all predicates 𝑝 ∈ T𝑒 and consider all patterns

that match 𝑝 . Given a predicate Predicate (a, b, c), matching patterns are gener-

ated by replacing any subset of the role parameters by the wildcard symbol e.g.,

Predicate (_, b, c), Predicate (_, b, _), etc. It returns a list of patterns together with

their false positives 𝑃− and false negatives 𝑁+.

A pattern is called perfect if it has neither false positives nor false negatives. When

one exists, it is an obvious solution to the program synthesis problem.

Pattern filtering When there is no perfect pattern, there are still ones that are

better than others. A pattern that does not match all points but has no false positive

is a good candidate to be part of a union-based query. A pattern that matches all

56

true positive points plus some false positives can be used in a difference-based

query. More generally, we rank patterns based on the size of 𝑃− and 𝑁+:

𝑠𝑐𝑜𝑟𝑒 (𝑝𝑎𝑡𝑡𝑒𝑟𝑛) =

+∞ if 𝑃− = ∅
+∞ if 𝑁+ = ∅

1

|𝑃− | + 𝛼 |𝑁+ |
otherwise

(III.2)

The constant 𝛼 represents the importance of false negatives relatively to false

positive, we use 𝛼 = 2 in our experiments. The function FilterPatterns()

eliminates all patterns whose score is bellow a threshold set to 𝛽 time the highest

non-infinite score. The value of 𝛽 can be as low as 0 not to filter anything. This

results in a broader exploration of the program space, which is slower but more

likely to find the good query. A value higher than 1 means to only keep patterns

that have either no false positives or no false negatives. In our experiments, we

use 𝛽 = 1/3.

Unions We combine the remaining patterns into Union queries that have no

false negatives. A naive baseline would be to generate all subsets of the filtered

collection of patterns, and keep all subsets whose intersection of 𝑁+ is empty.

However, there are too many such subsets in general, so here again we prioritize

some combinations.

First, if it exists, a minimal union with no false positives can be built by greedily

collecting the patterns that have the smallest 𝑁+ among the ones that have no 𝑃− .
Such a union is a valid query for our synthesis problem.

Then we consider subsets of patterns by increasing cardinal. Subsets of cardinal

1 are patterns that have no false negatives. Subsets of size 𝑘 + 1 are built from

subsets of size 𝑘 by adding a pattern only if it strictly reduces the number of false

negatives. When this number falls to 0, the union is deemed valid. We rank valid

unions using the same score as for pattern filtering and use the same threshold to

eliminate the poorest unions. In order to limit the exponential number of recursive

calls, we stop after a minimal amount of 𝛾 = 8 valid unions have been synthesized.

Recursion The last step of our synthesis process consists in building recursively,

for each union 𝑢, a query 𝑒 that matches all the false positives of 𝑢 and none of

its true positives. If 𝑒 is found, Difference (𝑢, 𝑒) is a correct query for our initial

problem. Elements not matched by 𝑢 do not matter and are thus removed in the

nested call, making it slightly faster.

We limit to recursion depth to 𝛿 = 3; queries synthesized from a higher depth

would in general feel convoluted to a human, stating selection rules based on

exceptions of exception of exceptions etc.

57

III.2.7 Results

III.2.7.1 Experimentation

Setup We implemented our trace recordingmechanism for vertices going through

6 types of DAG nodes:

• a grid generator, which marks the point at grid coordinate (𝑖, 𝑗) with the

predicate PCreateGrid (𝑖, 𝑗);

• a circle generator, which orders points PCreateCircle (𝑖);

• an extrusion, which marks points with either PExtrude (FRONT) when they

are new points, PExtrude (BACK) when they are points from which new

points have been added, or nothing for other points;

• a loop cut, which cuts face loops one or more times and marks points from

the 𝑖-th cut with PLoopCut (𝑖);

• a duplicate, which copies multiple times a part of the mesh and marks points

from the 𝑖-th duplicate with Duplicate (𝑖);

• a transform node, which move points according to a rigid transform matrix.

Since it does not affect the connectivity of the mesh, we do not add any

predicate.

Our semantic selection process is considered as a DAG node as well: the extrusion,

the loop cut and transform operations use a selection parameter to restrict their

effect to one area of the mesh only, and this selection can be driven by a semantic

selection node.

Workflow The designer first builds a DAG. On one output of this DAG, they

manually select some geometry, then validate to trigger our query synthesis routine.

In a second time, they change the hyper-parameters of the graph and see whether

the selection adapts correctly to the new shape. If not, they can manually fix the

selection and refine the query. In such a case, the synthesis algorithm receives

positive and negative examples from both instances on which there has been a

manual selection and thus tries to build a query that works in both cases.

Synthesis Figure III.4 shows examples of results of our query synthesis method.

The designer can audit the meaning of the selection query by looking at its human

readable version (although this version of the query may be subject to ambiguities).

The hyper-parameter that we vary is often the resolution of initial primitives since

it is what most commonly break index-based selection.

Performance With our choice for parameters 𝛼 , 𝛽 and 𝛾 , we are able to run our

query synthesis in a few hundreds of milliseconds. This enables us to synthesize

a new query each time the designer changes the example selection. Figure III.6

58

(a)
"Select the 3rd plane row except the

4th point of the 3rd plane row."

(b)
"Select all plane's point

except the 4th plane row."

(c)
"Select the back of the extruded

area except all loopcuts"

(d)

"Select the 2nd duplicate except

1st loopcut and 2nd loopcut"

(e)

"Select the front of the extruded area except all

plane's point except the back of the extruded area"

(f)

"Select the 2nd duplicate except

1st loopcut and 4th loopcut"

Figure III.4: Examples of result of our query synthesis method. Left to right: the

original user selection S, the generated query 𝑄 , an automatically derived human-

readable version of 𝑄 , and the selection S′ after changing some hyper-parameter.

The DAG corresponding to each shape is shown in Figure III.5.

shows how this performance evolves when varying the parameters. Overall, the

complexity is exponential in the recursive depth, but it is anyways unlikely that

the query considered most appropriate by a human operator requires more than a

59

Create Grid

Seman�c Selec�on

Create Circle

Extrude

Seman�c Selec�on

Loop Cut

Create Grid

Extrude

Seman�c Selec�on

Loop Cut

Loop Cut

Extrude

Create Circle

Extrude

Seman�c Selec�on

Loop Cut

Duplicate

Transform

Transform

Figure III.5: Generation DAGs used by the examples of Figure III.4. Selection inputs

have been hidden to simplify display.

few levels of recursion.

III.2.7.2 Discussion

Limitations Our method may fail in three different ways. The first one is

illustrated in Figure III.7: the domain specific language we use to represent queries

cannot express all the possible high level intents of the designer. This includes

all selections based on geometrical features such as face orientation or proximity

to a given location since we did not include the Geometric () predicate in our

experiments.

Another case of failure is the one of queries that are too convoluted and thus

optimized out by our pattern filtering method. A solution is to lower the 𝛼 and

𝛽 thresholds and increase the number 𝛿 of recursions, at the price of a longer

synthesis (Figure III.6).

Lastly, our choice of returning the program of minimal size, among the ones that

could be synthesized, may not match the intent of the designer. The possibility

for the designer to correct the automatic selection on another example mitigates

this issue though, and another solution could be to prompt them for the best

human-readable query.

Analysis In a way, trace recording is a symbolic equivalent of automatic differ-

entiation (Baydin et al., 2018), hinting about how to incrementally change the input

to reach a given change in the output, so we believe that trace-based approaches

and program synthesis are promising when applied to shape programs. Our query

language model and synthesis strategy are fairly simple, but they already behaves

in a much more meaningful way than the naive index based selection used in

almost any tool.

60

maximum recursion depth

1 2 3 4 5

sy
n

th
es

is
 �

m
e

(s
)

0

1

2

3

4

5

6

7

8

9

with pa�ern filtering

without pa�ern filtering

Figure III.6: Synthesis time for the example of Figure III.4.f with varying recursion

depths, with (𝛽 = 1/3) and without (𝛽 = 0) our pattern filtering method. The

complexity remains exponential but becomes usable at interactive rates when filtering

is enabled. Standard deviation is lower than the thickness of plot lines (on 10 samples).

(a)

(b)

(c)

"Select the 2nd plane row except the back

of the extruded area and 1st loopcut"

"Select the 2nd plane column except the back of

the extruded area, the 1st loopcut, the 2nd point

of the 1st plane row and the 1st plane row"

"Select all circle's point except

1st loopcut and 3rd loopcut"

Figure III.7: Cases of failure of our method. In (a) our system does not synthesize

the expected query, which is to select only the front of the last extrusion, so we give

another training example (b). It is still not enough because our DSL cannot distinguish

the second extrusion from the first one. In example (c) the hyper-parameter is the

number of loop cuts. Our DSL is not able to encode the notion of "middle" loop cut.

III.2.8 Future Work

A wide range of possible improvement can be built upon our query synthesis

approach. Some consist broadening the query language in order to encode a wider

61

diversity of intents, either by adding new constructs or introducing more powerful

index expressions, others are related to improving the synthesis method. Both of

these points would benefit for a closer comparison to the work of Mathur et al.

(2020).

III.2.8.1 Variants of the query language

Spatial queries As mentioned already, the Geometric pattern would be an im-

portant improvement of the query language, since it is common for the designer to

rely on spatial properties of the mesh elements, e.g., when selecting only faces that

point upward. However this inflates the program space with many equivalently

relevant queries to disambiguate from, and even make it continuously infinite

when using inequalities on real numbers.

Neighborhood queries Our model of selection query is mostly declarative, like

a SELECT query in SQL for instance. But we could combine it with imperative

operations, in particular morphological operations (dilatation, erosion) which

propagate the selected state to the direct neighbors of a mesh element.

Intersection We currently have no intersection operation in the query language.

We could start by introducing first-level intersections only, to make synthesis

easier. First-level intersections can only combine queries of the type MatchPattern

or MatchIndex, but no Difference or Union.

A powerful construct to add is the ordered intersection. This is a first-level intersec-

tion which also checks that the patterns matched by its sub-queries appear in the

very same order in the element’s trace. This enables one to say "select points that

were first part of a loop cut and then involved in an extrusion" and addresses the

problem raised in Figure III.7.a and III.7.b.

III.2.8.2 Integer expressions

In the method we have described, integer roles are handled exactly as if they were

abstract symbols. The numeric nature of these roles could be better used.

We could for instance allow queries to count downwards, thus querying for row

width − 𝑖 in a grid of width points wide. An easy integration of this feature is to

extend the PCreatePlane (𝑖, 𝑗) to include width − 𝑖 and height − 𝑗 as extra roles.

The index may also be used to detect dashed selection. We can for instance use

the following integer expression in patterns:

int := constant

| Modulo (int, int)

62

The constant matches only one possible index, andModulo (a, b) matches all indices

𝑖 such that (𝑖 − 𝑏) ≡ 0 mod 𝑎.

These integer expressions could be used in predicate matching, but also inMatchIn-

dex, or even in a new construct MatchIndexInSubquery (int, query) that would

combine semantic querying with a more arbitrary index-based picking at the end.

III.2.8.3 Variants of the synthesis algorithm

Programming by Demonstration We followed in this section the program

synthesis principle of Programming by Example, but we could go one step further

and do Programming by Demonstration by recording the different selection steps

that the user follows (item by item, or loop select, etc.) instead of only using the

resulting list of indices as example of output for our synthesis. This would allow

the synthesis to be more constrained, thus faster and more likely to fit the user

intent.

Outlier detection Our synthesis method assumes that the user-provided exam-

ple is free of any error. We could however look for queries that are not perfect

but close enough to the user input and thus hint the user for potential mistakes in

their hand-selection.

Program space exploration Other techniques can replace our exponential

recursion scheme, Mont-Carlo based exploration or decision trees. Quickly esti-

mating an upper bound of the minimal query size would enable the use of adaptive

values for thresholds 𝛼 and 𝛽 .

Evaluation Since our end result relies on the appreciation of the automatic

selection by the user, we must conduct a user study to validate our approach and

have an experimental evaluation of our performance. A key difficulty is to sample

appropriately the space of shape programs that are actually used in practice.

III.3 Co-parameterization for the differentiation of para-
metric shape

III.3.1 Introduction

The philosophy of DAG amendment is to alter the node graph in order to augment

the output geometry with extra information representative of the DAG execution.

Two DAGs leading to the same geometry but using different processes may thus

attach different extra information. Recording a full trace if a heavy process though,

so we now explore a more lightweight DAG amendment, which only adds a pair

of numbers to each face corner of the output mesh.

63

A�er stroke #1Ini�al hyper-parameters A�er stroke #2 A�er stroke #3

Input Parametric Shape

Figure III.8: Our method infers without any manual setup how to update the hyper-

parameters of a parametric shape to comply with an intent expressed as a brush

stroke on its visualization. This enables a more direct and intuitive interaction process

than tuning individual sliders, at no extra cost for the shape’s designer.

We still address what the CAD literature calls the naming problem, but this time

at the scale of individual points of the surface of an instance. We assume a certain

degree of regularity of the function F : 𝝅 ∈ Π ↦→ 𝐺 ⊂ R3
, since it is intended for

human interaction, so once we match points across multiple instances of a shape

program we can thus measure finite differences.

Differentiation enables to locally inverse a function and has a wide range of

application. In particular, in Section III.4 we use it to enable direct manipulation

of a DAG’s output geometry, back-propagating these changes to the input hyper-

parameters.

Contributions Our key contribution in this section is an amendment operator

for the parametric shape graph yielding a co-parametrization which associates

points across hyper-parametric variations and thus makes it possible to measure

point-wise shape jacobians efficiently.

Our approach is (i) automated – no extra effort is required from the shape’s

designer; (ii) flexible – it is possible to locally override the automated process

whenever it is needed, and falling back to other methods remains possible at any

time; (iii) non-invasive – it can fit into existing parametric shape engines without

requiring to rewrite the content of generation operations.

Hypotheses Although we tried to remain agnostic in the underlying DAG

engine – in particular we do not require it to be automatically differentiable – we

make the assumptions that the operations (a) process only mesh-based data (b)

can transmit extra attributes of the kind of texture coordinate from their input

to their output and (c) label the output geometry with a duplicate index (that we

denote 𝑗) when they duplicate input geometry.

64

III.3.1.1 Problem Setting

Let 𝑃 be a point of an instance 𝐺 = F (𝝅) of the parametric shape F . We would

like to measure the influence of the hyper-parameters 𝝅 on 𝑃 , as this is in essence

what differentiating means. Following the usual finite-difference based definition

of the differential, we consider 𝐺 ′ = F (𝝅 ′), where 𝝅 ′ = 𝝅 + 𝑑𝝅 is infinitesimally

close to the original hyper-parameter 𝝅 . In other terms, this consists in evaluating

the position of the point for two close enough values of an hyper-parameter and

measuring their difference. If we note 𝑃 ′ the equivalent of 𝑃 in 𝐺 ′, the definition
of the derivative of F in a direction 𝑣 could be, assuming that 𝑑𝝅 ∝ 𝑣 :

𝐷𝑣 (F)(𝝅) ≃ lim

∥𝑑𝝅 ∥→0

𝑃 ′ − 𝑃
∥𝑑𝝅 ∥ (III.3)

Even if F is regular enough for the limit to converge, there is a critical omission

in this definition: how do we define 𝑃 ′? The equivalent of 𝑃 in 𝐺 ′ is an ill-defined

notion.

As long as the point 𝑃 is only identified by its 3D location, the best we can do is

to look at its relation to other points in the same shape. This is at the heart of

the field of shape correspondence techniques. But this approach requires heavy

geometry analysis processes which are incompatible with interactive applications,

and misses the semantic information contained in the structure of the DAG.

Our approach consists in augmenting the output of F so that each point comes

equipped with an identification information that can be used to quickly "recognize"

𝑃 in 𝐺 ′. This information is called the co-parameter 𝑎𝑃 of 𝑃 and 𝑃 ′. As illustrated
on a simplified example in Figure III.9, there are multiple ways to co-parameterize

a parametric shape. In our work we leverage the information contained in the

DAG to pick one that is relevant to the designer’s use case.

Terminology Here are the key terms we use along this section.

A Parametric shape F is a function mapping input values 𝝅 called hyper-parameters

to 3D surface meshes. An instance of the parametric shape is this 3D surface mesh

for a fixed value of the hyper-parameters.

A Single-point parametric subshape takes as input the same hyper-parameters than

the original parametric shape, but only outputs a single point from the corre-

sponding instance. It may be undefined for some values of the hyper-parameters,

otherwise returns point that has the same meaning.

The parameter of a 3D point of an instance designates a 2D coordinate that indexes

this point and is often used for texture mapping.

The co-parameter 𝑎 of a single-point parametric subshape is a coordinate that

indexes this subshapes among all the other ones. By extension, the co-parameter

65

(a) (b)

(c)

Figure III.9: (a) A simple 2D parametric shape with a single hyper-parameter 𝜋

and (b) some of it’s instances. A co-parameterization of F is a parameterization

of its graph H in dimensions dim(Π) + dim(R2), and as shown in (c) multiple co-

parameterization of a same shape are possible.

of a point of an instance is the co-parameter of the single-point parametric subshape

that this point is an instance of.

III.3.1.2 Related Work

Shape correspondence We mentioned our need to identify points across multi-

ple meshes of potentially varying connectivity; this is commonly referred to as

shape correspondence or cross-parameterization (Schreiner et al., 2004; Kraevoy &

Sheffer, 2004; Kilian et al., 2007). It consists in mapping each point from a shape to

points that have the same semantic but in other shapes.

van Kaick et al. (2011) surveys a large variety of shape correspondence works, and

more recent work even try to match dissimilar shapes (Hecher et al., 2018). But

this field focuses generally on offline registration of a small number of geometries,

while we have to register a continuous infinity of meshes. Some works build

correspondences for large amount of objects. Mahmood et al. (2019) addresses the

lack of consistent parameterization among datasets of human bodies, but is hand

tuned for this very use case. Leimer et al. (2017) creates a parametric shape by

registering together a whole collection of shapes. Unfortunately these methods

are offline and resource intensive. Furthermore there are no geometric features

guaranteed that wemay rely on to in general. For all these reasons, we adopt a quite

different approach. Establishing a shape correspondence is a semantic operation,

so we leverage the implementation of the parametric shape – the DAG – because its

structure carries semantic information beyond what the output geometry shows.

66

a co-parameteriza�on

hyper-parameteriza�on

parameteriza�on

(w,l)

Figure III.10: We need to recognize a point after a change of the hyper-parameters

𝝅 . We model this using three notions of parameterization. M𝐺 : P𝐺 → 𝐺 ⊂ R3

is a parameterization as meant in parameterized surfaces. The parametric shape

F : Π → {𝐺} itself is a higher-order parameterization. SinceM𝐺 is not enough

because in general it is different for each 𝝅 , we introduce C : Π → (𝐴→ R3) which
outputs parameterizations consistent among all the geometries resulting from F .

III.3.2 Co-parameterization

III.3.2.1 Co-parameter definition

As highlighted in Section III.3.1.1, the jacobian of a parametric shape F is ill-

defined, because the function F : 𝝅 ↦→ 𝐺 returns a set of many points – an

infinity of points – with no way to recognize one among them. Any differentiation

scheme, be it automatic, suffers from this definition issue. We thus introduce the

notion of co-parameterization of F , a way to extract what we call single-point

parametric subshapes of the form 𝝅 ↦→ 𝑥 ∈ R3
. Contrary to F , these subshapes

can be differentiated.

The usual way to identify a point on a geometry is to parameterize it. Importantly,

this must not be confused with our hyper-parameterization (see Figure III.10). It

consists in defining for a fixed geometry 𝐺 a bijectionM𝐺 : P𝐺 → 𝐺 mapping to

each point of 𝐺 a parameter from a set P𝐺 . Such a parameter can typically be a

unique texture coordinate or – in the case of meshes – a face index together with

barycentric coordinates. There are in general many different ways of parameteriz-

ing a given geometry.

The problem in our case is that this mappingM𝐺 may depend on 𝐺 = F (𝝅), and
so on the hyper-parameter 𝝅 . As a consequence, it is of no use to recognize a point
after 𝝅 changed. Hence the need for a collection C of consistent parameterizations,

each associated with a different 𝝅 but all sharing the same parameter set A:

C(𝝅) : A −→ F (𝝅) ⊂ R3

67

The strength of this second order function C is that it may be uncurried because

A does not depend in 𝝅 , so

C : Π −→ (A −→ R3)

becomes

˜C : Π × A −→ R3

and may even be curried back with its arguments swapped:

¯C : A −→ (Π −→ R3)

We call
¯C a co-parameterization of the parametric shape F andA its co-parameter

set. It plays a role similar to the surface parameterization but in the space of

parametric shapes. With these notations, for each 𝑎 ∈ A the function
¯C(𝑎)

is a differentiable object, for which using for instance finite differences makes

sense. We call this a single-point parametric subshape of F (the output of step 1 in

Figure III.21).

So, to determine the influence of the hyper-parameters on a point 𝑝𝑖 sampled on

the geometry 𝐺 = F (𝝅), we actually consider its co-parameter 𝑎𝑖 = C(𝝅)−1(𝑝𝑖)
and evaluate the jacobian 𝐽𝑖 (𝝅) of ¯C(𝑎𝑖) at 𝝅 . The co-parameter 𝑎𝑖 of a point 𝑝𝑖 is

thus the way to "recognize" it after a change of the hyper-parameters. We discuss

in the next section how to build this co-parameterization in practice.

III.3.2.2 Automatic DAG Amendment

We assume in this section that the geometry produced by the parametric shape F is

a 3D surface mesh. We automatically modify F so that the geometries it produces

have each of their face corners labeled with their co-parameter (Figure III.12).

Thus, sampling a 3D point 𝑝𝑖 onto the output mesh also provides its co-parameter

𝑎𝑖 = C(𝝅)−1(𝑝𝑖) by interpolating the co-parameters of the corners of the face that

𝑝𝑖 belongs to (Figure III.22.a).

Without loss of generality, we can model the implementation of F as a DAG whose

nodes are mesh processing operations. Hyper-parameters affect the behavior of

individual nodes, but the connectivity of this graph remains static. Our automatic

modification of F consists in inserting new nodes into this graph. It is non-invasive

in the sense that it does not require to bring any change to the internal logic of

individual nodes. The co-parameter attribute 𝑎 that we intend to create at each

face corner must be:

• unambiguous – There must not be two points sharing the same value of 𝑎.

68

1

4

2 2

l�=4

l�=1

l�=2+2l�=2

l=0
w=uv

l=0
w=uv(a) Original DAG

(c) Insert path index nodes(b) Count leaf-to-root paths

LeafInternal

Root Inserted

Figure III.11: We identify points across different outputs of a DAG (modeling the

implementation of the parametric shape) using two attributes attached to face corners.

𝑤 is a copy of the parameterization (UV) at the leaf the face corner comes from. 𝑙

is a unique index of the leaf-to-root path that generated the face. We first count the

number of paths flowing through each input of each node (b). We then automatically

insert nodes (c) to first initialize 𝑙 to 0 after each leaf and offset 𝑙 before any input by

the number of paths flowing through previous inputs of the same node. As a result,

each face corner of the output geometry is labeled with a unique path index.

a0

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a13

a14

a15

a16
a17

Co-parametersOutput geometry

Figure III.12: The output of the DAG is augmented with a co-parameter labeling

each face corner.

• interpolablewithin a face – In order to infer any point’s co-parameter from

the value at the corners of its face.

69

l l�n�j j=1j=0

Mirror node

...count as 2n paths
downstream

duplicates up to m=2 �mes

<

n paths upstream...

j=1j=0

amendment

Figure III.13: A node that duplicates geometry up to𝑚 times and has 𝑛 incoming

paths is considered downstream as being traversed by 𝑛 ·𝑚 paths. Assuming there

is a way to infer the index 𝑗 of the duplicate a face belongs to, the path index 𝑙 is

replaced by 𝑛 · 𝑗 + 𝑙 .

• consistent across possible values of the hyper-parameters – To ensure the

continuity of the single-point parametric subshapes 𝝅 ↦→ R3
that we extract.

We split𝑎 into a real component𝑤 and an integer component 𝑙 . The real component

is technically no different from a texture coordinate, which is also a real vector

attached to face corners. The integer component must be constant across a given

face in order to ensure interpolability, so it may in practice be attached to faces

rather than corners.

The attribute 𝑙 of a face contains the index of the data flow path that generated it

(Figure III.11.b). This information is consistent since the connectivity of the DAG

never changes once the shape has been modeled. Disambiguating faces generated

through the same path is ensured by the real component 𝑤 that is given by a

standard parameterization of the leaf of this path.

Construction We first insert a node after each leaf of the DAG. This node

initializes𝑤 by copying the canonical texture coordinate output by the leaf. When

the leaf node generates meshes of constant connectivity, any fixed automatic

parameterization (auto UV unwrapping) can be used. When the node is a primitive

shape (sphere, cylinder, box, etc.), its canonical parameterization works. Practical

mesh-based parametric shape engines support forwarding face corner attributes

through their internal nodes like any other texture coordinate, so 𝑤 is hence

defined at the output of the DAG.

To produce the integer part, we first initialize it to 𝑙 = 0 after each leaf (in the same

node that initializes𝑤). Then, before the 𝑘-th input of an internal node, we add a

node that increments 𝑙 by
∑
𝑖<𝑘 𝑛𝑖 where 𝑛𝑖 is the number of paths going through

input 𝑖 (see Figure III.11).

The goal of the index 𝑙 is to disambiguate cases where𝑤 overlaps. Counting paths

is a way to address cases caused by nodes that combine several input meshes,

like a boolean operation (difference, fusion, intersection). The other major source

70

ALGORITHM 2: Our DAG rewriting algorithm.

CountPaths(dag.root);
for 𝑛 ∈ dag.nodes do

𝑐 ← GetMaxDuplicates(𝑛);

if IsLeaf(𝑛) then
InsertAfter(𝑛, MakeInitNode());

else if 𝑐 > 1 then
InsertAfter(𝑛, MakePostDuplicateNode(𝑐));

sum← 0;

for input ∈ 𝑛.inputs do
if input.index > 0 then

InsertAfter(𝑛, MakeIncrementNode(sum));

end
sum← sum + input.𝑝𝑎𝑡ℎ_𝑐𝑜𝑢𝑛𝑡 ;

end
end

of overlap is duplication nodes (mirror, copy and transform, scatter, etc.). To

include this into our framework, we multiply the number 𝑛 of paths flowing

into a duplication node by the maximum number𝑚 of duplicates it may produce

(Figure III.13). If the duplication index 𝑗 has a finite number of𝑚 possible values

(for a mirror, 𝑗 ∈ {0, 1}), we insert after the duplication a node that replaces 𝑙 with

𝑛 · 𝑗 + 𝑙 .

If the duplication index 𝑗 may take an arbitrary large value, we add an extra

dimension to the integer index 𝑙 to store it, promoting it to an integer vector.

Since the real component𝑤 is typically in [0, 1]2 the first two dimensions of 𝑙 are

emulated by offsetting𝑤 in order to alleviate memory usage.

Thus, each face corner of the output of the DAG is uniquely and consistently

identified by its path index 𝑙 and leaf parameter𝑤 . Our process is summarized by

pseudo-code in Algorithms 2 and 3.

III.3.3 Results

III.3.3.1 Implementation

Our DAG automatic amendment (Section III.3.2.2) is exemplified in Figures III.14

and III.15, show the original DAG and its amendment for example shown later in

Section III.4.3. Additional results are available in Appendix A.

Performances are reported together with the interactive results later on in Sec-

tion III.4.3. The relevance of amendments and thus of the jacobians we compute is

also evaluated in the interactive section by pooling users about their feeling when

using the resulting tool.

71

ALGORITHM 3: The recursive pseudo code of CountPaths. We memoize the

result at each node input in the field path_count.

Input: Some DAG node 𝑛

Output: The number count of path flowing through this node

if IsLeaf(𝑛) then
count← 1;

else
count← 0;

for input ∈ 𝑛.inputs do
if input.path_count is not defined then

input.𝑝𝑎𝑡ℎ_𝑐𝑜𝑢𝑛𝑡 ← CountPaths(input.connected_node);
end
count← count + input.𝑝𝑎𝑡ℎ_𝑐𝑜𝑢𝑛𝑡 ;

end
count← count · GetMaxDuplicates(𝑛);

end

(a) Original DAG (b) Amended DAG

l=0
w=uv

l=0
w=uv

l�=1

l�=2j

Lever
Toast

Merge

Duplicate
Transform

Transform

Figure III.14: Preview of the DAG amendment applied on the example of Figure III.8.

Small pink nodes in (b) are the node we insert. A more detailed version of this figure

can be found in the supplementary material.

NB Our process does not conflict with texture mapping (Figure III.16).

The real component𝑤 of the co-parameter is in nature similar to a texture

coordinate but in an extra layer. The texture mapping of the table example

received extra care from the designer so that the wood look of the plate is

extended rather than stretched when the size-related hyper-parameters are

edited.

72

Box

Plate

Leg
Scale XY

Mirror X&Y

Merge

Translate Scale

Scale Z

Scale YScale X

Merge

Mirror XMirror Y

Translate

l�=2

l=0
w=uv

l=0
w=uv

l=0
w=uv

l=4l�j

l=l+1*j l=l+1*j

l�=6

l�=5l�=4

Original DAG Amended DAG

l=l+46*j

l�=3

l=l+1*j

l=l+14*j

l=l+1*j

l�=2

l=0
w=uv

l=0
w=uv

l=0
w=uv

l=0
w=uv

l=0
w=uv

Original DAG (extract) Amended DAG (extract)

Tube

Copy 12 �mes around axis

Scale

Merge

Rotate

Repeat 3 �mes

Tube

Repeat 3 �mes

Intersec�on

Mirror

Merge

Cylinder

Box

Box

l�=1

l�=42

Figure III.15: Original DAG (left) and our automatic DAG Amendment (right) for

the example (c) and (e) of Figure III.24. Colored lines show the hyper-parameters

influencing an individual operation.

Texture UV
Co-param w

Figure III.16: Although the real component𝑤 of the co-parameter behaves like a

texture coordinate, it is stored in an extra attribute so it does not prevent the shape’s

designer to customize texture mapping.

III.3.3.2 Limitations

Co-parameterization Our proposed model of co-parameterization relies on

the practical ability of the DAG nodes to forward extra attributes on face corners.

Although this can be seen as a restriction, it is a very reasonable assumption

73

Figure III.17: Limitation: The only operation of this parametric shape consists in

moving a vertex and its neighborhood. The hyper-parameter defines which vertex

is selected rather than how to move it, so the Jacobians of single-point subshapes

(lines shown in the middle figure) do not match the intuitive influence of the hyper-

parameter.

provided that production-ready parametric shape engines usually need this feature

in order to conserve texture coordinates.

Some nodes though introduce overlaps in UVs even when there was none in their

input (e.g
˙
, some smoothing algorithms). Some other nodes are simply not able to

assign face corner attributes to their output (e.g
˙
, a convex hull node). Discrete

hyper-parameters like the number of repetitions, in a duplication operation, are

not handled by our approach as is because it makes the single-point subshapes

non differentiable.

It is nonetheless always possible for the shape’s designer to manually overcome

these cases by adding extra nodes dedicated to fixing the𝑤 attribute. Figure III.18

shows an example where a continuous box proxy is used to override the value of

𝑤 after a duplication.

Unintuitive jacobians When an hyper-parameter acts on the selection from

a geometry that gets affected by an operation rather than the way the operation

itself moves points, the jacobians of single-point subshapes may no longer match

the intuition of the end-user (see Figure III.17).

III.3.3.3 Future Work

More semantic One of the strengths of our approach is to leverage the semantic

information carried by the DAG. One could look for other ways of using it. For

instance, the depths of the nodes using a particular hyper-parameter could be used

to prioritize some of them during jacobian filtering (Section III.4).

Proxies In caseswhere limitations occur in the construction of the co-parameterization,

hand-tuned workarounds based on geometry proxies are possible. We could ex-

plore ways to automate this. For instance, in Figure III.18 a continuous box proxy

is used to override the value of𝑤 after a node on discontinuous operations. The

74

l=100l�j

Original DAG

Box

Repeat

Amended DAG

Box

Repeat

Manually edited DAG

l=0
w=uv

l=100l�j

Box

Repeat

l=0
w=uv

Transform

Copy a�ribute from the nearest neighborw

w

Height
Length

Hyper-parameters

Figure III.18: When one of the hyper-parameter has a non continuous influence like

the length here – acting on the number of repetitions – the designer may manually

amend the DAG after our process to make the real component𝑤 of the co-parameter

continuous anyway, for instance by projecting it from a box proxy.

Repeat node of this examples floors the length hyper-parameter, which prevents

the output from being differentiated after our regular DAG amendment. The proxy

is used to provide back continuity to the single point subshapes that are sampled

at the beginning of an interaction.

DAG pruning The restriction
¯C(𝑎) of the parametric shape F to the single

point of co-parameter 𝑎 ∈ A may not be affected by all the nodes of the DAG.

The graph could hence be pruned while measuring finite differences in order to

alleviate its evaluation cost.

Auto-differentiation Using automatic differentiation can make the nodes of the

DAG output a jacobian as part of their computation process. This replaces the time

consuming evaluation of finite differences and also enables to update the jacobian

buffer at each frame during a stroke. Cascaval et al. (2022) use this to better scale to

shapes with tenths of hyper-parameters, but their framework is limited to constant

connectivity, as advanced mesh processing nodes like boolean operations are non

trivial to implement using an automatic differentiation framework.

75

Figure III.19: A prototype of our method applied to a shape represented as a signed

distance field.

Adaptation to implicit representations of surfaces Our practical construc-

tion of the co-parameter 𝑎 = (𝑤, 𝑖) focuses on mesh-based representation of 3D

surfaces, but the overall approach and the notion of co-parameterization is more

general. We show for instance in Figure III.19 an implicit surface rendered using

sphere tracing for which we amended the signed distance function to also return a

path index 𝑙 and leaf parameter𝑤 . The evaluation of the position of a point given

its co-parameter is done by a secondary program, derived from the signed distance

function (manually, in this prototype).

III.4 Jacobian Filtering: Applying Inverse Kinematics
to Parametric Shapes

The core problem of parametric shape manipulation by the end user is that it does

not occurs in the 3D space but rather in the hyper-parameter space Π, which is

roughly a list of sliders in a user interface. Yet, the intent of the end-user is often

more naturally expressed in the 3D space. This mismatch results in a trial and

error loop that is dampening the creation process.

In some contexts like animation, this issue is such a deal-breaker than riggers are

asked to equip shapes with manipulators, which are handles lying in the 3D space

and whose transform drives some hyper-parameters. But creating these requires

extra time and skills on top of the design of the parametric shape itself.

In the workflow we target (Figure III.20), a technical designer first builds an object

using non-destructive modeling tools, and simply exposes some hyper-parameters

without minding manipulators, thus defining F . Lastly, the end-user edits the
hyper-parameters to customize the object. In between, our DAG amendment

76

(a) Shape Design (b) Our DAG Amendment

Parametric Shape
Parametric Shape
with co-parameteriza�on

(c) Our Interac�on Loop

+
Designer End User

Figure III.20: A common creation workflow separates (a) the designer of a parametric

object from (c) its end user. The former handles technical issues for the latter to be

fully dedicated to more artistic and intuition based matters (e.g
˙
, animation, staging).

Our method improves this end interaction without extra effort from the designer by (b)

automatically inserting a few nodes to the parametric shape’s graph representation

(DAG) produced by the designer.

Parametric Shape

Height

Spacing

Hole Y

Hole X

Height

Spacing

Hole Y

Hole X

Hyper-parameters Differen�ate2

Solve3

Single-point Parametric Subshapes

Jacobian Buffer
Hyper-parameter Change

Hyper-parameter Valua�on

Stroke Trajectory

Sample1

Brush

Update4

Figure III.21: Overview of our interaction loop. At the beginning of a stroke, points

are sampled around the user cursor to extract co-parameters 𝑎𝑖 and so single-point

parametric shapes
¯C(𝑎𝑖). Each of these is differentiated to measure their jacobians,

which are then provided to the solver. Confronting jacobians to the trajectory of the

cursor, the solver determines the update to apply to the hyper-parameters.

automatically modifies F so that besides the hyper-parameters sliders the end

user may directly manipulate the shape in the 3D view.

In this section, we introduce a method for interpreting user inputs expressed in the

3D viewport as changes in the hyper-parameter space without any extra controller

setup. Our key contribution is a non-linear filtering mechanism acting on the

the resulting jacobians to both regularize and sparsify the shape optimization,

fostering hyper-parameters whose behavior comply with the scale of the user

brush.

77

III.4.1 Introduction

III.4.1.1 Overview

Following a common painting metaphor, we model the user input as a series of

brush strokes. Each of these strokes must be interpreted as a modification Δ𝝅 of

the hyper-parameters. This grounds the interaction loop shown in Figure III.20.c

and detailed in Figure III.21. Our loop follows the usual approach of inverse control

problems, namely getting a differential information (Jacobian matrices {𝐽𝑖}) in
order to locally inverse the function F (the solver). For the solving part we can

draw from the IK literature, however this literature takes for granted the access to

the Jacobians, which is not obvious in our case.

In the previous section, we focused on how to theoretically define and practically

measure the Jacobians telling the influence of the hyper-parameters over the part

of the geometry where the stroke starts. Section III.4.2 shows how we use this

differential information to compute Δ𝝅 and details the choices we have made

compared to other such solving contexts. We then show results in Section III.4.3

and finally discuss the current limitations and many prospects of our method in

Section III.4.4.

III.4.1.2 Sampling and differentiation

At this point we are able to define what the jacobian of a point 𝑝𝑖 sampled on the

geometry 𝐺 = F (𝝅) means. When a stroke starts, we sample 𝐾 such points by

casting rays from the viewport and intersecting them with 𝐺 . The hit information

is used to not only find the 3D intersection point 𝑝𝑖 but also its co-parameter

𝑎𝑖 = (𝑤𝑖 , 𝑙𝑖).

The extent of the brush may cover areas at very different depths, but we assume

that the user intent has a limited depth of field, affecting either the foreground or

the background but not both at the same time. To match this, we select the closest

sample to the center of the brush, and discard all the points that are too far from

its unprojected world space location.

To measure the 𝑘-th column of the jacobians 𝐽𝑖 , we evaluate the parametric shape

with the 𝑘-th hyper-parameter slightly changed. The step of differentiation is

set to 𝛿𝑘 = 10
−5 · (𝛼𝑘 − 𝛽𝑘), where [𝛼𝑘 , 𝛽𝑘] is the range of possible values of this

hyper-parameter. Within the new geometry 𝐺 ′ that this produces, we look for

points that have their co-parameter equal to 𝑎𝑖 . For each possible value of 𝑙𝑖 , we

build a mesh where coordinates are the𝑤 attribute of face corners from 𝐺 ′. We

then project𝑤𝑖 onto this mesh to find the face index and barycentric coordinates

of the new position 𝑝′𝑖 of the 𝑖-th sample with respect to𝐺 ′. The 𝑘-th column of 𝐽𝑖
is thus (𝑝′𝑖 − 𝑝𝑖)/𝛿𝑘 (see Figure III.22).

If the nearest neighbor of𝑤𝑖 is too different, we assume that the point 𝑝𝑖 has no

equivalent in the new geometry 𝐺 ′. This happens for instance for points at the

78

(a) (b) (c) (d)

Figure III.22: To evaluate a column of the jacobian at a sample point 𝑝𝑖 , (a) we use its

co-parameter 𝑎𝑖 interpolated from the face corners, then (b) vary the hyper-parameter

by 𝛿𝑘 and (c) look for the new point 𝑝′𝑖 whose co-parameter equals 𝑎𝑖 . (d) The column

of the jacobian w.r.t. this hyper-parameter is (𝑝′𝑖 − 𝑝𝑖)/𝛿𝑘 .

edge between the operands of a boolean operation. In such a case, we set the 𝑘-th

column of 𝐽𝑖 to zero to prevent changing this hyper-parameter, provided we do

not know its influence.

III.4.2 Solving

The solver is provided with the jacobians 𝐽𝑖 ∈ R3×𝑛
measured at the 𝐾 points

𝑝𝑖 sampled within the brush of radius 𝑟 when the stroke started as well as the

trajectory (𝑡0, . . . , 𝑡𝑇) of the stroke. The solution Δ𝝅 returned by the solver must

ensure the following properties:

exactness The points originally lying inside the brush must still be inside the

brush at the end of the stroke.

sparsity The hyper-parameter update must have an amplitude as low as possible;

the user does not expect a single stroke to apply too significant changes.

continuity The hyper-parameter update must be continuous along the trajectory,

i.e., adding a new way point 𝑡𝑇+1 close to 𝑡𝑇 must not suddenly change Δ𝝅 .

speed A result must be found at interactive frame rate. The user should not feel

that hyper-parameters are changing while they are not moving the mouse.

III.4.2.1 Inversion

At the first order, we know that for each of the single-point parametric subshapes

¯C(𝑎𝑖) that we sample – denoted simply
¯C𝑖 below – we can approximate the new

location of the point using the jacobian 𝐽𝑖 = 𝐽 ¯C𝑖 (𝝅) computed at step 2 of Fig-

ure III.21:

¯C𝑖 (𝝅 + Δ𝝅) ≃ ¯C𝑖 (𝝅) + 𝐽𝑖 · Δ𝝅 (III.4)

The stroke trajectory is expressed in the viewport, so we compose equation III.4

79

with a function Proj : R3 → R2
mapping the world space to the screen space. Since

¯C𝑖 (𝝅) = 𝑝𝑖 is the point that was clicked on, it is mapped to 𝑡0 – the beginning of the

stroke. To fulfill the objective of exactness, we want the new position
¯C𝑖 (𝝅 + Δ𝝅)

of this point to match the new position 𝑡𝑇 of the user’s cursor:

𝑡𝑇 = 𝑡0 + 𝐽 ′𝑖 · Δ𝝅

where 𝐽 ′𝑖 = 𝐽Proj · 𝐽𝑖 is the jacobian of the composition with the projection.

This is a typical problem of inverse kinematics which can be solved with a damped

least square method (Deo & Walker, 1992; Baerlocher & Boulic, 2004). Such a

method finds the solution Δ𝝅 that has a near minimal 𝐿2 norm while avoiding

discontinuities at singularities (where the rank of 𝐽 ′𝑖 changes):

Δ𝝅 = 𝐽 ′+𝑖 · Δ𝑡

where Δ𝑡 = 𝑡𝑇 − 𝑡0 and 𝐽 ′+𝑖 is a singularity robust pseudo-inverse of 𝐽 ′𝑖 .

NB Jacobian 𝐽Proj of the projector. Let Proj : R3 → R2
be the projection of

the user’s view. Usually, this projection is expressed in the form Proj (𝑋) =
𝑃 ·𝑋
[𝑃 ·𝑋]𝑤 with 𝑃 an arbitrary projection matrix. In this case, we derive the

following Jacobian:

𝐽Proj (𝑋) =
1

[𝑃 · 𝑋]𝑤
(
𝑃 − Proj (𝑋) · 𝑃𝑤,·

)
where 𝑃𝑤,· is the row of 𝑃 corresponding to the component 𝑤 and 𝑋 is a

column vector.

Domain boundaries In order to account for the boundaries of the domain Π of

allowed hyper-parameters, we use the active-set method shown in Algorithm 4,

inspired from the Prioritized Inverse Kinematics presented by Baerlocher and

Boulic (1998). We iterate resolution steps and projections onto the domain, and

freeze hyper-parameters affected by the projection to their clamped values for

the remaining steps. Freezing is done by setting the corresponding column of

the jacobian to zero. To avoid breaking the continuity of the solution, we add

to the IsOutOfBounds test of Algorithm 4 a maximum distance to the hyper-

parameter update that was returned at the previous execution of the function (i.e.,

for Δ𝑡 = 𝑡𝑇−1 − 𝑡0). We also initialize Δ𝝅 to the previously returned solution.

We are thus able to handle a point-wise constraint and fulfill the requirements

listed above. We see in the next section how we combine multiple such constraints

over the extent of the brush.

80

ALGORITHM 4: Our solver uses an active-set method to account for hyper-

parameter boundaries. Diag(active_set) returns a diagonal matrix whose 𝑗-th

coefficient is 1 iff 𝑗 ∈ active_set in order to freeze hyper-parameters that are

no longer in the active set.

Input: Jacobian matrix 𝐽 , target move Δ𝑡
Output: An update Δ𝝅 of the hyper-parameters

active_set← {0, . . . , 𝑛 − 1};
Δ𝝅 ← (0, . . . , 0);
repeat

𝐽 + ← PseudoInverse(𝐽 · Diag(active_set));
𝛿𝝅 ← 𝐽 + · (Δ𝑡 − 𝐽 · Δ𝝅);
Δ𝝅 ← Δ𝝅 + 𝛿𝝅 ;
for 𝑗 ∈ active_set do

if IsOutOfBounds(Δ𝝅 𝑗) then
active_set← active_set \ { 𝑗};
Δ𝝅 𝑗 ← Clamp(Δ𝝅 𝑗);

end
end

until 𝛿𝝅 is null;

III.4.2.2 Jacobian buffer filtering

The variations of a single point may not be representative of those of the patch of

surface surrounding it, so we sample multiple points within the extent of the brush

and average their jacobians. This is still fast because the bottleneck is the evaluation

of the parametric shape which is common to all samples (see Section III.4.3.1).

The second motivation for filtering the jacobian buffer is that the 𝐿2 norm, mini-

mized above, is not the most appropriate way to model sparsity. Indeed, we rather

need to limit the number of hyper-parameters that have a non-zero update i.e., the

𝐿0 norm. For instance, when two hyper-parameters have a similar influence over

the dragged points, we want to use only one of them rather than applying a small

change to both.

Hence we refine the user intent with the following model: (i)All other things being
equal, we want to foster hyper-parameters that show less variation within the

extent of the brush. And (ii) we want to favor hyper-parameters whose influence

over the dragged area would change notably if the brush radius would be increased.

Intuitively, this corresponds to making the assumption that the user chooses the

maximal brush radius fitting their intent, as illustrated in the drawer example

in Figure III.23. We inject extra knowledge about the use case by setting some

columns of 𝐽𝑖 to zero, thus ignoring the influence of the hyper-parameter over the

𝑖-th point.

For objective (i), we compare the coefficients of variation 𝑣𝑘 (standard deviation

over mean) of the norms of the columns of the 𝐽𝑖 within the brush. We discard

81

Drawer position
Handle size

(b) small radius

(a) large radius

same Jacobian

Figure III.23: Both hyper-parameters of this scene have the very same influence on

the drawer’s handle. Yet our jacobian buffer filtering enables to distinguish the intent

behind the choice of a large (a) or small (b) brush (the dotted circle).

hyper-parameters such that
min 𝑣𝑘′
𝑣𝑘

is lower than a threshold _𝑣 ∈ [0, 1].

Among the remaining hyper-parameters, we address (ii) by measuring a contrast

factor 𝑐𝑘 which is the ratio of the average norm of the 𝑘-th column of 𝐽𝑖 inside of

the brush over the one outside of the brush. We foster hyper-parameters that have

a high contrast factor, so if
𝑐𝑘

max𝑐𝑘′
is lower than a threshold _𝑐 ∈ [0, 1], the 𝑘-th

hyper-parameter is discarded.

Thus, a larger brush is more likely to affect hyper-parameters whose influence

has lower frequencies and a pickier brush will affect hyper-parameters with faster

variations in the Jacobian buffer. The thresholds translate a global trade-off between

𝐿2 and 𝐿0 sparsities, which would depend on the kind of object that is manipulated.

Empirically, 𝐿2 is more important for organic shapes while 𝐿0 is more critical for

mechanic ones. In practice, we use _𝑣 = 0.2 and _𝑐 = 0.75. A high value for _𝑐
favors sparsity in the modified hyper-parameters, while a high value for _𝑣 favors

regularity in the hyper-parameter selection, i.e., ignoring noisy hyper-parameters.

Single Direction At an extreme edge of this trade-off, we add the possibility to

keep only one hyper-parameter. We consider that the beginning of the stroke is

more meaningful than the end, because the jacobian information that we have is

only valid for small variations of 𝝅 , so we pick the one hyper-parameter based on

the direction at the beginning of the stroke only, Δ𝑡 = 𝑡1 − 𝑡0. For each column

𝑗 ′
𝑘
, we look at the cosine similarity (𝑐sim) between 𝑗

′
𝑘
and Δ𝑡 , as well as the norm

∥ 𝑗 ′
𝑘
∥

2

. We favor columns with high norm in order to reduce the 𝐿2 norm of the

output Δ𝝅 . On another hand, the higher the cosine similarity, the more exact the

82

Wave
Belt Height

Openning

Hyper-parameters

Length
Width

Thickness
Shelf Z

Hyper-parameters

Ears
Eyes

Hyper-parameters

(c)

(d)

(a)

(b)

Height
Spacing

Hole Y
Hole X

Hyper-parameters

Hyper-parameters

(e)

Hyper-parameters

Wheel Angle
Wheel Size

Foretank Size
Tank Size

Tank Door

Chemneys Size
Cabin Size

Button size
Display Size

Blade Height
Carving

Stylize
Blade Size

(f)

Figure III.24: Examples of sequences of edits using our method on various scenes.

Corresponding DAG amendments can be found in the supplementary material.

solution. Hence we pick hyper-parameter
˜𝑘 based on:

˜𝑘 = argmin

𝑘

𝑐sim(𝑗 ′𝑘 ,Δ𝑡) + _ ·
 𝑗 ′
𝑘

2

with _ = 1/2 in practice.

83

80.2ms (±10.4ms) 40.5ms (±17.6ms)

9.3ms (±1.09ms)

65.5ms (±6.84ms)

3.34ms (±0.426ms)

0.375ms (±0.06ms)

31.8ms (±21.1ms)
1.35ms (±0.154ms)

76.7ms (±22.8ms) 12.5ms (±3.85ms)

10.1ms (±3.49ms)

62.1ms (±22.7ms)

3.6ms (±0.286ms)

0.532ms (±0.461ms)

10.8ms (±6.08ms)
0.841ms (±0.186ms)

175.0ms (±87.2ms) 21.2ms (±9.16ms)

29.9ms (±9.26ms)

144.0ms (±83.9ms)

0.299ms (±0.117ms)

0.391ms (±0.171ms)

15.7ms (±12.1ms) 11.2ms (±13.2ms)

114.0ms (±52.7ms) 13.8ms (±4.57ms)

18.5ms (±5.45ms)

89.4ms (±51.8ms)

3.44ms (±0.416ms)

0.379ms (±0.11ms)

11.2ms (±5.98ms) 10.5ms (±10.6ms)

136.0ms (±7.25ms) 28.4ms (±9.86ms)

13.5ms (±0.678ms)

116.0ms (±4.07ms)

3.46ms (±0.231ms)

0.4ms (±0.0588ms)

23.0ms (±12.7ms) 13.7ms (±0.784ms)

83.1ms (±14.0ms) 11.4ms (±1.51ms)

10.8ms (±5.5ms)

66.4ms (±12.5ms)

5.04ms (±3.1ms)

0.534ms (±0.106ms)

8.61ms (±4.09ms) 2.13ms (±1.17ms)

41.4ms (±9.64ms) 4.49ms (±1.47ms)

11.1ms (±4.74ms)

24.5ms (±6.07ms)

3.57ms (±0.246ms)

0.425ms (±0.154ms)

3.57ms (±1.59ms) 2.47ms (±1.22ms)

When stroke starts

On mouse move

Measure Jacobians

Coparams to Posi�on

Evaluate F

Solve

Filter Jacobian Buffer
Sample Coparams

Evaluate F

2 hyperparams

2188 tris

3 hyperparams

36560 tris

(b)

(d)

4 hyperparams

2248 tris

4 hyperparams

70720 tris

(a)

(c)

6 hyperparams

94478 tris

4 hyperparams

25426 tris

(f)

(g)

7 hyperparams

54487 tris

(e)

(b)

(d)

(a)

(c)

(f)

(g)(e)

Figure III.25: Detailed profiling breakdown on several example scenes with varying

complexity of DAG and output geometry. All examples are given for 64 sample points.

The time needed to evaluate F does not depend on our method but on the parametric

shape engine that we have built onto, and its standard deviation is due to caching

mechanisms.

III.4.3 Results

We implemented our method as an add-on for the Blender open source program. Its

direct manipulation capabilities are illustrated on a few examples in Figure III.24. In

particular, we can observe that examples (a) and (b) exhibit changes of connectivity

while the last edit in example (b) shows that clicking in an area not affected by

any hyper-parameter induces, as expected, a null update.

III.4.3.1 Performances

For all the examples illustrating this section, the execution time of the DAG

amendment is negligible, boiling down to a few milliseconds each time the graph

topology is updated. Hence, we focus here on the runtime performance of our

system during interaction.

Figure III.25 gives execution time measurements on five scenes. The bulk of the

computation is located at the beginning of the brush stroke since the finite differ-

ences require many evaluations of the input parametric shape F . The overhead
introduced by the solver is negligible compared with the time required to evaluate

84

F , which is needed anyway to display the current state of the parametric shape.

The overall Jacobian evaluation time is only indirectly related to the number of

vertices in the geometry and rather depends on the complexity of the DAG and

its nodes’ logic. The time needed to retrieve the position of the points from their

co-parameters depends on the number of vertices, but since they are grouped

by path index 𝑙 the relation is not strictly proportional. For instance, the table

in example (c) has twice as much vertices as the curtain in example (d), but this

complexity is mostly concentrated in the legs. The average position evaluation

time is 11.3ms, lower than for the curtains, but it has a much wider standard

deviation. It peaks around 27ms when points are sampled on the legs but goes

below 1ms when dragging elements of the plate.

Performances were measured with 64 sampled jacobians. This count linearly

affects the initial sampling of co-parameters, the evaluation of positions from their

co-parameters and the filtering of the jacobian buffer. Other elements are not

modified. Empirically 64 is a high number of samples in the sense that the output

Jacobian is already robust enough for an intuitive interaction at lower values. In

practice we use 32 samples, which was way enough for all our examples.

III.4.3.2 Ablation study

To assess the symbiosis of the elements composing our approach, we study here

the influence of three of them over the whole system: sample discarding, outbound

sampling and path indexing.

Figure III.26 illustrates the importance of discarding sample points after unprojec-

tion. Even if they are close to the center of the brush in screen space, the drawers

are not on the same plane than the likely area of focus of the user so they should

not get affected by the stroke.

In the absence of samples outside of the brush (Section III.4.2.2), the only way

to change the size of the handle in the drawer example of Figure III.23 would be

to first change the drawer position all the way to its boundary then change the

handle and finally move the drawer back to the desired location. Our method

makes this same change possible in a single stroke.

Path indices generated by our DAG amendment ensure that there is not two points

with the same co-parameter in the output geometry. Without so, if 𝑝𝑖 and 𝑝 𝑗 share

the same co-parameter, there is a risk that a row of the jacobian is set to 𝑝′𝑗 − 𝑝𝑖
instead of 𝑝′𝑖 − 𝑝 𝑗 , where 𝑝′ is the new location of the point 𝑝 after a slight change

of an hyper-parameter. This leads to jacobians totally unrepresentative of the

influence of hyper-parameters.

85

(b) without discard

(a) with discard

Figure III.26: Interaction is better localized when we discard samples far from the

center of the brush once unprojected in world space (a) than when keeping all points

(b). Middle column shows the consequences of a stroke. Right-hand column shows the

same interaction under another viewpoint.

III.4.4 Discussion

III.4.4.1 Properties

As it stands, our method allows intuitive interaction with a parametric shape

directly in the 3D view. In particular, a single mouse event can yield multiple hyper-

parameters to be updated concurrently. The same parametric shape may also be

exposed with various alternative control spaces easily, by simply masking/exposing

a subset of its hyper-parameters, making it easy to “publish” the shape for various

application scenarios. Moreover, our DAG amendment is non intrusive since we

only insert new nodes.

Our approach opens the possibility to apply the many works that have been carried

out on IK to parametric shapes that are generated by complex graphs including

operations that drastically affect a mesh connectivity (e.g., boolean operations).

Not only do we give sense to the notion of Jacobian of a point of the surface but

also we propose a filtering scheme to adapt their raw value to the needs of intuitive

direct manipulation.

VR ready Our approach is agnostic of the dimension of the interaction space. We

have focused mainly on screen based interaction, but any other input device such

as VR handles could be used as well. In this case, the projection of manipulation-

space sample points onto the geometry at Step 1 of the interaction loop becomes a

nearest neighbor search rather than a ray casting.

Implementation Guidelines To integrate our method to an existing shape

engine, the latter must expose a way to insert a non destructive operation on

86

texture coordinates before/after existing operations. The implementation must list

for each available operation the number of duplicates it may create and a mean to

retrieve the duplicate index 𝑗 . The interaction loop expects that the host software

provides the user input, a way to query the geometry attributes at sample points

on the screen and a way to evaluate the DAG programmatically.

User Feedback We presented the tool to 19 users whose proficiency with 3D

software ranges from absolute beginner to professional, asked them to reach a

target configuration of the parametric shape, then collected their feedback on

scales from 1 to 5. Users were able to manipulate almost all the hyper-parameters

they wanted (only 1/4 felt blocked and it was at most on a single hyper-parameter)

and felt confortable with completing the task (63% found it rather easy). In the

majority of cases (63%), they used our brush exclusively or felt back only a few

times to the sliders (resp. 42% and 21%). Professional users, used to hand-crafted

manipulators, were sometimes frustrated not to be able to target for certain a given

hyper-parameter, but we recall that such manipulators require extra work when

originally creating the parametric shape, which our method does not. On average,

users were leaning towards our brush rather than the sliders and would be likely

to use it in their usual 3D software. More extensive results are available in the

supplementary material of É. Michel and Boubekeur (2021a).

III.4.4.2 Limitations

Homogeneity Measuring the norm of an hyper-parameter update Δ𝝅 is ill-

defined because hyper-parameters are in general not homogeneous to each other,

namely they are expressed in different units. This is why our Jacobian buffer

filtering takes care of only comparing affine invariant properties (coefficient of

variation, contrast factor), but it remains a problem to properly define the objective

of sparsity of Δ𝝅 in the presence of diverse units.

First order We currently only measure first order information about the para-

metric shape – the Jacobians – and do it only once, at the beginning of the stroke.

For long strokes, hyper-parameters that have a non linear behavior are thus in-

correctly interpreted. Furthermore, when the evaluation time of F increases, the

delay needed to compute the jacobians starts to be noticeable, between the click

and the first update of the hyper-parameters.

III.4.4.3 Future prospects

Global sampling We could try to precompute jacobians before the beginning of

the stroke – while the user is changing the view point for instance – to avoid the

slight lag when the interaction begins. This might require to use an acceleration

structure to find the nearest neighbor of𝑤 in the new geometries as there would

87

be more sample points to consider, or would require to store the cooked geometries

𝐺 ′, costing memory.

Other type of input constraints In our model, the user constraint takes the

form of a brush stroke, but the Jacobian information we derive can be used with

other types of input: layout-based constraint, image-based input (potentially

coming from a differentiable renderer), global metrics (e.g., conserving volume) or

visibility-based constraint (camera or illumination). This can potentially lead to

interesting novel workflows.

Follow-ups After our original publication of this work (É. Michel & Boubekeur,

2021a), two papers explored the similar issue of directly manipulating shape

programs. Gaillard et al. (2022) uses box proxies to speed things up, in the case

of part-based models, and developed an advanced solver with solution clustering.

Cascaval et al. (2022) built their own automatic differentiation system and reach a

much more scalable result in terms of number of hyper-parameters. They also use

global energies to disambiguate the user intent. Both of these work are restrained

to constant connectivity though, and notice that a better integration with ours

could be beneficial.

III.4.5 Conclusion

Our method leverages the information provided by the parametric shapes when

seen as programs – described in general as graphs of operations – to make in-

verse control available to them in an intuitive brush-based interaction loop. Our

approach may pave the way for more advanced uses of graph-based shape repre-

sentations, exploring our local differentiation scheme with alternative optimization

strategies.

88

IV
Tiles-based declarative pro-
gramming of shapes

IV.1 Introduction

IV.1.1 Constrained layout

As we highlighted in Chapter I, imperative DAGs are not the only paradigm for

shape programming. Shape programming is about identifying systematic behavior

in the creation process and modeling this systematism. DAGs represent rules

applying to the flow of geometry processing operations, but in this chapter we

represent rules that apply to the end result, to the layout of pieces of geometry.

There are two main families of constrained layout: free-position layout, and tiled

layout. The former is for instance about ensuring alignments, contacts, regular

distribution, orientations, etc. The latter is quite different: positions and orientation

of the slots where pieces of geometry must be instantiated are pre-determined, but

the unknown is which piece – which tile – goes where.

In both cases, the power of using shape programming at the level of declarative

layout constraint is that it naturally enables one to combine manually authored

fixed content with shape programming. However, in the case of a tiled layout, a

lot of constraints apply to the content of the tile itself. Indeed, the geometry of tile

edges – interfaces – that are in contact in the final layout must match.

Although the problem of laying out tiles given their neighboring constraints has

been studied a lot, authoring the geometric content of the tile remains quite

cumbersome. A striking example of how this authoring can be time consuming is

the tiles that Stålberg presents in their break down of Townscaper (Stalberg, 2018),

where they modeled hundreds of tiles while ensuring these constraints manually

89

Figure IV.1: Some of the ca. 500 tiles needed by the Townscaper tile-based modeling

game, manually modeled using Autodesk Maya. Courtesy of O. Stålberg (https://

www.youtube.com/watch?v=1hqt8JkYRdI).

(Figure IV.1).

This chapter focuses on easing the use of tiled layout by assisting the construction

of rich tile sets and in particular of the 3D content of their tiles. We first present

an approach based on growing geometry from 2D cross-sections drawn on the

interfaces between tiles (Section IV.2). We show how this integrate into a system

for quickly authoring auto-similar mesostructures. We then explore how to bring

diversity in the content of tiles by replacing their static geometry with parametric

shapes (Section IV.3). The tile space becomes continuous and we have to solve for

both neighboring constraints and the hyper-parameters driving the content.

IV.1.2 Wang Tiles

IV.1.2.1 Definition

Prior to detailing our contributions, let us first define the framework of Wang

tiles (H. Wang, 1961), which is at the heart of most tiled layout system. First, a

problem of Wang tiling is in particular a tiling problem, meaning that we have a

set of geometric tiles 𝑇 that must be laid out on a domain with no overlap and no

spacing between tiles. This is what makes a tiled layout different from other kinds

of object layout. Each tile from 𝑇 may be instantiated multiple times to solve this

problem.

In general, tiling can lead to very complex setups, like for instance Penrose

tiles (Penrose, 1974), and has fascinated mathematicians and physicists for a long

time. This complexity is the reason why it was attractive to the graphics commu-

nity, for content generation, but it makes it really hard to find a valid layout of

tiles. Wang tiles get rid of one part of the difficulty of tiling by pre-defining tile

locations. There remains the question of which tile to instantiate at each location,

90

https://www.youtube.com/watch?v=1hqt8JkYRdI
https://www.youtube.com/watch?v=1hqt8JkYRdI

LabelsTiles Wang Tiles Adjacency Rules

Figure IV.2: Wang tiles are tiles for which adjacency rules are given by labelling the

edges of each tile. Two tiles can be neighbors only if the edges thus put in contact are

labelled with the same color.

but this becomes a purely discrete problem.

Originally, locations are predefined by considering only square tiles, so that they

are distributed on the vertices of a regular grid, which we call slots. We see in

Section IV.2 that this can be more flexible when allowing tiles to be deformed to

fit their slot. We use the term generalized Wang tiles in our formalism to stress

out the fact that they are not especially squares.

Some tilling problems only rely on the shape of the tiles to state which tile fits

next to which other one, a bit like a puzzle does. On the contrary, adjacency rules

for Wang tiles are given by labeling the edges – a.k.a. interfaces – of each tile

(Figure IV.2).

To summarize more formally, a generalized Wang tile set is given by a tuple T =

(𝑇, 𝐼, 𝐷, 𝐿). 𝑇 and 𝐼 are a discrete set of abstract symbols representing respectively

tiles and interface labels. 𝐷 is a set of directions, to designate tile edges. And

𝐿 : 𝑇 × 𝐷 → 𝐼 is the labeling function, telling the color 𝑖 ∈ 𝐼 of the edge in

direction 𝑑 ∈ 𝐷 in the tile 𝑡 ∈ 𝑇 . In the case of square tiles, we use for instance

𝐷 = {N ,S, E,W} for north, south, east andwest. When used in computer graphics,

tiles come with a visual content (image, mesh, etc.) that is instantiated at each slot

where the tile is used.

IV.1.2.2 Related Work

Tile-based content generation In computer graphics, tiling algorithms were

first applied to procedural texture generation. The aperiodic texture mapping of

Stam (1997) shows how laying out multiple patches of texture can efficiently break

the visual repetitivity that strikes the human eye when naively repeating the

same image. Following Stam’s, multiple other papers explored tile-based graphics

generation. Neyret and Cani (1999) used tiles for on-surface synthesis rather than

for paving a plane, thus performing seamless texturing. They took some liberties

with the original Wang tile framework, first changing the tile shape to triangles,

but more importantly introducing the need to orientate tile edge labels, which we

also experienced in our method.

91

H

H

1

2

3

4

5

6

DDirections

1 2

3 4

5 6

Slots S and adjacency half-edges E

Figure IV.3: To solve a Wang tiling problem, the Wave Function Collapse algorithm

maintains for each slot a superposition of all tiles that may be assigned and progres-

sively reduces this set, starting with slots of lower entropy 𝐻 .

An important requirement for applying tile-based generation is to define a tile set

the generator will draw from. For texture generation, Cohen et al. (2003) extract

this set by stitching patches of an input example. Compared to other texture

synthesis techniques such as image quilting (Efros & Freeman, 2001), tile-based

texture generation limits the computational workload involved in blending texture

patches: once the graph cut sewing is prepared for each tile, the synthesis itself is

very fast – it only consists in laying out tiles – and can be done on the fly during

real time rendering. Similarly to image quilting, themesh quilting method (K. Zhou

et al., 2006) does not benefit from such a computing factorization.

In their representation of forest scenes, Decaudin and Neyret (2004) present tiling

as a mean to compactly encode the geometry of all trees, since they precompute

light transport only for a set of tiles before instantiating them on the fly at render

time. We follow a similar spirit in our mesostructure representation, using tiles to

share memory.

Tiling engines The tiling engine is responsible for finding a valid layout of

tiles, given a tile set and a domain of slots to cover. Stam (1997) uses a predefined

tile set for which a constructive algorithm for aperiodic tiling is known to always

work (Grünbaum & Shephard, 1987). Neyret and Cani (1999) consider the exhaus-

tive tile set where all combinations of Wang labels are available, thus tiling is

always solvable. The approach of Cohen et al. (2003) is more flexible than Stam’s,

as the tile sets are generated depending on the number of Wang labels such that

they can use a tiling algorithm that always succeeds.

In all of these approaches, the tile set itself is still an internal entity the user does

not have direct control on. In the approach we present in Section IV.2, the tile

set is exposed as the primary lever for design, so we had to turn to more generic

tiling engines, based on possibility space collapsing (Merrell, 2007; Gumin, 2016)

(Figure IV.3).

92

Figure IV.4: Mesostructures produced using our interactive design tool in a few min-

utes. Our method enables a quick design of very intricate topology, and as illustrated

on the torus the same input macrosurface can lead to various styles depending on the

tiles created through our proposed workflow.

IV.2 Tile-based geometric amplification

IV.2.1 Problem Setting

IV.2.1.1 Geometric amplification

Geometric surface enrichment is often achieved using displacement mapping, for

which content can easily be authored using standard (2D) painting tools. However,

the content injected onto the macrosurface has fixed disk topology and cannot

represent complex structures, such as tunnels and handles. To overcome this issue,

generalized displacement mapping and shell mapping are explicitly modeling the

surrounding space of the macrosurface and use various mechanisms to instantiate

complex shapes in it. Unfortunately, this comes at the cost of tedious authoring,

as the mesostructure shall still behave like a mappable object, conforming to

tilability constraints and deforming following the macrosurface curvature. As

a consequence, only complex preprocessings (K. Zhou et al., 2006) acting on

preexisting geometry have been developed so far to transform a 3D surface into a

proper mesostructure.

We propose a new approach to self-similar mesostructure design built upon

Wang tiling and adopting an interface-centric workflow, where the user creates

mesostructure atoms through the 2D cross-sections they form at tiles interfaces.

Our approach can be executed on any quad-based surface domain and runs in

real time, allowing the user to quickly create complex mesostructures in a few

brush strokes. Just like displacement maps, our resulting model can be reused

across macrosurfaces – with minimal tile set adjustments – and as we will see in

Section V.2 is architectured to be compact and GPU-friendly.

Contributions Our main contributions are: (i) a mesostructure design work-

flow centered on continuity by construction and built upon a tiling engine, (ii) a
tiling engine, evolving state-of-the-art with user-prescribed constraints, and (iii) a
mapping mechanism leveraging the procedural nature of our mesostructure model

93

to populate the macrosurface shell space.

IV.2.1.2 Related Work

Enriching a coarse surface with sub-polygonal details has been a subject of inter-

est quite since mesh-based representations are used. These details are typically

mapped like textures; the first example is displacement mapping (Cook, 1984),

which deforms polygons along their normal, and then came iterations like View-

Dependent Displacement Mapping (L. Wang et al., 2003) and Generalized Displace-

ment Maps (X. Wang et al., 2004). But as more expressivity is provided to the

map-based geometry, it becomes unclear which part of the geometry should be

encoded in the original mesh and which part belongs to the displacement map, in

order to keep good rendering performance. On another hand, displacement-based

methods are still constrained to the topology of the original macrosurface, so shell

maps (Porumbescu et al., 2005) were proposed, using surface meshes as 3D texture

data of arbitrary topology along a macrosurface. This work led to a number follow-

ups, adapting it for real-time mapping (Ritsche, 2006), mitigating deformation

artefacts (Jeschke et al., 2007) or using it for geometry transfer (Takayama et al.,

2011). In between lies hybrid approaches like relief mapping of complex mesostruc-

ture topology (Policarpo & Oliveira, 2006) (but limited to a few overhanging layers).

A more radically different approach to geometric texture mapping is to leverage an

implicit representation of the macrosurface (Brodersen et al., 2008). Our approach

makes no exception to the overall surface amplification scheme: the meso-scale

geometric content is defined in a few unit cubes – the tiles – and then mapped

onto the target surface.

Empirically, a limiting factor when using tile-based modeling is the creation of

tile content that remains seamless at any time. Many approaches are data-based,

taking an example as input (Bhat et al., 2004; Lagae et al., 2005; K. Zhou et al.,

2006; Merrell, 2007; Gumin, 2016). Although this works well for 2D raster images,

it is much harder to define in the case of 3D vector content laid out on irregular

grids (Merrell & Manocha, 2008), so in practice tile based 3D mesh generation

uses manually crafted atoms. For 2D vector tiles, Brian et al (2018) propose

an editor in which, while drawing on tiles, the user sees an onion skin of the

continuation lines of neighboring tiles. Porting this approach to 3D content is not

straightforward, and our work draws from this spirit of attributing a predominant

role to interfaces during authoring. When not based on arbitrary examples, detail

generation methods can also be domain-specific (Landreneau & Schaefer, 2010).

De Toledo et al. (2008) provides a comparison of various mesostructure techniques

and Koniaris et al. (2014) reviews more specifically volumetric texture mapping.

IV.2.2 Method

Our workflow is presented in Section IV.2.2.1) and summarized in Figure IV.5. It

is based on a factorized, highly structured representation of the mesostructure

94

Macrosurface

Dual Mesh

Slot Graph

Draw & Select

Parametric Tile Set

Tiling Engine

Slot Assignment

Mesostructure

Mapping

Geometric

Combinatorial

Tile Sugges�on
OR

Interac�ve

Figure IV.5: Overview. Draw & Select step is the step involving user interaction; it is

detailed in Figure IV.6. Other steps are autonomous.

(Section IV.2.2.2) which feeds a tiling engine exposing a feedback loop to the

user for efficient authoring (Section IV.2.2.3) and for which we propose dedicated

mapping (Section IV.2.2.4). The interoperability of our approach with real-time

rendering will be detailed later in Section V.2.

IV.2.2.1 Design workflow

Our method takes a mesh representing the macrosurface as input, along which the

mesostructure is to be generated. Basically, the user designs the mesostructure by

creating progressively a set of tiles, while a tiling engine cover the macrosurface by

instanciating consistently and rendering a tile arrangement on-the-fly (Fig. IV.6).

In the tile set, a tile is defined by (i) a geometric content and (ii) adjacency rules,

with the geometric content being instanced each time the tile is used by the tiling

engine. Following Wang tiles, adjacency rules are specified by labeling the four

sides of a tile. Similarly to Neyret and Cani (1999), we also add an orientation flag

to these interface labels, and only interfaces that are a mirror of each other may

be juxtaposed.

The main friction when defining the content of a tile is to ensure that it is consistent

with the content of any other tile that the tiling engine could place next to it. This

is why we take the problem the other way around: in our approach, users author

geometric content by drawing 2D cross-sections on the tile’s interfaces. As such,

the tile’s geometric content is entirely defined by (i) assigning interfaces to the four
sides of the tile and (ii) selecting pairs of cross-sections to connect using a sweep

surface. The continuity of the mesostructure across interfaces is thus ensured by

construction.

Another source of friction in the creative process relates to tiling engine failures.

Since we let the user design arbitrary tile sets, and since the tiling problem is

NP-hard in general, this happens on a regular basis, even with the best in class

tiling engine. Consequently, we designed our tiling engine to suggest the addition

of a new tile to the user whenever it gets stuck, specifying which configuration of

interfaces could have enabled it to pave the whole macrosurface in an interactive

95

Geometric Content

Add Tiles Add Interfaces Assign Interfaces to Tiles
For each direc�on

Draw 2D Sec�ons
On instances of the interface

Select 3D sweep surfaces
Define �les' content

Combinatorial Informa�on

Figure IV.6: Tile set authoring interactions involves setting combinatorial informa-

tion (tile interfaces) and geometric content (2D cross-sections and 3D sweep surfaces).

feedback loop. To the best of our knowledge, there is no prior example of such a

joint design of a tile set.

IV.2.2.2 Procedural mesostructure model

Our mesostructure model compactly represents its surface elements in a factored

way. Essentially, it takes the form of a tuple (𝑇, 𝐼, 𝑀,𝐴) composed of a tile set

(𝑇, 𝐼), a macrosurface 𝑀 and an assignment 𝐴 of tiles to the macrosurface, as

summarized in Figure IV.5.

Tiles The tile set is formed by (i) a set 𝐼 of interfaces containing 2D cross-sections,

as well as (ii) a list 𝑇 of tiles. A tile contains for each of its four sides a reference

to one of the interfaces, as well as a flipping flag: we note 𝑖𝑘↔ the flipped version

of an interface 𝑖𝑘 . A tile also contains a geometric content, given as a list of 3D

sweep surfaces, each referencing a pair of 2D cross-sections interpolated along a

procedural 3D Bézier curve (Figure IV.7). Additional 3D content may be injected

into the tile, provided it is entirely contained within the extent of the tile, i.e., it

does not interact with the interfaces. Lastly, a tile contains a set of flags indicating

whether the tiling engine is allowed to flip and rotate it.

Interfaces The 2D content of each interface – instantiated on each tile side that

references this interface – is modelled as a binary space occupancy function over

the unit square. During the design phase, connected components are dynamically

detected and constitute the cross-sections that can be selected for generating sweep

surfaces.

Themacrosurface𝑀 is the domain where tiles are instantiated, extending the usual

case of grid generation. It takes the form of a quad surface mesh and defines the

associated slot graph (𝑆, 𝐸), namely the undirected dual graph of the quad mesh

connectivity where a vertex 𝑠 of the slot graph (a slot) corresponds to a face of

the quad mesh. Each half-edge (𝑠, 𝑒) ∈ 𝑆 × 𝐸 of the slot graph is labelled with a

direction 𝑑 ∈ 𝐷 , with at most one use of a given direction per slot. This indicates

how a tile should be instantiated on this slot. Vertex positions and normal vectors

define the shell space (Porumbescu et al., 2005) in which the mesostructure lives.

The slot assignment 𝐴 : 𝑆 → 𝑇 ×𝑃 provides for each slot a transformed tile, namely

96

3D sweep surfaces2D sections

Figure IV.7: The geometric content of

tiles is defined by sweeping across 2D

cross-sections drawn on interfaces. The

same cross-section may be used by more

than one sweep, and if they are not used

by any, a cap surface is automatically

added.

flipped

Figure IV.8: Wang labelling: A tile ref-

erences, for each direction 𝑑 ∈ 𝐷 , one of
the tile interfaces 𝑖 ∈ 𝐼 whose geomet-

ric content is constrained to comply with.

The interface can be horizontally flipped.

a tile index and a tile transform indicating whether the tile should be rotated and/or

flipped. This transform takes the form of a permutation 𝑝 ∈ 𝑃 of its four base

corners. The tiling engine decides for each slot which transformed tile it assigns,

ensuring that the interface assigned to an half-edge is always the flipped version

of the interface of its opposite half-edge.

IV.2.2.3 Tiling

Constraint solving Given the tile set and the slot graph, the tiling engine

assigns a tile and its transform (rotation/flip) to each slot, such that neighboring

tiles always have matching interfaces.

Our tiling engine is largely based on the Wave Function Collapse (WFC) algo-

rithm (Gumin, 2016), itself following mostly the engine proposed by Merrell (2007).

It proceeds by progressive reduction of the possibility space, alternating two steps.

Initially, the set of all tiles is assigned to each of the slots, then it greedily propa-

gates constraints through a depth-first traversal of the slot graph. Each time this

recursive propagation (collapse) step reaches a fixed point, the possibility set of one

of the slots is arbitrarily reduced to a single tile (observe step). In order to reduce

the chance of leading to a dead-end – a case where the possibility set of a slot is

empty – the observed slot is chosen so as to minimize the amount of informational

entropy removed from the system. In the case of equiprobable tiles, this simply

means we observe the slot with the smallest possibility set (that has more than 1

tile). When stuck, the algorithm restarts with a different random seed.

The tiling problem being NP-hard, this algorithm does not magically handles all

cases, but benefits from some nice properties. First, it is easy to implement, and

has proven to be useful in practice, especially for video games (Stalberg, 2018).

97

Observe CollapseIni�alize
Apply border constraints

Sets of �le

Le� unchanged

Modified during this step
Random reduc�on Constraint propaga�on

Figure IV.9: Outline of the tiling solver described in Algorithm 5. The possibility

space of each slot is initialized to the set of all tiles, then our border exempt/only

interfaces imposes some initial constraint, and the remainder of the algorithm is an

alternation of arbitrary local choices and depth-first constraint propagation.

Secondly, it is not tied to the regular grid structure on which tiling algorithms are

usually applied; we were able to adapt it to the arbitrary slot graph derived from our

input macrosurface with minimal modification. Lastly, reasoning about possibility

spaces is a flexible framework in which it is easy to encode extra constraints, like

forcing some interfaces to occur only on the boundaries of the macrosurface. Other

work even ensure path finding or other non-local constraints (Sandhu et al., 2019),

and these could be ported to our use case.

Non regular slot graph To adapt the tiling engine to an arbitrary slot graph,

each half edge of this graph is labeled with a direction 𝑑 ∈ 𝐷 . For each slot, we

set at most one of the half edges per direction. A slot has never more than four

half-edges since it is the dual of a quad mesh, and it can have less when the quad

lies on the boundary of the macrosurface. When the slot graph is a regular grid, a

half-edge labelled with a north direction will always face a half-edge labelled with

a south direction, but for an arbitrary graph, it is not necessarily the case (which is

why we reason based on half-edges).

The sole constraint ensured by the solver is thus the following: let 𝑠1 and 𝑠2 be

two slots that are connected by an edge 𝑒 in the slot graph, and 𝑑1 (resp. 𝑑2) the

direction labeling the half-edge (𝑠1, 𝑒) (resp. (𝑠2, 𝑒)). Two (transformed) tiles 𝑡1 and

𝑡2 can be assigned to 𝑠1 and 𝑠2 only if the interface attached to the tile 𝑡1 in direction

𝑑1 is the same as the one attached to the tile 𝑡2 in direction 𝑑2 but horizontally

flipped.

Boundary constraints The user may annotate tile interfaces with two flags:

boundary exempt and boundary only. The first one specifies that the interface must

never occur in a direction that is connected to no other slot. This is typically used

for any non empty interface when the user does not want open ended sweeps.

The second flag tells that the interface must never be connected, it is allowed only

on boundaries. This can be used to ensure that the generated shape is made of

one single piece, without including empty interfaces. These flags do not really

interfere with the solving algorithm, they can be fully applied as a preprocessing

of the possibility space (Algorithm 6). For each slot that has no half-edge labelled

98

ALGORITHM 5: Outline of the tiling solver. Pink underlined items show our

additions to the typical WFC algorithm (Gumin, 2016): (1) RecordNeighbors

saves the cause of the dead-end for the tile suggestion mechanism, and (2) we

traverse an arbitrary slot graph rather than a regular grid.

Data: Slot graph 𝐺 = (𝑆, 𝐸) and tile set 𝑇

Result: Slot assignment 𝐴 : 𝑆 → P(𝑇)
fn Solve 𝐺 , 𝑇 :

𝐴0 ← InitialConstraints(𝐺 , 𝑇);

𝐴← 𝐴0;

repeat
try:

𝑠0 ← Observe(𝐴);

Collapse(𝑠0);

catch Finished:
return 𝐴;

catch DeadEnd:
𝐴← 𝐴0;

end
end

end
fn Observe 𝐴:

if exists 𝑠 ∈ 𝑆 such that |𝐴[𝑠] | = 0 then
RecordNeighbors(s) ; (1)

throw DeadEnd;

end
if not exists 𝑠 ∈ 𝑆 such that |𝐴[𝑠] | > 1 then

throw Finished;

end
𝑚 ← min(|𝐴[𝑠] |, for slots 𝑠 ∈ 𝑆 such that |𝐴[𝑠] | > 1);

𝑠0 ← random slot such that |𝐴[𝑠0] | =𝑚;

𝐴[𝑠0] ← { random tile from 𝐴[𝑠0]};
return 𝑠0;

end
fn rec Collapse 𝑠1:

foreach direction 𝑑1 do
(𝑠2, 𝑑2) ← neighbor half-edge of (𝑠1, 𝑑1) ; (2)

ResolveConflicts(𝑠1, 𝑑1, 𝑠2, 𝑑2);

if 𝑠2 changed then
Collapse(𝑠2);

end
end

end

with a given direction 𝑑 , we initially remove all tiles whose interface in direction

𝑑 is boundary exempt. And for each direction for which there exists a half-edge,

we remove tiles whose corresponding interface is boundary only. Then we feed

the tiling engine with this initial possibility space.

99

ALGORITHM 6: Initialization of the possibility space prior to running the tiling

engine. The pink underlined section shows how border exempt/only interfaces

can easily be integrated.

Data: Slot graph 𝐺 = (𝑆, 𝐸) and tile set 𝑇

Result: Slot assignment 𝐴 : 𝑆 → P(𝑇)
fn InitialConstraints 𝑇 :

foreach slot 𝑠 ∈ 𝑆 do
𝐴[𝑠] ← 𝑇 ;

foreach direction 𝑑 ∈ 𝐷 do
if 𝑠 has no half-edge labelled 𝑑 then

𝐴[𝑠] ← 𝐴[𝑠] − {𝑡 ∈ 𝑇 | the interface of 𝑡 in direction 𝑑 is

border exempt };
else

𝐴[𝑠] ← 𝐴[𝑠] − {𝑡 ∈ 𝑇 | the interface of 𝑡 in direction 𝑑 is

border only };
end

end
end
foreach slot 𝑠 ∈ 𝑆 do

Collapse(𝑠);

end
end

Tile suggestion Our tile suggestion mechanism is executed during the feedback

loop between the model and the user, in order to address the fact that tiling can be

arbitrarily hard or even not possible for a given tile set on a given macrosurface.

When stuck for too long, the tiling engine provides the user with a new tile,

specifying the configuration of interfaces that would have helped it.

To do so, we introduce a greedy algorithm based on the following voting scheme

(Algorithm 7). We consider the set 𝐿 of all tile side configurations that can be

generated from the set of interfaces 𝐼 . Each time the possibility set of a slot becomes

empty – forcing the tiling engine to backtrack – a vote is cast for all configurations

of 𝐿 that are compatible with the possibility set of its neighbors. All possible

transformations (rotation, flip) are applied to a configuration of 𝐿 when checking

that it can fit. For instance, if a tile 𝑡 in the possibility set of the north neighbor

shows the interface 𝑖 in the direction of the empty slot (south if we are on a regular

grid), then all elements of 𝐿 labeled with 𝑖↔ in the north direction receive a vote.

The algorithm then suggests the tile that received the highest number of votes.

IV.2.2.4 Shell Mapping

Once a transformed tile is assigned to a slot, the last stage of our framework

aims at mapping it to the actual shell space of the macrosurface for rendering.

We leverage the natural relationship between a single slot from our graph and

100

ALGORITHM 7: Our tile suggestion algorithm is based on a voting system. In

practice we also label votes with the transform 𝑝 and break ties in the argmax by

maximizing the number of identity transforms.

Data: Dead end neighborhoods 𝑁 recorded during solving. A neighborhood

𝑛 ∈ 𝑁 gives for each direction 𝑑 ∈ 𝐷 a set of possible transformed

interfaces 𝑛𝑑 = {𝑖1, 𝑖2↔, . . . } (where 𝑖2↔ means that interface 𝑖2 is flipped).

Result: An interface 𝑖𝑑 for each direction 𝑑 ∈ 𝐷 of the new tile

fn SuggestNewTile 𝑁 :
Initialize votes: 𝐼 4 → N to 0;
foreach neighborhood 𝑛 ∈ 𝑁 do

foreach 𝒊 ∈ 𝑛N × 𝑛S × 𝑛E × 𝑛W do
foreach tile transform 𝑝 do

𝒊′ ← inverse(𝑝) · 𝒊;
votes(𝒊′)← votes(𝒊′) + 1;

end
end

end
return argmax(votes);

end

the hexaedron extruded from its corresponding quad on the macrosurface. More

precisely, we cast the mapping problem as a deformation one (Porumbescu et al.,

2005), from the mesostructure normalized space to the shell one. We express the

geometric content of a tile w.r.t. the 8 corners of its slot’s bounding box and use

these local coordinates to reexpress it w.r.t. the extruded quad, taking inspiration

from cage-based deformation.

The Shell Mapping approach (Porumbescu et al., 2005) can be reformulated in our

case by replacing the barycentric interpolation performed over a tetraedrization of

a prism extruded from a triangle with a generalization of barycentric coordinates

to non-simplex boundaries – such as Mean Value Coordinates (Ju et al., 2005) for

instance – computed within the hexaedron extruded from a quad. However, al-

though this yields smoother deformation than dicing the hexaedron in tetraedrons

and applying Porumbescu et alṡcheme, significant distortion still subsists.

To contain it, we use the parametric nature of the tile’s geometric content, i.e.,

sweep objects, and deform their trajectory curves first, before the sweeping step.

Doing so, the 2D cross-sections preserve their expected shape, e.g., a circle will

produce a perfect tube, not an ellipsis-based one. Note that this may be opted

out if one aims at deforming cross-sections as well, but we found empirically that

cross-section preservation is often the expected behavior.

As our trajectories are cubic Bézier curves, our mapping problem now boils down

the positioning for each of them their four control points (𝑝0, ..., 𝑝3) in shell space.

To ensure tangential continuity of the trajectories across interfaces, 𝑝0 (resp. 𝑝3) is

moved to its corresponding interface and expressed using bilinear interpolation

101

(b)

(1)

(2)

(3)

(a) (c)

Figure IV.10: Once designed, the same tile set can be applied to various macrosur-

faces.

over its 4 corners. Meanwhile, its tangent is set along the normal of the corre-

sponding hexahedron face 𝑛0 (resp. 𝑛3), yielding the remaining control points

𝑝1 = 𝑝0 +𝑚0𝑛0 (resp. 𝑝2 = 𝑝3 +𝑚3𝑛3). The magnitude 𝑚0 (resp. 𝑚3) of these

tangents is defined as follows:

𝑚𝑖 = 𝑚
𝛼𝑖

𝛼𝑖 + 𝛼3−𝑖
for 𝑖 ∈ {0, 3}

with 𝑚 = 8𝑑
√

2−1

3
and 𝛼𝑖 = ∠ (𝑝3−𝑖 − 𝑝𝑖 , 𝑛𝑖). When both 𝑝0 and 𝑝3 are on the

same interface, the diameter 𝑑 is set to | |𝑝1 − 𝑝2 | |. When ends are on neighboring

interfaces, this distance is multiplied by

√
2/2 so that the curves approaches a

section of circle. When they are on opposite interfaces, we use the same value of 𝑑

but set the weights 𝛼0 and 𝛼3 to 1 since 𝛼0 + 𝛼3 is null. We adopted this heuristic

for its visual consistency, and the value of𝑚0 and𝑚3 can be globally or locally

scaled by the user to produce various looks.

IV.2.3 Results

IV.2.3.1 Experiment

The renderings from Figure IV.4 have been computed using a third party render

engine. Our real-time visualization is detailed in Section V.2. Figure IV.10 shows

that once a tile dictionary has been defined, it may easily be used across multiple

macrosurfaces, applying a similar style to various shapes, while only requiring

from the user that they create missing tiles corresponding to unseen topological

configurations.

Figure IV.11 illustrates the interest of manipulating a procedural representation of

tile content when it comes to mapping the content into a cell of the macrosurface’s

shell. Rather than blindly deforming the synthesized mesostructure, we deform

the input of the procedural construction, namely the control points of the sweep’s

trajectories. This leads to a more natural deformation, that conserves the aspect

ratio of user-drawn 2D cross-sections.

102

Figure IV.11: When mapping a tile’s content into an hexahedron of the shell, deform-

ing each point of the generated surface (left) leads to more distortion than applying

the deformation to the underlying curves, prior to sweeping (right, ours).

Figure IV.12: When the macrosurface has open borders, one can force the tiling

to place an empty interface at boundaries to prevent open geometry (middle and

right). It is also possible to prevent this empty interface from occurring away from

boundaries. (right).

The basket shown in Figure IV.12 is a typical use case of our border constraints.

Without any constraint, open ended surfaces appear on the boundaries of the

mesh (Figure IV.12.a). The user can then add an empty interface and flag all the

other ones as border exempt, so only the empty interface is used at boundaries

(fig. IV.12.b), and prevent disconnection using the border only flag (fig. IV.12.c).

IV.2.3.2 Discussion

We proposed a method for efficient authoring and representation of rich 3D

mesostructures along the surface of a quad mesh. Our approach is purely user-

driven, on the contrary to data-driven approaches such as Mesh Quilting (K. Zhou

et al., 2006) which are less interactive since all a user can do is provide a different

input example. An interesting follow-up would be to study how to hybrid one

method with the other.

We reduce the boilerplate involved in defining the 3D content of tiles by integrating

the constraint of continuity at tile interfaces from the very beginning of the user

103

interaction. And as a by-product, the parametric nature of the content interacts

nicely with the mapping into the shell space, mitigating deformation.

IV.2.3.3 Future Work

Our constructive method could be extended to more general content, applied to

a 3D slot graph, although this would imply multiple user interface challenges.

Besides, it is quite straightforward to adapt to other polygons than quads, using

one tile set per corner count.

To give more control to the user and we could provide the possibility to force a

particular tile to be present at a given slot, or to force the regeneration of an area

without changing the other slots for instance. These are mainly user interface

changes, as they would simply correspond to altering the initial constraints.

Also, smarter backtracking could speed up convergence by handling the cases of

dead end a bit differently: rather than restarting from the initial configuration, i.e.,

cancelling all observations, one could cancel only the last 𝑛 ones, the challenge

being to determine 𝑛. A value of 1 would mean to traverse the graph of solution

depth-first and could take a significant time to jump away from a bad branch of

search.

A deeper change to the tiling algorithm could be to solve for interfaces first, and

then generating the list of tiles with all the configuration occurring in the result.

With a procedure to limit the number of such configurations during solving, this

corresponds to merging the tiling engine and our tile suggestion mechanism into

a single algorithm, ensuring that there is always a solution but at the cost of less

control given to the user over the tile set.

IV.3 Parametric tile content

IV.3.1 Introduction

We saw that tiling systems are a powerful framework for content generation,

thanks to their ability to produce large aperiodic extents from a small dictionary

of elements. And their constraint-based nature makes them easily user-directable.

However, tile-based content often suffers from visual redundancy and rigidity,

even when applied on a non-regular grid. To address this, we augment the discrete

tiles of the input dictionary with scalar parameters driving variations of their

content, like for instance the height marked as variable in Figure I.6, making them

parametric tiles.

The key challenge induced by this change is that tile assignments and hyper-

parameter values must be solved simultaneously. In some easy cases, the hyper-

parameter valuation is simply a post-process, but as illustrated in Figure IV.13.b

there exists more intricate scenarios. Here the range of allowed value for ℎ,

104

1 2 3

variable

1
2

3

(a)

(b)

Figure IV.13: Like any tiling problem, we start from a set of tiles and a graph of

slots 1⃝ . In simple a scenario like (a), assigning a value to the hyper-parameter ℎ

of parametric tiles can be thought as a post-process 3⃝ independent from the tiling

itself 2⃝ . However, in presence of more advanced constraints on ℎ, like in (b), these

must be taken into account during the tiling. Otherwise there is no way to detect in

2⃝ that the top assignment cannot lead to a valid solution whereas the bottom one

can, as shown in 3⃝ .

combined with the constraint that adjacent tile interfaces must have the same

height, make the discrete tiling engine unable to distinguish between a valid

solution and one that will lead to a dead-end when assigning values to ℎ. We

thus designed a parameter-aware tiling algorithm, which handles tile neighboring

constraints that are affecting the range of validity of scalar variations.

Contributions The main challenges we address are (IV.3.2.1) the expression

of constraint propagation equations using continuous tile sets, in a way that can

be implemented in practice, namely without infinite unions, then (IV.3.2.2) the

definition of a compact representation of infinite tile superposition and (IV.3.2.3) a

procedure to sample this representation, for the observe step of the WFC algorithm.

IV.3.2 Method

We adapt the tiling engine presented in Section IV.2.2.3, based on the algorithm

of WFC (Merrell, 2007; Gumin, 2016). We must however change the formulation

105

of the tiling problem that was given in Section IV.1.2.1, because the set 𝑇 of tiles,

which was only discrete, now contains both discrete and continuous variations of

the tiles. And the set 𝐼 of interfaces also undergoes this shift. In general, if𝑇⋄ is the
discrete set of tile types and each type 𝑡 ∈ 𝑇⋄ is a parametric shape of hyper-space

parameter Π𝑡 , then the continuous tile set is:

𝑇 =
⋃
𝑡 ∈𝑇⋄
{𝑡} × Π𝑡 (IV.1)

We note 𝑡 (𝝅) an element (𝑡, 𝜋1, . . . , 𝜋𝐾) of 𝑇 . In the example of Figure IV.13.b, we

have tile types 𝑇⋄ = {BeginWall, EndWall,Door, Stairs} and for instance ΠDoor =

[ℎdoor, +∞[.

Interface-based parameterization Similarly, and more importantly, the set of

interfaces becomes 𝐼 =
⋃
𝑖∈𝐼⋄ {𝑖} × Π𝑖 where 𝑖 ∈ 𝐼⋄ is a parametric interface type

and Π𝑖 is its hyper-space parameter. These interface hyper-parameters are what

matters to the tiling engine. On the contrary, the tile hyper-parameters that do

not affect any interface can be handled in a post-process, so we ignore them and,

without loss of generality, we consider that

Π𝑡 ⊂ Π𝑖N × Π𝑖S × . . .

where 𝑖𝑑 = 𝐿⋄ (𝑡, 𝑑) is the interface type that labels tile type 𝑡 in direction 𝑑 .

In the example of Figure IV.13.b, interfaces types are Wall, Ground and Road, with

ΠWall = R
+
. The tile type Stairs is parameterized by (ℎN, ℎS) ∈ ΠWall × ΠWall

because both its north and south interfaces are Wall. More generally, we note tiles

𝑡 (𝜋N, 𝜋S, . . .) = 𝑡 (𝝅).

NB What we assume in the end is that the labeling function 𝐿 : 𝑇 × 𝐷 → 𝐼

is separable into its discrete part 𝐿⋄ : 𝑇⋄ × 𝐷 → 𝐼⋄ and its continuous part

((𝜋N, 𝜋S, . . .), 𝑑) ↦→ 𝜋𝑑 , such that 𝑖 (. . .) = 𝐿(𝑡 (. . .), 𝑑) only if 𝑖 = 𝐿⋄ (𝑡, 𝑑).
In other terms, the interface type 𝑖 of a tile type 𝑡 does not depend the on

value of the hyper-parameters.

IV.3.2.1 Constraint propagation

The main step that gets affected by the continuity of the tile set is the constraint

propagation, a.k.a. the collapse step in WFC’s wording.

We have two types of constraints. First, discrete neighboring constraints – stating

that interfaces types which are in contact must match – are the same as in the

original discrete tiling problem. We write 𝑖 ≡ 𝑖′ to mean that interfaces 𝑖 and 𝑖′ are

106

superposition

superposition

slot

slot

Figure IV.14: The slot 𝑠2 is in direction 𝑑1 with respect to the slot 𝑠1, and inversely

the slot 𝑠1 is in direction 𝑑2 with respect to slot 𝑠2. We note 𝑑1 ↔ 𝑑2 the edge going

from 𝑠1 to 𝑠2.

allowed to be in contact, to cover both cases where we need 𝑖 = 𝑖′ and cases like

in Section IV.2.2.3 where it is 𝑖 = 𝑖′↔.

Secondly, there are hyper-parameter constraints. This is simply expressed as an

equality between the hyper-parameters of 𝑖 and these of 𝑖′, and thanks to our

interface-based parameterization, it directly translates into constraints on the

hyper-parameters of tiles.

In order to propagate both types of constraints, we need to adapt ResolveConflicts(𝑠1,

𝑑1, 𝑠2, 𝑑2) in Algorithm 5. This call updates the superposed assignment 𝑇2 ⊂ 𝑇 of

slot 𝑠2 by keeping only the tiles that are allowed to be next to the tiles of 𝑇1 in the

direction 𝑑1 ↔ 𝑑2 (Figure IV.14):

𝑇2 ← 𝑇2 ∩ Allowed(𝑇1, 𝑑1, 𝑑2)

In a discrete tiling problem, we usually pre-compute a table 𝑅 [𝑖, 𝑑] = {𝑡 | 𝐿(𝑡, 𝑑) ≡
𝑖}, and then evaluate Allowed(𝑇1, 𝑑1, 𝑑2) as:

Allowed(𝑇1, 𝑑1, 𝑑2) =
⋃
𝑡 ∈𝑇1

𝑅 [𝐿(𝑡, 𝑑1), 𝑑2]

In the parametric tiling problem, it is no longer possible to store the table 𝑅, nor it

is possible to iterate through 𝑇1. Using 𝑖𝑘 as a shorthand for 𝐿⋄ (𝑡𝑘 , 𝑑𝑘), we write:

Allowed(𝑇1, 𝑑1, 𝑑2) =
⋃

𝑡1 (𝝅1) ∈𝑇1

{
𝑡2(𝝅2) | 𝑖2 ≡ 𝑖1 and 𝝅2𝑑2

= 𝝅1𝑑1

}
(IV.2)

Any formulation of this set suffers from the presence of an infinity of tiles, but we

express it in a way that better suits the representation of tile superposition 𝑇 that

we introduce in Section IV.3.2.2:

107

(a)

(b)

Figure IV.15: (a) Hyper-parameter spaces for tiles of Figure IV.13.b expressed using

the interface hyper-parameter ℎ. (b) Illustration of tile set projection𝑉 and its pseudo-

inverse 𝐻 .

Allowed(𝑇1, 𝑑1, 𝑑2) =
⋃
𝑡2∈𝑇⋄

𝐻𝑡2,𝑑2

(⋃
𝑡1∈𝑇⋄
st. 𝑖1≡𝑖2

𝑉𝑡1,𝑑1
(𝑇1)

)
(IV.3)

We note 𝐻𝑡,𝑑 (𝑋) = {𝑡 (𝝅) | 𝜋𝑑 ∈ 𝑋 } the set of variations of a tile type 𝑡 whose

interface in direction 𝑑 has its hyper-parameters in 𝑋 . And we note 𝑉𝑡,𝑑 (𝑌) =
{𝜋𝑑 | 𝑡 (. . . , 𝜋𝑑 , . . .) ∈ 𝑌 } the set of interface hyper-parameters exposed in the

direction 𝑑 by the tiles of type 𝑡 in the superposition 𝑌 ∈ 𝑇 . In other terms, 𝑉 is

the projection of Π𝑡 ∩ 𝑌 1
onto Π𝑖 , with 𝑖 = 𝐿⋄ (𝑡, 𝑑), and 𝐻 is its inverse:

𝑉𝑡,𝑑
(
𝐻𝑡,𝑑 (𝑋)

)
= 𝑋

These functions are illustrated in Figure IV.15 and the derivation from Equation IV.2

to IV.3 is detailed in Appendix C. The strength of the formulation of Equation IV.3

is that the unions can be implemented as finite loops. The next section shows how

we encode the infinite sets returned by 𝐻 and 𝑉 .

1
This is a shorthand for ({𝑡} × Π𝑡) ∩ 𝑌 , if we refer to the definition of 𝑇 of Equation IV.1

108

IV.3.2.2 Representation of a tile superposition

We represent a superposition 𝑇 of tiles as a series of axis aligned bounding boxes.

For each tile type 𝑡 ∈ 𝑇⋄ , we store a single bounding box 𝐵𝑡 = [𝑎1, 𝑏1]×[𝑎2, 𝑏2]×. . . :

𝑇 =
⋃
𝑡 ∈𝑇⋄
{𝑡} × 𝐵𝑡

Our representation contains false positives, namely tiles that are not in the actual

superposition but within the bounding box anyways, but it does not have any false

negative. This means that the algorithm will not miss branches of solutions, but

sincewe reduce the possibility spacemore slowly thanwith a perfect representation

the algorithm may need more time to finish.

𝑉 and𝐻 are implemented for bounding boxes only. 𝑉𝑡,𝑑 (𝐵𝑡) is simply the restriction

of 𝐵𝑡 to the axes of direction 𝑑 . Functions 𝐻𝑡,𝑑 are what actually contains the rules

relating the hyper-parameters of a tile, and are considered as user input. For

instance, for tile Stairs in Figure IV.15:

𝐻Stairs,S ([𝑎, 𝑏]) = [𝑎 − 8ℎstep, 𝑏 + 8ℎstep] × [𝑎, 𝑏]

For simple constraint equations like in this case, 𝐻 can be derived using symbolic

calculus:

1 >> from sympy import *

2 >> hs, hn , hstep = symbols('h_S , h_N , h_step ', positive=True)

3 >> constraint = Abs(hs - hn) < 8 * hstep

4 >> solveset(constraint , hn, domain=S.Reals)

5 Interval.open(h_S - 8*h_step , h_S + 8* h_step)

Listing IV.1: The python package sympy can be used to derive the expression 𝐻

from a simple inequality.

IV.3.2.3 Sampling tile superposition

During the observe step of the WFC algorithm, we need to sample a single tile 𝑡 (𝝅)
from a superposition 𝑇 , and this tile must not be a false positive. We do this by

sampling hyper-parameters incrementally, refining the bounding box after each

one to remove obvious false negatives. And for each hyper-parameter, we use either

one end of the bounding box or the other, no in-between. If the density of false

positives is low enough, another strategy is dart throwing, i.e., sampling repeatedly

until the parameter 𝝅 is valid, but none of our examples use this sampling scheme.

IV.3.3 Results

Switching the representation of superposition in assignments 𝐴 of Algorithm 5 to

the bounding boxes described in Section IV.3.2.2, and adapting the collapse and

109

Post-processed tileContinuous variations
Discrete variations

Figure IV.16: Watershed network generated using our parametric tile engine. Our

parametric tiling engine ensures that the water flows consistently and assigns altitudes

at each interface.

observe steps according to respectively Section IV.3.2.1 and IV.3.2.3, we are able to

run the Parametric WFC algorithm on continuous tile sets.

IV.3.3.1 Watershed generation

In the example of Figures IV.16 and IV.17, we generate watershed using tiles

parameterized by the altitude of their corners and the middle of the edges. Each

tile is constrained such that the water flows in the expected direction, and the

discrete interface matching ≡ ensures that water is flowing in the same way across

boundaries. In this example, corner altitudes are defined in a post-process, but

waterway altitudes are needed for the tiling. In order to generate an island, we

constrain the altitude at boundaries to 0. Procedural fractal variations are finally

added to bring more diversity. Compared to other landscape generation algorithms,

this approach ensures the creation of meaningful watersheds and consistent large

scale features like valleys.

Other approaches, such as the work of Génevaux et al. (2013), use hydrology

as a driver for terrain generation. We do not intend to compete with these but

rather use their scenario for illustration of our more generic algorithm. Large

scale features in terrain generation can also be generated from tectonic activity

(E. Michel et al., 2015; Cordonnier et al., 2018).

110

Figure IV.17: Multiple runs of our watershed generation based on parametric tiles.

IV.3.3.2 Discussion

Our method shows that the core mechanism of the WFC algorithm generalizes

to continuous tile sets, namely tile sets whose tiles are parametric shapes. This

resonates with our chapter on imperative programming (Chapter III), since such

tiles are typically described as DAGs.

In order to handle continuous tile sets, we needed a simplification hypothesis for

representing superposition of tiles. Nevertheless, Section IV.3.2.1 makes no extra

assumption, so the equations based on functions 𝐻 and 𝑉 come without loss of

generality and might be reused together with a different representation of tile

superposition.

The choice of a single bounding box, i.e., a single range per hyper-parameter, is a

trade-off between expressivity and space requirement. Our continuous representa-

tion takes obviously more space than in discrete WFC, where it can be represented

as a compact bitfield (using one bit per tile), but way less than a more accurate

representation. This model becomes problematic when the parameter set of a tile

is made of multiple connected components; we advise in such a case to consider

each component as a different tile type (as long as there is a finite set of connected

components).

111

V
Visual feedback of shape pro-
grams during authoring

V.1 Introduction

V.1.1 A two-way integration of rendering and generation

As introduced in the Chapter I, our interest for program-based representations

of shapes is grounded in their ability to support the creation process. We focus

on shape programs that evaluate in interactive time, but sometimes the technical

limitation to interactivity comes from the real-time rendering of its output.

It does not take a long shape program to generate heavy content, so the limitations

of real-time rendering are hit faster when designing shape through its program-

based representation than when building it manually. Fortunately, we can use the

program itself as a mean to detect and optimize geometrical redundancies in the

shapes.

We presented in Chapter II multiple examples of procedural modeling systems that

include considerations about rendering, for shape grammars representing building

facades (Haegler et al., 2010) or whole cities (Steinberger et al., 2014), for fiber-level

garment modeling (K. Wu & Yuksel, 2017), or for CSG-based modeling (Goldfeather

et al., 1986; Kirsch & Döllner, 2004; Zanni et al., 2018).

In this chapter, we study two ways to blend the shape program with its real-

time rendering pipeline. In Section V.2, we delay the evaluation of some parts of

the shape program, namely the tile instancing and deformation, to benefit from

hardware acceleration and enable real-time visualization of the complex mesostruc-

tures generated in Section IV.2. In Section V.3, we have the shape program output

multiple first-order representations, which we combine information about the

112

viewpoint to provide real-time feedback at multiple level of details (LoD) for large

self-repeating aggregates of quasi-spherical elements.

V.1.2 Related works and background

Level-of-Detail LoD methods intend to generate simplified versions of a com-

plex object that are visually equivalent at a given distance while computationally

lighter. Surfacic mesh simplification methods, either based on repeated con-

tractions of edges guided by some cost function (Hoppe et al., 1993; Hoppe,

1996; Garland & Heckbert, 1997) or by spatial clustering (Rossignac & Borrel,

1993), have become standard LoD methods and can even be applied to very large

meshes (Lindstrom, 2000). However, as pointed out by Cook et al. (2007), such

methods fail when the geometry is an aggregation of already simple elements,

which vanish if simplified further.

Volumetric models also have their LoD mechanisms. On voxel-based models, the

SGGX distribution (Heitz et al., 2015) and follow ups (Zhao, Wu, et al., 2016; Loubet

& Neyret, 2018) have enabled techniques for downsampling a volume without

altering its visual appearance. Hierarchical structures can be used to organize data

in a tree whose traversal is dynamically adapted to the view point, either with

voxels (Crassin et al., 2009; Kämpe et al., 2013) or with points (Rusinkiewicz &

Levoy, 2000; Gobbetti & Marton, 2005). Most of these techniques assume static

geometry though, which is not compatible with the viewport of an authoring tool.

All these LoD methods are designed for a single class of model. Sequential point

trees (Dachsbacher et al., 2003) are an interesting evolution of QSplat (Rusinkiewicz

& Levoy, 2000) using an hybrid model, but it makes the same assumption that

the point cloud is static. The inter-model transition was recently successfully

addressed in the surface-to-volumetric context by Loubet and Neyret (2017). Their

setting is more general than ours but designed for off-line rendering and not

tacking advantage – because not assuming – of self-similarity.

In Section V.3, we focus on dynamic element positions, depending on input hyper-

parameters. This prevents us from using techniques that precompute clusters of

geometry to merge, likeOccluder Fusion (Wonka et al., 2000) or CellVIEW (Le Muzic

et al., 2015). The latter is a case of molecular visualization, which generally involves

LoD of dense aggregates of spheres that motivated dedicated research, as surveyed

by Miao et al. (2019). Although such visualization techniques deal with static

perfect spheres, usually uniformly colored, setting them aside from many issues

we intend to tackle here, they need to handle very large amounts of atoms for

which they develop inspiring advanced drawing strategies.

Impostors One of the most extreme simplification consists in using billboards.

A billboard, or planar impostor, is made of one single plane, and its whole ap-

pearance is encapsulated in (the maps of) its material, with its perceived shape

113

being expressed by its silhouette, reproduced using transparency. The extreme

simplicity of a billboard’s geometry allows to invest more resources in shading,

with its associated material containing information about the normal field of the

original geometry, and even the depth component leveraged by relief mapping

techniques (Policarpo et al., 2005).

The limits of a single billboard are quickly reached, usually because of the limited

range of directions for which it is valid, but they are at the root of many lightweight

approximation models in computer graphics. Aggregated billboards are often

called multi-view impostors since they address the view dependency of planar

billboards. Maciel and Shirley (1995) build a LoD hierarchy in which billboards are

precomputed for some key directions. Billboard clouds (Décoret et al., 2002) extract

several billboards using a Hough transform to approximate a high definition mesh

model. A typical use case of billboards, and hence multi-view impostors, is tree

rendering, like Meyer and Neyret (2000) and more recently Bruneton and Neyret

(2012) whose method is related to our Section V.3, though their model remains

surfacic at all scales and they use impostor for the different goal of accounting for

foliage’s semi-transparency.

Todt et al. (2007) provide a good overview of the possible parametrizations of a

spherical impostor, however they focus on a different use case where a single

complex model is rendered, leading them to different design choices. In particular,

their selection of precomputed directions, and advanced compression, projections

and intersection refinement schemes, while saving memory, quickly becomes too

prohibitive to apply for each grain in our scenario. Some of these limitations are

addressed by Brucks (Brucks, 2018) who, similarly to our approach, also make the

impostors dynamically relightable by storing maps that represent the attribute

field (like the G-Buffer) rather than a static grain light field. However, Brucks

renders order of magnitude less impostors than in our use case, so they can still

afford storing depth maps and computing relief mapping. Since they use it for

trees, they also deal with significantly smaller inter-impostor occlusion.

Filtering Filtering attribute-encoding images, as mandatory with mipmapping,

is not trivial for attribute with non-linear response, such as normal and roughness

maps. This issue has been addressed by Tan et al. (2008), LEAN mapping (Olano &

Baker, 2010) and then LEADR mapping (Dupuy et al., 2013), which are compatible

with our method. More recent works even try to adapt the concept of mip-maps

to the BSDF itself rather than to its attribute maps (C. Xu et al., 2017).

V.2 Tile-based Mesostructure Rendering

Section IV.2 presented a tile-based method for authoring mesostructure geometry.

Our approach enables designers to produce an heavy amount of geometrical

content, easily reaching hundreds of millions of triangles when represented as a

114

Figure V.1: Captures from the real-time viewport of our mesostructure authoring

tool.

mesh. Since we intend to provide an interactive authoring system, we need a way

to render this geometry in real time, similarly to what other surface amplification

methods, like displacement mapping (Szirmay-Kalos & Umenhoffer, 2008) and

subdivision surface (Brainerd et al., 2016), do.

When facing a similar situation in Section V.3, we will choose to make the shape

program output a different representation of the geometry, namely impostors

or point clouds, but the topological complexity of mesostructures makes the use

of simplified meshes, impostors and other LoD techniques unfit for our current

problem. Instead, we use a full geometry but complete its generation on-the-fly

within the render pipeline.

V.2.1 Method

V.2.1.1 Render Pipeline

We start by sampling each 2D cross-section of each interface with a list of points

using Clipper (2014). These cross-sections are stored as CSG trees modeling a 2D

space occupancy function during editing so that we can change the discretization

to a user defined resolution target dynamically. The resulting points sets are then

stored in 1D texture maps using a repeat wrap mode.

Second, for each sweep surface in the tile set – not for each instance – we allocate

a GPU vertex array object (VAO) modeling a regular grid mesh. The horizontal

resolution of this grid is the maximum of the size of the start and end cross-

115

section textures. The vertical resolution is a user defined parameter driving the

smoothness of the sweep objects. We use a compute shader to assign 𝑥 and 𝑦

coordinates to each point by interpolating from the start to the end section, taking

care of reversing the coordinate at which cross-section textures are sampled from

𝑢 to 1 − 𝑢 when an interface is flagged as flipped. This creates base sweeps that

will later be deformed per-instance to conform to their target trajectory.

Third, the shell space is represented in GPU memory as a buffer (SSBO) storing,

for each macrosurface quad, the eight corners of its shell hexahedron.

Fourth, we allocate four SSBOs to hold the control points of the Bézier curves,

containing one vector per instance of a sweep. A compute shader uses the shell

space SSBO and the slot assignments to fill these control point buffers.

Finally, one draw call is issued for each type of sweep surface, and hardware-

instanced as many times as there are uses of its parent tile type in the slot as-

signment. We deform the VAOs at the vertex shader stage to follow the Bézier

trajectory. Any shading method can be used on the rasterized fragments.

V.2.1.2 Caching

Our rendering pipeline caches the result of the previous frame as much as possible:

• A cross-section texture is modified only if the corresponding shape has been

edited by the user.

• A sweep VAO is recomputed only if the sweep is new or if one of its cross-

sections has been modified.

• The shell space is uploaded only when a new macrosurface is used (or if it is

deformed on CPU).

• The positions of the control points are recomputed only when the slot

assignments change, or when the shell space evolves (the thickness and

offset user parameters).

V.2.2 Results

V.2.2.1 Performance

The performance of our C++/OpenGL prototype are reported in Table V.1, mea-

sured with an Intel Core i5 CPU, with 16 GB of RAM and an NVidia GeForce Titan

RTX. As an element of comparison to show the compactness of our representation,

the example (1c) occupies 1.75 GB when exported as a binary PLY file. Additional

figures are reported in Appendix D.

116

(a)

(b)

Figure V.2: Our mesostructure rendered as a signed distance field, using sphere

tracing. Inset (a) and (b) show the visual artefacts that arise from this representation,

(b) being voluntarily degraded for illustrative purpose.

Table V.1: For each example of Figure IV.10, the amount of GPU memory required to

store our model, the number of drawn triangles, the corresponding render time and

the time need by the tiling engine.

Example Memory Triangles Render Tiling

(1a) 5.66 MB 57.9 M 6.2 ms 1132 ms

(1b) 3.06 MB 44.7 M 6.0 ms 3212 ms

(1c) 6.30 MB 70.0 M 7.9 ms 708 ms

(2a) 2.96 MB 24.3 M 5.1 ms 87 ms

(2b) 1.83 MB 18.8 M 5.1 ms 135 ms

(2c) 4.18 MB 29.8 M 5.8 ms 279 ms

(3a) 1.76 MB 6.42 M 3.6 ms 17.8 ms

(3b) 1.33 MB 7.19 M 4.0 ms 43.3 ms

(3c) 3.49 MB 6.18 M 3.1 ms 39.1 ms

V.2.2.2 Surface representation

The procedural nature of our core representation enables us to synthesize various

representations of the surface of the end mesostructure. We have focused on

traditional meshes (Figure V.1), but this choice creates self-intersection when

multiple sweeps start from the same profile (Y joints). An alternative choice consists

in creating implicit surfaces, which handle sweep volumes rather well (Schmidt

& Wyvill, 2005). Early tests (Figure V.2) show that a promising approach consists

in an hybrid representation where the macrosurface’s shell is rasterized and then

tile’s content is drawn using sphere tracing. Although preventing self-intersections

and producing nice blends, our tests show slower rendering time compared to the

mesh representation.

117

Figure V.3: Our level-of-detail method exploits quasi-spherical impostors to render,

in real time, fully dynamic stackings made of millions of similar objects, with variable

materials and orientations, while seamlessly integrating into deferred shading.

V.2.3 Discussion

V.2.3.1 Properties

Our entire mesostructure synthesis runs almost fully on the GPU, leaving the

CPU largely available to the tiling engine and achieving hundreds of millions

mesostructure polycount at real-time framerate. The parametric nature of our

representation makes it possible to dynamically adapt the resolution of the mesh

it produces, allowing manipulation on lower end devices, and opening a potential

for LoD mechanisms.

V.2.3.2 Future work

Delaying the evaluation of some stages of the shape program is a very efficient

approach to enable real-time feedback in multiple scenarios. It is however hard to

automatically figure out which part of the geometry generation may be off-loaded

to GPU compute shaders and how. The most efficient solution often remains to

hand tune the integration of shape program and real-time rendering, like we are

doing here. Another common scenario is the case of a DAG whose last operation

is a subdivision surface: it is often evaluated in an hardware-accelerated tessella-

tion stage. And when a DAG ends with an instancing, this is usually hardware

accelerated, or tuned even further as we see in the next section.

We could go further by handling more common cases and matching patterns in

the DAG to port them to render-time on-the-fly evaluation, or chose to implement

mesh processing effects using dedicated languages able to abstract this such as

Halide (Ragan-Kelley et al., 2012).

V.3 Multiscale Rendering of Dense Dynamic Stackings

V.3.1 Introduction

Fruits in a market-place, coffee beans in a roaster or bolts at the hardware store

are typical examples of stackings found in 3D scenes and generated by a program

118

(a)

Output geometry

Impostor baking

Instancing

Output viewport

Rendering

Viewpoint Output geometry

Output viewport

Rendering

Viewpoint

Instancing

Per‐instance variations

Per‐instance variations

SHAPE

PROGRAM

RENDER

PROGRAM(b)

Figure V.4: (a) When a shape programs ends with the dense instancing of some quasi-

spherical objects, (b) we feed viewpoint information to the instancer and have the shape

program compute a different representation of the instances, namely impostors. Like

in Section V.2, the evaluation of per-instance variations (size, orientation, material) is

delayed to the render program.

that ends with instancing (Figure V.4). They challenge LoD mechanisms to achieve

both high speed rendering and detail preservation. At each extremity of the LoD

chain, existing methods are well covered by the literature. Closer views are better

handled using a mesh-based model that can be progressively simplified (Hoppe,

1996) while further views leverage point-based rendering (Gross & Pfister, 2007).

But none of these models fits well the transition phase, when stacked elements

– which we call grains in the reminder of this section – cover tens to hundreds

of pixels. Under this regime, mesh-based simplification makes whole elements

vanish when pushed too far, while point-based rendering lacks high frequency

details that should still be clearly visible.

The self-similarity of the stacking naturally leads to per-grain impostors for this

transition scale. When the number of visible grains is very large compared to

the number of possible view angles, it becomes worth precomputing a few views

and then, at runtime, picking for each grain the closest one. There are two ways

to describe an impostor, either as a projection of the geometry of a grain or as

a rich splat. The former relates to mesh-based models while the latter relates it

to point-based graphics, which suggests this is a good candidate as a transition

model.

Impostors come with their own limitations, e.g., memory consumption, hardware

support or overdraw, that we propose to overcome making three assumptions that

119

stem from the typical properties of stacked grains:

• quasi-spherical shape: The grain’s surface is bounded between two co-

centered spheres, namely an inner sphere of radius 𝑟 and an outer sphere of

radius 𝑅; the closer these radii, the more efficient our approach.

• moderate shape diversity: All grains share the same (or only a few)

silhouette, which prevents memory consumption and improves caching.

• density: occlusion culling becomes more impactful as density increases,

even if approximate, as long as grains don’t intersect each others.

Fortunately, the loss of generality induced by these hypotheses is in practice largely

mitigated as noticed by Moon et al. (2007) and Meng et al. (2015). The diversity

of shape can be increased by arbitrary scale/rotation of each grain together with

procedural variations of its material attribute maps. Our approach is oblivious

to the grain material model: in practice, we exemplify our method on standard

microfacet models rendered using deferred shading. Moreover, relaxing the quasi-

spherical or density hypothesis only leads to progressively degraded performance,

but not to any gap in visual appearance. Based on these assumptions, we make

the following contributions:

• a real time splitting process of the input grain set into per-scale/drawing

model buffers, leveraging an analysis of when to split (Section V.3.4.1) and

how to do it (Section V.3.4.2),

• a sampling scheme for the impostors suited to our quasi-spherical proxy

(Section V.3.3.3) and improving their visual appearance w.r.t. ground truth,

• a novel occlusion culling mechanism tailored for dense stackings of quasi-

spherical objects (Section V.3.5.1), that helps alleviating rendering prior to

determining the exact grain shape,

• an efficient rendering pipeline for a cloud of many impostors based on early-

Z rejection (Section V.3.5.2) – a hardware mechanism not natively suitable

for impostors, whose actual shape remains unknown up to the sampling of

their maps.

As a result, our approach is versatile enough to model various use cases and scales

well up to extreme amounts of grains such as in sand rendering.

V.3.2 Pipeline overview

Figure V.5 describes the sequence of draw events involved in rendering our ag-

gregate of grains. The splitting step 1⃝ orchestrates rendering by routing each

grain toward one model or another depending on its location. It discards some

of them based on an occlusion map which is also further reused at step 3⃝ to

speed up drawing. Additionally, it early rejects grains out of the view frustum.

120

Figure V.5: Anatomy of a dense stacking rendering sequence. A first step splits the

stacking into several element arrays used to feed subsequent draw calls (Section V.3.4.2),

also applying culling to early discard hidden points (Section V.3.5.1). Impostors are

drawn in two passes (Section V.3.5.2). Point-based drawing typically discard all points

beyond a limit distance. Our contributions concern steps 1⃝ and 3⃝ .

Models for close 2⃝ , mid 3⃝ and far 4⃝ grains are then rendered individually

using the element buffers resulting from the splitting. We recall that, as a general

rule of thumb, modern hardware-accelerated rasterization pipelines require closer

elements to be rendered first to limit unnecessary fragment processing. Steps 2⃝
and 4⃝ are the two models that we intend to bridge, respectively mesh-based

and point-based, so we focus on the splitting process 1⃝ , which involves when

(Section V.3.4.1) and how (Section V.3.4.2) to split the input point cloud, as well as

on the impostor rendering 3⃝ .

V.3.3 Impostors for dense stackings

Our mid-scale representation of the stacking is a cloud of impostors. The concept

of spherical impostor is not new per se, but it can come with many flavors so we

discuss which one is the best suited for real-time rendering of dense aggregates.

V.3.3.1 General rendering pipeline

We base our work on a spherical impostor model made of co-centered planar

impostors facing different directions. Prior to rendering, the impostors are pre-

computed and then at render time, the only planes to be sampled are those whose

normal vector is close enough to the view direction (Figure V.6).

Precomputation The impostor depends on the set of𝑁 view directions (𝜔𝑖)𝑖=1...𝑁

for which the grain’s response is precomputed. For each view index 𝑖 , a 𝑝 × 𝑝
sprite of the grain is rendered from a view point in direction 𝜔𝑖 , storing for each

pixel the material attributes (albedo, roughness, normal, etc.) in an atlas of maps

(𝐼𝑖)𝑖=1...𝑁 where 𝐼𝑖 is the response at different positions of the sphere in direction

𝜔𝑖 .

Runtime In order to reduce as much as possible the geometric footprint of the

impostors, we use simple sprites, e.g., OpenGL’s GL_POINTS, as our drawing

primitive. The sprite size is computed in the vertex shader to ensure that it covers

the whole outer sphere of the grain. When drawing the impostor, we fetch the

object’s appearance attributes at a given point in a given direction. The main steps

121

FigureV.6: A spherical impostor is a set of concentric planar impostors 𝐼𝑖 precomputed

for different directions 𝜔𝑖 , as well as an inner radius 𝑟 and outer radius 𝑅. At render

time, we use only the most relevant ones. They can be sampled as planes (bottom left)

or as hemispheres (bottom right), or using ourmixed sampling scheme (Section V.3.3.3).

of impostor sampling are (i) to seek for the indices of the appropriate precomputed

views (planar impostors) given the orientation and position of the grain in camera

space, (ii) to sample the right texel from the impostor maps and (iii) to interpolate
the responses of different planes. The interpolation weights ensure the visual

continuity by progressively fading out the contribution of a plane when the view

point changes. In the design of such a sampling, two choices can have a major

impact: the parametrization, and the definition, i.e., the density of the sampling.

The latter is discussed in Section V.3.4.1 when analyzing the bias introduced by

the impostors.

V.3.3.2 Parametrization

In order to still benefit from hardware texture filtering (mipmaps), especially to re-

duce aliasing when grains become very small on screen, we use the parametrization

that Todt et al. (2007) calls Sphere-Plane. When sampling the atlas of precomputed

views, the view index represents a direction and the texel coordinate a position

offset, not the other way around. In practice, this means that precomputed views

are rendered using orthographic cameras.

There remains to decide on the directions to precompute. The list (𝜔𝑖) of such
directions must verify several conditions:

• coverage: There must always be a billboard close enough to the viewing

direction among the precomputed atlas.

122

Figure V.7: We precompute view directions using vertices of a subdivided octahedron

(the 𝐿1 sphere) since mapping them to integer indices is computationally efficient;

here with 𝑛 = 8 vertices by edge boils down to 𝑁 = 128 views.

• compactness: Each precomputed view has a video memory footprint which

must be small especially if there are many different types of grain.

• speed: To sample a given viewing direction, we need to efficiently determine

the index of the closest view in (𝜔𝑖).

Coverage and compactness suggest an as regular as possible sampling of the unit

sphere such as the distribution of Fibonnacci points (Keinert et al., 2015) or a

statically optimized mesh (Todt et al., 2007). But speed is crucial in our scenario so

we opt for a distribution based on a subdivided octahedron (see Figure V.7) as in

Brucks (2018). Not only finding the index 𝑖 of the closest view in this distribution

is done in O(1) with a little constant, but moreover it is easy to get the four closest

views with their coefficients, which is important for interpolation.

At runtime, we compute the sampled directions at the extent of a whole grain, and

not once for each fragment, i.e., we assume that camera rays are almost parallel

for each fragments covered by a grain. Though this is inexact in general, it does

not introduce strong distortion for grains whose extent on screen is limited to 100

pixels – our use case – and provides a significant speed-up.

1 void DirectionToViewIndices(

2 vec3 d, uint n, out uvec4 i, out vec2 alpha

3) {

4 d = d / dot(vec3 (1,1,1), abs(d));

5 vec2 uv = (vec2(1, -1) * d.y + d.x + 1) * (n - 1) / 2;

6 uvec2 fuv = uvec2(floor(uv)) * uvec2(n, 1);

7 uvec2 cuv = uvec2(ceil(uv)) * uvec2(n, 1);

8 i.x = fuv.x + fuv.y;

9 i.y = cuv.x + fuv.y;

10 i.z = fuv.x + cuv.y;

11 i.w = cuv.x + cuv.y;

12 if (d.z > 0) i += n * n;

13 alpha = fract(uv);

123

14 }

Listing V.1: Return in 𝑖 the indices of the four closest precomputed views to the

sampling direction 𝑑 , assuming that the number of precomputed views is 𝑁 = 2𝑛2
,

and in 𝛼 the coefficients for interpolating between respectively (𝑖0, 𝑖2) ↔ (𝑖1, 𝑖3)
and (𝑖0, 𝑖1) ↔ (𝑖2, 𝑖3). Note that instead of using the total number of views 𝑁 , our

procedure handles the number 𝑛 of subdivisions along the edge of the octahedron.

In practice, one can refer to the Listing V.1 for a GLSL implementation. The input

direction 𝑑 is normalized using the 𝐿1 norm 𝐿1(𝑑) = |𝑑𝑥 | + |𝑑𝑦 | + |𝑑𝑧 | and then

converted to integer indices.

NB In the atlas of a rich impostor, an index stores multiple maps, for the

multiple attributes of the G-buffer. But they all conceptually share the

same alpha transparency. Special care must be taken to account for alpha

premultiplication when computing the mipmaps.

V.3.3.3 Sampling quasi-spherical impostors

Once a precomputed map 𝐼𝑖 has been selected for sampling, different strategies

may be adopted to decide which texel to read. We propose a sampling scheme

that improves the visual appearance of under-defined impostors while remaining

lightweight.

The most common choice is to assume that the the view direction is perfectly

aligned with precomputed direction 𝜔𝑖 and compute the offset using intersection

of the camera ray with the precomputed view plane. We call this planar sampling

(Figure V.6, bottom left) and note 𝑃 the texel it selects. In practice the camera and

precomputed directions are not always well aligned, because we can store only

a limited number of views. This results in ghosting artifacts, which particularly

impact sharp visual features (Figure V.15) and stems from the distance between

the plane and the actual geometry of the grain.

A second strategy consists in computing the intersection of the camera ray with an

spherical proxy and then project this point along the precomputed view direction

onto the precomputed plane (Figure V.6, bottom right). This spherical sampling

gives another texel 𝑆 . When using the average of 𝑟 and 𝑅 as radius of the sphere

proxy, this greatly reduces ghosting, but cuts out parts of the object.

Therefore, we introduce a mixed sampling for quasi-spherical proxies. More pre-

cisely, we combine 𝑃 and 𝑆 depending on the relative distance 𝑑 of the grain center

to the camera ray normalized by the sphere’s radius:

𝑀 =
𝑑

𝑅
𝑃 + (1 − 𝑑

𝑅
)𝑆

124

A A
B B

A' B' Impostor

C

C'
1

2

A

A'

Figure V.8: A simple planar impostor replaces original geometry (left) with a plane

(middle). At baking time 1⃝ attributes are projected, then used at render time 2⃝ .

This is valid up to a limit value of \ (right).

This sampling succeeds at combining the benefits of both planar and spherical sam-

plings, namely preserving silhouettes and sharp visual features. For a fixedmemory

budget and visual loss, this translates into more grains rendered as impostors and

less as meshes, improving the overall performance.

V.3.4 Model discrimination

V.3.4.1 Impostors’ validity range

We are not simply looking for a model that works at a given mid-scale, we also need

to be able to smoothly transition from one model to another. In order to identify

view conditions under which both mesh-based and impostor-based rending match,

enabling us to substitute them, we must be able to quantify the range of validity

of the impostor. This range of validity depends on the 𝑝 × 𝑝 amounts of spatial

samples per view and the number 𝑁 = 2𝑛2
of views precomputed for a mapping

based on an octahedron with 𝑛 subdivisions.

At the limit mesh-impostor distance 𝐿, the apparent grain diameter in pixels must

match the size of the precomputed view, which gives us 𝑝 proportional to 𝑅/𝐿.
The proportionality factor depends on the camera field of view and the screen

resolution (see Appendix E for details). So from now on we assume that 𝑝 is known

and seek for 𝑁 .

To do so, we need to know the maximum angle \ between a planar impostor’s

normal and the view direction for the impostor to return the right value. With

the notations of Figure V.8, we look for the limit view angle beyond which A’C’

exceeds the world space size 𝑡 = 𝑅/𝑝 of a texel, i.e., beyond which our model will

sample the wrong texel. This constraint writes as follows:

𝐴′𝐶′ ≤ 𝑡 (V.1)

On another hand, the maximum distance between a point on the true surface of

the grain and its projection onto the impostor is the outer radius 𝑅:

𝐶𝐶′ ≤ 𝑅 (V.2)

125

Figure V.9: Mean angle error for different trade-offs of the two parameters 𝑛 (subdi-

visions of the octahedron) and 𝑝 (pixels per side) of a spherical impostor. Grey lines

are iso-weight, i.e., two dots on the same line correspond to impostors occupying the

same amount of video memory.

This can be written using the angle \ between the impostor’s normal and the view

direction:

𝐴′𝐶′ ≤ 𝑅
√︂

1

cos
2 \
− 1 (V.3)

To verify inequality (V.1), we can therefore look for:

𝑅

√︂
1

cos
2 \
− 1 ≤ 𝑅/𝑝 =⇒ |\ | ≤ arccos

√︄
1

1 + 1/𝑝2
(V.4)

So each precomputed view is valid in a cone of angle 2 arccos

√︃
1

1+1/𝑝2
. This value

has to be compared with the maximum angle between two neighbor points of

the octahedron. Figure V.9 shows the evolution of this angle depending on the

angular definition 𝑛 and spatial definition 𝑝 . More detailed tables can be found

in Appendix E. In practice, we use less views than the theoretical threshold since

our mixed sampling scheme (Section V.3.3.3) largely helps reducing artifacts for

under-resolved impostors.

V.3.4.2 Dynamic grain splitting

Now that we know the range of validity of the impostor, we can dynamically

discriminate the grain cloud into three subparts, namely the grains rendered using

mesh instances, those rendered as impostors and the further ones rendered as

points. We assume that all models are compatible with indexed rendering, which

means that rather than when rendering 𝐾 points, an element buffer of 𝐾 indices

can be provided to tell which grains to render.

126

Figure V.10: Grain splitting. Given the position of the grains, we first render a

map of the most likely occluder grains and then distinguishes which model to use

for each grain, building contiguous element buffers for each subsequent draw call.

Impostor rendering requires two element buffers to render occluder candidates first

(Section V.3.5.2).

The splitting process consists in building those elements buffers from the array of

all stacked elements. The number of elements being by hypothesis very large, it is

not possible to pay for the round trip to the CPU, hence we perform this splitting

entirely on the GPU, in compute shaders. It is also not even possible to sort the

whole buffer by the distance of the grains to the view point.

Even if the splitting apparently distinguishes between only three models, it is more

convenient to see it as operating on an arbitrary𝑚 number of models because next

sections will add an extra state for culled points (Section V.3.5.1) and then split the

impostors into two arrays for more efficient rendering (Section V.3.5.2).

We assume that we have a function uint getRenderModel(uint element) that

returns for an element index the index from 0 to𝑚 − 1 of the model that must be

used to draw it. This basically fetches the position buffer to check the distance

to the grain against the thresholds, and will later on include culling. The output

element arrays are written next to each other in a buffer allocated with the same

size as the input element array. Besides this output, the methods returns a list

of 𝑚 offsets within the buffer to tell at which index each element array starts

(Figure V.10).

127

Global atomic splitting We adopt a simple and effective method made of two

steps. First, we atomically count the number of elements per model, in order to

determine the output offsets. In a second step, we insert element indices in the

output using for each model a second counter besides the offset to keep track of

where is the next available index. This counter is atomically incremented each

time an element is written. This process requires calling getRenderModel twice

for each grain. Although this function gets more complex when culling is added,

caching its output between the first and the second steps saves only a few tenths

of millisecond on a stacking of 1.6M elements which is not worth the overhead of

allocating a cache buffer. Once the element buffers are ready, the offsets can be

used to build a command buffer adapted to each model in a simple compute buffer.

Scalability At this point, we have a pipeline able to render stackings of which

grains can smoothly turn from meshes to points. But, as we intend to draw a

large number of grains, we need to improve the scalability of the pipeline. Indeed,

the use of impostors make the fragment processing even heavier than it usually

tends to be in modern engines, so in the next sections we make use of the relative

density of the stacking to (i) reduce the number of points emitting fragments

(Section V.3.5.1) and (ii) reduce the number of emitted fragments that reach the

fragment shader (Section V.3.5.2).

V.3.5 Occlusion Culling

V.3.5.1 Grain-level culling

In a dense stacking, a large proportion of the elements is totally invisible. We

propose in this section a novel occlusion culling that is conservative, i.e., it does

not cull visible objects, and based on the quasi-spherical proxy assumption. The

occluder map it computes is further reused to improve per-fragment occlusion

culling (Section V.3.5.2).

R
r
R

occlusion
cone

α
C

E

G

G

G

Figure V.11: Since a grain is bounded by two spheres of radius 𝑟 and 𝑅, when the

center of a grain G1 lies in the occlusion cone, it is fully occluded by G0. On the

contrary, the grain G2 might not be totally hidden and cannot culled out.

128

Occlusion culling operates before the actual shape of grains is known, but can

use the quasi-spherical proxy to early detect occlusions. If the inner sphere of a

grain totally hides the outer sphere of another one, then no matter their actual

shapes the second one will never be visible and can hence be safely culled out. As

illustrated in Figure V.11, the inner sphere of a grain close to the view point creates

a cone of occluded positions (dashed lines). This cone is eroded with the outer

sphere to give a set of grain centers that can be culled (occlusion cone). Yet, it is

far too expensive to test every pair of grains for occlusion. And while in theory

this could be executed using hardware occlusion queries (Sekulic, 2004), with the

inner sphere being the occluder and the outer sphere the proxy, it is not practical

as it would require to render grains sequentially.

Occluder map Instead, we test each grain – the occludee – against exactly one

other grain that we chose carefully – the occluder candidate. A grain can hide

another one if it is at the same time closer to the view point, and projects around

the same pixel on screen. So, prior to the occlusion test, we render the whole

point cloud a first time. The z-test ensures that we keep the closest grain for each

pixel i.e., the most likely to hide other grains. At this stage, no attribute fetching

or computation is executed, instead the framebuffer is filled with the occluder

candidate parameters – one occluder per pixel. These parameters are the position

and radius of the occluder’s inner sphere, fitting in a standard four-component

color attachment.

To fill this occluder map, one must compute the point sizes: drawing points of

exactly one pixel each would mean that the occluder candidate of a point is always

the grain that projects on the same pixel but is closer to the camera. This has

perfect chances of picking the right occluder candidate when it finds one, but will

most of the time not find any other occluder candidate than the grain itself. On

the other side, drawing the points using their inner radius is not the best choice

either, because it will too often suggest an occluder candidate that is actually not

occluding the point. Our trade-off is to render points large enough for all pixels to

be covered by a few fragments while remaining as small as possible. In practice, for

as dense as possible stackings viewed at distance for which impostors are used, we

found experimentally that optimal values are located between 0.15 to 0.20 times

the inner radius 𝑟 .

Splitting Once this occluder map has been generated, the discrimination func-

tion getRenderModel in the splitting shader computes the screen pixel onto which

a grain’s center gets projected, and samples the occluder map at this coordinate.

This gives the parameters of an occluder to test the current point against using

the procedure detailed in Listing V.2. If the point is inside the occlusion cone, the

function returns an index corresponding to no model.

1 bool IsOccluded(vec3 g1, mat4 proj , sampler2D occMap) {

2 vec4 clip = proj * vec4(g1 , 1.0);

129

3 vec4 occ = texture(occMap ,clip.xy/clip.w*.5+.5);

4 if (occ == NONE) return false;

5 vec3 g0 = occ.xyz;

6 float r = occ.a;

7 float cosBeta = dot(

8 normalize(g0),

9 normalize(g1 - g0 * R / r)

10);

11 if (cosBeta < 0) return false;

12 float sinAlpha = r / length(g0);

13 float sin2Beta = 1. - cosBeta * cosBeta;

14 float sin2Alpha = sinAlpha * sinAlpha;

15 return sin2Beta < sin2Alpha;

16 }

Listing V.2: Returns true if the grain at position g1 is occluded, given an occluder

map rendered using the same projection matrix as the current view. This map contains

the position g0 and inner radius r of another grain or a mock value NONE (used to

clear the buffer before rendering the map). Coordinates are in camera space.

V.3.5.2 Fragment-level culling

Figure V.12: Breakdown of several frames’ draw sequence during a reference shot

from tight to large view over a stack of 1.6M coffee beans. On the left-hand side

are (top-down): first frame, middle frame and last frame. These results focus on the

transition from meshes to impostors.

Sampling an impostor’s maps is a costly operation, both in terms of memory

bandwidth and computing power. There are two ways to reject a fragment before

it reaches the fragment shader. One rather drastic is to discard the whole point,

this was the goal of Section V.3.5.1. But this is not enough. For many grains beyond

the first layer, only a couple of fragments are visible out of the tens or hundreds

that it may cover. We still end up with hundreds of millions of fragments to shade,

so we leverage another mechanism: Early-Z Rejection.

Visibility These hundreds of millions of fragments outnumber by several orders

of magnitude the pixel count of a typical HD render (2M pixels) or even a 4K render

(8M pixels), so there is mechanically a large proportion of wasted fragments, i.e.,

fragments that reach the fragment shader but are ultimately not visible on screen.

This phenomenon is commonly referred as overdraw.

130

Over-shading is not specific to impostors, it is actually the prior motivation of

deferred shading. But the core difficulty that impostor rendering introduces is the

impossibility to determine the visibility of a fragment before sampling the maps.

This deferred shape evaluation prevents us from using strategies such as visibility

buffering (Burns & Hunt, 2013).

Early-Z Rejection The early-Z rejection is automatically performed by modern

GPU’s rendering pipelines (Sekulic, 2004). If a fragment lies behind the one al-

ready stored in the output buffer, then it can be rejected without being processed,

provided that the shader does not override fragment’s depth. Thus the benefits of

early-Z rejection depend on the order in which points are rendered, and we have

too many points to sort them front to back. Nevertheless, what early-Z rejection

tells us is that the visibility does not need to be perfectly solved in order to gain in

efficiency. We can split the grains into the likely visible ones and the likely hidden

ones, and render the former first. This first draw call fills almost all pixels with

their final value, so the second one sees most of its fragments early rejected. This

is referred to below as the double draw scheme.

Implementation Fortunately, the question of determining likely visible grains

has already been answered: those are the occluder candidates of the occlusion

culling step. They represent a thin shell of closer grains for which most of the frag-

ments are visible. In practice, we make the splitter distinguish separate elements

buffers for occluder candidates and remaining points. When rendering impostor,

the same draw call is repeated twice with these different element arrays. This

simple change brings a significant speed-up to the overall impostor rendering.

V.3.6 Results

The performance of our C++/OpenGL implementation has been measured on

an Nvidia GeFroce GTX 1070 graphics chip with 8GB of VRAM, on frames of

1920×1080 pixels. We focus the performance tests on the transition from impostors

to meshes, where it is the most critical. We compare our impostor cloud at different

angular resolutions to instances of the original grain mesh or a simplified mesh.

Breakdown The overall render time of a frame is subject to various factors.

First, it varies significantly with the view point. In order to grasp the benefits of

our method on real case scenarios, we evaluated performance during a backward

dolly shot, from tight to large. Left-hand side of Figure V.12 shows first, middle and

last frames of this test shot and breakdowns of these key frames. This qualitative

evaluation already highlight a few points. First, although it is not negligible, the

splitting process is not the bottleneck. Second, occluder map render time increases

as point size grows on screen. Third, the Z-prepass does not have a significant

impact as this draw call involves almost no fragment processing. Fourth, the core

element splitting is rather constant, until most grains get frustum culled in closer

131

Figure V.13: Impostor clouds built from diverse grain models. Impostors use 128

precomputed views (𝑛 = 8) of 128×128 pixels each.

views. Last, despite being unbalanced in number of points, the first and second

draw calls of impostor rendering takes similar times. This is satisfactory as it

suggests that we found a reasonable trade-off between rendering a few costly

points first and then more points but which are less visible.

Performance This high variability of draw mixture within a single frame makes

it hard to draw proper conclusions, so in Figure V.14 we compare scenarios without

splitting, where only one of meshes or impostor models is used. The timings for

impostor rendering do not depend on the original complexity of the grain, so we

compare them to several meshes. A first thing to notice is that we indeed need

a hybrid model since when the number of grains within the view frustum is low

(close viewpoint) instanced meshes are more efficient than impostors while as it

increases impostors eventually outperform instances.

The shape of instance and impostor curves are different because the former is

132

Figure V.14: Render time on a scene made of 1.6M grains. Thumbnails of the test

sequence can be found bellow the horizontal axis. Impostors use 128 views of 128

pixels. Both instances and impostors use our occlusion culling method.

more affected by the number of vertices to draw (vertex bounded) while the latter

is related to the number of pixels (pixel bounded). In case of a perfectly pixel

bounded rendering, our test shot should take a constant render time. The results

of Figure V.14 show that it is not the case when naively drawing all the impostors

at once (single draw). This is because of the large number of overdrawn fragments.

Our double draw scheme on the other hand succeeds at reducing overdraw, as

shown by its more constant render time. It thus makes our mixed sampling

competitive despite its overhead.

As discussed in Section V.3.4.1, visual accuracy sets a minimal distance at which

transitioning from meshes to impostors. These results show that when the grains

have shapes requiring a low amount of vertices, pushing this threshold distance

further can increase performance. For more complex grains, the threshold is

already beyond the cross point between green and red lines so there is no interest

in increasing it. Even when combining our approach with usual mesh LoD, the

vertex count does not reduce beyond a few tens, so an eventual switch to impostors

is beneficial.

Visual loss Figures V.13 shows impostor clouds of twenty thousand points

at different scales and in different scenarios, illustrating the variety of possible

grain shapes. Figure V.3 is a more extreme example featuring two million grains.

To evaluate the visual loss of our model, we measured the structural similarity

(SSIM) between animations rendered using different impostors on one hand and a

reference render using meshes on another hand. Figure V.16 compares variations of

the choice of sampling scheme at fixed memory use with variations of the number

of stored precomputed views. The stacked grain used for this example is the coffee

133

Figure V.15: Impostors rendered using

mixed (M), spherical (S) or planar (P)

samplings with various number of pre-

computed views, along with ground truth

(GT).

FigureV.16: SSIMmeasures using differ-

ent sampling schemes on the coffee bean:

planar, spherical and mixed (ours).

Figure V.17: View frustum with (left) and without (right) our grain occlusion culling.

Some of the remaining points may actually be hidden, but it is ensured that no visible

point is removed.

bean of Figure V.15, left. We see that for equivalent memory requirements, our

mixed sampling gives better visual accuracy.

Occlusion culling Figure V.17 illustrates the effect of our occlusion culling on

a dense volume of grains. As shown by the graph of Figure V.18, the ability of our

method to cull grains decreases progressively as we relax the hypothesis of a non

0 1

100%

67%

33% r
R
_

Figure V.18: Proportion of grains still rendered after the occlusion culling step,

depending on the inner over outer radius ratio on three different shots. Variations

among shots are due for instance to a larger foreground for the blue curve.

134

Figure V.19: Impostor cloud where precomputed attributes such as normal vectors

are used along with dynamic procedural attributes such as albedo values, which is

drawn from the color ramp underneath each image.

null inner radius 𝑟 . The effect of the culling varies with the frame. The green curve

was measured with a narrower field of view. The camera rays are in that case more

parallel, hence there is less occlusion detected with our method. The blue curve

was measured on a more favorable scenario, where grains in the foreground hide

significant parts of the whole set.

V.3.7 Discussion

V.3.7.1 Properties

Our methods can render stackings of millions of dynamic objects in real time,

leveraging the similarity of dense quasi-spherical grains using impostors to design

a transition LoD which provides an efficient trade off – both in terms of accuracy

and speed – when individual grains only cover a few pixels on the screen. This is

tracktable thanks to our new sampling scheme that reduces memory usage for a

given visual loss, together with a coupled per-grain/fragment occlusionmechanism.

Contrary to instancing, the complexity of the impostors is independent on the

original model. Thanks to our occluder map and splitting scheme, it is mostly

dependent on the output resolution. Our method is compatible with arbitrary

animation of the grain positions, which is important in an authoring pipeline, and

scales to large stackings (Figure V.20).

Being designed to feed the G-pass of a deferred shading engine, dynamic procedural

variations of the grain can be coupled with the precomputed data at render time

(Figure V.19), reducing further potential repetition effects while expanding visual

diversity. Our approach can easily be integrated to a modern render pipeline based

on PBR materials and deferred shading, shadow mapping and more.

Graceful degradation Moreover, our method degrades gracefully regarding all

of its hypotheses (quasi-spherical grains, density, moderate shape diversity), either

in accuracy or in efficiency depending on the application context. We sacrifice

accuracy during an interactive authoring session, but the look dev artists using the

135

shape in their scene have the possibility to change the trade-off at any time.

V.3.7.2 Limitations

Grain shape For non quasi-spherical enough grains, visual loss must be balanced

with more precomputed views. At some point, the hypothesis of quasi-spherical

shape made by our mixed sampling scheme becomes as invalid as using planar

sampling. An extreme example that breaks our hypothesis is a tubular element,

e.g., a threaded nut.

Self-intersection Also, grains must not intersect each other. We do not change

the fragment depth when rendering them, so they are sorted by the depth of their

center, provoking popping artifacts in case of intersection. Writing a precomputed

depth in the Z-buffer when rendering the impostor is possible, but at the expense

of important performance reduction because this would turn off early-Z rejection.

Another consequence of this per-grain depth is that the standard shadow maps

cannot render grains’ self-shadows.

Far grains The rendering model that we used to render far grains beyond the

validity range of our impostor is subject to aliasing. To improve the transition

from impostors to pure point based rendering, more advanced existing point-based

models could be used. Note that we did not chose to switch to a surface-based

representation, such as Bruneton and Neyret (2012) do, because we did not want

to give up on the ability to animate grains.

V.3.7.3 Future work

Our method can be further developed along several directions. First, we could

also defer the sampling of attributes in a separate pass to save memory bandwidth.

Impostor rendering would query only the alpha channel, to build a visibility

buffer (Burns & Hunt, 2013). We could accumulate fragments during the first of

the two draw calls. This would enable cross grain alpha blending and hence reduce

aliasing when grains come very close to being points. Accumulation disables the

benefits of early-Z rejection but it is mostly the second pass that benefits from it.

Second, our memory usage can be further improved. We do not use any form of

texture compression and use heavy 32-bit color attachments. Also, a grain being

bounded by a sphere, the corners of precomputed views are always left unused.

Todt et al. (2007) use a distorted mapping to address this issue, but this prevents us

from using standard mipmaps. Furthermore, the attribute field captured by our rich

impostors have a lower dimensionality than the light field captured by radiance

impostors. Hence, there is more redundancy in our representation, that could

be compressed better, storing only the mapping from position on the bounding

sphere and ray orientation to UV space, which yields interesting filtering issues to

address.

136

Figure V.20: A large dynamic scene made of 20M sand grains and rendered with

our method in 56ms on a GeForce 1070 GPU.

More generally, we would like to study the possibility for shape programs to

automatically generate multiple LoD of their output. This goes together with

closing the gap between pure geometry and appearance modeling. Both materials

and shapes happen to be represented by programs, but the potential for transferring

data from one to the other, similarly to what impostors do, remains under explored.

137

VI
Conclusion

We opened this thesis by advocating the use and analysis of higher-order repre-

sentations of shapes, in particular program-based representations. They enable a

renewal of 3D digital creation workflows, where artistic decision taking can be

postponed to mitigate the cost of creation loops. We have explored the diversity of

such representations, from imperative DAGs to declarative tiling through hybrid

paradigms like parametric tiles, addressing the overall question of how to alleviate

the frictions of shape programming.

VI.1 Contributions

We showed that program-based representations of shapes embed meaningful

information about the intent of their designer, and that we can practically leverage

it to assist the creation process. For imperative programs, represented as DAGs,

we capture this semantic information through the automatic on-the-fly injection

of new nodes, what we call DAG amendment. These nodes aim at augmenting

the output geometry with application-specific labels: a co-parameter when we

need to recognize points upon change of hyper-parameters in order to compute

differential information, or a trace of operations, when we want to characterize

the role that geometry elements are playing in a DAG.

Both of these amendments have applications that address core challenges of

program-based representations. Our co-parameterization enables the direct manip-

ulation of a shape program’s output in cases that are not handled by typical inverse

kinematics techniques, in particular when the connectivity of the output mesh

fluctuates. And we coupled our trace recording with program synthesis methods to

assist the creation of parts of a shape program responsible for selecting geometry,

namely selection queries. Thus, DAG amendments not only ease the tuning of a

program’s input hyper-parameters, but they also companion the upstream design

138

of this program.

In the case of declarative programs, some of the designer’s intent is made explicit

by layout rules, e.g., the interface labeling, for Wang tiles. We used these rules

to constrain the geometrical content of the tiles in our mesostructure generation

system, adopting an interface-centric approach to ensure by construction the

continuity of the program’s output.

The composition of a declarative program is a dialog with a solving engine. We

make this dialog more fluent by having the engine suggest new tiles to add, to

help the designer pave a target domain. We make this dialog more versatile by

extending the usual discrete Wang tiling problem to continuous sets of tiles and

interfaces. We thus enable a new hybrid shape programming paradigm, that mixes

both a tiling system and parametric shapes to define the content of so-called

parametric tiles.

We integrated shape programs with real-time rendering pipelines. This synergy is

at the same time needed and enabled by program-based representation. Needed,

because a key application of shape programs is the conception of authoring work-

flows, and enabled, thanks the structural information that a shape program pro-

vides. For two examples of shape programs generating heavy geometrical content,

we deferred the evaluation of some parts of the shape and off-loaded it on the GPU,

and we altered the program to dynamically adapt to the view point and output

different first-order representations of the same shape.

Through multiple fully functional authoring and rendering systems, we showed

how representing and manipulating shapes as higher-order programs rather than

first-order geometry enables new creation workflows, leading to digital assets as

rich and versatile as parametric shapes.

VI.2 Future prospects

In a way, we have only scratched the surface of the challenges introduced in

Section I.2.4. Each one of these key directions can be further explored in the

continuity of our approaches.

Ensuring generalization Ensuring generalization means to transform instance-

specific user gestures into programs that capture the intent behind these gestures.

We addressed the case of selection gestures and replaced instance-specific lists of

indices with symbolic queries which generalize much better. This use of program

synthesis within the creation loop can be ported to other gestures, one being

the computation of unexposed node parameters. For instance when the designer

rotates a part of an object by 40°, was in order to point it to another one? Or to

align it to its neighbors? This problem is less constrained than the selection, for

which we could consider each element of geometry as a different example, so it

139

requires either more prior knowledge, or more user input. Or a different type

of user interaction, where the tool engages a proper dialog with the designer by

asking for disambiguation.

Assisted authoring of shape programs The dialog-based approach was the

spirit behind our tile suggestion mechanism. As we highlighted, it is particularly

needed for declarative programming of shapes in general: the solving engine

generally faces over or under-constrained problems about which it must be trans-

parent enough if we want to integrate them into an interactive creation tool. We

focused on tiled layout, but other layout engines, e.g., more focused on alignment,

distribution and other 3D kitbashing operations, could also be used for shape

programming. One may also develop new paradigms, like we have initiated with

our parametric tile engine.

Program synthesis can be used together with shape analysis in order to develop

workflows where program-based representations are used in cooperation with

other sources of 3D data such as 3D scanning. For instance, InverseCSG (2018)

bridges program synthesis with RANSAC-based shape analysis; similarly symme-

try detection and other dictionary-based analysis (Lescoat et al., 2018) can be a

first step towards the automatic construction of shape programs.

Shape manipulation Our general strategy for extracting information from

the structure of a shape program is to amend it with automatic rewriting rules

so that it output extra details. This approach can be explored beyond our two

examples. In both cases we need DAG nodes to be able to relate their output to

their input: in a way nodes are augmented with extra methods. How else could we

augment them? Nodes could provide information about the visibility or bounding

box of their content. This is related to abstract interpretation, another branch of

the programming language literature that we can enroll for the study of shape

programs, together with program synthesis.

Integration with other programs The visibility-related static analysis of shape

programs that we just mentioned could be leveraged to push further what we have

done on particular cases regarding the integration of shape programs and real-time

rendering. We focused on the instantiation of similar atoms, for which our prior

on the boundary spheres or the number of sweep components is uniform, but we

could look for more general program-level culling, using the program to generate

a simplified geometry. In the case of grain rendering, we accounted for the role

of materials. Materials are sometimes themselves generated by image processing

DAGs; could we have these DAG interact with each others? Using height maps,

it is common that users of Adobe Substance Designer embed a lot of geometrical

information in the procedural materials they build.

Although we were primarily interested in rendering in the context of authoring

140

tools, similar approaches might be used to create optimized game-ready parametric

assets, or to synthesize acceleration structures for offline rendering. Or even

acceleration structures for other kinds of physic simulations. The additional

information contained in the structure of a program can serve as a prior for some

under-constrained algorithms.

Shape IDE Holding all these challenges together within a consistent toolkit for

visual programming of shapes corresponds in the end to what generic (text-based)

programming calls an Integrated Development Environment. What would such

a shape IDE look like? Providing tools for prototyping, debugging, refactoring,

optimizing shape programs makes as much sense as for regular programs. And

the specific context of shape programming suggests novel tools, like bidirectional

editing, which couple symbolic and spatial manipulations of shapes.

Symbolic AI Our last point is that studying shape programs fosters the develop-

ment of symbolic artificial intelligence for computer graphics. We have witnessed

in the recent years a growing use of AI techniques in computer graphics, but this

use is so far mainly focused on continuous AI, namely machine learning, and in

particular deep learning. There is nevertheless a lot of potential for symbolic AI

like program synthesis, and its emergence necessarily goes through the use of

symbolic, i.e., program-based, representations of shapes. Symbolic AI is particu-

larly relevant in the context of collaboration between a machine and a human for

the authoring of creative assets, because we need machine-generated models to be

human-understandable and manipulable.

We hope that our work on program-based representations of 3D shapes will

contribute to the development of collaborations between programming languages,

artificial intelligence, human-computer interaction and computer graphics.

141

Bibliography

Abdrashitov, R., Chevalier, F., & Singh, K. (2020, October). Interactive Exploration

and Refinement of Facial Expression using Manifold Learning. In Proceedings

of the 33rd Annual ACM Symposium on User Interface Software and Technology

(pp. 778–790). New York, NY, USA: Association for Computing Machinery.

doi: 10.1145/3379337.3415877

Agbodan, D., Marcheix, D., & Pierra, G. (2000). Persistent Naming for Parametric

Models. In Proceedings of WSCG ’2000 (pp. 418–425). University of West

Bohemia.

Albarghouthi, A., Gulwani, S., & Kincaid, Z. (2013). Recursive Program Synthesis.

In N. Sharygina & H. Veith (Eds.), Computer Aided Verification (pp. 934–950).

Berlin, Heidelberg: Springer. doi: 10.1007/978-3-642-39799-8_67

Ali-Hamadi, D., Liu, T., Gilles, B., Kavan, L., Faure, F., Palombi, O., & Cani, M.-

P. (2013, November). Anatomy transfer. ACM Trans. Graph., 32(6). doi:

10.1145/2508363.2508415

Aliaga, D. G., Demir, İ., Benes, B., & Wand, M. (2016, July). Inverse procedural

modeling of 3D models for virtual worlds. In ACM SIGGRAPH 2016 Courses

(pp. 1–316). New York, NY, USA: Association for Computing Machinery.

doi: 10.1145/2897826.2927323

Aliaga, D. G., Vanegas, C. A., & Benes, B. (2008, December). Interactive example-

based urban layout synthesis. ACM Transactions on Graphics, 27 (5), 160:1–

160:10. doi: 10.1145/1409060.1409113

Alur, R., Černý, P., & Radhakrishna, A. (2015). Synthesis Through Unification.

In D. Kroening & C. S. Păsăreanu (Eds.), Computer Aided Verification (pp.

163–179). Cham: Springer International Publishing. doi: 10.1007/978-3-319

-21668-3_10

Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., & Davis, J. (2005).

142

SCAPE: Shape completion and animation of people. In ACM SIGGRAPH

2005 papers (pp. 408–416). New York, NY, USA: Association for Computing

Machinery. doi: 10.1145/1186822.1073207

Angus Johnson. (2014, January). Clipper.

Aristidou, A., Lasenby, J., Chrysanthou, Y., & Shamir, A. (2018). Inverse Kinematics

Techniques in Computer Graphics: A Survey. Computer Graphics Forum,

37 (6), 35–58. doi: 10.1111/cgf.13310

Association, T. O. (2006). OpenFX. https://openfx.readthedocs.io.

Au, O. K.-C., Tai, C.-L., Chu, H.-K., Cohen-Or, D., & Lee, T.-Y. (2008, August).

Skeleton extraction by mesh contraction. ACM Trans. Graph., 27 (3), 1–10.

doi: 10.1145/1360612.1360643

Aujay, G., Hétroy, F., Lazarus, F., & Depraz, C. (2007, August). Harmonic skeleton

for realistic character animation. In M. Gleicher & D. Thalmann (Eds.),

SCA ’07 - ACM-SIGGRAPH/Eurographics symposium on computer animation

(pp. 151–160). San Diego, United States: Eurographics Association. doi:

10.2312/SCA/SCA07/151-160

Avril, Q., Ghafourzadeh, D., Ramachandran, S., Fallahdoust, S., Ribet, S., Dionne, O.,

. . . Paquette, E. (2016). Animation setup transfer for 3D characters. Computer

Graphics Forum, 35(2), 115–126. doi: 10.1111/cgf.12816

Baerlocher, P., & Boulic, R. (1998, October). Task-priority formulations for the

kinematic control of highly redundant articulated structures. In Proceedings.

1998 IEEE/RSJ International Conference on Intelligent Robots and Systems.

Innovations in Theory, Practice and Applications (Cat. No.98CH36190) (Vol. 1,

p. 323-329 vol.1). doi: 10.1109/IROS.1998.724639

Baerlocher, P., & Boulic, R. (2004). An inverse kinematics architecture enforcing

an arbitrary number of strict priority levels. The visual computer , 20(6),

402–417.

Bailey, S. W., Omens, D., Dilorenzo, P., & O’Brien, J. F. (2020, July). Fast and deep

facial deformations. ACM Transactions on Graphics, 39(4), 94:94:1–94:94:15.

doi: 10.1145/3386569.3392397

Bailey, S. W., Otte, D., Dilorenzo, P., & O’Brien, J. F. (2018, July). Fast and deep

deformation approximations. ACM Transactions on Graphics, 37 (4), 119:1–

119:12. doi: 10.1145/3197517.3201300

Baran, I., & Popović, J. (2007). Automatic rigging and animation of 3D characters.

In ACM SIGGRAPH 2007 papers. New York, NY, USA: ACM. doi: 10.1145/

1275808.1276467

Barroso, S., Besuievsky, G., & Patow, G. (2013). Visual copy & paste for procedurally

modeled buildings by ruleset rewriting. Computers & Graphics, 37 (4), 238–

246. doi: 10.1016/j.cag.2013.01.003

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., & Siskind, J. M. (2018). Automatic

Differentiation in Machine Learning: A Survey. Journal of Machine Learning

Research, 18(153), 1–43.

Beaudouin-Lafon, M. (2000, April). Instrumental interaction: An interaction

model for designing post-WIMP user interfaces. In Proceedings of the SIGCHI

143

conference on Human Factors in Computing Systems (pp. 446–453). New

York, NY, USA: Association for Computing Machinery. doi: 10.1145/332040

.332473

Beaudouin-Lafon, M., Bødker, S., & Mackay, W. E. (2021, November). Generative

Theories of Interaction. ACM Transactions on Computer-Human Interaction,

28(6), 45:1–45:54. doi: 10.1145/3468505

Belhadj, F., & Audibert, P. (2005, November). Modeling landscapes with ridges and

rivers: Bottom up approach. In Proceedings of the 3rd international conference

on Computer graphics and interactive techniques in Australasia and South

East Asia (pp. 447–450). New York, NY, USA: Association for Computing

Machinery. doi: 10.1145/1101389.1101479

Beneš, B., & Forsbach, R. (2002). Visual simulation of hydraulic erosion. Journal of

WSCG, 10(1-2), 79–86.

Bergroth, L., Hakonen, H., & Raita, T. (2000, September). A survey of longest

common subsequence algorithms. In Proceedings Seventh International Sym-

posium on String Processing and Information Retrieval. SPIRE 2000 (pp. 39–48).

doi: 10.1109/SPIRE.2000.878178

Bhat, P., Ingram, S., & Turk, G. (2004, July). Geometric texture synthesis by

example. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium

on Geometry processing (pp. 41–44). New York, NY, USA: Association for

Computing Machinery. doi: 10.1145/1057432.1057437

Bian, X., Wei, L.-Y., & Lefebvre, S. (2018). Tile-based pattern design with topol-

ogy control. Proceedings of the ACM on Computer Graphics and Interactive

Techniques, 1, 23–38. doi: 10.1145/3203204

Blanz, V., & Vetter, T. (1999). A morphable model for the synthesis of 3D faces. In

Proceedings of the 26th annual conference on computer graphics and interactive

techniques (pp. 187–194). USA: ACM Press/Addison-Wesley Publishing Co.

doi: 10.1145/311535.311556

Bokeloh, M., Wand, M., Seidel, H.-P., & Koltun, V. (2012, July). An algebraic

model for parameterized shape editing. ACM Transactions on Graphics, 31(4),

78:1–78:10. doi: 10.1145/2185520.2185574

Botsch, M., Pauly, M., Gross, M. H., & Kobbelt, L. (2006). PriMo: Coupled prisms

for intuitive surface modeling. In Symposium on geometry processing (pp.

11–20).

Botsch, M., & Sorkine, O. (2008, January). On Linear Variational Surface Deforma-

tion Methods. IEEE Transactions on Visualization and Computer Graphics,

14(1), 213–230. doi: 10.1109/TVCG.2007.1054

Brainerd, W., Foley, T., Kraemer, M., Moreton, H., & Nießner, M. (2016, July).

Efficient GPU rendering of subdivision surfaces using adaptive quadtrees.

ACM Transactions on Graphics, 35(4), 1–12. doi: 10.1145/2897824.2925874

Brodersen, A., Museth, K., Porumbescu, S., & Budge, B. (2008, March). Geometric

Texturing Using Level Sets. IEEE Transactions on Visualization and Computer

Graphics, 14(2), 277–288. doi: 10.1109/TVCG.2007.70408

144

Brucks, R. (2018). Octahedral impostors. https://shaderbits.com/blog/octahedral-

impostors.

Bruneton, E., & Neyret, F. (2012). Real-time realistic rendering and lighting of

forests. Computer Graphics Forum, 31(2pt1), 373–382.

Bunel, R., Hausknecht, M., Devlin, J., Singh, R., & Kohli, P. (2018, February). Lever-

aging Grammar and Reinforcement Learning for Neural Program Synthesis.

In International Conference on Learning Representations.

Burnett, M. M. (1999). Visual Programming. InWiley Encyclopedia of Electrical and

Electronics Engineering. John Wiley & Sons, Ltd. doi: 10.1002/047134608X

.W1707

Burns, C. A., & Hunt, W. A. (2013, August). The visibility buffer: A cache-friendly

approach to deferred shading. Journal of Computer Graphics Techniques

(JCGT), 2(2), 55–69.

Capell, S., Burkhart, M., Curless, B., Duchamp, T., & Popović, Z. (2005). Physically

based rigging for deformable characters. In Proceedings of the 2005 ACM

SIGGRAPH/Eurographics symposium on computer animation (pp. 301–310).

New York, NY, USA: Association for Computing Machinery. doi: 10.1145/

1073368.1073412

Capoyleas, V., Chen, X., & M Hoffmann, C. (1996, January). Generic naming in

generative, constraint-based design. Computer-Aided Design, 28(1), 17–26.

doi: 10.1016/0010-4485(95)00014-3

Cascaval, D., Shalah, M., Quinn, P., Bodik, R., Agrawala, M., & Schulz, A. (2022).

Differentiable 3DCADprograms for bidirectional editing. Computer Graphics

Forum, 40(2). doi: 10.1111/cgf.14476

Chaudhuri, S., Kalogerakis, E., Giguere, S., & Funkhouser, T. (2013, October).

Attribit: Content creation with semantic attributes. In Proceedings of the

26th annual ACM symposium on User interface software and technology (pp.

193–202). St. Andrews Scotland, United Kingdom: ACM. doi: 10.1145/

2501988.2502008

Chen, X., & Hoffmann, C. M. (1995, September). Towards feature attachment.

Computer-Aided Design, 27 (9), 695–702. doi: 10.1016/0010-4485(94)00027-B

Chen, Z., Tagliasacchi, A., & Zhang, H. (2020). BSP-Net: Generating Compact

Meshes via Binary Space Partitioning. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition (pp. 45–54).

Chen, Z., & Zhang, H. (2019). Learning Implicit Fields for Generative Shape

Modeling. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (pp. 5939–5948).

Chiu, C.-H., Koyama, Y., Lai, Y.-C., Igarashi, T., & Yue, Y. (2020, July). Human-in-

the-loop differential subspace search in high-dimensional latent space. ACM

Trans. Graph., 39(4). doi: 10.1145/3386569.3392409

Chomsky, N. (1956, September). Three models for the description of language.

IRE Transactions on Information Theory, 2(3), 113–124. doi: 10.1109/TIT.1956

.1056813

Chugh, R. (2016, May). Prodirect manipulation: Bidirectional programming for

145

the masses. In Proceedings of the 38th International Conference on Software

Engineering Companion (pp. 781–784). New York, NY, USA: Association for

Computing Machinery. doi: 10.1145/2889160.2889210

Chugh, R., Hempel, B., Spradlin, M., & Albers, J. (2016, June). Programmatic and

direct manipulation, together at last. ACM SIGPLAN Notices, 51(6), 341–354.

doi: 10.1145/2980983.2908103

Ciolfi Felice, M., Maudet, N., Mackay, W. E., & Beaudouin-Lafon, M. (2016, October).

Beyond Snapping: Persistent, Tweakable Alignment and Distribution with

StickyLines. In Proceedings of the 29th Annual Symposium on User Interface

Software and Technology (pp. 133–144). Tokyo Japan: ACM. doi: 10.1145/

2984511.2984577

Cohen, M. F., Shade, J., Hiller, S., & Deussen, O. (2003, July). Wang Tiles for image

and texture generation. ACM Transactions on Graphics, 22(3), 287–294. doi:

10.1145/882262.882265

Cook, R. L. (1984, January). Shade trees. In Proceedings of the 11th annual conference

on Computer graphics and interactive techniques (pp. 223–231). New York, NY,

USA: Association for Computing Machinery. doi: 10.1145/800031.808602

Cook, R. L., Halstead, J., Planck, M., & Ryu, D. (2007). Stochastic simplification of

aggregate detail. ACM Trans. Graph., 26(3).

Cordonnier, G. (2018). Layered Models for Large Scale Time-Evolving Landscapes

(Unpublished doctoral dissertation). Université Grenoble Alpes.

Cordonnier, G., Cani, M.-P., Benes, B., Braun, J., & Galin, E. (2018, May). Sculpting

Mountains: Interactive Terrain Modeling Based on Subsurface Geology. IEEE

Transactions on Visualization and Computer Graphics, 24(5), 1756–1769. doi:

10.1109/TVCG.2017.2689022

Crassin, C., Neyret, F., Lefebvre, S., & Eisemann, E. (2009). GigaVoxels: Ray-guided

streaming for efficient and detailed voxel rendering. In Proceedings of the

2009 symposium on interactive 3D graphics and games (pp. 15–22). New York,

NY, USA: ACM. doi: 10.1145/1507149.1507152

Dachsbacher, C., Vogelgsang, C., & Stamminger, M. (2003, July). Sequential point

trees. ACM Trans. Graph., 22(3), 657–662. doi: 10.1145/882262.882321

de Reffye, P., Edelin, C., Françon, J., Jaeger, M., & Puech, C. (1988, June). Plant

models faithful to botanical structure and development. ACM SIGGRAPH

Computer Graphics, 22(4), 151–158. doi: 10.1145/378456.378505

Debevec, P. D., Taylor, C. J., & Malik, J. (1996). Modeling and rendering architec-

ture from photographs: A hybrid geometry-and image-based approach. In

Proceedings of the 23th annual conference on computer graphics and interactive

techniques.

Decaudin, P., & Neyret, F. (2004, June). Rendering Forest Scenes in Real-Time. In

EGSR04: 15th Eurographics Symposium on Rendering (p. 93). Eurographics

Association.

Décoret, X., Durand, F., Sillion, F. X., & Dorsey, J. (2002). Billboard clouds (Unpub-

lished doctoral dissertation). INRIA.

Demir, İ., Aliaga, D. G., & Benes, B. (2016, October). Proceduralization for Editing

146

3D Architectural Models. In 2016 Fourth International Conference on 3D

Vision (3DV) (pp. 194–202). doi: 10.1109/3DV.2016.28

Deng, B., Genova, K., Yazdani, S., Bouaziz, S., Hinton, G., & Tagliasacchi, A. (2020).

CvxNet: Learnable Convex Decomposition. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (pp. 31–44).

Deo, A. S., &Walker, I. D. (1992, May). Robot subtask performance with singularity

robustness using optimal damped least-squares. In Proceedings 1992 IEEE

International Conference on Robotics and Automation (p. 434-441 vol.1). doi:

10.1109/ROBOT.1992.220301

De Toledo, R., Wang, B., & Lévy, B. (2008). Geometry Textures and Applications†.

Computer Graphics Forum, 27 (8), 2053–2065. doi: 10.1111/j.1467-8659.2008

.01185.x

Deussen, O., & Lintermann, B. (2005). Digital Design of Nature: Computer Generated

Plants and Organics. Springer Science & Business Media.

diSessa, A. A., & Abelson, H. (1986, September). Boxer: A reconstructible com-

putational medium. Communications of the ACM , 29(9), 859–868. doi:

10.1145/6592.6595

Douze, M., Franco, J.-S., & Raffin, B. (2017, June). QuickCSG: Fast arbitrary boolean

combinations of n solids (Research Report). Grenoble: Inria.

Du, T., Inala, J. P., Pu, Y., Spielberg, A., Schulz, A., Rus, D., . . . Matusik, W. (2018,

December). InverseCSG: Automatic conversion of 3D models to CSG trees.

ACM Transactions on Graphics, 37 (6), 213:1–213:16. doi: 10.1145/3272127

.3275006

Dupuy, J., Heitz, E., Iehl, J.-C., Poulin, P., Neyret, F., & Ostromoukhov, V. (2013).

Linear efficient antialiased displacement and reflectance mapping. ACM

Transactions on Graphics (TOG), 32(6), 211.

Ebert, D. S., Musgrave, F. K., Peachey, D., Perlin, K., & Worley, S. (1994). Texturing

and Modeling: A Procedural Approach (Bk&Disk edition ed.). Academic

Press.

Efros, A. A., & Freeman, W. T. (2001, August). Image quilting for texture synthesis

and transfer. In Proceedings of the 28th annual conference on Computer

graphics and interactive techniques (pp. 341–346). New York, NY, USA:

Association for Computing Machinery. doi: 10.1145/383259.383296

Eisenberger, M., Novotny, D., Kerchenbaum, G., Labatut, P., Neverova, N., Cremers,

D., & Vedaldi, A. (2021). NeuroMorph: Unsupervised Shape Interpolation

and Correspondence in One Go. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (pp. 7473–7483).

Eitz, M., Richter, R., Boubekeur, T., Hildebrand, K., & Alexa, M. (2012, July). Sketch-

based shape retrieval. ACM Transactions on Graphics, 31(4), 31:1–31:10. doi:

10.1145/2185520.2185527

ElKoura, G., & Studios, P. A. (2013). Presto execution system: An asynchronous

computation engine for animation. Pixar Animation Studios.

Ellis, T. O., Heafner, J. F., & Sibley, W. L. (1969, September). The Grail Project: An

Experiment in Man-Machine Communications (Tech. Rep.). Santa Monica,

147

CA: Rand Corp.

Emilien, A. (2014). Interactive design of virtual worlds : Combining procedural model-

ing with intuitive user control (Unpublished doctoral dissertation). Université

de Grenoble.

Emilien, A., Bernhardt, A., Peytavie, A., Cani, M.-P., & Galin, E. (2012, June).

Procedural generation of villages on arbitrary terrains. The Visual Computer ,

28(6), 809–818. doi: 10.1007/s00371-012-0699-7

et al. Cignoni, P. (2008). MeshLab: An open-source mesh processing tool. In

V. Scarano, R. D. Chiara, & U. Erra (Eds.), Eurographics italian chapter confer-

ence. The Eurographics Association.

Foster, J. N. (2009). Bidirectional programming languages (Unpublished doctoral

dissertation). University of Pennsylvania.

Foster, J. N., Greenwald, M. B., Moore, J. T., Pierce, B. C., & Schmitt, A. (2007, May).

Combinators for bidirectional tree transformations: A linguistic approach

to the view-update problem. ACM Transactions on Programming Languages

and Systems, 29(3), 17–es. doi: 10.1145/1232420.1232424

Gadelha, M., Gori, G., Ceylan, D., Mech, R., Carr, N., Boubekeur, T., . . . Maji, S.

(2020). Learning Generative Models of Shape Handles. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp.

402–411).

Gaillard, M., Krs, V., Gori, G., Mech, R., & Benes, B. (2022). Automatic Differentiable

Procedural Modeling. Computer Graphics Forum, 40(2). doi: 10.1111/cgf

.14475

Gaisbauer, W., Raffe, W. L., Garcia, J. A., & Hlavacs, H. (2019, October). Procedural

Generation of Video Game Cities for Specific Video Game Genres Using

WaveFunctionCollapse (WFC). In Extended Abstracts of the Annual Sympo-

sium on Computer-Human Interaction in Play Companion Extended Abstracts

(pp. 397–404). New York, NY, USA: Association for Computing Machinery.

doi: 10.1145/3341215.3356255

Gal, R., Sorkine, O., Mitra, N. J., & Cohen-Or, D. (2009). IWIRES: An analyze-

and-edit approach to shape manipulation. In ACM SIGGRAPH 2009 papers.

New York, NY, USA: Association for Computing Machinery. doi: 10.1145/

1576246.1531339

Galin, E., Guérin, E., Peytavie, A., Cordonnier, G., Cani, M.-P., Benes, B., & Gain,

J. (2019, May). A Review of Digital Terrain Modeling. Computer Graphics

Forum, 38(2), 553–577. doi: 10.1111/cgf.13657

Galin, E., Peytavie, A., Maréchal, N., & Guérin, E. (2010). Procedural Generation of

Roads. Computer Graphics Forum, 29(2), 429–438. doi: 10.1111/j.1467-8659

.2009.01612.x

Ganin, Y., Kulkarni, T., Babuschkin, I., Eslami, S. M. A., & Vinyals, O. (2018, July).

Synthesizing Programs for Images using Reinforced Adversarial Learning.

In International Conference on Machine Learning (pp. 1666–1675). PMLR.

Garland, M., & Heckbert, P. S. (1997). Surface simplification using quadric error

metrics. In Proceedings of the 24th annual conference on Computer graphics

148

and interactive techniques (pp. 209–216).

Génevaux, J.-D., Galin, É., Guérin, E., Peytavie, A., & Benes, B. (2013, July). Terrain

generation using procedural models based on hydrology. ACM Transactions

on Graphics, 32(4), 143:1–143:13. doi: 10.1145/2461912.2461996

Génevaux, J.-D., Galin, E., Peytavie, A., Guérin, E., Briquet, C., Grosbellet, F., &

Benes, B. (2015). Terrain Modelling from Feature Primitives. Computer

Graphics Forum, 34(6), 198–210. doi: 10.1111/cgf.12530

Genova, K., Cole, F., Sud, A., Sarna, A., & Funkhouser, T. (2020). Local Deep

Implicit Functions for 3D Shape. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (pp. 4857–4866).

Genova, K., Cole, F., Vlasic, D., Sarna, A., Freeman, W. T., & Funkhouser, T. (2019).

Learning Shape TemplatesWith Structured Implicit Functions. In Proceedings

of the IEEE/CVF International Conference on Computer Vision (pp. 7154–7164).

Germer, T., & Schwarz, M. (2009). Procedural Arrangement of Furniture for

Real-Time Walkthroughs. Computer Graphics Forum, 28(8), 2068–2078. doi:

10.1111/j.1467-8659.2009.01351.x

Girard, P. (2001, January). Chapter 7 - Bringing Programming by Demonstration

to CAD Users. In H. Lieberman (Ed.), Your Wish is My Command (p. 135-VII).

San Francisco: Morgan Kaufmann. doi: 10.1016/B978-155860688-3/50008-7

Girdhar, R., Fouhey, D. F., Rodriguez, M., & Gupta, A. (2016). Learning a Predictable

and Generative Vector Representation for Objects. In B. Leibe, J. Matas,

N. Sebe, & M. Welling (Eds.), Computer Vision – ECCV 2016 (pp. 484–499).

Cham: Springer International Publishing. doi: 10.1007/978-3-319-46466-4

_29

Gobbetti, E., & Marton, F. (2005, July). Far voxels: A multiresolution framework for

interactive rendering of huge complex 3D models on commodity graphics

platforms. In ACM SIGGRAPH 2005 Papers (pp. 878–885). New York, NY,

USA: Association for Computing Machinery. doi: 10.1145/1186822.1073277

Goldfeather, J., Hultquist, J. P. M., & Fuchs, H. (1986, August). Fast constructive-

solid geometry display in the pixel-powers graphics system. In Proceedings

of the 13th annual conference on Computer graphics and interactive techniques

(pp. 107–116). New York, NY, USA: Association for Computing Machinery.

doi: 10.1145/15922.15898

Gross, M., & Pfister, H. (2007). Point-based graphics. San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc.

Groueix, T., Fisher, M., Kim, V. G., Russell, B. C., & Aubry, M. (2018). A Papier-

Mâché Approach to Learning 3D Surface Generation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (pp. 216–224).

Gruber, A., Fratarcangeli, M., Zoss, G., Cattaneo, R., Beeler, T., Gross, M., & Bradley,

D. (2020, August). Interactive Sculpting of Digital Faces Using an Anatomical

Modeling Paradigm. Computer Graphics Forum, 39(5), 93–102. doi: 10.1111/

cgf.14071

Grünbaum, B., & Shephard, G. C. (1987). Tilings and patterns (First ed.). New York:

W. H. Freeman and Company.

149

Guérin, É., Digne, J., Galin, É., Peytavie, A., Wolf, C., Benes, B., & Martinez, B. (2017,

November). Interactive example-based terrain authoring with conditional

generative adversarial networks. ACM Transactions on Graphics, 36(6), 228:1–

228:13. doi: 10.1145/3130800.3130804

Guérin, E., Peytavie, A., Masnou, S., Digne, J., Sauvage, B., Gain, J., & Galin, E.

(2022). Gradient Terrain Authoring. Computer Graphics Forum, 41(2).

Gumin, M. (2016). Wave Function Collapse.

Guy, E., Thiery, J.-M., & Boubekeur, T. (2014, May). SimSelect: Similarity-based

selection for 3D surfaces. Computer Graphics Forum, 33(2), 165–173. doi:

10.1111/cgf.12306

Haeberli, P. E. (1988, June). ConMan: A visual programming language for inter-

active graphics. In Proceedings of the 15th annual conference on Computer

graphics and interactive techniques (pp. 103–111). New York, NY, USA: Asso-

ciation for Computing Machinery. doi: 10.1145/54852.378494

Haegler, S., Wonka, P., Arisona, S. M., Van Gool, L., & Müller, P. (2010). Grammar-

based encoding of facades. Computer Graphics Forum, 29(4), 1479–1487. doi:

10.1111/j.1467-8659.2010.01745.x

Hahn, F., Martin, S., Thomaszewski, B., Sumner, R., Coros, S., & Gross, M. (2012,

July). Rig-space physics. ACM Trans. Graph., 31(4). doi: 10.1145/2185520

.2185568

Hart, J. C. (1996, December). Sphere tracing: A geometric method for the antialiased

ray tracing of implicit surfaces. The Visual Computer , 12(10), 527–545. doi:

10.1007/s003710050084

Hastings, W. K. (1970, April). Monte Carlo sampling methods using Markov chains

and their applications. Biometrika, 57 (1), 97–109. doi: 10.1093/biomet/

57.1.97

Havemann, S. (2005). Generative mesh modeling (Doctoral dissertation). doi:

10.24355/dbbs.084-200603150100-7

Hecher, M., Guerrero, P., Wonka, P., & Wimmer, M. (2018, August). How Do Users

Map Points Between Dissimilar Shapes? IEEE Transactions on Visualization

and Computer Graphics, 24(8), 2327–2338. doi: 10.1109/TVCG.2017.2730877

Heitz, E., Dupuy, J., Crassin, C., & Dachsbacher, C. (2015). The SGGX microflake

distribution. ACM Transactions on Graphics (Proceedings of SIGGRAPH), 34(4),

48:1–48:11.

Hempel, B., & Chugh, R. (2016, October). Semi-Automated SVG Programming

via Direct Manipulation. In Proceedings of the 29th Annual Symposium on

User Interface Software and Technology (pp. 379–390). New York, NY, USA:

Association for Computing Machinery. doi: 10.1145/2984511.2984575

Hempel, B., Lubin, J., & Chugh, R. (2019, October). Sketch-n-Sketch: Output-

Directed Programming for SVG. In Proceedings of the 32nd Annual ACM

Symposium on User Interface Software and Technology (pp. 281–292). New

York, NY, USA: Association for Computing Machinery. doi: 10.1145/3332165

.3347925

Hilaga, M., Shinagawa, Y., Kohmura, T., & Kunii, T. L. (2001). Topology matching

150

for fully automatic similarity estimation of 3D shapes. In Proceedings of the

28th annual conference on computer graphics and interactive techniques (pp.

203–212). New York, NY, USA: Association for Computing Machinery. doi:

10.1145/383259.383282

Hils, D. D. (1992, March). Visual languages and computing survey: Data flow

visual programming languages. Journal of Visual Languages & Computing,

3(1), 69–101. doi: 10.1016/1045-926X(92)90034-J

Hirschberg, D. S. (1975, June). A linear space algorithm for computing maximal

common subsequences. Communications of the ACM , 18(6), 341–343. doi:

10.1145/360825.360861

Holden, D., Saito, J., & Komura, T. (2015, August). Learning an inverse rig

mapping for character animation. In Proceedings of the 14th ACM SIGGRAPH

/ Eurographics Symposium on Computer Animation (pp. 165–173). Los Angeles

California: ACM. doi: 10.1145/2786784.2786788

Hoppe, H. (1996). Progressive meshes. In Proceedings of the 23rd annual conference

on Computer graphics and interactive techniques (pp. 99–108).

Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., & Stuetzle, W. (1993). Mesh

optimization. In Proceedings of the 20th annual conference on Computer

graphics and interactive techniques (pp. 19–26).

Hu, Y., Dorsey, J., & Rushmeier, H. (2019, November). A novel framework for

inverse procedural texture modeling. ACM Transactions on Graphics, 38(6),

186:1–186:14. doi: 10.1145/3355089.3356516

Hu, Y., He, C., Deschaintre, V., Dorsey, J., & Rushmeier, H. (2022, January). An

Inverse Procedural Modeling Pipeline for SVBRDF Maps. ACM Transactions

on Graphics, 41(2), 18:1–18:17. doi: 10.1145/3502431

Hutchins, E. L., Hollan, J. D., & Norman, D. A. (1985, December). Direct Ma-

nipulation Interfaces. Human–Computer Interaction, 1(4), 311–338. doi:

10.1207/s15327051hci0104_2

Igarashi, T., Moscovich, T., & Hughes, J. F. (2005, July). As-rigid-as-possible

shape manipulation. ACM Trans. Graph., 24(3), 1134–1141. doi: 10.1145/

1073204.1073323

Jacobson, A., Baran, I., Popović, J., & Sorkine, O. (2011, July). Bounded biharmonic

weights for real-time deformation. In ACM SIGGRAPH 2011 papers (pp.

1–8). New York, NY, USA: Association for Computing Machinery. doi:

10.1145/1964921.1964973

Jeschke, S., Mantler, S., & Wimmer, M. (2007, June). Interactive smooth and

curved shell mapping. In Proceedings of the 18th Eurographics conference on

Rendering Techniques (pp. 351–360). Goslar, DEU: Eurographics Association.

Johnson, J., Hariharan, B., van der Maaten, L., Hoffman, J., Fei-Fei, L., Lawrence Zit-

nick, C., & Girshick, R. (2017). Inferring and Executing Programs for Visual

Reasoning. In Proceedings of the IEEE International Conference on Computer

Vision (pp. 2989–2998).

Johnston, W. M., Hanna, J. R. P., & Millar, R. J. (2004, March). Advances in

dataflow programming languages. ACM Computing Surveys, 36(1), 1–34. doi:

151

10.1145/1013208.1013209

Jones, R. K., Barton, T., Xu, X., Wang, K., Jiang, E., Guerrero, P., . . . Ritchie, D. (2020,

November). ShapeAssembly: Learning to generate programs for 3D shape

structure synthesis. ACM Trans. Graph., 39(6). doi: 10.1145/3414685.3417812

Jones, R. K., Charatan, D., Guerrero, P., Mitra, N. J., & Ritchie, D. (2021, July). Shape-

MOD: Macro operation discovery for 3D shape programs. ACM Transactions

on Graphics, 40(4), 153:1–153:16. doi: 10.1145/3450626.3459821

Ju, T., Schaefer, S., &Warren, J. (2005). Mean value coordinates for closed triangular

meshes. ACM Trans. Graph., 24(3), 561–566.

Kaiser, A., Ybanez Zepeda, J. A., & Boubekeur, T. (2019). A Survey of Simple

Geometric Primitives Detection Methods for Captured 3D Data. Computer

Graphics Forum, 38(1), 167–196. doi: 10.1111/cgf.13451

Kalojanov, J., Wand, M., & Slusallek, P. (2016). Building Construction Sets by

Tiling Grammar Simplification. Computer Graphics Forum, 35(2), 13–25. doi:

10.1111/cgf.12807

Kämpe, V., Sintorn, E., & Assarsson, U. (2013, July). High resolution sparse

voxel DAGs. ACM Trans. Graph., 32(4), 101:1–101:13. doi: 10.1145/2461912

.2462024

Karabela, T. (2020). MfxVTK: An OpenMfx plug-in based on the visualization toolkit

(VTK). https://github.com/tkarabela/MfxVTK.

Keinert, B., Innmann, M., Sänger, M., & Stamminger, M. (2015). Spherical fibonacci

mapping. ACM Transactions on Graphics (TOG), 34(6), 193.

Kelley, A. D., Malin, M. C., & Nielson, G. M. (1988, June). Terrain simulation using

a model of stream erosion. In Proceedings of the 15th annual conference on

Computer graphics and interactive techniques (pp. 263–268). New York, NY,

USA: Association for Computing Machinery. doi: 10.1145/54852.378519

Kelly, G., & McCabe, H. (2006). A survey of procedural techniques for city

generation. The ITB Journal, 7 (2), 5.

Kelly, T., Wonka, P., & Mueller, P. (2015, May). Interactive Dimensioning of

Parametric Models. Computer Graphics Forum, 34(2), 117–129. doi: 10.1111/

cgf.12546

Kilian, M., Mitra, N. J., & Pottmann, H. (2007, July). Geometric modeling in shape

space. In ACM SIGGRAPH 2007 papers (pp. 64–es). New York, NY, USA:

Association for Computing Machinery. doi: 10.1145/1275808.1276457

Kirsch, F., & Döllner, J. (2004). Rendering techniques for hardware-accelerated

image-based CSG. Journal of WSCG, 12(1-3).

Koniaris, C., Cosker, D., Yang, X., & Mitchell, K. (2014, February). Survey of texture

mapping techniques for representing and rendering volumetric mesostruc-

ture. Journal of Computer Graphics Techniques.

Kraevoy, V., & Sheffer, A. (2004, August). Cross-parameterization and compatible

remeshing of 3D models. ACM Trans. Graph., 23(3), 861–869. doi: 10.1145/

1015706.1015811

Kripac, J. (1997, February). A mechanism for persistently naming topological

entities in history-based parametric solid models. Computer-Aided Design,

152

29(2), 113–122. doi: 10.1016/S0010-4485(96)00040-1

Krispel, U., Schinko, C., & Ullrich, T. (2014). The rules behind – tutorial on

generative modeling. Proceedings of Symposium on Geometry Processing /

Graduate School, 12, 2:1–2:49.

Krištof, P., Beneš, B., Křivánek, J., & Št’ava, O. (2009). Hydraulic Erosion Using

Smoothed Particle Hydrodynamics. Computer Graphics Forum, 28(2), 219–

228. doi: 10.1111/j.1467-8659.2009.01361.x

Krs, V., Mech, R., Gaillard, M., Carr, N., & Benes, B. (2020). PICO: Procedural

Iterative Constrained Optimizer for Geometric Modeling. IEEE Transactions

on Visualization and Computer Graphics, 1–1. doi: 10.1109/TVCG.2020

.2995556

Kurz, C., Wu, X., Wand, M., Thormählen, T., Kohli, P., & Seidel, H.-P. (2014).

Symmetry-Aware Template Deformation and Fitting. Computer Graphics

Forum, 33(6), 205–219. doi: 10.1111/cgf.12344

Lagae, A., Dumont, O., & Dutre, P. (2005, June). Geometry synthesis by example.

In International Conference on Shape Modeling and Applications 2005 (SMI’

05) (pp. 174–183). doi: 10.1109/SMI.2005.24

Laidlaw, D. H., Trumbore, W. B., & Hughes, J. F. (1986, August). Constructive solid

geometry for polyhedral objects. SIGGRAPH Comput. Graph., 20(4), 161–170.

doi: 10.1145/15886.15904

Landreneau, E., & Schaefer, S. (2010). Scales and Scale-like Structures. Computer

Graphics Forum, 29(5), 1653–1660. doi: 10.1111/j.1467-8659.2010.01774.x

Lau, T., Wolfman, S. A., Domingos, P., & Weld, D. S. (2003, October). Programming

by Demonstration Using Version Space Algebra. Machine Learning, 53(1),

111–156. doi: 10.1023/A:1025671410623

Lazarus, F., & Verroust, A. (1999, June). Level set diagrams of polyhedral objects.

In Proceedings of the fifth ACM symposium on Solid modeling and applications

(pp. 130–140). New York, NY, USA: Association for Computing Machinery.

doi: 10.1145/304012.304025

Lê, E.-T., Sung, M., Ceylan, D., Mech, R., Boubekeur, T., & Mitra, N. J. (2021). CPFN:

Cascaded Primitive Fitting Networks for High-Resolution Point Clouds. In

Proceedings of the IEEE/CVF International Conference on Computer Vision (pp.

7457–7466).

Leaf, J., Wu, R., Schweickart, E., James, D. L., & Marschner, S. (2018, December).

Interactive design of periodic yarn-level cloth patterns. ACM Transactions

on Graphics, 37 (6), 202:1–202:15. doi: 10.1145/3272127.3275105

Leimer, K., Gersthofer, L., Wimmer, M., & Musialski, P. (2017, October). Relation-

based parametrization and exploration of shape collections. Computers &

Graphics, 67 , 127–137. doi: 10.1016/j.cag.2017.07.001

Le Muzic, M., Autin, L., Parulek, J., & Viola, I. (2015). cellVIEW: A tool for

illustrative and multi-scale rendering of large biomolecular datasets. In

Eurographics workshop on visual computing for biomedicine (Vol. 2015, p. 61).

Le Roux, O., Gaildrat, V., & Caubet, R. (2001, July). Using constraint propagation

and domain reduction for the generation phase in declarative modeling. In

153

Proceedings Fifth International Conference on Information Visualisation (pp.

117–123). doi: 10.1109/IV.2001.942047

Lescoat, T., Ovsjanikov, M., Memari, P., Thiery, J.-M., & Boubekeur, T. (2018). A Sur-

vey on Data-driven Dictionary-based Methods for 3D Modeling. Computer

Graphics Forum, 37 (2), 577–601. doi: 10.1111/cgf.13384

Levi, Z., & Gotsman, C. (2015, February). Smooth rotation enhanced as-rigid-as-

possible mesh animation. IEEE Transactions on Visualization and Computer

Graphics, 21(2), 264–277. doi: 10.1109/TVCG.2014.2359463

Lewis, J. P., & Anjyo, K. (2010, July). Direct Manipulation Blendshapes. IEEE

Computer Graphics and Applications, 30(4), 42–50. doi: 10.1109/MCG.2010.41

Li, H., Weise, T., & Pauly, M. (2010, July). Example-based facial rigging. ACM

Trans. Graph., 29(4). doi: 10.1145/1778765.1778769

Li, T., Bolkart, T., Black, M. J., Li, H., & Romero, J. (2017, November). Learning a

model of facial shape and expression from 4D scans. ACM Trans. Graph.,

36(6). doi: 10.1145/3130800.3130813

Lieberman, H. (2001). Your Wish is My Command: Programming by Example

(H. Lieberman, Ed.). San Francisco: Morgan Kaufmann. doi: 10.1016/

B978-155860688-3/50001-4

Lieberman, H., Paternò, F., Klann, M., & Wulf, V. (2006). End-User Development:

An Emerging Paradigm. In H. Lieberman, F. Paternò, & V. Wulf (Eds.),

End User Development (pp. 1–8). Dordrecht: Springer Netherlands. doi:

10.1007/1-4020-5386-X_1

Lienhard, S. (2017). Visualization, adaptation, and transformation of procedural

grammars (Unpublished doctoral dissertation). EPFL.

Lienhard, S., Lau, C., Müller, P., Wonka, P., & Pauly, M. (2017, May). Design

Transformations for Rule-based Procedural Modeling. Computer Graphics

Forum, 36(2), 39–48. doi: 10.1111/cgf.13105

Lin, A., Lee, G. S., Longson, J., Steele, J., Goldberg, E., & Stefanovic, R. (2015).

Achieving real-time playback with production rigs. In ACM SIGGRAPH

2015 talks (pp. 11:1–11:1). New York, NY, USA: ACM. doi: 10.1145/2775280

.2792519

Lindenmayer, A. (1968, March). Mathematical models for cellular interactions

in development I. Filaments with one-sided inputs. Journal of Theoretical

Biology, 18(3), 280–299. doi: 10.1016/0022-5193(68)90079-9

Lindstrom, P. (2000). Out-of-core simplification of large polygonal models. In

Proceedings of the 27th annual conference on Computer graphics and interactive

techniques (pp. 259–262).

Lintermann, B., & Deussen, O. (1999, January). Interactive modeling of plants. IEEE

Computer Graphics and Applications, 19(1), 56–65. doi: 10.1109/38.736469

Lipp, M., Specht, M., Lau, C., Wonka, P., & Müller, P. (2019). Local Editing of

Procedural Models. Computer Graphics Forum, 38(2), 13–25. doi: 10.1111/

cgf.13615

Liu, H., Vimont, U., Wand, M., Cani, M.-P., Hahmann, S., Rohmer, D., & Mitra,

N. J. (2015). Replaceable Substructures for Efficient Part-Based Modeling.

154

Computer Graphics Forum, 34(2), 503–513. doi: 10.1111/cgf.12579

Liu, L., Zheng, Y., Tang, D., Yuan, Y., Fan, C., & Zhou, K. (2019, July). NeuroSkinning:

Automatic skin binding for production characters with deep graph networks.

ACM Trans. Graph., 38(4). doi: 10.1145/3306346.3322969

Longay, S., Runions, A., Boudon, F., & Prusinkiewicz, P. (2012). TreeSketch:

Interactive Procedural Modeling of Trees on a Tablet. In Kara, L.B., Singh,

& K. (Eds.), EUROGRAPHICS Symposium on Sketch-Based Interfaces and

Modeling. Cagliari, Italy.

Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., & Black, M. J. (2015, October).

SMPL: A skinned multi-person linear model. ACM Trans. Graph., 34(6). doi:

10.1145/2816795.2818013

Loubet, G., & Neyret, F. (2017). Hybrid mesh-volume LoDs for all-scale pre-filtering

of complex 3D assets. In Eurographics 2017 (Vol. 36).

Loubet, G., & Neyret, F. (2018, May). A new microflake model with microscopic

self-shadowing for accurate volume downsampling. Computer Graphics

Forum, 37 (2), 111–121. doi: 10.1111/cgf.13346

Maciel, P. W. C., & Shirley, P. (1995). Visual navigation of large environments using

textured clusters. In Proceedings of the 1995 symposium on interactive 3D

graphics (pp. 95–ff.). New York, NY, USA: ACM. doi: 10.1145/199404.199420

Mahmood, N., Ghorbani, N., Troje, N. F., Pons-Moll, G., & Black, M. J. (2019, Octo-

ber). AMASS: Archive of motion capture as surface shapes. In Proceedings

of the IEEE/CVF international conference on computer vision (ICCV).

Marchal, L. (2018). Memory and data aware scheduling (Habilitation à Diriger Des

Recherches). École Normale Supérieure de Lyon.

Marron, A., Weiss, G., & Wiener, G. (2012, October). A decentralized approach

for programming interactive applications with JavaScript and blockly. In

Proceedings of the 2nd edition on Programming systems, languages and ap-

plications based on actors, agents, and decentralized control abstractions (pp.

59–70). New York, NY, USA: Association for Computing Machinery. doi:

10.1145/2414639.2414648

Martinovic, A., & Van Gool, L. (2013, June). Bayesian grammar learning for inverse

procedural modeling. In The IEEE conference on computer vision and pattern

recognition (CVPR).

Mathur, A., Pirron, M., & Zufferey, D. (2020, September). Interactive Programming

for Parametric CAD. Computer Graphics Forum, 39(6), 408–425. doi: 10.1111/

cgf.14046

Maung, D., & Crawfis, R. (2015, July). Applying formal picture languages to

procedural content generation. In 2015 computer games: AI, animation,

mobile, multimedia, educational and serious games (CGAMES) (pp. 58–64).

doi: 10.1109/CGames.2015.7272963

Mayer, M., Kuncak, V., & Chugh, R. (2018, October). Bidirectional evaluation with

direct manipulation. Proceedings of the ACM on Programming Languages,

2(OOPSLA), 127:1–127:28. doi: 10.1145/3276497

155

Mech, R. (1997). Modeling and simulation of the interaction of plants with the

environment using L-systems and their extensions.

Mei, X., Decaudin, P., & Hu, B.-G. (2007, October). Fast Hydraulic Erosion

Simulation and Visualization on GPU. In 15th Pacific Conference on Computer

Graphics and Applications (PG’07) (pp. 47–56). doi: 10.1109/PG.2007.15

Meng, J., Papas, M., Habel, R., Dachsbacher, C., Marschner, S., Gross, M. H., &

Jarosz, W. (2015). Multi-scale modeling and rendering of granular materials.

ACM Trans. Graph., 34(4), 49.

Merrell, P. (2007, April). Example-based model synthesis. In Proceedings of the 2007

symposium on Interactive 3D graphics and games (pp. 105–112). New York, NY,

USA: Association for Computing Machinery. doi: 10.1145/1230100.1230119

Merrell, P., & Manocha, D. (2008, December). Continuous model synthesis. In

ACM SIGGRAPH Asia 2008 papers (pp. 1–7). New York, NY, USA: Association

for Computing Machinery. doi: 10.1145/1457515.1409111

Merrell, P., Schkufza, E., & Koltun, V. (2010, December). Computer-generated

residential building layouts. In ACM SIGGRAPH Asia 2010 papers (pp. 1–

12). New York, NY, USA: Association for Computing Machinery. doi:

10.1145/1866158.1866203

Merrell, P., Schkufza, E., Li, Z., Agrawala, M., & Koltun, V. (2011, July). Interactive

furniture layout using interior design guidelines. ACM Transactions on

Graphics, 30(4), 87:1–87:10. doi: 10.1145/2010324.1964982

Merry, B., Marais, P., & Gain, J. (2006, October). Animation space: A truly linear

framework for character animation. ACM Trans. Graph., 25(4), 1400–1423.

doi: 10.1145/1183287.1183294

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E.

(1953, June). Equation of State Calculations by Fast Computing Machines.

The Journal of Chemical Physics, 21(6), 1087–1092. doi: 10.1063/1.1699114

Meyer, A., & Neyret, F. (2000). Multiscale shaders for the efficient realistic rendering

of pine-trees. In Graphics interface (pp. 137–144).

Miao, H., Klein, T., Kouřil, D., Mindek, P., Schatz, K., Gröller, M. E., . . . Viola, I.

(2019). Multiscale molecular visualization. Journal of Molecular Biology,

431(6), 1049–1070. doi: 10.1016/j.jmb.2018.09.004

Michel, É. (2019a). MfxVCG: An OpenMfx plug-in based on VCGlib.

https://github.com/eliemichel/MfxVCG.

Michel, É. (2019b). OpenMfx for Blender.

https://github.com/eliemichel/OpenMeshEffectForBlender.

Michel, É. (2021, August). OpenMfx: An API for cross-software non-destructible

mesh effects. In ACM SIGGRAPH 2021 Posters (pp. 1–2). New York, NY, USA:

Association for Computing Machinery. doi: 10.1145/3450618.3469168

Michel, É., & Boubekeur, T. (2019). Rendu de sable multi-échelle en temps réel. In

Journées Françaises d’Informatique Graphique et de Réalité Virtuelle (JFIGRV).

Marseille, France.

Michel, É., & Boubekeur, T. (2020a). Formes paramétriques différentiables. In

Journées Françaises d’Informatique Graphique (JFIG). Nancy, France.

156

Michel, É., & Boubekeur, T. (2020b). Real Time Multiscale Rendering of Dense

Dynamic Stackings. Computer Graphics Forum, 39(7), 169–179. doi: 10.1111/

cgf.14135

Michel, É., & Boubekeur, T. (2020c, September). Real Time Multi-Scale Sand

Rendering. In Poster.

Michel, É., & Boubekeur, T. (2021a, July). DAG amendment for inverse control of

parametric shapes. ACM Trans. Graph., 40(4). doi: 10.1145/3450626.3459823

Michel, É., & Boubekeur, T. (2021b). Synthèse par pavage de méso-structure

surfacique. In Journées Françaises d’Informatique Graphique (JFIG). Sophia-

Antipolis, France.

Michel, E., Emilien, A., & Cani, M.-P. (2015, May). Generation of Folded Terrains

from Simple Vector Maps. In Eurographics 2015 short paper proceedings (p. 4).

The Eurographics Association. doi: 10.2312/egsh.20151019

Miller, C., Arikan, O., & Fussell, D. (2010). Frankenrigs: Building character rigs

from multiple sources. In (pp. 31–38). New York, NY, USA: Association for

Computing Machinery. doi: 10.1145/1730804.1730810

Mitra, N. J., Pauly, M., Wand, M., & Ceylan, D. (2012). Symmetry in 3D geometry:

Extraction and applications. In EUROGRAPHICS state-of-the-art report. doi:

10.1111/cgf.12010

Mitra, N. J., Wand, M., Zhang, H., Cohen-Or, D., Kim, V., & Huang, Q.-X. (2014,

July). Structure-aware shape processing. In ACM SIGGRAPH 2014 Courses

(pp. 1–21). New York, NY, USA: Association for Computing Machinery. doi:

10.1145/2614028.2615401

Moon, J. T., Walter, B., & Marschner, S. R. (2007). Rendering discrete random

media using precomputed scattering solutions. In Proceedings of the 18th

Eurographics conference on Rendering Techniques (pp. 231–242).

Müller, P., Wonka, P., Haegler, S., Ulmer, A., & Van Gool, L. (2006, July). Procedural

modeling of buildings. ACM Trans. Graph., 25(3), 614–623. doi: 10.1145/

1141911.1141931

Myers, B. A. (1986, April). Visual programming, programming by example, and

program visualization: A taxonomy. ACM SIGCHI Bulletin, 17 (4), 59–66. doi:

10.1145/22339.22349

Myers, B. A. (1990, March). Taxonomies of visual programming and program

visualization. Journal of Visual Languages & Computing, 1(1), 97–123. doi:

10.1016/S1045-926X(05)80036-9

Myers, B. A., Ko, A. J., & Burnett, M. M. (2006, April). Invited research overview:

End-user programming. In CHI ’06 Extended Abstracts on Human Factors

in Computing Systems (pp. 75–80). New York, NY, USA: Association for

Computing Machinery. doi: 10.1145/1125451.1125472

Nandi, C., Wilcox, J. R., Panchekha, P., Blau, T., Grossman, D., & Tatlock, Z. (2018,

July). Functional programming for compiling and decompiling computer-

aided design. Proceedings of the ACM on Programming Languages, 2(ICFP),

99:1–99:31. doi: 10.1145/3236794

Neyret, F., & Cani, M.-P. (1999, August). Pattern-Based Texturing Revisited. In

157

26th Annual Conference on Computer Graphics and interactive techniques

(SIGGRAPH ’99) (p. 235). ACM SIGGRAPH. doi: 10.1145/311535.311561

Nishida, G., Bousseau, A., & Aliaga, D. G. (2018). Procedural Modeling of a

Building from a Single Image. Computer Graphics Forum, 37 (2), 415–429.

doi: 10.1111/cgf.13372

Nishida, G., Garcia-Dorado, I., Aliaga, D. G., Benes, B., & Bousseau, A. (2016, July).

Interactive sketching of urban procedural models. ACM Transactions on

Graphics, 35(4), 130:1–130:11. doi: 10.1145/2897824.2925951

Olano, M., & Baker, D. (2010). LEAN mapping. In Proceedings of the 2010 ACM

SIGGRAPH symposium on interactive 3D graphics and games (pp. 181–188).

Osman, A. A. A., Bolkart, T., & Black, M. J. (2020). STAR: A spare trained articulated

human body regressor. In European conference on computer vision (ECCV).

Parametric Architecture. (2016). https://parametric-architecture.com/.

Paschalidou, D., Katharopoulos, A., Geiger, A., & Fidler, S. (2021). Neural Parts:

Learning Expressive 3D ShapeAbstractionsWith Invertible Neural Networks.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (pp. 3204–3215).

Paschalidou, D., Ulusoy, A. O., & Geiger, A. (2019). Superquadrics Revisited:

Learning 3D Shape Parsing Beyond Cuboids. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (pp. 10344–10353).

Pascucci, V., Scorzelli, G., Bremer, P.-T., & Mascarenhas, A. (2007). Robust on-line

computation of reeb graphs: Simplicity and speed. In ACM SIGGRAPH

2007 papers (pp. 58–es). New York, NY, USA: Association for Computing

Machinery. doi: 10.1145/1275808.1276449

Patow, G. (2011). Procedural Modeling of Suspension Bridges. In SIACG’2011

(p. 6).

Patow, G. (2012, March). User-friendly graph editing for procedural modeling

of buildings. IEEE Computer Graphics and Applications, 32(2), 66–75. doi:

10.1109/MCG.2010.104

Penrose, R. (1974). The role of aesthetics in pure and applied mathematical research.

Bulletin of the Institute of Mathematics and Its Applications, 10, 266ff.

Peytavie, A., Dupont, T., Guérin, E., Cortial, Y., Benes, B., Gain, J., & Galin, E. (2019,

October). Procedural Riverscapes. Computer Graphics Forum.

Policarpo, F., & Oliveira, M. M. (2006, March). Relief mapping of non-height-

field surface details. In Proceedings of the 2006 symposium on Interactive

3D graphics and games (pp. 55–62). New York, NY, USA: Association for

Computing Machinery. doi: 10.1145/1111411.1111422

Policarpo, F., Oliveira, M. M., & Comba, J. L. D. (2005). Real-time relief mapping

on arbitrary polygonal surfaces. In Proceedings of the 2005 symposium on

interactive 3D graphics and games (pp. 155–162). New York, NY, USA: ACM.

doi: 10.1145/1053427.1053453

Ponjou Tasse, F., Emilien, A., Cani, M.-P., Hahmann, S., & Bernhardt, A. (2014,

May). First Person Sketch-based Terrain Editing. In Graphics Interface 2014

(p. 217). Canadian Information Processing Society Toronto.

158

Porumbescu, S. D., Budge, B., Feng, L., & Joy, K. I. (2005, July). Shell maps. ACM

Transactions on Graphics, 24(3), 626–633. doi: 10.1145/1073204.1073239

Prusinkiewicz, P. (1999). A look at the visual modeling of plants using L-systems.

Agronomie, 19(3-4), 211–224.

Prusinkiewicz, P., & Hammel, M. (1993). A Fractal Model of Mountains with Rivers.

In Proceedings of Graphics Interface ’93 (pp. 174–180).

Prusinkiewicz, P., Hanan, J., & Měch, R. (2000). An L-System-Based Plant Modeling

Language. In M. Nagl, A. Schürr, & M. Münch (Eds.), Applications of Graph

Transformations with Industrial Relevance (pp. 395–410). Berlin, Heidelberg:

Springer. doi: 10.1007/3-540-45104-8_31

Python. (n.d.). Python’s Buffer Protocole. https://docs.python.org/3/c-

api/buffer.html.

Ragan-Kelley, J., Adams, A., Paris, S., Levoy, M., Amarasinghe, S., & Durand, F.

(2012, July). Decoupling algorithms from schedules for easy optimization of

image processing pipelines. ACM Transactions on Graphics, 31(4), 32:1–32:12.

doi: 10.1145/2185520.2185528

Raunhardt, D., & Boulic, R. (2007, April). Progressive Clamping. In Proceedings 2007

IEEE International Conference on Robotics and Automation (pp. 4414–4419).

doi: 10.1109/ROBOT.2007.364159

Requicha, A. A. G. a. V. (1977). Constructive Solid Geometry. In November, 1977.

[3] 36 p. : Ill. includes bibliography: p. 31-33. CUMINCAD.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan,

K., . . . Kafai, Y. (2009, November). Scratch: Programming for all. Communi-

cations of the ACM , 52(11), 60–67. doi: 10.1145/1592761.1592779

Ritchie, D., Jobalia, S., & Thomas, A. (2018). Example-basedAuthoring of Procedural

Modeling Programs with Structural and Continuous Variability. Computer

Graphics Forum, 37 (2), 401–413. doi: 10.1111/cgf.13371

Ritsche, N. (2006, November). Real-time shell space rendering of volumetric

geometry. In Proceedings of the 4th international conference on Computer

graphics and interactive techniques in Australasia and Southeast Asia (pp.

265–274). New York, NY, USA: Association for Computing Machinery. doi:

10.1145/1174429.1174477

Rossignac, J., & Borrel, P. (1993). Multi-resolution 3D approximations for rendering

complex scenes. In Modeling in computer graphics (pp. 455–465).

Roth, S. D. (1982). Ray casting for modeling solids. Computer graphics and image

processing, 18(2), 109–144.

Rumman, N. A., & Fratarcangeli, M. (2016). State of the art in skinning tech-

niques for articulated deformable characters. In Proceedings of the 11th joint

conference on computer vision, imaging and computer graphics theory and

applications: Volume 1: GRAPP (pp. 200–212). Setubal, PRT: SCITEPRESS -

Science and Technology Publications, Lda. doi: 10.5220/0005720101980210

Rusinkiewicz, S., & Levoy, M. (2000). QSplat: A multiresolution point rendering

system for large meshes. In Proceedings of the 27th annual conference on

Computer graphics and interactive techniques (pp. 343–352).

159

Rutten, D. (2007). Grasshopper.

Saab, L., Ramos, O. E., Keith, F., Mansard, N., Souères, P., & Fourquet, J. (2013,

April). Dynamic Whole-Body Motion Generation Under Rigid Contacts and

Other Unilateral Constraints. IEEE Transactions on Robotics, 29(2), 346–362.

doi: 10.1109/TRO.2012.2234351

Sandhu, A., Chen, Z., & McCoy, J. (2019). Enhancing wave function collapse with

design-level constraints. In Proceedings of the 14th international conference

on the foundations of digital games. New York, NY, USA: Association for

Computing Machinery. doi: 10.1145/3337722.3337752

Schinko, C., Strobl, M., Ullrich, T., & Fellner, W.-D. (2011). Scripting Technology

for Generative Modeling. International journal on advances in software, 4,

308–326.

Schmidt, R., & Wyvill, B. (2005, November). Generalized sweep templates for

implicit modeling. In Proceedings of the 3rd international conference on Com-

puter graphics and interactive techniques in Australasia and South East Asia

(pp. 187–196). New York, NY, USA: Association for Computing Machinery.

doi: 10.1145/1101389.1101428

Schreiner, J., Asirvatham, A., Praun, E., & Hoppe, H. (2004). Inter-surface map-

ping. In ACM SIGGRAPH 2004 papers (pp. 870–877). New York, NY, USA:

Association for Computing Machinery. doi: 10.1145/1186562.1015812

Schroeder, W. J., Martin, K., & Lorensen, B. (2006). The visualization toolkit (4th

ed.). Kitware.

Schulz, A., Shamir, A., Levin, D. I. W., Sitthi-amorn, P., & Matusik, W. (2014, July).

Design and fabrication by example. ACM Transactions on Graphics, 33(4),

62:1–62:11. doi: 10.1145/2601097.2601127

Schulz, A., Wang, H., Grinspun, E., Solomon, J., & Matusik, W. (2018, July).

Interactive exploration of design trade-offs. ACM Transactions on Graphics,

37 (4), 131:1–131:14. doi: 10.1145/3197517.3201385

Scurti, H., & Verbrugge, C. (2018, September). Generating Paths with WFC.

Proceedings of the AAAI Conference on Artificial Intelligence and Interactive

Digital Entertainment, 14(1), 271–273.

Sekulic, D. (2004). Efficient occlusion culling. In R. Fernando (Ed.), GPU gems

(Vol. 1, chap. 29). Addison-Wesley Professional.

Sharma, G., Goyal, R., Liu, D., Kalogerakis, E., & Maji, S. (2018, June). CSGNet:

Neural shape parser for constructive solid geometry. In The IEEE conference

on computer vision and pattern recognition (CVPR).

Sharma, G., Goyal, R., Liu, D., Kalogerakis, E., & Maji, S. (2020). Neural Shape

Parsers for Constructive Solid Geometry. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 1–1. doi: 10.1109/TPAMI.2020.3044749

Shi, L., Li, B., Hašan, M., Sunkavalli, K., Boubekeur, T., Mech, R., & Matusik, W.

(2020, November). Match: Differentiable material graphs for procedural

material capture. ACM Transactions on Graphics, 39(6), 196:1–196:15. doi:

10.1145/3414685.3417781

Shin, H., & Igarashi, T. (2007, May). Magic canvas: Interactive design of a 3-D scene

160

prototype from freehand sketches. In Proceedings of Graphics Interface 2007

(pp. 63–70). New York, NY, USA: Association for Computing Machinery.

doi: 10.1145/1268517.1268530

Shneiderman, B. (1981, May). Direct manipulation: A step beyond programming

languages (abstract only). In Proceedings of the Joint Conference on Easier

and More Productive Use of Computer Systems. (Part - II): Human Interface and

the User Interface - Volume 1981 (p. 143). New York, NY, USA: Association

for Computing Machinery. doi: 10.1145/800276.810991

Shugrina, M., Shamir, A., & Matusik, W. (2015, July). Fab forms: Customizable

objects for fabrication with validity and geometry caching. ACMTransactions

on Graphics, 34(4), 100:1–100:12. doi: 10.1145/2766994

SideFX. (n.d.). Houdini Engine API. https://www.sidefx.com/docs/hengine/.

Silva, P. B., Eisemann, E., Bidarra, R., & Coelho, A. (2015, January). Procedural

content graphs for urban modeling. Int. J. Comput. Games Technol., 2015,

10:10–10:10. doi: 10.1155/2015/808904

Silva, P. B., Müller, P., Bidarra, R., & Coelho, A. (2013). Node-based shape grammar

representation and editing. In Proceedings of the workshop on procedural

content generation in games (PCG’13) (pp. 1–8).

Smelik, R., Tutenel, T., de Kraker, K. J., & Bidarra, R. (2010). Integrating procedural

generation and manual editing of virtual worlds. In Proceedings of the 2010

workshop on procedural content generation in games (pp. 2:1–2:8). New York,

NY, USA: ACM. doi: 10.1145/1814256.1814258

Smelik, R. M., De Kraker, K. J., Tutenel, T., Bidarra, R., & Groenewegen, S. A. (2009).

A survey of procedural methods for terrain modelling. In Proceedings of the

CASA workshop on 3D advanced media in gaming and simulation (3AMIGAS)

(pp. 25–34).

Smelik, R. M., Tutenel, T., Bidarra, R., & Benes, B. (2014). A survey on procedural

modelling for virtual worlds. Computer Graphics Forum, 33(6), 31–50. doi:

10.1111/cgf.12276

Smith, D. C. (1975). PYGMALION: A Creative Programming Environment (No.

STAN-CS-75-499). Stanford Artificial Intelligence Laboratory.

Solar-Lezama, A. (2008). Program Synthesis by Sketching (Unpublished doctoral

dissertation). University of California, Berkeley.

Solar-Lezama, A. (2018). Introduction to Program Synthesis.

https://people.csail.mit.edu/asolar/SynthesisCourse/index.htm.

Song, S. L., Shi, W., & Reed, M. (2020, July). Accurate face rig approximation with

deep differential subspace reconstruction. ACM Transactions on Graphics,

39(4), 34:34:1–34:34:12. doi: 10.1145/3386569.3392491

Sorkine, O., & Alexa, M. (2007). As-rigid-as-possible surface modeling. In Proceed-

ings of the fifth eurographics symposium on geometry processing (pp. 109–116).

Goslar, DEU: Eurographics Association.

Stalberg, O. (2018, April). Wave function collapse in bad north. Breda University of

Applied Sciences: Everything Procedural Conference on Procedural Content

Generation for Games.

161

Stålberg, O. (2020, June). Townscaper. Raw Fury.

Stam, J. (1997). Aperiodic Texture Mapping.

Št’ava, O., Beneš, B., Brisbin, M., & Křivánek, J. (2008, July). Interactive ter-

rain modeling using hydraulic erosion. In Proceedings of the 2008 ACM

SIGGRAPH/Eurographics Symposium on Computer Animation (pp. 201–210).

Goslar, DEU: Eurographics Association.

Št’ava, O., Beneš, B., Měch, R., Aliaga, D. G., & Krištof, P. (2010). Inverse Procedural

Modeling by Automatic Generation of L-systems. Computer Graphics Forum,

29(2), 665–674. doi: 10.1111/j.1467-8659.2009.01636.x

Stava, O., Pirk, S., Kratt, J., Chen, B., Měch, R., Deussen, O., & Benes, B. (2014).

Inverse Procedural Modelling of Trees. Computer Graphics Forum, 33(6),

118–131. doi: 10.1111/cgf.12282

Steinberger, M., Kenzel, M., Kainz, B., Wonka, P., & Schmalstieg, D. (2014). On-

the-fly generation and rendering of infinite cities on the GPU. Computer

Graphics Forum, 33(2), 105–114. doi: 10.1111/cgf.12315

Stiny, G., & Gips, J. (1971). Shape grammars and the generative specification of

painting and sculpture. In IFIP congress (2) (Vol. 2, pp. 125–135).

Studios, P. A. (2016). Universal scene description. https://graphics.pixar.com/usd.

Summers, P. D. (1977, January). A Methodology for LISP Program Construction

from Examples. Journal of the ACM , 24(1), 161–175. doi: 10.1145/321992

.322002

Sumner, R. W., Zwicker, M., Gotsman, C., & Popović, J. (2005, July). Mesh-based

inverse kinematics. ACM Transactions on Graphics, 24(3), 488–495. doi:

10.1145/1073204.1073218

Sutherland, I. E. (1964, May). Sketchpad a Man-Machine Graphical Communication

System. SIMULATION , 2(5), R-3. doi: 10.1177/003754976400200514

Szirmay-Kalos, L., & Umenhoffer, T. (2008). Displacement Mapping on the GPU —

State of the Art. Computer Graphics Forum, 27 (6), 1567–1592. doi: 10.1111/

j.1467-8659.2007.01108.x

Takayama, K., Schmidt, R., Singh, K., Igarashi, T., Boubekeur, T., & Sorkine, O.

(2011). GeoBrush: Interactive Mesh Geometry Cloning. Computer Graphics

Forum, 30(2), 613–622. doi: 10.1111/j.1467-8659.2011.01883.x

Talton, J. O., Gibson, D., Yang, L., Hanrahan, P., & Koltun, V. (2009, December).

Exploratory modeling with collaborative design spaces. ACM Transactions

on Graphics, 28(5), 1–10. doi: 10.1145/1618452.1618513

Talton, J. O., Lou, Y., Lesser, S., Duke, J., Měch, R., & Koltun, V. (2011, April).

Metropolis procedural modeling. ACM Trans. Graph., 30(2), 11:1–11:14. doi:

10.1145/1944846.1944851

Tan, P., Lin, S., Quan, L., Guo, B., & Shum, H. (2008). Filtering and rendering of

resolution-dependent reflectance models. IEEE Transactions on Visualization

and Computer Graphics, 14(2), 412–425.

Tarini, M. (2017, September). Lecture notes in game dev. Istituto di Scienza e

Tecnologie dell’Informazione.

162

Teboul, O., Kokkinos, I., Simon, L., Koutsourakis, P., & Paragios, N. (2011). Shape

grammar parsing via reinforcement learning. In CVPR 2011 (pp. 2273–2280).

Tierny, J., Vandeborre, J.-P., & Daoudi, M. (2006, October). 3Dmesh skeleton extrac-

tion using topological and geometrical analyses. In 14th pacific conference

on computer graphics and applications (pacific graphics 2006) (p. s1poster).

Tapei, Taiwan.

Todt, S., Rezk-Salama, C., Kolb, A., & Kuhnert, K. (2007). Fast (spherical) light field

rendering with per-pixel depth (Tech. Rep.). Germany: University of Siegen.

Togelius, J., Yannakakis, G. N., Stanley, K. O., & Browne, C. (2011, September).

Search-based procedural content generation: A taxonomy and survey. IEEE

Transactions on Computational Intelligence and AI in Games, 3(3), 172–186.

doi: 10.1109/TCIAIG.2011.2148116

Tsao, Y.-F., & Fu, K.-S. (1984). Stochastic skeleton modeling of objects. Computer

Vision, Graphics, and Image Processing, 25(3), 348–370. doi: 10.1016/0734

-189X(84)90200-7

Tulsiani, S., Su, H., Guibas, L. J., Efros, A. A., & Malik, J. (2017). Learning Shape

Abstractions by Assembling Volumetric Primitives. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (pp. 2635–2643).

Umetani, N. (2017). Exploring generative 3D shapes using autoencoder networks.

In SIGGRAPH asia 2017 technical briefs. New York, NY, USA: Association for

Computing Machinery. doi: 10.1145/3145749.3145758

Vanegas, C. A., Garcia-Dorado, I., Aliaga, D. G., Benes, B., & Waddell, P. (2012,

November). Inverse design of urban procedural models. ACM Transactions

on Graphics, 31(6), 168:1–168:11. doi: 10.1145/2366145.2366187

van Kaick, O., Zhang, H., Hamarneh, G., & Cohen-Or, D. (2011). A Survey on

Shape Correspondence. Computer Graphics Forum, 30(6), 1681–1707. doi:

10.1111/j.1467-8659.2011.01884.x

Vesdapunt, N., Rundle, M., Wu, H., & Wang, B. (2020). JNR: Joint-based neural

rig representation for compact 3D face modeling. ECCV , 389–405. doi:

10.1007/978-3-030-58523-5_23

Wade, L., & Parent, R. E. (2000, May). Fast, fully-automated generation of control

skeletons for use in animation. In Computer animation (p. 164). Los Alamitos,

CA, USA: IEEE Computer Society. doi: 10.1109/CA.2000.889075

Wampler, K. (2016, November). Fast and reliable example-basedmesh IK for stylized

deformations. ACM Trans. Graph., 35(6). doi: 10.1145/2980179.2982433

Wang, C., Cheung, A., & Bodik, R. (2017, June). Synthesizing highly expressive

SQL queries from input-output examples. In Proceedings of the 38th ACM

SIGPLAN Conference on Programming Language Design and Implementation

(pp. 452–466). Barcelona Spain: ACM. doi: 10.1145/3062341.3062365

Wang, H. (1961). Proving Theorems by Pattern Recognition — II. Bell System

Technical Journal, 40(1), 1–41. doi: 10.1002/j.1538-7305.1961.tb03975.x

Wang, L., Wang, X., Tong, X., Lin, S., Hu, S., Guo, B., & Shum, H.-Y. (2003, July).

View-dependent displacement mapping. ACM Transactions on Graphics,

22(3), 334–339. doi: 10.1145/882262.882272

163

Wang, X., Tong, X., Lin, S., Hu, S., Guo, B., & Shum, H.-Y. (2004). Generalized

Displacement Maps. The Eurographics Association. doi: 10.2312/EGWR/

EGSR04/227-233

Wang, X., Zhang, L., Xie, T., Xiong, Y., & Mei, H. (2012, November). Automating

presentation changes in dynamic web applications via collaborative hybrid

analysis. In Proceedings of the ACM SIGSOFT 20th International Symposium

on the Foundations of Software Engineering (pp. 1–11). New York, NY, USA:

Association for Computing Machinery. doi: 10.1145/2393596.2393614

Watt, M., Coumans, E., ElKoura, G., Henderson, R., Kraemer, M., Lait, J., & Reinders,

J. (2014). Multithreading for visual effects. CRC Press.

Watt, M., Cutler, L. D., Powell, A., Duncan, B., Hutchinson, M., & Ochs, K. (2012).

LibEE: A multithreaded dependency graph for character animation. In

Proceedings of the digital production symposium (pp. 59–66). New York, NY,

USA: ACM. doi: 10.1145/2370919.2370930

Whiting, E., Ochsendorf, J., & Durand, F. (2009, December). Procedural modeling of

structurally-sound masonry buildings. In ACM SIGGRAPH Asia 2009 papers

(pp. 1–9). New York, NY, USA: Association for Computing Machinery. doi:

10.1145/1661412.1618458

Winston, P. H. (1970, September). Learning Structural Descriptions from Examples.

AI Technical Reports(231).

Wonka, P., Wimmer, M., & Schmalstieg, D. (2000, June). Visibility preprocessing

with occluder fusion for urban walkthroughs. In B. Péroche & H. Rush-

meier (Eds.), Rendering techniques 2000 (proceedings eurographics workshop

on rendering) (pp. 71–82). held in Brno, Czech Republic, June 26-28, 2000:

Springer-Verlag Wien New York.

Wonka, P., Wimmer, M., Sillion, F., & Ribarsky, W. (2003, July). Instant architecture.

ACM Transactions on Graphics, 22(3), 669–677. doi: 10.1145/882262.882324

Wu, F., Yan, D.-M., Dong, W., Zhang, X., & Wonka, P. (2014, July). Inverse

procedural modeling of facade layouts. ACM Transactions on Graphics, 33(4),

121:1–121:10. doi: 10.1145/2601097.2601162

Wu, K., & Yuksel, C. (2017, February). Real-time fiber-level cloth rendering. In

Proceedings of the 21st ACM SIGGRAPH Symposium on Interactive 3D Graphics

and Games (pp. 1–8). New York, NY, USA: Association for Computing

Machinery. doi: 10.1145/3023368.3023372

Wu, X., Wand, M., Hildebrandt, K., Kohli, P., & Seidel, H.-P. (2014). Real-Time

Symmetry-Preserving Deformation. Computer Graphics Forum, 33(7), 229–

238. doi: 10.1111/cgf.12491

Xu, C., Wang, R., Zhao, S., & Bao, H. (2017). Real-time linear BRDF MIP-Mapping.

In Eurographics symposium on rendering.

Xu, Z., Zhou, Y., Kalogerakis, E., & Singh, K. (2019). Predicting animation skeletons

for 3D articulatedmodels via volumetric nets. In 2019 international conference

on 3D vision (3DV) (pp. 298–307). doi: 10.1109/3DV.2019.00041

Yang, Y., Barnes, C., & Finkelstein, A. (2022). Learning from Shader Program

Traces. Computer Graphics Forum, 16.

164

Yang, Y., Inala, J. P., Bastani, O., Pu, Y., Solar-Lezama, A., & Rinard, M. (2021).

Program Synthesis Guided Reinforcement Learning for Partially Observed

Environments. In Advances in Neural Information Processing Systems (Vol. 34,

pp. 29669–29683). Curran Associates, Inc.

Yuksel, C., Kaldor, J. M., James, D. L., & Marschner, S. (2012, July). Stitch meshes

for modeling knitted clothing with yarn-level detail. ACM Trans. Graph.,

31(4), 37:1–37:12. doi: 10.1145/2185520.2185533

Zanni, C., Claux, F., & Lefebvre, S. (2018, May). HCSG: Hashing for real-time CSG

modeling. In Proceedings of the ACM SIGGRAPH symposium on interactive

3D graphics and games. Montreal, Canada. doi: 10.1145/3203198

Zhang, J., Nie, X., & Feng, J. (2020). Inference Stage Optimization for Cross-scenario

3D Human Pose Estimation. Advances in Neural Information Processing

Systems, 33, 2408–2419.

Zhao, S., Luan, F., & Bala, K. (2016, July). Fitting procedural yarn models for

realistic cloth rendering. ACM Transactions on Graphics, 35(4), 51:1–51:11.

doi: 10.1145/2897824.2925932

Zhao, S., Wu, L., Durand, F., & Ramamoorthi, R. (2016). Downsampling scattering

parameters for rendering anisotropic media. ACM Transactions on Graphics

(Proceedings of SIGGRAPH Asia), 35(6), 166:1–166:11.

Zhou, H., Sun, J., Turk, G., & Rehg, J. M. (2007, July). Terrain Synthesis from

Digital Elevation Models. IEEE Transactions on Visualization and Computer

Graphics, 13(4), 834–848. doi: 10.1109/TVCG.2007.1027

Zhou, K., Huang, X., Wang, X., Tong, Y., Desbrun, M., Guo, B., & Shum, H.-Y. (2006,

July). Mesh quilting for geometric texture synthesis. In ACM SIGGRAPH

2006 Papers (pp. 690–697). New York, NY, USA: Association for Computing

Machinery. doi: 10.1145/1179352.1141942

165

Appendices

A Extra DAG Amendments

Figures VI.1 to VI.4 show extra results for the DAG Amendment of Section III.3.3.

B OpenMfx: Standardization of shape operators

Non-destructive operations are widely used in mesh-based 3D modeling to add

procedural effects on top a coarse geometry while allowing it to remain editable.

Common such operations include surface subdivision, beveling, repetition, boolean

operations. Combined together as a stack or even as a direct acyclic graph, they

are a very powerful tool to build parametric assets. Although this mechanism is

present in many different 3D modeling suites (Maya, Houdini, Blender, Cinema4D,

3ds Max, etc.), it is not easy to share a parametric asset across them. Indeed,

they do not all implement the exact same set of operations, and even when they

do, there might be slight discrepancies in their behavior. We designed a plug-in

API that enables one to have all supporting 3D modeling suites share the same

implementation of a given non-destructive effect. It thus becomes possible to

share scenes featuring non-destructive effect without having to destructively bake

them.

B.1 Technical approach

We build on top of OpenFX (Association, 2006), an industry standard plug-in API

that has been developed by Foundry while facing a very similar problem in the

field of compositing, which is nothing else than non-destructive image editing.

OpenFX has been designed from the ground up with modularity in mind so we

166

l=0
w=uv

l=0
w=uv

l=0
w=uv

l=0
w=uv

l=0
w=uv

l�=9

l�=6
l�=4

l�=1

l�=3

l�=1

l�=1

l=l+1*j

l=l+1*j

Original DAG Amended DAG

Main Body

Difference

Mirror

Box

Bu�on

Lever

Translate

Difference

Toast

Merge

Copy

Merge

Translate

Transform

Translate

Deform
(Blend shape)

Scale

Translate

Solidify Solidify

Intersec�on

Transform

Figure VI.1: Original DAG (left) and our automatic DAG Amendment (right) for

the example of Figure III.8. Colored lines show the hyper-parameters influencing an

individual operation.

Original DAG Amended DAG

Box

Transform

Duplicate

Bevel

Difference

Difference

Transform

Cylinder

Transform

l=0
w=uv

l=0
w=uv

l�=4

l�=1

l=l+1*j

Figure VI.2: Original DAG (left) and our automatic DAG Amendment (right) for

the example (a) of Figure III.24.

were able to fully reuse its core, including the base plug-in mechanism and the API

Original DAG Amended DAG

Transform Transform

Fusion

Difference

Mirror Mirror

Decimate

Subsurf

Sphere l=0
w=uv

l�=3

l�=1 l=l+1*j

l=l+1*j

Figure VI.3: Original DAG (left) and our automatic DAG Amendment (right) for

the example (b) of Figure III.24.

167

Original DAG Amended DAG

Grid

Wave Deform

Bo�om Deform

Belt

Translate

Stage

Point Deform

Merge

l=0
w=uv

l=0
w=uv

l�=2

l�=1

l=0
w=uv

Figure VI.4: Original DAG (left) and our automatic DAG Amendment (right) for

the example (d) of Figure III.24.

OpenMfx

ExtrudeBevel Intersect

Host So�ware

OpenMFX Plug-in
OpenMFX API

Cross-so�ware Effect

Op�onal OpenMFX SDK

Figure VI.5: An example of sequence of non-destructive effects transforming a

simple editable base mesh (e.g., a cube) into a more complex asset. Operations like

bevel, extrusion or boolean intersection are available in most of common mesh-

based 3D modeling suites, but the effect applied at the second step is less common.

By implementing it as an OpenMfx plug-in, it is available in all supporting host

software and thus the asset is interexchangable in its non-destructive form.

for setting effects’ parameters. Our mesh effect API is introduced as an extension

next to its image effect API.

OpenMfx’ mesh representation is based on a list of points, a list of n-gon faces and

a list of face corners sorted by face and referencing point indices. At minimum,

points have a position, faces have a vertex count and corners have a point index,

but OpenMfx supports for any extra attributes attached to either one of these

three entities. This is inspired by the flexibility that made the success of Houdini

and its engine (SideFX, n.d.).

We introduced as little overhead as possible, and in particular limit the need for

memory duplication. Data buffers for each point/corner/face attributes is given by

a pointer, a type (short, int, float), a component count (for vectors) and a stride,

which allows in most of the times to use the host’s internal memory as is. The API

also features mechanism to advertise some extra attributes as either required or

useful but optional, so that only what is needed is provided to the OpenMfx effect.

Currently, the API has been developed and documented, one host is supported (a

branch of Blender (É. Michel, 2019b)) and another one (in Unity) is at the stage of

proof of concept. Several effect packages are available, like MfxVCG (É. Michel,

2019a) providing effects from MeshLab’s VCGlib (et al. Cignoni, 2008) or MfxVTK

168

(Karabela, 2020) providing effects from the Visualization Toolkit (Schroeder et

al., 2006), and developing new plug-ins is made easy to thanks to an optional

C++ helper library (the OpenMfx SDK). Similarly to OpenFX supporting hosts

that are either layer-based or node-based, OpenMfx can fit into both stack-based

(modifiers) and node-based non-destructive modeling tools.

B.2 Design Choices

The overall plug-in architecture, the notion of effect, of parameter, property etc.

could be reused from OpenFX. In the end, most of the decisions we have made

were related to the representation of meshes that transits through the API.

This representation aims at supporting a wide variety of mesh topology, including

n-gons of arbitrary point count, unconnected points (for point clouds), loose edges

(for wireframe meshes) and mixes of all of these. It aims at a minimal enough

memory footprint, meaning that the representation should be non-redundant and

also that it should be able to point to wherever the data already is in the host’s

memory rather than copying it, if possible. And it aims at a simple design, to avoid

dealing with multiple particular cases.

It is not uncommon for modeling tools to expose two different APIs to handle 3D

meshes. For instance 3ds Max has both Mesh and MNMesh, Blender has Mesh and

BMesh. In both cases, the second one is more flexible and eases arbitrary traversal,

but at the cost of some overhead. Our representation is closer to the first ones, the

lower level ones. It is then up to the plugin to build a different representation, if

needed only (MfxVTK does this for instance).

Attributes An OpenMfx mesh is then simply a list of attribute buffers. A given

attribute is relative to either points, faces or face corners and contains between

1 and 4 values of a given type (short, int or float) for each point/face/corner. For

instance the vertex positions are given by a 3-component float point attribute. The

connectivity information makes no exception, it is given by attributes, namely an

integer face attribute telling for each face its number of corners and an integer

corner attribute telling for each corner the index of the point it refers to. These are

equivalent to what USD’s UsdGeomMesh class calls resp. faceVertexIndices and

faceVertexCounts, and is also close to Blender’s and Houdini’s representations1.

Note that we decided not provide edge attributes. Edges that belong to no face,

called "lose edges" are listed as two-point faces, other edges are omitted because

implicitly defined by faces. Since edges are shared across faces, the price in clarity

to include edge attributes was too important compared to the fact that many

existing API don’t support them anyways. When really needed, they may be

1
Houdini calls "vertex" what we call "corner", but "vertex" used by Blender to mean what we and

Houdini call "point", we settled on the less ambiguous term "corner".

169

stored in corners, at the price of duplication, or by explicitly listing all edges as

two-point faces.

Attribute buffers are of two kinds. Some own their data, which is freed when

the mesh is released. Others are non-owner attributes, meaning that they point

to an existing memory location, that is assumed to remain valid throughout the

execution of the effect. The memory layout is described by a flexible buffer protocol,

loosely inspired by Python’s (Python, n.d.), such that the host can use non-owner

attributes as much as possible to feed mesh attributes to the effect. Only attributes

whose layout on host side cannot fit the buffer protocol need to be copied. Non-

owner attributes can also be used in outputs, for instance to forward unchanged

input attributes without copying them at all.

On-demand data To alleviate further the need for memory transfers, an effect

must explicitly request the attributes it needs, when describing its inputs. A

requested attribute can be deemedmandatory or not, and is also assigned a semantic

flag hinting about the meaning of the attribute (color, normal, texture coordinate,

weight) and that the host might use to suggest the user which host-side attribute

to feed as the requested one. This also brings flexibility since the host then holds a

mapping between the actual attribute data it stores for a mesh and what the effect

requested.

Another information that is provided only on demand is the world to local trans-

form matrix associated to the mesh. All coordinates are given in local space, and

this matrix is not available unless requested, such that the host’s dependency graph

can more finely avoid useless executions or dependency loops.

SDK We were pursuing competing goals by designing a low overhead API but

also at the same time looking for ease of use by developers. This is why on top

of the low-level portable C API we provide an optional helper library, written in

C++ to provide higher level abstraction. While the low-level API hides no implicit

behavior, the C++ SDK.

Specific Scenarios While aiming at flexibility, it was also important to ensure

that some more specific yet very common cases are efficiently handled. Often the

number of points per face is fixed. It might be to 3 (triangle only meshes), 4 (quad

only), but also 2 (wireframe only). In such a case, a flag is used to avoid allocating

a face point count buffer that would be uniform.

Attribute forwarding is already a good way to avoid unneeded copies of memory,

but for the host’s internal it might be useful to know even before running the

effect that it will not change the connectivity of the mesh (e.g. a displacement or

smoothing effect). So called "deform only" effects can advertise this fact ahead of

execution (at describe time) so that the host may handle them differently.

170

Since the way we handle loose edges was a less obvious decision that may not fit

hosts’ internal memory layout, and since it is common not to have lose edges in a

mesh, we added a flag for the plugin to let the host know when an output mesh

has no such edge.

Limitations Besides the aforementioned absence of explicit edge attributes, two

features have been set aside compared to Maya’s API. First OpenMfx does not

allow faces with holes, i.e., faces that would be made of more than one loop of

edges. Though technically nothing prevents one from having corners pointing

to some reserved point index (for instance -1) meaning to start a new loop, we

thought that supporting this would abusively complicate the task of plugin writers

while use cases are very uncommon. Secondly, there is no indirection between

face corners and texture coordinate, so no proper definition of "UV island".

Limitations that we are willing to address include the current impossibility for a

host to allow in-place edition of non-owned attributes, and the lack of mechanism

to pass-through arbitrary attributes that were not especially requested by the effect

but that the host may want to compute for the output anyways (possibly because

another effect requested it downstream).

B.3 Future prospects

OpenMfx is ready to be used and the API is getting stable but its ecosystem may

still get improvements in order to ease its adoption. The current major limitation

is lack of supporting hosts besides Blender and Unity, so we are working on a

SDK similar to the one we have built to ease the creation of plug-ins but oriented

towards the integration into new hosts. The Unity host is still limited at this stage

as we have not defined a proper dependency graph yet.

In order to ensure harmonization among multiple implementations – which is

sometimes a problem of OpenFX – we plan on providing an optional validation

layer, reporting any inconsistencies in the use of the API. This will come with an

overhead but would be used only at development time.

To meet our original goal of bringing the possibility to share scenes that have non-

destructive effects and parametric shapes across software suites, we will integrate

an USD schema (Studios, 2016) telling which plug-in to instantiate where and with

which parameters when exchanging a scene. Effect parameters would be driven

by UsdAttribute and input mesh would be provided as UsdRelationship. The

effect could request from their input the extra attributes provided through the

UsdGeomPrimvarsAPI.

So far we have focused on time independent effects, but the original OpenFX

API also supports time-dependent effects such as simulations, so by reusing their

industry tested approach we could also support it for 3D meshes even though it

may raise questions that are not our priority at the moment.

171

There is room in the design for augmenting the effects with new actions without

breaking compatibility. A promising example would be to add the possibility

to query the effect for differential information, e.g. to measure jacobian of the

operation, to make it usable in contexts such as machine learning, differentiable

rendering or inverse control (É. Michel & Boubekeur, 2021a).

Finally, in practice effects might use other types of representations. We already

support polygon soups and point clouds, there is a question whether we should

care about other representations such as voxels, heightmaps or implicit surfaces.

C Proof A

In Section IV.3.2.1, we define:

Allowed(𝑇1, 𝑑1, 𝑑2) =
⋃

𝑡1 (𝝅1) ∈𝑇1

{
𝑡2(𝝅2) | 𝑖2 ≡ 𝑖1 and 𝝅2𝑑2

= 𝝅1𝑑1

}
(VI.1)

and we need to show that:

Allowed(𝑇1, 𝑑1, 𝑑2) =
⋃
𝑡2∈𝑇⋄

𝐻𝑡2,𝑑2

(⋃
𝑡1∈𝑇⋄
st. 𝑖1≡𝑖2

𝑉𝑡1,𝑑1
(𝑇1)

)
We split the union in Equation VI.1 depending on the value of 𝑖1 = 𝐿⋄ (𝑡1, 𝑑1),
namely the interface type of 𝑡1 in direction 𝑑1:

Allowed(𝑇1, 𝑑1, 𝑑2) =
⋃
𝑖∈𝐼⋄

⋃
𝑡1 (𝝅1) ∈𝑇1

st. 𝑖1=𝑖

{
𝑡2(𝝅2) | 𝑖2 ≡ 𝑖 and 𝝅2𝑑2

= 𝝅1𝑑1

}
We then split the set {𝑡2(𝝅2)} depending on the type 𝑡2 of the tile:

Allowed(𝑇1, 𝑑1, 𝑑2) =
⋃
𝑖∈𝐼⋄

⋃
𝑡1 (𝝅1) ∈𝑇1

st. 𝑖1=𝑖

⋃
𝑡2∈𝑇⋄

{
𝑡2(𝝅2) | 𝑖2 ≡ 𝑖 and 𝝅2𝑑2

= 𝝅1𝑑1

}
The condition that 𝑖2 ≡ 𝑖 can be moved into the definition of the inner-most union

because it does not depend on the hyper-parameters 𝝅2:

Allowed(𝑇1, 𝑑1, 𝑑2) =
⋃
𝑖∈𝐼⋄

⋃
𝑡1 (𝝅1) ∈𝑇1

st. 𝑖1=𝑖

⋃
𝑡2∈𝑇⋄
st. 𝑖2≡𝑖

{
𝑡2(𝝅2) | 𝝅2𝑑2

= 𝝅1𝑑1

}
The two inner unions can be swapped:

172

Allowed(𝑇1, 𝑑1, 𝑑2) =
⋃
𝑖∈𝐼⋄

⋃
𝑡2∈𝑇⋄
st. 𝑖2≡𝑖

⋃
𝑡1 (𝝅1) ∈𝑇1

st. 𝑖1=𝑖

{
𝑡2(𝝅2) | 𝝅2𝑑2

= 𝝅1𝑑1

}
Since ≡ is an equivalence relation (𝑖 ↦→ 𝑗 st. 𝑗 ≡ 𝑖 is a bijection), we can operate a

change of variable from 𝑖 to 𝑗 in the outermost union:

Allowed(𝑇1, 𝑑1, 𝑑2) =
⋃
𝑗∈𝐼⋄

⋃
𝑡2∈𝑇⋄
st. 𝑖2=𝑗

⋃
𝑡1 (𝝅1) ∈𝑇1

st. 𝑖1≡𝑗

{
𝑡2(𝝅2) | 𝝅2𝑑2

= 𝝅1𝑑1

}
And we now merge the first two unions:

Allowed(𝑇1, 𝑑1, 𝑑2) =
⋃
𝑡2∈𝑇⋄

⋃
𝑡1 (𝝅1) ∈𝑇1

st. 𝑖1≡𝑖2

{
𝑡2(𝝅2) | 𝝅2𝑑2

= 𝝅1𝑑1

}
We now express the inner set using 𝐻𝑡2,𝑑2

:

Allowed(𝑇1, 𝑑1, 𝑑2) =
⋃
𝑡2∈𝑇⋄

⋃
𝑡1 (𝝅1) ∈𝑇1

st. 𝑖1≡𝑖2

𝐻𝑡2,𝑑2

(
{𝝅1𝑑1

}
)

Noting that 𝐻𝑡,𝑑 (𝐴 ∪ 𝐵) = 𝐻𝑡,𝑑 (𝐴) ∪ 𝐻𝑡,𝑑 (𝐵), we move the union inside of 𝐻 :

Allowed(𝑇1, 𝑑1, 𝑑2) =
⋃
𝑡2∈𝑇⋄

𝐻𝑡2,𝑑2

(⋃
𝑡1 (𝝅1) ∈𝑇1

st. 𝑖1≡𝑖2

{𝝅1𝑑1
}
)

We now focus on the argument of 𝐻 , which we note (∗):

(∗) =
⋃

𝑡1 (𝝅1) ∈𝑇1

st. 𝑖1≡𝑖2

{𝝅1𝑑1
}

We split the union to iterate first on the tile type and then on the hyper-parameters:

(∗) =
⋃
𝑡1∈𝑇⋄
st. 𝑖1≡𝑖2

⋃
𝝅1 st.

𝑡1 (𝝅1) ∈𝑇1

{𝝅1𝑑1
}

We rephrase the inner union as a set definition:

173

Triangle Count Solve Suggest
Name Quad Count Tile Count Sweep Count GPU Buffers Exported Mesh CPU GPU CPU GPU

ninja 1 917 4 25 15 627 538 2 254 365 802
shell 3 088 3 20 24 950 040 2 859 630 056
lamp 840 5 28 10 907 520 2 230 273 392 0.7 0.2 0.1 3.5 12.8
lamp 840 4 30 6 502 560 1 647 164 377 0.6 0.2 0.2 3.7 22.3 3.6
lamp 840 5 31 6 422 722 1 764 164 719 0.8 0.3 0.2 3.6 17.8 5
lamp 840 5 11 7 191 120 1 333 179 393 0.5 0.2 0.1 4 43.3 5.2
lamp 840 14 51 6 177 432 3 488 154 565 1.5 0.2 0.2 3.1 39.1
lamp-sub1 3 360 6 36 48 372 480 4 628 1 212 430 1.1 0.1 0.2 5.8 139
lamp-sub1 3 360 5 28 48 372 480 4 155 1 212 430 0.9 0.1 0.2 5.9 88
lamp-sub2 26 880 5 28 202 974 720 12 058 5 087 450 2.8 0.3 0.1 24 1029
lamp-sub2 26 880 6 36 202 974 720 12 530 5 087 450 2.8 0.3 0.1 22 3090
shoe 2 984 4 25 24 325 206 2 956 613 703 1 0.1 0.1 5.1 87
shoe 2 984 5 10 18 823 072 1 832 469 567 0.6 0.1 0.1 5.1 135 2.5
shoe 2 984 5 28 46 981 376 4 046 1 177 563 1 0.1 0.1 6.8 135
shoe 2 984 9 42 29 758 940 4 179 745 506 1.5 0.1 0.2 5.8 279 3.5
tshirt 7 088 5 10 44 711 104 3 064 1 115 378 0.7 0.1 0.1 6 3212 3.1
tshirt 7 088 4 25 57 899 346 5 655 1 460 653 1.9 0.1 0.2 6.2 1132
tshirt 7 088 4 25 271 156 236 9 114 1.5 0.1 0.2 30.6 1132
tshirt 7 088 9 42 69 991 288 6 298 1 752 922 2.2 0.1 0.2 7.9 708

Timing (ms)
Mapping RenderMacrosurface Tile set

Mesostructure
Memory (KB)

Table VI.1: Various metrics for a series of test scenes, including the examples from

Figure IV.10. The second to last row is the same setting as the previous one but using

a finer resolution when synthesizing the output mesh. It is used to stress test the

rendering pipeline.

(∗) =
⋃
𝑡1∈𝑇⋄
st. 𝑖1≡𝑖2

{𝝅1𝑑1
| 𝑡1(. . . , 𝝅1𝑑1

, . . .) ∈ 𝑇1}

And we know recognize 𝑉𝑡1,𝑑1
:

(∗) =
⋃
𝑡1∈𝑇⋄
st. 𝑖1≡𝑖2

𝑉𝑡1,𝑑1
(𝑇1)

QED

D Tile Rendering Statistics

Table VI.1 presents additional statistics for the examples of Section V.2.

E Grain Rendering

E.1 Impostor resolution

Section V.3.4.1 asserts that the proportionality factor between the pixel size 𝑝 of

the atlas’ maps and the ratio 𝑅/𝐿 of outer radius w.r.t. distance depends on the

camera field of view (fov) and the screen resolution. Full formula is:

𝑝 = 𝛼𝑊
𝑅

𝐿
cotan

(
fov

2

)
(VI.2)

174

Table VI.2: Maximum andmean angle between two neighbor views for an octahedron

of 𝑛 subdivisions (so 𝑁 directions)

n N Max (°) Mean (°)

3 18 90.00 60.00

4 32 66.42 43.29

5 50 54.74 33.57

6 72 42.30 27.39

7 98 35.26 23.12

8 128 32.13 20.01

9 162 29.50 17.63

10 200 26.29 15.75

11 242 23.84 14.24

12 288 21.37 12.99

13 338 19.47 11.94

14 392 18.25 11.05

15 450 17.19 10.28

16 512 16.05 9.62

where𝑊 is the image’s width in pixels and 𝛼 is a coefficient a little larger than 1

accounting for the fact that the projection of the bounding sphere of radius 𝑅 onto

the screen is actually an ellipsis, larger than 𝑝 . Alpha depends on the camera fov

and limit distance 𝐿: for close grains at high fov, the effect is not negligible, but

this is usually out of our scope because we don’t use impostors for closer grains.

Long story short: we used 𝛼 = 1.1.

E.2 Tables

Table VI.3 evaluates the theoretical formula of Section V.3.4.1 for different resolu-

tions. This table is crossed with measures on octahedron (Table VI.2) to the data

used for Figure V.9 of the paper.

175

Table VI.3: Angle of the cone of views under which a single precomputed view is

valid, as a function of its pixel size 𝑝 . The higher the resolution, the thiner the cone.

p Cone angle (°)

1 120.00

2 73.74

4 39.50

8 20.13

16 10.11

32 5.06

64 2.53

128 1.27

256 0.63

512 0.32

Table VI.4: Uncompressde weight of an impostor, assuming a G-buffer fragment fits

in 64 bit, for different spatial and angular resolutions.

𝑛\𝑝 1 2 4 8 16 32 64 128 256 512

3 144B 576B 2KB 9KB 36KB 144KB 576KB 2MB 9MB 36MB

4 256B 1KB 4KB 16KB 64KB 256KB 1MB 4MB 16MB 64MB

5 400B 1KB 6KB 25KB 100KB 400KB 1MB 6MB 25MB 100MB

6 576B 2KB 9KB 36KB 144KB 576KB 2MB 9MB 36MB 144MB

7 784B 3KB 12KB 49KB 196KB 784KB 3MB 12MB 49MB 196MB

8 1KB 4KB 16KB 64KB 256KB 1MB 4MB 16MB 64MB 256MB

9 1KB 5KB 20KB 81KB 324KB 1MB 5MB 20MB 81MB 324MB

10 1KB 6KB 25KB 100KB 400KB 1MB 6MB 25MB 100MB 400MB

11 1KB 7KB 30KB 121KB 484KB 1MB 7MB 30MB 121MB 484MB

12 2KB 9KB 36KB 144KB 576KB 2MB 9MB 36MB 144MB 576MB

13 2KB 10KB 42KB 169KB 676KB 2MB 10MB 42MB 169MB 676MB

14 3KB 12KB 49KB 196KB 784KB 3MB 12MB 49MB 196MB 784MB

15 3KB 14KB 56KB 225KB 900KB 3MB 14MB 56MB 225MB 900MB

16 4KB 16KB 64KB 256KB 1MB 4MB 16MB 64MB 256MB 1024MB

176

Table VI.5: Difference between the mean angle between two precomputed views and

the angle of validity of a single direction for different combinations of the impostors’

pixel size 𝑝 and the number of subdivisions of the octahedron 𝑛. A value of zero

means that the impostor is perfectly valid.

𝑛\𝑝 1 2 4 8 16 32 64 128 256 512

3 0 6 31 45 52 56 58 59 59 59

4 0 0 15 29 36 39 41 42 42 43

5 0 0 5 19 26 29 31 32 33 33

6 0 0 0 13 20 23 25 26 26 27

7 0 0 0 8 15 19 21 22 22 22

8 0 0 0 5 12 16 18 19 19 19

9 0 0 0 3 10 14 15 16 17 17

10 0 0 0 1 8 12 13 14 15 15

11 0 0 0 0 7 10 12 13 13 14

12 0 0 0 0 5 9 11 12 12 12

13 0 0 0 0 4 8 10 11 11 11

14 0 0 0 0 3 7 9 10 10 10

15 0 0 0 0 3 6 8 9 9 10

16 0 0 0 0 2 6 7 8 9 9

177

Titre: Création interactive de formes 3D représentées en tant que programmes

Mots clés: modélisation

Résumé: Malgré la constante amélioration de
la technique et du matériel informatique, per-
mettant de manipuler du contenu numérique
de plus en plus volumineux, la création de
scènes virtuelles 3D reste une tâche com-
plexe ; du fait notamment de la charge cog-
nitive qu’elle impose aux artistes. Nous pro-
posons une série de contributions visant à tirer
parti des représentations par programme des
formes pour faire du processus de création
de scènes numérique 3D une tâche plus artis-
tique et moins technique qu’elle ne l’est.
Nous rendons possible l’utilisation de méth-
odes de manipulation directe sur la géométrie
générée par DAG grâce à un jeu de règles
de réécriture automatique et un filtre non
linéaire de donnée différentielle. Nous aidons

la création de programmes de forme impérat-
ifs en transformant des sélection d’éléments
géométriques en des requêtes sémantiques,
et la création de programmes déclaratifs en
proposant un mode d’édition du contenu
géométrique de tuiles de Wang centré sur les
sections aux interfaces entre tuiles. Nous éten-
dons les moteurs de pavage par tuiles pour
prendre en compte des paramètres continus et
suggérer automatiquement de nouvelles tuiles
à ajouter. Nous intégrons les programmes de
forme à la boucle de retour visuel en délégant
l’évaluation du contenu des tuiles au système
de rendu en temps-réel, et exploitons la sé-
mantique du programme pour dériver un sys-
tème de niveau de détails par imposteurs vi-
suels.

Title: Interactive Authoring of 3D Shapes Represented as Programs

Keywords: computer graphics, parametric shapes, procedural modeling

Abstract: Although hardware and techniques
have become better and better over the years
at handling heavy content, digital 3D creation
remains fairly complex, partly because the bot-
tleneck also lies in the cognitive load imposed
over the designers. We propose a series
of contributions aiming at leveraging program-
based representations of shapes to make the
process of authoring 3D digital scenes more of
an artistic act and less of a technical task.
We enable the use of direct manipulation meth-
ods on DAG output thanks to automated rewrit-
ing rules and a non-linear filtering of differential

data. We help the creation of imperative shape
programs by turning geometric selection into
semantic queries and of declarative programs
by proposing an interface-first editing scheme
for authoring 3D content in Wang tiles. We
extend tiling engines to handle continuous tile
parameters and arbitrary slot graphs, and to
suggest new tiles to add to the set. We blend
shape programs into the visual feedback loop
by delegating tile content evaluation to the real-
time rendering pipeline or exploiting the pro-
gram’s semantics to drive an impostor-based
level-of-details system.

Institut Polytechnique de Paris

91120 Palaiseau, France

	Introduction
	The creation process: from intent to content
	Representing shapes as programs
	Shape programs help the creation process
	Postponing artistic decision-taking
	Non-destructive modeling in practice

	Related types of parametric assets
	Other creation workflows
	Challenges specific to program-based representations of shapes

	A taxonomy of shape programming paradigms
	Terminology
	Imperative Directed Acyclic Graphs
	Declarative programs
	Hybrid programming
	Limits of our scope
	About determinism
	Real-time feedback
	Non program-based higher-order representations

	Outline
	Contributions
	Publications
	Peer-reviewed papers
	Released source code

	Related Work
	Shape programming in the wild
	Rigging
	Definition
	Assisted rigging
	Real-time evaluation

	Procedural Modeling
	Definition
	Use cases
	Constructive Solid Geometry
	Grammars-based modeling

	Inverse Procedural Modeling
	Symmetry detection
	Program synthesis
	Domain-specific methods

	Latent Space

	Interactive shape manipulation
	Geometry-level manipulation
	Direct mesh deformation
	Inverse Control

	Program-level manipulation
	Visual Programming
	DAG Rewriting
	Bidirectional Editing

	Authoring systems

	Optimization in hyper-parameter space

	Imperative programming of shapes
	Introduction
	Automatic Synthesis of Semantic Selection Queries
	Problem setting
	Related work
	Overview
	Per-element trace recording
	Predicates
	DAG Amendment

	Domain Specific Language for Selection Query
	Query Synthesis
	Best program selection
	Program space exploration

	Results
	Experimentation
	Discussion

	Future Work
	Variants of the query language
	Integer expressions
	Variants of the synthesis algorithm

	Co-parameterization for the differentiation of parametric shape
	Introduction
	Problem Setting
	Related Work

	Co-parameterization
	Co-parameter definition
	Automatic DAG Amendment

	Results
	Implementation
	Limitations
	Future Work

	Jacobian Filtering: Applying Inverse Kinematics to Parametric Shapes
	Introduction
	Overview
	Sampling and differentiation

	Solving
	Inversion
	Jacobian buffer filtering

	Results
	Performances
	Ablation study

	Discussion
	Properties
	Limitations
	Future prospects

	Conclusion

	Tiles-based declarative programming of shapes
	Introduction
	Constrained layout
	Wang Tiles
	Definition
	Related Work

	Tile-based geometric amplification
	Problem Setting
	Geometric amplification
	Related Work

	Method
	Design workflow
	Procedural mesostructure model
	Tiling
	Shell Mapping

	Results
	Experiment
	Discussion
	Future Work

	Parametric tile content
	Introduction
	Method
	Constraint propagation
	Representation of a tile superposition
	Sampling tile superposition

	Results
	Watershed generation
	Discussion

	Visual feedback of shape programs during authoring
	Introduction
	A two-way integration of rendering and generation
	Related works and background

	Tile-based Mesostructure Rendering
	Method
	Render Pipeline
	Caching

	Results
	Performance
	Surface representation

	Discussion
	Properties
	Future work

	Multiscale Rendering of Dense Dynamic Stackings
	Introduction
	Pipeline overview
	Impostors for dense stackings
	General rendering pipeline
	Parametrization
	Sampling quasi-spherical impostors

	Model discrimination
	Impostors' validity range
	Dynamic grain splitting

	Occlusion Culling
	Grain-level culling
	Fragment-level culling

	Results
	Discussion
	Properties
	Limitations
	Future work

	Conclusion
	Contributions
	Future prospects
	Bibliography
	Appendices
	Extra DAG Amendments
	OpenMfx: Standardization of shape operators
	Technical approach
	Design Choices
	Future prospects

	Proof A
	Tile Rendering Statistics
	Grain Rendering
	Impostor resolution
	Tables

