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Abstract
As 3D object collections grow, searching based on shape becomes crucial. 3D capturing has
seen a rise in popularity over the past decade and is currently being adopted in consumer
mobile hardware such as smartphones and tablets, thus increasing the accessibility of this
technology and by extension the volume of 3D scans. New applications based on large 3D
object collections are expected to become commonplace and will require 3D object retrieval
similar to image based search available in current search engines.

The work documented in this thesis consists of three primary contributions. The first
one is the RICI and QUICCI local 3D shape descriptors, which use the novel idea of
intersection counts for shape description. They are shown to be highly resistant to clutter
and capable of effectively utilising the GPU for efficient generation and comparison of
descriptors. Advantages of these descriptors over the previous state of the art include speed,
size, descriptiveness and resistance to clutter, which is shown by a new proposed benchmark.

The second primary contribution consists of two indexing schemes, the Hamming tree
and the Dissimilarity tree. They are capable of indexing and retrieving binary descriptors
(such as the QUICCI descriptor) and respectively use the Hamming and proposed Weighted
Hamming distance functions efficiently. The Dissimilarity tree in particular is capable of
retrieving nearest neighbour descriptors even when their Hamming distance is large, an
aspect where previous approaches tend to scale poorly.

The third major contribution is achieved by combining the proposed QUICCI descriptor
and Dissimilarity tree into a complete pipeline for partial 3D object retrieval. The method
takes a collection of complete objects, which are indexed using the dissimilarity tree and
can subsequently efficiently retrieve objects that are similar to a partial query object.

Thus, it is shown that local descriptors based on shape intersection counts can be applied
effectively on tasks such as clutter resistant matching and partial 3D shape retrieval. Highly
efficient GPU implementations of the proposed, as well as several popular descriptors,
have been made publicly available to the research community and may assist with further
developments in the field.
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Preface
This thesis is submitted to the Norwegian University of Science and Technology (NTNU)
in partial fulfilment of the requirements for the degree of Philosophiae Doctor (PhD). The
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Research Overview





Chapter 1

Introduction
The use of 3D capturing has steadily increased over the past decades and has become an
important component of a number of applications such as:

• Industrial quality assurance (such as pavements [1], extruded metal parts [2], and
piping [3]).

• Nondestructive analysis and preservation of historical artefacts (for example when
surveying historic sites [4], [5] or digitising artefacts [6]).

• Video game and cinematic productions (which may be in the form of motion capture
of hands [7] or faces [8], or assisting medical rehabilitation through play [9] [10]).

• Autonomous vehicles (for example to detect pedestrians [11] [12], or doing automated
underwater inspections [13]).

• Biometrics (most notably for facial recognition [14] [15]).

Moreover, 3D capturing sensors have in recent years made their way into consumer
hardware such as smartphones (including the Apple iPhone 12 and 13 Pro [16] [17], and
Samsung Galaxy S20+ and Ultra [18]) and tablets (such as the Apple iPad Pro [19]), likely
increasing the demand for efficient algorithms to process the recorded data.

Applications making use of 3D data rely on algorithms for tasks such as shape
classification, registration, retrieval, and completion. All of these rely on shape similarity
as part of their pipeline. The problem of establishing similarity between pairs of shapes
is complex. Even for simple shapes, such as pairs of spheres and planes, there may be an
infinite number of transformations that align them.

The most commonly used approach to solving the similarity problem is through the
establishment of corresponding point pairs on each object’s surface. Depending on whether
surface normals are given, a minimum of two or three correctly matched pairs need to be
found in order to determine an alignment transformation.

The dominant means by which point pair correspondences are found is through the use
of local 3D shape descriptors. Their aim is to represent the volume around a given point
(known as the Support Volume) in an array of constant size, thereby reducing the complexity
of determining shape correspondences to an n-dimensional nearest neighbour search.

While shape descriptors have been applied successfully on a wide variety of tasks,
methods proposed to date have some limitations. The most notable of which is the tendency
of many methods to be computationally inefficient to construct, compare, or both. Moreover,
despite the most popular descriptors being embarrassingly parallel, the limited number of
reference implementations which have been made available by authors have predominantly
been single threaded.

Meanwhile, the advent of the General Purpose Graphics Processing Unit (GPGPU, or
GPU for short) has the potential to further accelerate descriptor computation, and to date
there are few descriptors which have been implemented to run on the GPU, which to our
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CHAPTER 1. INTRODUCTION

knowledge is limited to work by Davis et al. [20], Gerlach et al. [21], and Rusu et al. [22].
However, none of these have been designed specifically with GPU hardware in mind for
optimal performance.

We thus observed the need for a descriptor with good matching capabilities, while
simultaneously being designed for implementation on the GPU.

Primary Contribution 1: The GPU-based RICI and QUICCI descriptors.
The Radial Intersection Count Image (RICI) and Quick Inter-
section Count Change Image (QUICCI) descriptors are a pair
of related descriptors which have been shown to be efficient
to compute and compare on the GPU, and highly resistant to
clutter.

High performance on the GPU is achieved by requiring less memory bandwidth during
descriptor construction and comparison, relative to previous local descriptors such as the
Spin Image (SI) [23], 3D Shape Context (3DSC) [24], and the Fast Point Feature Histogram
(FPFH) [25]. The clutter resistance of the proposed descriptors is shown using a new
benchmark called the Clutterbox experiment.

The QUICCI descriptor is a binary image. This led to the conjecture that it may be
possible to index such descriptors, accelerating the retrieval of similar descriptors to a given
query descriptor.

Methods addressing the problem of indexing binary descriptors have already been
proposed (see Section 2.3), however, these proved unsuitable for querying QUICCI
descriptors due to the tendency of nearest neighbours to have high Hamming distances.
Existing methods have assumed such distances to be low. This led to the development of the
second primary contribution:

Primary Contribution 2: Improved descriptor indexing.
The Hamming Tree and Dissimilarity Tree acceleration struc-
tures for the retrieval of similar binary descriptors.

The Hamming Tree is a scalable indexing structure for efficiently locating nearest
neighbours in terms of Hamming distance. Unfortunately, the Hamming distance function
proved to be inadequate for object retrieval using the proposed QUICCI descriptor because
of the tendency of the descriptor to be sparse. We therefore also proposed the Weighted
Hamming distance function, which was shown to be a more suitable distance function. As
this function was incompatible with the Hamming tree, an alternate indexing structure called
the Dissimilarity Tree was proposed, capable of retrieving descriptors using the Weighted
Hamming distance function.

Using the QUICCI descriptor and the Dissimilarity tree, the final logical step was to
extend them into a complete retrieval framework, which is the final primary contribution of
the thesis.

Primary Contribution 3: A complete pipeline for partial 3D object retrieval.

The produced pipeline accepts any number of complete objects, indexes them, and
subsequently allows content-based querying using partial objects. This combined pipeline is
not the first to address the problem of 3D object retrieval, which to date it has seen extensive
attention [26] [27]. Current methods can be categorised into retrieval of (partial) rigid objects
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(e.g. [28] [29]), non-rigid objects (e.g. [30] [31]), and sketch-based retrieval (e.g. [32]
[33]). Approaches to solve these can be classified as feature-based (e.g. [34] [35]), graph
or structure-based ([36] [37]), and view-based methods (e.g. [38] [39] [40]). The pipeline
presented as part of this thesis aims to retrieve partial rigid objects, using a feature-based
approach. Partiality is particularly common for RGB-D images, where due to occlusion only
parts of the surface of an object may be available at any given time.

One of the primary benefits of the proposed approach is that it is a complete solution
consisting of compact QUICCI descriptors, which can be indexed in large quantities in a
Dissimilarity Tree, retrieved efficiently, and is capable of locating accurate matches.
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Chapter 2

Background
This chapter outlines the relevant context in which the contributions of this thesis were
produced. Section 2.1 first introduces relevant local 3D shape descriptors, followed by
Section 2.2 which provides a brief introduction into GPU programming using the CUDA
programming model. Section 2.3 subsequently introduces the state of the art in binary
descriptor indexing and retrieval, and finally Section 2.4 outlines previous work done on
partial 3D shape retrieval.

2.1 Local 3D Shape Descriptors

Determining the similarity of two 3D shapes is fundamental to a number of applications,
such as (partial) 3D object retrieval (see Section 2.4), 3D shape classification [38] [41], and
3D shape registration [42] [43]. The dominant means by which current work achieves this
is through the use of shape descriptors [44]. Such descriptors can be classified into two
main categories. Global descriptors aim to compute a single feature descriptor per object,
while Local descriptors are computed in large numbers for a single object, each describing
a portion of its surface. While global shape descriptors can be applied in situations where
no clutter or occlusions are present [45], this is not the case for most practical applications.
The use of local descriptors has therefore received most attention in the literature. Some
examples of global descriptors are PANORAMA [38], Ensemble of Shape Functions [46],
Rotational Contour Signatures [47], and the Spatial Structure Circular Descriptor [48].

Local 3D shape descriptors are commonly computed over a surface point, either as part
of a triangle mesh or point cloud. The produced descriptor in turn describes the surfaces
found in a volume, usually spherical, centred around this point, called its support volume.

As a given object commonly has many individual surface points, local shape descriptors
are usually generated in large volumes. This can to a certain extent be counteracted by using
a keypoint detector [45] [49] [50] at the cost of matching performance becoming constrained
by the detector’s effectiveness.

A local shape descriptor ideally ought to possess the following properties [51]:

Discriminating Corresponding surface point pairs produce similar descrip-
tors, and vice versa.

Robust Correspondences can still be detected despite noise or other
surface disturbances.

Invariant to rotation The orientation of either shape does not affect matching
performance.

Invariant to mesh resolution Variations in mesh resolution (mean length of edges in
the mesh) does not affect matching performance of the
descriptor.

Resistant to clutter The descriptor’s matching performance is unaffected by

7



CHAPTER 2. BACKGROUND

other shapes present within the vicinity of the point being
described.

Resistant to occlusion The descriptor’s matching performance is unaffected by
portions of surfaces being missing near either of two
corresponding surface points, for instance due to the
inability of a capturing device to register them.

Computationally inexpensive The descriptor is fast to compute and compare.

Compact The descriptor’s storage requirements are low.

Depending on the circumstances, invariance to scale may also be a desirable trait.
However, it may also be seen as a an additional discriminating factor. As its desirability thus
depends on the application domain, we do not consider it a universal benefit.

Aside from the discriminative property, resistance to clutter is of particular importance.
It has been named as one of the major factors for matching performance deterioration
in existing local shape descriptors [51], and a number of methods have been shown to
be susceptible to it. The issue stems from the support volume which most local shape
descriptors rely upon. Human environments, particularly indoor ones, often contain many
different objects within each other’s vicinity. When attempting to do object recognition,
descriptors computed over surface points on one object can therefore be expected to regularly
contain geometry belonging to other clutter objects within their support volumes, affecting
the computed descriptor. It has generally been measured using the definition proposed by
Johnson et al. [23] as the fraction of surface points in a given (support) volume that are not
part of the object of interest, relative to the total number of surface points in that volume.

From this definition, it follows that clutter resistance can also be a factor in partial object
retrieval. When a portion of an object is compared to its corresponding larger counterpart, all
surfaces in the larger object which are not part of the smaller portion are effectively clutter
from the perspective of the retrieval process. In a similar fashion, a pair of objects may
contain an intersection of similar geometry, while in both cases the remainder is different,
known as partial matching [52]. An example of this is shown in Figure 2.1. In the case
of these chairs, the arm and backrests are in a sense clutter when attempting to locate
similarities between them, which may occur when retrieving either of the chairs, using the
other as a query.

Many descriptors have been proposed over time, and covering all of them in this section
is intractable. We will therefore for the remainder of this section focus on the descriptors
which were deemed relevant to this thesis.

2.1.1 Spin Image

The Spin Image, proposed by Johnson et al. [23], is a popular descriptor representing
variations in point cloud density in the vicinity of an oriented point.

The descriptor, shown in Figure 2.2, is conceptually computed by rotating a plane
around a line described by the oriented point described by the descriptor. The plane is
subdivided into histogram bins, each counting the number of points intersecting with the
plane as it rotates. To reduce the effects of aliasing, bilinear interpolation is used to divide
each projected point’s contribution over the four neighbouring bins. The Figure shows the
effective support volume covered by a single histogram bin, which is a square torus-like

8



2.1. LOCAL 3D SHAPE DESCRIPTORS

Figure 2.1: Two chairs which have identical legs, but are otherwise different in their designs.

Figure 2.2: Construction of a Spin Image descriptor, computed for a given point (blue), with its
vertical axis (green) aligned with the surface normal. The square plane shows a sample spin image
descriptor, and the torus-like volume described by a single pixel is indicated (yellow). The volume is
produced by rotating the square pixel for one revolution around the vertical (green) axis.

9



CHAPTER 2. BACKGROUND

Spin Image Horizontal Edge

Detection

Spin Contour

Descriptor

Figure 2.3: Visualisation of the construction of a spin contour descriptor based on a previously
computed spin image.

volume. As the descriptor is typically generated as a square image, the support volume of
the descriptor is thus a cylinder whose diameter is twice as high as its height. Spin Images
are compared by computing their Pearson correlation coefficient.

Johnson et al. also proposed a filter for points whose surface normal deviates from the
descriptor’s oriented point by more than a given threshold. If the threshold is exceeded,
the point’s contribution is nullified. The authors claim this filter reduces the influence of
self-occlusion and clutter within the support volume. This angle threshold is known as the
support angle.

Since its publication, a number of variations and improvements to the descriptor have
been proposed [53] [54] [55] [56] [57] [58]. Noteworthy contributions include those by
Carmichael [59] et al., who observed that the Spin Image effectively estimates the surface
area of an object intersecting the volume described by a single histogram bin (also shown in
Figure 2.2). They propose a noise free variant of the Spin Image computed from triangle
meshes. Additionally, Davis et al. [20] and Gerlach et al. [21] implemented and tested a
GPU accelerated version of the Spin Image.

2.1.2 Spin Contour

Another derivative descriptor of the Spin Image is the Spin Contour proposed by Liang et
al. [60] [61]. Due to its similarity to some of the work contained in this Thesis, it deserves
special attention here. The descriptor is conceptually computed from a Spin Image descriptor
at a given oriented point. However, for consistency purposes the authors recommend using
the original triangle mesh instead.

The means by which a spin contour descriptor is constructed when using a spin image
as a starting point is shown in Figure 2.3. First the horizontal boundaries are computed
between zero and nonzero pixels. Additional pixels are subsequently added to this initial
set of boundary pixels to form a closed contour. Comparing Spin Contours is the average
distance between contour pixels in one image relative to their nearest contour pixel in the
other.

2.1.3 3D Shape Context

The 3D Shape Context (3DSC) proposed by Frome et al. [24] is a descriptor which aims
to represent variations in the surface density of an object in a spherical volume around an
oriented point.

As shown in Figure 2.4, the support volume is divided into a number of smaller
subvolumes. Each such subvolume corresponds to a bin in the descriptor. Computing
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2.1. LOCAL 3D SHAPE DESCRIPTORS

Figure 2.4: Visualisation of how the 3DSC descriptor subdivides its support region. Inside the
sphere, layers of smaller spheres are visible. The outer sphere contains longitudinal and latitudinal
subdivisions. One such subdivision has been extracted from the support region, showing the shape of
each individual descriptor bin.

the descriptor is done by computing the angle and distance from each sample point within
the support radius to the surface point for which the descriptor is computed. The bin
corresponding to that relative angle and distance is subsequently incremented, albeit scaled
to the volume of the histogram bin and local point density.

One of the descriptor’s problems is that it is not invariant to rotation. The authors solve
this by duplicating a descriptor with n azimuth subdivisions n times, rotating the descriptor’s
bins one azimuth step at a time. However, a more practical approach is to store the descriptor
once, and perform the required rotations at comparison time. Tombari et al. [62] proposed
the Unique Shape Context which aims to alleviate this problem, which uses a consistent
means to compute a local reference frame to ensure rotation invariance.

2.1.4 Fast Point Feature Histogram

The Fast Point Feature Histogram (FPFH) proposed by Rusu et al. [25] is an extension to
the previously proposed Point Feature Histogram [63] [64].

Constructing an FPFH descriptor for a given surface point p is done by first computing
a Simplified Point Feature (SPF) for each point in the input point cloud. An SPF of a
given point pi is computed by computing three angular properties for each point within a
given radius around pi. The range of each of those angular properties are divided into 11
equally sized bins, and the number of points falling in each of those bins is counted, the

11



CHAPTER 2. BACKGROUND

concatenation of which produces an SPF histogram with 33 bins. The final FPFH descriptor
adds the SPF of p to the average SPF of points in the neighbourhood of p, weighted by their
distance to p.

2.1.5 Other Descriptors

The descriptors discussed up to this point are those most relevant to the work done as part of
this thesis. However, numerous other methods have been proposed to date. Some notable
examples of such descriptors are now briefly discussed.

Flint et al. and Darom et al. attempted to exploit the success of the SIFT descriptor [65]
for 3D data, for keypoint selection and descriptor construction, resulting in the ThrIFT [66]
and LD-SIFT descriptors [54], respectively.

The SHOT descriptor proposed by Salti et al. [67] aims to combine the spatial subdivision
of the 3DSC and USC descriptors with a geometric properties histogram such as 3DSC.
Rather than a weighted sum of points, each spatial subdivision of the support region tallies
points by their normal vector. The descriptor is the concatenation of each histogram for
all subdivision volumes. Prakhya et al. have also proposed a binary version of the SHOT
descriptor [68].

Guo et al. proposed the Rotational Projection Statistics descriptor [44], constructed by
first rotating an object to three specific orientations within a computed reference frame. Next,
for each rotation, points from the object surface are projected on to the xy, xz, and yz planes,
and counted in a 2D histogram. The descriptor is finally computed by computing several
statistical properties over the histograms and concatenating them.

Sun et al. [69] use a shape’s heat dissipation over time as a means to identify similar
points or regions in an object. The authors also show the method can be used for keypoint
detection.

Learning methods such as those proposed by Charles et al. [70] and Zhang et al. [71]
have also gained traction in recent years. However, due to neural network architecture
constraints, regularisation strategies such as low-resolution voxel grids are commonly
required. Combined with their tendency to be computationally expensive [72] means their
practical applicability is currently limited.

2.2 GPU programming with CUDA

GPUs were initially introduced as accelerator cards for offloading specific compute and
memory intensive graphics related operations from the CPU. These operations were fixed in
function and implemented in hardware. The complexity of these operations increased with
time, along with demands from the video games industry for finer control over the rendering
pipeline. This gave rise to the General Purpose GPU (GPGPU) which is commonplace
today.

While the general GPU architecture is largely similar across the primary vendors and
architecture generations (NVidia, AMD, ARM, and Intel), implementations that were part
of this thesis have used the CUDA programming language, which is limited to NVidia
processors. As such this description will focus on that.

A GPU core consists of memory and communication controllers, banks of L2 cache, and
a varying number of processing cores referred to as streaming multiprocessors (SMs) [73].
A visualisation of the most important GPU core components is shown in Figure 2.5.
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Figure 2.5: GPU Architecture.

The GPU design is intended to execute large quantities of threads, each executing the
same procedure, referred to as a kernel. During execution, threads are allocated in groups
referred to as blocks of equal size to SMs. They remain allocated to the SM until every single
thread in the block has finished execution, upon which a new block is assigned to take its
place. A kernel launch on the GPU causes a grid of blocks to be queued, and progressively
divided over the available SMs for execution. Each SM has resources to execute one or more
blocks simultaneously, depending on the complexity and memory requirements of the kernel
being executed.

The architecture of the SM of the current Ampere generation is shown in Figure 2.6.
It contains four similar execution units, with shared execution pipelines for texture and
ray-triangle intersection acceleration instructions, and a shared bank of L1 cache, which
can in part be used as a small amount of temporary storage for blocks referred to as shared
memory.

When a new block is assigned to the SM, the threads within that block are allocated a
set of registers in one of the four register files. The number of registers a thread requires is
determined at compile time and cannot change during execution. More complex kernels will
generally require more registers per thread, which also reduces the total number of threads
which can execute on the SM simultaneously. For performance it is therefore advantageous
to limit thread complexity whenever possible. Blocks are assigned to SM’s until either the
register files or shared memory banks are full. The minimum of these therefore determines
the number of blocks able to execute simultaneously.

Instructions of threads are executed within the functional units of the SM in batches of
32 threads, called warps. At each clock cycle, each of the warp schedulers analyses the
program counters of the threads assigned to their register file. From these, an instruction
is selected to execute, and assigned to an available execution pipeline which can execute
that instruction. Due to memory, synchronisation, or execution unit stalls, there may not
always be instructions which can be executed. The fraction of cycles in which a scheduler
can execute an instruction is referred to as occupancy.

Under ideal conditions, the SM has a sufficient number of threads executing to allow
an instruction to execute every single cycle. In this case, latency hiding can occur, where
the high latencies induced by the memory system are effectively hidden as the occupancy
remains high. This can only be achieved if threads make effective use of memory they
request from main memory and do not invoke excess memory transactions. Regions of
memory which are read from and written to frequently should generally be kept in shared
memory for the duration of the block’s lifespan.
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Figure 2.6: SM Architecture.

2.3 Binary Descriptor Indexing

For the purposes of indexing binary descriptors, modern relational databases are primarily
able to efficiently locate exact matches. However, ranking descriptors by Hamming distance
is not natively supported by any of those1 commonly in use today.

There exist a number of situations in which locating Nearest Hamming neighbours to a
given binary descriptor is desirable. The most noteworthy of these are binary descriptors. A
number of such descriptors aimed at retrieving images and 3D shapes have been proposed.
Examples include the B-SHOT [68], BRIEF [74], ORB [75], and BRISK [76] descriptors.

Another common application is dimensionality reduction through hashing, which aims
to reduce real-valued n-dimensional points to more easily searchable binary values for the
purpose of nearest neighbour search. Hashing strategies proposed to date can be categorised
into Locality Sensitive Hashing, and data-dependent or learned hashing [77]. Applications
of hashing-based search includes image [78] [79] and video retrieval [80] [81].

Locality Sensitive Hashing (LSH), proposed by Har-Peled et al. [82] uses randomised
multidimensional planes to project points into a binary bit string. Applications of the method

1Neither PostgreSQL, MySQL, or Oracle DB allow sorting by Hamming distance
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includes work by Broder et al. [83] [84] and Sadowski et al. [85]. Unfortunately, due to the
random nature of LSH, produced hashes may be inaccurate or inefficient [86]. As a result, a
large number of bins may be created, or entries are unevenly distributed across hash bins. A
number of methods have been proposed, for instance aiming to accelerate retrieval [87] [88],
allow other distance functions to be used [89], or reduce storage requirements [90].

Most current research in dimensionality reduction has shifted from unsupervised (such
as LSH) to supervised hashing, due to the overall more favourable properties of the produced
hashes. Due to its utility in retrieval and machine learning, the field has seen significant
attention [91] [92] [93] [94]. More recent work has also employed deep learning for this
purpose [79] [95] [96] [97].

For optimal precision, LSH benefits from long hash codes [86] (although this comes
at the cost of recall). Additionally, binary descriptors tend to be too volatile to index in a
binary tree, thereby creating the need for an indexing structure capable of locating nearest
neighbours in Hamming space efficiently in potentially long binary descriptors. A number
of methods have been proposed which aim to address it.

Early proposed methods were shown to be efficient, but were limited to retrieve binary
descriptors up to a Hamming distance of 2, short bit strings, or both [98] [99] [100] [101].

More recent methods have all followed a similar paradigm in their overall approach.
Binary descriptors are subdivided into a number of equally sized substrings. Each substring
is subsequently indexed in a corresponding hash table. The initial approaches by Liu et
al. [102] and Norouzi et al. [103] requires testing containment of each hash table for all
permutations of a query descriptor up to a given Hamming distance. Unfortunately, testing
all permutations of a given query rapidly becomes intractable. Subsequent methods have
aimed to accelerate the discovery of neighbouring descriptors within hash tables, by for
instance using inverted lists [104], using a prefix tree (trie) [105], or a k-means inspired
tree [106]. Other variants improving scalability [107] as well as a more generalised version
[108] have also been proposed.

While these methods have addressed the deficiencies of the aforementioned early
solutions, they generally expect neighbours to have low Hamming distances. Their
effectiveness decreases substantially as this distance increases. In these situations,
outperforming a linear search becomes difficult.

2.4 Partial 3D Object Retrieval

The problem of partial object retrieval aims to match portions of surfaces to the complete
object they belong to. This may for example occur in RGB-D images, where parts of objects
are occluded or facing away from the scanner. An example of this is shown in Figure 2.7.
Alternatively, only a portion of one object may be similar to another while the remainder is
not, such as a set of cutlery with matching handles for the spoons, forks, and knives.

Partial retrieval methods proposed to date have often been divided into three categories;
those using Bag of Visual Words (BoVW), View-based, and Part-based methods [109] [52].

BoVW methods use a collection of local descriptors to represent an object surface. When
two arbitrary objects contain a subset of surfaces which are similar, the local descriptors
computed over those surfaces should be similar too. Thus, partial matches can be found by
determining the existence of such a subset. As the volume of descriptors that are generated
may be large, some methods also aggregate descriptors using algorithms such as k-means as
part of the matching process.
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Figure 2.7: Example of a scene containing partial objects, caused by parts of their surface being
invisible to the 3D scanner (scanned using a Kinect sensor by Tombari et al. [45]).

Ohbuchi et al. [110] computed SIFT [65] features from range images captured from a
number of viewpoints. These features are classified using k-means, and aggregated into
a histogram for retrieval. Liu et al. [111] uses a similar approach, clustering Spin Image
descriptors instead. Lavoué et al. [29] project the geometry of surface patches centred
around keypoints onto the eigenvectors of the Laplace-Beltrami operator. Bronstein et al.
[112] proposed the Shape Google algorithm aimed at the retrieval of non-rigid shapes, which
constructs a vocabulary from descriptors computed using heat kernels, and are indexed using
binary hashing. Mohamed et al. [113] extends this by constructing a descriptor based on
both the heat diffusion kernel as well as the local Fourier spectrum of the Laplace-Beltrami
operator. Savelonas et al. [114] use an extension to the FPFH [25] descriptor and Fisher
vectors for both local and global matching. Finally, Dimou et al. [115] extracted features
from segmented depth images.

Another means to simplify the complexity in locating partial matches is by segmenting
objects into smaller parts. Whereas the object as a whole may be missing portions of its
surface, individual parts are less likely to be affected. This design philosophy is partially
similar to that of BoVW methods, however, part-based methods effectively cluster vertices
by their semantic or physical proximity. BoVW methods tend to cluster the produced
descriptors instead. Methods using part-based retrieval includes work by Agathos et al.
[116], who represent which segmented parts are connected together as a graph. This graph is
subsequently used to locate objects with a similar structure. Tierny et al. [117] also encode
relationships between parts, using Reeb graphs instead. Furuya et al. [118] subdivide the
bounding box of objects into randomised cuboid subvolumes, using surfaces contained
within as object parts. A binary hash is computed from each part, allowing efficient retrieval.
Furuya et al. [28] subsequently proposed a learning based method which uses a combination
of SPRH and PFH descriptors [119] computed over segmented parts as input. Several neural
networks subsequently transform these features in a multidimensional feature space in which
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nearest neighbour surface points can be found.
Finally, view-based methods aim to exploit work done in image recognition on three-

dimensional surfaces by rendering objects from different viewpoints, and using the produced
images as input to the matching algorithm. The most popular approach is using the SIFT
descriptor in a variety of ways [120] [121] [122] [123]. Sfikas et al. [124] extracted Dense
SIFT [125] keypoints from the previously proposed PANORAMA [38] descriptor, which
are clustered into a codebook using k-means. Tashiro et al. [126] more recently proposed a
pipeline centred around the SURF [127] local feature descriptor. Aono et al. [123] presented
three variations of the same method, each encoding KAZE features [128] extracted from
object views. These encoding algorithms were the Vector of Locally Aggregated Descriptors
(VLAD) [129], Gaussian of Local Distribution (GOLD) [130], and Fisher Vectors (FV)
[131].
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Chapter 3

Research Contributions
The thesis is presented as a collection of articles. In this chapter, the research work of these
articles is described and contextualised in relation to previous work. The following papers
are part of this collection:

Paper A Quasi Spin Images
Bart Iver van Blokland, Theoharis Theoharis, Anne C. Elster
In Proceedings of the Norsk IKT-konferanse for forskning og utdanning (NIKT),
2018.

Paper B Microshapes: Efficient Querying of 3D Object Collections based on Local
Shape
Bart Iver van Blokland, Theoharis Theoharis
In Proceedings of the Eurographics Workshop on 3D Object Retrieval, The
Eurographics Association, 2018.

Paper C Radial Intersection Count Image: a Clutter Resistant 3D Shape Descriptor
Bart Iver van Blokland, Theoharis Theoharis
In Computers & Graphics, Volume 91, Elsevier, 2020.
Awarded the Graphics Replicability Stamp by the Graphics Replicability Stamp
Initiative (GRSI).

Paper D An Indexing Scheme and Descriptor for 3D Object Retrieval Based on Local
Shape Querying
Bart Iver van Blokland, Theoharis Theoharis
In Computers & Graphics, Volume 92, Elsevier, 2020.
Awarded the Graphics Replicability Stamp by the Graphics Replicability Stamp
Initiative (GRSI).

Paper E Partial 3D Object Retrieval using Local Binary QUICCI Descriptors and
Dissimilarity Tree Indexing
Bart Iver van Blokland, Theoharis Theoharis
In Computers & Graphics, Volume 100, Elsevier, 2021.
Awarded the Graphics Replicability Stamp by the Graphics Replicability Stamp
Initiative (GRSI).
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Figure 3.1: Visualisation of the computation of a simple QUICCI descriptor. The intersection count
circles are shown in the left, while the produced binary descriptor is shown on the right. In the
descriptor, black pixels represent bits set to 0 and white pixels are bits set to 1.

3.1 Contribution Overview

As outlined previously, the work done as part of this thesis can broadly be categorised
into three primary contributions. While these contributions are explained in detail in their
respective papers [132] [133] [134] [135] [136], we provide a brief explanation here.

3.1.1 Primary Contribution 1: The RICI and QUICCI descriptors

Both the RICI and QUICCI descriptor are computed for an oriented point consisting of a
position and a surface normal. Both descriptors share the general means by which they are
constructed, which is shown on the left hand side in Figure 3.1. The Figure shows a stack of
4 layers, each containing 4 circles with increasing radii. Some circles intersect the surface
of a given object, while others do not. The position and orientation of the circles is derived
from the oriented point for which the descriptor is constructed.

The RICI descriptor counts the number of times each circle intersects the surface of the
object, creating a histogram where each bin corresponds to exactly one circle. Meanwhile,
the QUICCI descriptor denotes whether intersection counts between one circle and its
immediate neighbour on the same layer changed. Whether such a change occurs is a boolean
value, which means the QUICCI descriptor is best stored as a binary image.

In a more formal sense, the descriptors are sampling a function F(P,h,r), where P is the
oriented point for which the descriptor is computed, h is the vertical displacement of the
layer of circles relative to P’s position and direction, and r the radius of the circle within
that layer. F(P,h,r) returns the number of times that particular circle intersects the mesh
surface. Sampling this function in regular intervals of h and r for P produces the layered
structure of circles shown in Figure 3.1.

According to our experiments, measuring changes in intersection counts tends to be
more resistant to clutter than comparing absolute intersection counts, as clutter generally
expresses itself on the descriptors as regions or patches of added intersections. In addition to
the descriptors themselves, several other relevant contributions were proposed:

• The Clutterbox experiment for evaluating the effects of clutter on the matching
performance of a descriptor.

• Optimisations for efficiently computing RICI and QUICCI descriptors.
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• Distance functions for ranking RICI and QUICCI descriptors, one optimised for
clutter resistant matching, and the Weighted Hamming distance function for descriptor
relevance.

• A variant of the QUICCI construction algorithm which makes the descriptor more
suitable for partial shape retrieval.

• Publicly available GPU implementations for the Spin Image, Fast Point Feature
Histogram, 3D Shape Context, and the proposed RICI and QUICCI descriptors.

The Weighted Hamming distance function is worth noting in particular. It weights
both bit errors (1 should be 0, 0 should be 1) each by a constant weight. The function is
asymmetric; the pair of weights are based on a needle descriptor, which is being compared
to a possibly matching haystack descriptor. Each type of bit error is weighted by the number
of such errors that can occur. In a sparse descriptor with few bits set to 1, a needle descriptor
bit set to 1 being 0 in the haystack results in significantly more distance than a 0 in the
needle set to 1 in the haystack. A needle descriptor with exactly half of its bits set to 1 would
result in weights effectively equivalent to the original Hamming distance function.

3.1.2 Primary Contribution 2: The Hamming and Dissimilarity Tree

For the purpose of retrieving any binary descriptor (a sequence of one or more bits), two
indexing strategies were developed. Although their envisioned purpose was for retrieving
similar QUICCI descriptors, both indexing structures can be used for any set of binary
descriptors.

The Hamming tree exploits that the number of bits set to 1 in a binary descriptor is
sufficient to compute a minimum Hamming distance to another descriptor. For example, if
two descriptors respectively have 4 and 6 bits set to 1, their Hamming distance must at least
be 2. The tree uses this by grouping descriptors by their bit counts, removing a portion of
bits, and repeating the procedure. The minimum Hamming distance can be used to prune
irrelevant branches while querying the tree.

While the Hamming tree is solely able to use the Hamming distance function, the
Dissimilarity tree is able to retrieve nearest neighbours when using either the regular
Hamming or Weighted Hamming distance functions. Its subdivision of descriptors relies on
the principle that the distribution of bits within a descriptor is not random. At each node,
it subdivides descriptors into two roughly equal sets, one called the similar set, and the
other the dissimilar. The similar set is created by grouping descriptors which all have a
particular set of bits set to the same bit value. The remainder is put into the dissimilar set.
This procedure is repeated for both of the created subsets to create the tree. Equivalently set
bits allow the computation of a minimum distance of a group of indexed descriptors to a
query, allowing branches to be pruned.

The strengths of these indexing structures are complimentary. When it is known that
similar descriptors can be expected to have a low Hamming distance, the Hamming tree is
likely the best choice, while the Dissimilarity tree has been shown to perform well when the
Hamming distance between nearest neighbours is high.
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Figure 3.2: Visualisation of the proposed partial retrieval pipeline.

3.1.3 Primary Contribution 3: A complete partial retrieval pipeline

The final primary contribution of this thesis is a pipeline combining most of the contributions
listed in this Section, a visualisation of which is shown in Figure 3.2. It relies on the QUICCI
descriptor and Dissimilarity tree, and is able to efficiently locate nearest neighbours to partial
query objects in a set of previously indexed complete ones. We show that a simple voting
scheme is sufficient to achieve near perfect retrieval accuracy under ideal conditions, and
good accuracy in a more realistic setting.

One issue of particular note is that partial queries contain surfaces which end abruptly,
where the surface of the complete object would otherwise continue. Such edges normally
cause responses in QUICCI descriptors, which are not desirable for partial object retrieval.
We show that a simple modification to the QUICCI construction algorithm can reduce the
average of 84.2 such unwanted bit responses per descriptor to 4.06 bits.

3.2 Paper Overview

Paper A - Quasi Spin Images

This paper is the first to propose the Radial Intersection Count Image descriptor, referred
to as a Quasi Spin Image in this early paper. The descriptor is explained as a variant of the
Spin Image that can be efficiently computed on the GPU and, in contrast to the Spin Image,
is free of noise. In the evaluation it is shown that it can be generated significantly faster on
the GPU than on a CPU or a GPU reference implementation of the Spin Image descriptor.
Its matching performance is measured by computing the degree to which the similarity of
image pairs correlate to those of Spin Image descriptors.

The paper is in its essence a progress report on the ongoing development of the RICI
descriptor, showing early promising results. However, the descriptor’s applicability and
evaluation are greatly improved in Paper C. Most notably, while the measured correlation of
correlations shows that the RICI and SI descriptors to some extent behave similarly, it does
not measure their respective matching capabilities using an absolute measure.

Paper B - Microshapes: Efficient Querying of 3D Object Collections based
on Local Shape

This paper proposes the Microshape descriptor, a binary descriptor which responds to
decreasing surface intersection counts between pairs of circles laid out in a grid similar
to those used to construct RICI descriptors. A distance function which can be used for
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comparing QUICCI descriptors is also proposed, and applied in the evaluation on the
retrieval of 4 hand drawn local shapes. The queries are executed on a database of objects,
where some matches are visualised, and show that retrieved results do indeed contain the
desired shapes.

In a similar fashion to Paper A, this paper represents (at the time) ongoing work on the
QUICCI descriptor. The difference between the Microshape image and QUICCI descriptor
is that the latter also includes rising intersection counts. The proposed scheme for hand
drawing local shapes which can subsequently be located in a database of objects is unique to
this paper. While the paper’s evaluation only does a qualitative analysis, it may be possible
to expand on this idea in future work.

Paper C - Radial Intersection Count Image: a Clutter Resistant 3D Shape
Descriptor

The Radial Intersection Count Image descriptor is introduced, and an algorithm is given for
generating them efficiently on the GPU. A proposed distance function exploits features of
the RICI descriptor to allow for clutter resistant matching. To evaluate this, an experimental
framework called the Clutterbox experiment is proposed, which allows the quantification of
matching performance degradation of a descriptor caused by increasing levels of clutter.

The experiment is used to show that the RICI descriptor outperforms the Spin Image and
3DSC descriptors in matching tasks, even with increased levels of clutter. RICI descriptors
are also shown to be faster to generate, and when a distance limit is set, much faster
to compare than Spin Image and 3DSC descriptors. Finally, testing done as part of the
evaluation could not confirm the claimed matching performance improvement of the Spin
Image by Johnson et al. [23] when using a Support Angle, as is commonly done in the
literature.

Paper D - An Indexing Scheme and Descriptor for 3D Object Retrieval Based
on Local Shape Querying

The Quick Intersection Count Change Image (QUICCI) descriptor is proposed, a binary
image representing changes in intersection counts between circles. While sharing many
properties with the RICI descriptor, its binary nature implies lower storage and bandwidth
requirements, improving density and significantly increasing matching speed. Moreover, a
slight improvement in matching performance in cluttered scenes was observed.

In order to facilitate efficient retrieval of similar descriptors, the Hamming tree is
proposed as an acceleration structure for indexing and locating nearest neighbours to binary
descriptors. While the structure is tested on QUICCI descriptors in the paper, the tree can be
applied on any binary descriptor. Furthermore, the Weighted Hamming distance function is
proposed, which is shown to rank QUICCI descriptors in an improved manner.

Paper E - Partial 3D Object Retrieval using Local Binary QUICCI Descriptors
and Dissimilarity Tree Indexing

A complete pipeline for partial 3D object retrieval is presented, using the previously proposed
QUICCI descriptor. The pipeline consists of an online and an offline component.

The offline portion consists primarily of an indexing structure called the Dissimilarity
Tree, which allows the efficient retrieval of QUICCI and other binary descriptors. Most
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notably, the tree improves upon the Hamming tree, being capable of efficiently locating
nearest neighbours when using the Weighted Hamming distance function.

The pipeline also utilises a proposed modification to the QUICCI descriptor, which
improves matching performance in partial retrieval tasks. A voting scheme subsequently
allows good retrieval accuracy in reasonably short execution times.

3.3 Technical Contributions

In addition to the aforementioned papers, the research carried out resulted in several libraries
and frameworks that allow the main contributions to be adapted and integrated into other
projects. All of these have been made freely available to the community under an open
source license.

libShapeDescriptor
A library containing GPU implementations for generating and comparing the RICI,
QUICCI, SI, 3DSC, and FPFH descriptors efficiently on the GPU. After its initial
implementation, it has been extensively refactored to improve its ease of use. A variety
of useful utilities such as fast loaders for common 3D object file formats 1, reading and
writing descriptors to disk in compressed files, and functions for visualising applicable
descriptors in image files are also included.

Repository URL: https://github.com/bartvbl/libShapeDescriptor

Clutterbox Experiment
A framework which contains an implementation of, and allows arbitrary shape
recognition methods to be tested using, the proposed Clutterbox Experiment in Paper
C for quantifying clutter resistance. Support for additional methods can be added by
implementing two functions.

Repository URL: https://github.com/bartvbl/Clutterbox

Hamming Tree
A reference implementation of the Hamming Tree indexing structure proposed in
Paper D.

Repository URL: https://github.com/bartvbl/Hamming-Tree

Dissimilarity Tree
A reference implementation of the Dissilimarlity Tree indexing structure proposed in
Paper E.

Repository URL:
https://github.com/bartvbl/Dissimilarity-Tree-Reproduction

1For example, loading an ascii PLY file of over 1GB in size took only a few seconds.
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Also noteworthy are the repositories produced as part of the applications for the Graphics
Replicability Stamp Initiative (GRSI). These allow all results of Papers C, D, and E to be
replicated identically, with only a few exceptions (such as execution times). Each repository
contains a script capable of automatically downloading datasets, compiling source code,
and invoking any commands necessary to replicate the results shown in each figure of its
respective paper.

Paper C Results https://github.com/bartvbl/Radial-Intersection-Count-
Image-reproduction

Paper D Results https://github.com/bartvbl/Quick-Intersection-Count-
Change-Image-Reproduction

Paper E Results https://github.com/bartvbl/Dissimilarity-Tree-
Reproduction

25

https://github.com/bartvbl/Radial-Intersection-Count-Image-reproduction
https://github.com/bartvbl/Radial-Intersection-Count-Image-reproduction
https://github.com/bartvbl/Quick-Intersection-Count-Change-Image-Reproduction
https://github.com/bartvbl/Quick-Intersection-Count-Change-Image-Reproduction
https://github.com/bartvbl/Dissimilarity-Tree-Reproduction
https://github.com/bartvbl/Dissimilarity-Tree-Reproduction




Chapter 4

Discussion
In this chapter, we address several topics of interest. The most important of which pertains
to how shape descriptors tend to be evaluated, which is discussed in Section 4.1. We
subsequently speculate on what may be the cause of clutter resistance (or the lack thereof)
in various descriptors tested as part of this Thesis in Section 4.2. Section 4.3 analysis the
contributions of the RICI and QUICCI descriptors in light of previous work. Some lessons
which have been learned about indexing binary descriptors are discussed in Section 4.4,
and finally various aspects related to the GPU implementations of several descriptors are
documented in Section 4.5.

4.1 Evaluating Matching Performance of Local Shape
Descriptors

The primary aim of a local shape descriptor is to describe surfaces present in its vicinity,
simplifying the process of determining the degree of similarity to other surfaces. When
a new descriptor is proposed, its ability to do so must be evaluated. Unfortunately, the
evaluations of most papers show a high variation in the matching performance of different
algorithms. This suggests that there exist underlying issues with these evaluation strategies,
rendering them unable to thoroughly evaluate the quality of a descriptor. While this problem
is not easily solved, we can speculate on its causes, and potential avenues by which it may
be addressed in the future.

There are a number of factors which can influence the quality of descriptor evaluations:
the used dataset (Section 4.1.1), the parameters for generating and comparing descriptors
(Section 4.1.2), and the means by which matching performance is measured (Section 4.1.3).

4.1.1 Datasets

The current means by which new descriptors are generally evaluated is by testing their
matching capabilities on various benchmark datasets. A wide variety of such datasets has
been proposed to date, inlcuding work by Tombari et al. [45] [62], Mian et al. [137], and
Koforenko et al. [138]. Additionally, the annual 3D SHape REtrieval Challenge (SHREC)
[139] consists of multiple tracks, each targeting a 3D retrieval task [140] [30] [141]. The
datasets made available as part of these tracks have also been subsequently used in papers
for evaluation purposes [49] [114]. An overview over the most commonly used datasets for
descriptor evaluation, as well as some SHREC track datasets used for evaluations in this
thesis, is shown in Table 4.1.

These datasets tend to consist of a set of needle objects, one or more of which must be
found in a number of haystack objects. The haystack objects are usually scans of the needle
objects in various arrangements and poses. The sets can be classified according to several
properties:
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Noise Indicates the degree to which the captured 3D surfaces deviate
from the ground truth. Such noise may be induced by the
scanner(s) used to capture the objects, or added artificially.

Occlusion Occurs when a particular portion of the object remains invisible
to the scanner, causing portions of the reconstructed surface to
be missing.

Clutter The amount of geometry present in the haystack object which is
not part of a given needle object, which may affect the ability of
a descriptor to correctly match corresponding surface points.

Needle Object Count The number of needle objects contained in the dataset.

haystack Object Count The number of haystack objects contained in the dataset.

There are several noteworthy observations which can be made from the listed datasets.
First, the number of needle objects is low for the commonly used (first 7) sets. It is not
unlikely that this is a major contributor to the volatility in results. Figure 9.8 in Paper D shows
that despite no clutter objects having been added, all tested descriptors have widely varying
nearest neighbour recognition rates. For example, the Spin Image has experiments where
both close to none and nearly all nearest neighbours were correctly identified. Additionally,
over a total of 1500 experiments, the difference in matching performance between some of
the curves is not large. Authors which therefore test their method on datasets containing few
needle and haystack objects likely renders, according to our findings, their evidence more
anecdotal than substantial [60] [25] [66].

The low number of needle (and to some extent haystack) objects in these datasets also
causes the variation in shapes encountered by the evaluated algorithm to be low. This also
somewhat applies to the larger datasets listed, where objects are subdivided into classes of
similar shapes. While necessary for object classification, none of the datasets in Table 4.1
can be considered representative for the wide variety of shapes which can be encountered in
a human environment. It is also worth noting that none of the datasets contain scans without
any of the needle objects, or contain objects which are not part of any of the primary object
classes, which would aid in testing for false positives.

The quality of the meshes contained in the datasets can also vary. A notable example
encountered as part this thesis was the SHREC’17 ShapeNet Core dataset. Depending on
the object, individual faces had been flipped, normal vectors were incorrect, or missing
from the source file entirely. Some object files also did not adhere to the file specification.
These issues were partially solved, for example by recomputing normals when loading the
objects; however, depending on the decisions of other authors, not all results may be exactly
comparable to other works.

Finally, while several datasets have perturbed vertex positions in the normal direction in
an effort to apply various levels of noise, it may not be representative to all noise which may
be encountered in practical settings. For example, when a 3D scanner captures the same
surface multiple times, the precise vertex positions chosen may differ between successive
scans. Since vertices tend to be used as reference points when matching surfaces, even
good quality scans may contain noise from the perspective of the used descriptor. To our
knowledge, no current dataset includes noise caused by such retriangulated surfaces.
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CHAPTER 4. DISCUSSION

4.1.2 Parameters

The parameters and overall design of the evaluation methodology also affect the measured
matching performance of a descriptor. For example, relevant parameters for Spin-Image like
descriptors include the image resolution, the support radius, and the distance function used
for comparisons.

Unfortunately, to date no meta-analysis has been done on the selection of such
parameters. This complicates the comparison of descriptors, as it is unclear whether the
tested configuration yields optimal performance. In some recent work, authors have opted
to select the optimal support radius of each method empirically using a portion of a given
dataset [146] [147] [148], however, these investigations remain uncommon. The default
parameters proposed by the original authors tend to be used instead. The optimal parameters
may also vary between scenes, objects, or even individual points.

The need for an aforementioned meta-analysis is also illustrated by our evaluation of
the Spin Image’s support angle parameter in Paper C. The performed experiments could not
confirm the claimed benefits by the original authors, yet the filtering step is commonly used
in evaluations in literature.

In addition to optimal parameter selection, chosen parameters must also maintain fairness
between methods being evaluated. Parameters such as the support radius may capture
different surfaces across descriptors due to variations in the support volume shapes across
descriptors (cylindrical, spherical, or otherwise). As a result some descriptors may receive
different quantities of information about the surface, or are required to resist a different level
of clutter.

One particular case where fairness was relevant for this thesis was in the testing of Papers
C and D. While the RICI and QUICCI descriptors are computed from triangle meshes, the
Spin Image, 3D Shape Context, and Fast Point Feature Histogram use a point cloud as input.
Johnson et al. [23] solved this problem by using the mesh vertices as input points. However,
in our experience that is commonly insufficient to adequately describe shape, and does not
tend to produce uniformly distributed point clouds. For replicability and simplicity, we
settled on a uniform sampling using an average number of point samples per triangle in our
evaluation, but the ideal number of sample points may vary from object to object.

4.1.3 Measuring Matching Performance

As discussed in Section 2.1, local shape descriptors can have a number of properties which
are generally considered to be beneficial. Some of these, such as invariance to mesh
resolution, invariance to rotation, and memory requirements can for most descriptors be
shown analytically. However, their ability to be discriminating, robust, and resistant to
clutter and occlusion must be evaluated empirically.

The latter of these properties have to date been evaluated by the use of specific datasets
which are known to include clutter, partial geometry, noise, or a combination of those.
However, and as stated in Paper C as the motivation for the proposed Clutterbox experiment,
this evaluation methodology tests the combined effects of two or more independent variables.
It is thus difficult to deduce, based on the achieved matching performance, what part can
for example be attributed to the descriptor’s resistance to clutter and what to its innate
descriptiveness.

Another potential issue is that the ability of a descriptor to correctly match points can
vary on a point by point basis. When point matches are aggregated as average precision,
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4.1. EVALUATING MATCHING PERFORMANCE OF LOCAL SHAPE DESCRIPTORS

much of the nuance regarding the situations in which the descriptor excels or experiences
difficulties is lost. Understanding these would be highly beneficial to determining which
descriptors may be suitable for a given practical application. An improved benchmark should
therefore analyse matching performance based on the conditions present within the region
around an individual point, not the entire scene.

Furthermore, a scene may contain portions of surfaces which are similar in shape to a
part of a given needle object, yet do not belong to the needle object itself. For example,
even though a descriptor is able to correctly deduce that the cylindrical handlebars of a
bike are similar in shape to the supports of a metal fence, they are semantically unrelated.
Despite the descriptor performing its intended purpose, self-similarity within a scene in this
manner complicates tasks such as object recognition, known as the sliding problem [149].
As one of the commonly used metrics for evaluating the quality of a descriptor is its ability
to correctly identify points belonging to particular ’correct’ objects in a scene, the sliding
problem can result in cases where the tested descriptor is penalised for correctly identifying
a matching surface. Measuring the degree to which the sliding problem affects matching
performance is complicated by the need for a ground truth which determines similar points
within a scene. Such correspondences are not easily established manually. It is likely that
the sliding problem has affected the results presented in Papers C and D, as was noted in the
discussion section of Paper C.

One final source of uncertainty when measuring the matching performance of a descriptor
are salient or keypoint detectors. These are commonly used to reduce the number of
descriptors being generated for a specific object, and aim to locate distinctive points which
may be consistently found by that detector on similar surfaces. Tombari et al. [45] showed
that keypoint detectors can significantly influence the average matching accuracy of a tested
descriptor. This implies the portability of results is further reduced if two evaluations use
different salient point detectors, especially since different detectors select different keypoints
and may produce a varying quantity of them.

4.1.4 Conclusion

As we have discussed, there exist a number of factors which may influence the matching
performance of a given descriptor. There is in addition no set standard for how shape
descriptors ought to be evaluated to ensure fairness and accuracy. The resulting landscape
causes it to be difficult to determine the strengths and weaknesses of a proposed descriptor
based on current evaluation strategies employed.

We therefore consider it a necessity a standardised testing methodology is developed,
which is capable of evaluating new descriptors in a more nuanced and quantitatively
significant manner. Additionally, a meta-analysis of descriptor parameters should be
performed to better understand their effects on performance, and what guidelines should be
used for their evaluation in the future.

One reason for the lack of quantitative data in evaluations done thus far may be attributed
to the popularity of Point Cloud Library (PCL) [22], which predominantly provides single-
threaded, CPU-based implementations of a number of descriptors. The libShapeDescriptor
library developed as part of this thesis could aid in this respect, as methods have been
implemented on the GPU. Paper A showed that this for Spin Images led to much faster
execution times.
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4.2 Causes of Clutter Sensitivity

In Papers C and D, several of the descriptors mentioned in Section 2.1 were by our testing
shown to perform worse in cluttered scenes. In this section, we speculate based on experience
and gathered data over the course of the thesis about the possible causes to this, and whether
using an alternate distance function may be able to remedy this in a similar fashion to the
proposed RICI and QUICCI descriptors.

The effect of clutter on the spin image works in an additive fashion. As each pixel in the
image measures the quantity of surface points projected on to them, clutter will manifest as
additional points on top of those belonging to the object of interest. Depending on the extent
and distribution of clutter in the support volume, regions of pixels in the image may remain
unaffected by its effects. Unfortunately, since the noise applied by clutter is additive and
unpredictable in magnitude, it is not possible to remove it from the descriptor posthumously
or otherwise negate its impact.

When using default settings, the Fast Point Feature Histogram consists of 33 bins. As the
descriptor is computed by summing various angular properties within the support volume
around a point, adding clutter into this volume will become additive noise in the computed
histogram bins. The effect on matching performance should thus be similar as to that
experienced by the spin image. However, due to the compact size of the FPFH descriptor,
a comparatively large portion of the descriptor can be expected to be affected. While the
experiments performed by Guo et al. [51] are quantitatively limited, they do classify the
descriptor as being sensitive to clutter, in agreement with our own findings.

The 3DSC descriptor, as with the Spin Image and FPFH descriptors, experiences clutter
mostly as additive noise, albeit somewhat negated by the local point density normalisation
factor. However, the descriptor’s spatial subdivision of its support region may allow an
alternate distance function to disregard histogram bins affected by clutter, when compared
to a descriptor known to be clutter free. On the other hand, its poor best-case matching
performance suggests it is likely not a worthwhile endeavour.

While the descriptor has not been evaluated in our experiments, an alternate distance
function for the Spin Contour may be to a certain extent able to counteract the effects of
clutter, given that portions of the original contour remain unaffected by clutter.

As discussed in Papers C and D, the variations in intersection counts utilised by the
RICI and QUICCI descriptors remain mostly intact by the effects of clutter, allowing the
descriptors (when using specific distance functions) to be largely unaffected by its effects.

4.3 Novelty of the RICI and QUICCI descriptors

Both descriptors rely on a grid of circles measuring intersection counts with the surface
of an object, as illustrated in Figure 3.1. To our knowledge, they are the first descriptors
utilising variations in circle-surface intersection counts for matching purposes.

The resulting descriptors can be thought of to capture surface contours present within
the support volume. Contour based retrieval is in itself not a novel concept [150], however,
previous methods have relied on object silhouettes [47] [61] [151] [152] [153] or slices
[154] [155]. The locality of the computed surface contours in the descriptors means surface
details within an object can be captured in a format which is intuitive for humans, which
silhouette approaches cannot do. An important downside of slice-based methods is that slice
orientations and positions must be chosen in advance. Instead, the proposed descriptors can
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capture approximations of such slices in a rotation-invariant fashion.
Additionally, while we have not evaluated this quantitatively, anecdotal evidence in

Figures 7.9, 7.10, 7.11, and 7.12 suggests it may also be possible to retrieve desirable surface
contours by constructing their descriptors manually.

The Spin Contour developed by Liang et al. [60] [61] is worth mentioning in particular,
which happens to share some properties of the RICI and QUICCI descriptors proposed by
us. However, despite its similarities, the method primarily captures transformed outlines
of objects and must be computed with a comparatively large support radius and image
resolution to ensure all relevant outlines are captured. This causes it to behave more as a
global rather than local descriptor.

With respect to the proposed Clutterbox evaluation, the idea of placing randomly oriented
objects near an object of interest is not a unique idea [62]. However, its application for
measuring clutter resistance is to our knowledge novel.

4.4 Indexing Binary Descriptors

This section discusses the most important problems encountered during the development of
the Hamming and Dissimilarity trees for indexing binary descriptors and their effects on
the proposed solutions. These problems are related to the branching factor of the indexing
tree, and the query algorithm’s ability to prune irrelevant branches. As a result of these, a
significant number of potential indexing strategies were discarded as they would result in
infeasible memory and/or execution times.

4.4.1 Tree Branching Factor

The branching factor at each indexing tree node has implications on its memory requirements
and the execution time of querying the tree. When the branching factor is low or an upper
bound is known, pointers to child nodes can be stored compactly inside a fixed size array.
When either the branching factor is high, or its upper bound is large or cannot be statically
determined, or both, then a sparse container such as a hashmap or dynamically expanding
array must be used instead. While these grant flexibility, they also cause CPU cache misses
due to the fragmentation of information relevant for querying; in particular hashmaps tend
to have much higher memory footprints than arrays.

One example of an indexing strategy that was found to be infeasible for these reasons is
a scheme which clusters descriptors by their similar counterparts at lower resolutions. For
each indexed descriptor, a pyramid of smaller descriptors is computed, each level converting
the level below it into an image at a quarter of the resolution by representing each 2x2 bit
region as a single bit using the OR operator9. For example, if a leaf node contains a 32x32
bit descriptor, its parent node would be a parent to all descriptors having the same 16x16
bit simplified version. While the branching factor of 2x2 or 4x4 descriptors is sufficiently
low that a static array can be allocated containing all permutations, each subsequently taken
branch quadruples the number of bits, soon making the size of the required array too large.

Another effect of the high branching factor is that it causes the produced tree structure
to be very shallow. This is a problem because it severely limits the speed of retrieval by
complicating the discovery of potential neighbours, and a large number of branches must be

9In a similar fashion, the scheme where levels in the pyramid are computed by representing 1x2 and 2x1 bit
regions in an alternating manner has similar problems.
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considered at each node. When the branching factor is high, each branch in turn disqualifies
a comparatively low number of descriptors. Moreover, due to the nature of the OR operator,
many descriptors tend to have simplified versions mostly consisting of bits set to 1, causing
a small number of nodes to have most of the branches that need to be considered when
searching for neighbours (and thus an unbalanced tree).

Both the Hamming and Dissimilarity trees solve this problem by having a limited
branching factor. The top layer of the Hamming tree has a number of branches at most
equal to the length of the descriptor in bits, and, at each successive layer, the number of bits
removed from the descriptor at that layer. The Dissimilarity tree is a binary tree, and as such
always has a branching factor of 2.

4.4.2 Branch Pruning

Apart from the branching factor, another issue that affects query execution time is the ability
of an index and its associated querying algorithm to prune irrelevant branches (sets of
descriptors). Unfortunately, the QUICCI descriptor inherently complicates this, particularly
when the Weighted Hamming distance function is used.

While similar surfaces tend to produce similar QUICCI descriptors, there may in addition
be other surfaces present within the support volume of the descriptor. These surfaces cause
bits to be set to 1 in parts of the descriptor other than the region of interest. Locating nearest
neighbours is therefore a process of determining the largest common subset of equivalently
set bits. As the Weighted Hamming distance function depends on the query descriptor, no
clear criterion exists by which descriptors may be clustered, making the construction of an
appropriate index tree hard. An inappropriate tree means that more branches need to be
visited before it can be established that all neighbours in the database have been retrieved,
thus slowing query execution.

The Dissimilarity tree addresses this problem by attempting to cluster descriptors by
regions of equivalently set bits, thus allowing hard guarantees about the minimum Weighted
Hamming of all descriptors in a branch to the query descriptor.

4.5 GPU implementation of descriptors

This section discusses some lessons and observations that were learned about implementing
descriptors as GPU kernels, which may assist in the development and porting of future
methods. A total of five methods have been implemented as part of this thesis; the RICI,
QUICCI, Spin Image, 3DSC, and FPFH. Some GPU specific terminology will be used
throughout this discussion, which is explained in Section 2.2.

Using the GPU for generating and comparing descriptors was primarily motivated by
these tasks being independent and requiring high memory throughput. The GPU is ideal for
such workloads. Additionally, as indicated in Section 4.1, descriptor evaluations done to date
have commonly not tested on a significant number of needle objects, haystack objects, or both.
Executing the proposed clutterbox experiment 1500 times during our own evaluation for
each tested descriptor would be intractable when using the CPU implementations available
in Point Cloud Library (PCL) [22].

Unfortunately, as indicated in Section 2.1, the GPU has to date not been utilised
in the evaluation of descriptors. To our knowledge, the only publicly available GPU
implementations of several descriptors were in PCL. However, our own testing showed that

34
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(at least at the time) these implementations may not have been entirely correct. This led to
the implementation of several well known descriptors and the libShapeDescriptor library.

Storing the descriptor being computed in the SM’s shared memory banks was found
to be beneficial for all implemented methods. This approach requires one descriptor to
be computed per thread block for optimal performance. It is also worth noting that the
block sizes should be tuned, as larger descriptors reduce the number of thread blocks able to
execute on the SM simultaneously.

One potential avenue to improve the rate at which most tested descriptors can be
generated and compared is storing their histogram bins at lower precision. For the spin
image, FPFH, and 3DSC this would imply using half precision 16-bit floats, while for the
RICI descriptor 8 or 16-bit bins could be sufficient. The QUICCI descriptor is already at the
lower limit of its precision. As the comparison of descriptors is mostly a memory bound
operation, such a reduction will likely result in a significant speedup. This comes at the cost
of a potential loss in matching performance, although its impact is not necessarily significant.
One issue complicating using lower precision integers for RICI and QUICCI generation is
the lack of support on current Nvidia GPU’s for atomic integer additions smaller than 32-bit.
This can be counteracted by performing the necessary additions using bit masks10, but adds
complexity to the kernel. Similarly, atomic half precision additions are only supported on
recent GPU’s.

10For instance, adding the bit mask 0x00010001 to an unsigned int is effectively equivalent to adding 1 to
two neighbouring unsigned shorts.
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Chapter 5

Concluding Remarks

5.1 Conclusion

The work done in this thesis shows that variations in shape intersection counts can be
encoded in compact, fast and effective descriptors, which we have shown can be successfully
applied to clutter resistant recognition and partial retrieval. A new distance function, called
Weighted Hamming, has been proposed which is capable of retrieving more relevant QUICCI
descriptors than the original Hamming distance.

Taking the QUICCI descriptor as an example, if one were to select 50 representative
keypoints for a given object, using 32x32 bit descriptors allows storing over 5 million objects
in the memory banks of the Nvidia Tesla V100 GPU. Our measurements show that a linear
search should allow these to be searched within a second using that processor. Moreover,
when using the default dimensionality settings of popular previously proposed descriptors,
the QUICCI descriptor is simultaneously among the most compact (see Table 5.1) and the
most descriptive.

Unfortunately, current keypoint detectors are not robust enough and therefore one often
saves a local descriptor for every object vertex. Having many descriptors requires indexing
and the proposed Hamming and Dissimilarity trees are able to accelerate retrieval of QUICCI
and other binary descriptors, as shown by the experiments performed.

A number of these contributions are as part of this thesis made available to the research
community. This includes efficient implementations and utilities for the generation and
comparison of a number of the descriptors on the GPU, an evaluation framework for
measuring the resistance to clutter called the Clutterbox experiment, and making all
publications open access.

5.2 Future Work

There exist avenues for further investigation and improvements to the methods presented in
this thesis, which are listed below.

5.2.1 RICI and QUICCI descriptors

As suggested in Paper B (see Chapter 7), while it is possible to compute Microshape or
QUICCI descriptors over existing geometry, desirable local surface contours can also be
drawn manually. The paper does not formally evaluate this idea, but it does show that the
approach has potential. One possible application may be sketch-based retrieval.

Likewise, Figure 7.8 in Paper B (see Chapter 7) shows a hand drawn descriptor detecting
objects with repeating elements. It would be interesting to determine whether such repeating
elements or self-symmetries can be inferred automatically from the descriptors themselves.
Particularly Figure 7.8d from Paper B shows that such patterns can be detected by the
descriptor in the presence of complex geometry. Previous work attempting this has in part
utilised voxels [156] [157] for this purpose, which does not always yield consistent results.
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Descriptor Default Size (bytes)
3D Shape Context 7,920
Universal Shape Context 7,920
TriSI 2,700
Local Surface Patches 2,312
SHOT 1,408
Spin Image 900
Rotational Projection Statistics 540
Point Feature Histogram 500
Fast Point Feature Histogram 132
THRIFT 128
RICI (64x64) 4,096
RICI (32x32) 1,024
QUICCI (64x64) 512
QUICCI (32x32) 128

Table 5.1: An overview over space requirements of different well-known descriptors, each
using the default settings proposed by their respective authors, compared to the descriptors
proposed as part of the work in this thesis. Where applicable, 32-bit floating point numbers
are used. Additionally, for the RICI descriptor, one byte per pixel is used, which is sufficient
precision for most use cases.

The QUICCI descriptor is constructed by locating changes in intersection counts between
circles and the object surface. In this thesis, these changes are observed between adjacent
circles on the same layer (see Figure 3.1). From the perspective of the descriptor, this
implies a change in intersection counts between horizontally neighbouring pixels. However,
vertical intersection count changes have not yet been investigated in detail, and may improve
matching performance when combined with the horizontal ones.

In a similar fashion, instead of computing a single QUICCI descriptor, a pair of
descriptors can be computed, each indicating where positive or negative intersection count
changes occurred. This can allow more precise query specification. For instance, when
retrieving the handle of a mug, the inner edge of the handle will induce an increase in
intersection counts, while the outer a reduction. The ability to specify which type of change
is desired thus improves querying precision.

Dinh et al. [55] proposed multi-resolution Spin Images which either accelerate descriptor
matching, or to some extent allow surfaces to be compared in a scale invariant manner. Given
the shared properties of the proposed QUICCI and RICI descriptors with the original Spin
Image, it may be possible to apply some of the ideas for similar purposes on the proposed
descriptors.

As shown in Paper E, the QUICCI descriptor combined with the Weighted Hamming
distance function may be sensitive to perturbations of vertices. While lower resolution
descriptors still resulted in good retrieval performance, an alternate distance function which
is better able to account for displacements of intersection count changes within the descriptor
may be able to improve its matching capabilities.
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5.3. OUTLOOK

5.2.2 Evaluating Descriptors

As discussed in Section 4.1, there is currently a need for improved evaluation procedures for
new and previously proposed descriptors.

While, as part of this thesis, several popular descriptors were implemented on the
GPU, there exist many others for which to date either only a publicly available CPU
implementation exists, or the source code has not been made available at all. Implementing
additional descriptors on the GPU would allow a deeper insight into which methods are
most suitable for that style of processor. Additionally, existing implementations should be
ported to support non-Nvidia GPU’s for improved accessibility of the implementations to
the research community.

As discussed in Section 4.1, it is currently insufficiently understood in which situations a
descriptor performs best. This requires a more thorough, as well as quantitatively significant,
benchmark framework to be constructed. Moreover, a meta-analysis of descriptor parameters
should be performed, such that their optimal values can be selected. Optimal parameters
may also be partially dependent on the mesh surface being captured by the descriptor, which
too may prove an interesting avenue of investigation.

With respect to the evaluation of the RICI and QUICCI descriptors, their effectiveness
has to date solely been tested on the SHREC’16 [123] and SHREC’17 [158] datasets while
evaluating partial retrieval and clutter resistant matching performance, respectively. The
descriptors should also be tested on datasets aimed at other matching tasks, as for example
face recognition, mesh registration, and symmetry detection.

5.2.3 Indexing Binary Descriptors

The proposed Hamming tree removes a constant number of bits from descriptors for each
layer, and categorises the remainder by the number of bits set to 1. It may be possible to
improve retrieval execution times by varying the number of bits removed per layer depending
on the binary descriptors being indexed.

For retrieval in large scale object datasets (such as 100,000 objects or more), indexing
descriptors generated for every vertex of every object is not realistic. Therefore, an evaluation
should be done of different keypoint detectors to determine which best improves retrieval
performance for RICI and QUICCI descriptors, with respect to the exhaustive case.

5.3 Outlook

A wide adoption of 3D scanning equipment among consumers may allow 3D data to take
a more prominent position among media such as images, video, and audio. However, for
practical applications, efficiency will be a key metric, particularly on mobile hardware.
Utilising graphics processors for this purpose, at least according to our testing, appears to be
the logical next step towards this goal.

The size of descriptors ought to receive special attention here, as the reduced storage
and bandwidth requirements is a significant factor in achieving efficient implementations on
modern processors, in turn allowing their application on larger databases more effectively.
Such databases will also benefit from descriptors which are sufficiently distinctive to allow
efficient retrieval. The work discussed in this thesis may assist in this effort.
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CHAPTER 6. PAPER A - QUASI SPIN IMAGES

Quasi Spin Images

Bart Iver van Blokland1, Theoharis Theoharis1, Anne C. Elster1

1) Norwegian University of Science and Technology, Norway

Abstract

The increasing adoption of 3D capturing equipment, now also found in mobile
devices, means that 3D content is increasingly prevalent. Common operations
on such data, including 3D object recognition and retrieval, are based on the
measurement of similarity between 3D objects. A common way to measure
object similarity is through local shape descriptors, which aim to do part-to-part
matching by describing portions of an object’s shape. The Spin Image is one of
the local descriptors most suitable for use in scenes with high degrees of clutter
and occlusion but its practical use has been hampered by high computational
demands. The rise in processing power of the GPU represents an opportunity to
significantly improve the generation and comparison performance of descriptors,
such as the Spin Image, thereby increasing the practical applicability of methods
making use of it. In this paper we introduce a GPU-based Quasi Spin Image (QSI)
algorithm, a variation of the original Spin Image, and show that a speedup of an
order of magnitude relative to a reference CPU implementation can be achieved
in terms of the image generation rate. In addition, the QSI is noise free, can
be computed consistently, and a preliminary evaluation shows it correlates well
relative to the original Spin Image.

6.1 Introduction

Local shape descriptors are essential for measuring the similarity of 3D objects, and are at
the heart of operations such as 3D object retrieval and recognition. These operations are
essential as 3D object collections grow in size. A classic descriptor, the spin image (SI),
is advantageous for many object classes in terms of accuracy and has thus been employed
in many applications. In fact the SI has been considered to be the de facto benchmark for
the evaluation of local surface features [14] [33], and has been listed among the descriptors
most robust to clutter, varying mesh resolution, and clutter [13]. Unfortunately, the SI is
hampered by high computational demands, thus restricting its applicability.

Graphics Processing Units (GPUs) have in recent years seen increased use in many
applications, and have shifted from processors aimed primarily at accelerating rendering
procedures to extremely high-throughput co-processors (also referred to as General Purpose
GPUs, or GPGPUs). The highly parallel and throughput oriented architecture of GPUs has
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allowed for a number of techniques to be significantly accelerated, increasing their utility.
For instance, deep learning has seen performance increases by a factor of 50 or more [20].
The fields of game physics, computational biophysics [15] and medical image processing
[17] [21] are also good examples.

Effective utilisation of GPU compute resources in part requires designing an algorithm
with the hardware in mind. For instance, groups of threads should ensure their memory
requests exhibit high spatial locality to minimise wasted memory bandwidth, as well as
minimise thread divergence.

One observation which can be made regarding local shape descriptors is that their
implementations are consistently written for the CPU. Moreover, descriptors produced by
local descriptor generation algorithms are generally independent of one another, and have
similar or identical generation processes [13] [10]. The characteristics of their computation
are well aligned with the workloads GPUs have been designed for, i.e. similar operations
over many data items that require high throughput.

Meanwhile, previous work within the fields of symmetry detection and 3D object
retrieval has primarily focused on improving the accuracy of local shape descriptors for 3D
object similarity evaluation.

This paper shows the potential of utilising the GPU for generating local mesh descriptors.
We use the spin image as an example to show that designing local shape descriptors with the
GPU in mind can greatly benefit execution times. This in turn allows for greater practical
use of these methods. To this end, we propose the Quasi Spin Image (QSI) descriptor, a
descriptor similar to the SI, which has the following advantages:

• The QSI exhibits properties favourable for execution on the GPU.

• The QSI is noise-free.

• The QSI consistently produces the same image, given the same input model and
parameters.

The contributions of this paper include:

• The novel QSI local shape descriptor.

• A GPU implementation of the QSI with good memory, memory bandwidth, and
performance characteristics.

• A GPU implementation of the original SI descriptor, along with a detailed execution
performance evaluation against the QSI on a recent benchmark.

The remainder of this paper is organised as follows: In Section 6.2 we outline the original
spin image descriptor and some other related work. In Section 6.3 we introduce the novel
Quasi Spin Image descriptor. We finally evaluate the proposed method in Section 6.4.

6.2 Background

The spin image is a local histogram descriptor initially proposed by Johnson et al. [18].
It is either created from a point cloud or from a uniformly sampled triangle mesh. Its
generation conceptually involves rotating a square plane around a given vertex (referred
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to as the spin vertex) directed along a given normal vector (referred to as the spin normal)
for one revolution. The plane is divided into an equal number of bins along the horizontal
and vertical axes, and its physical size is referred to as the support radius. When rotated,
each bin forms a torus-like volume as shown in Figure 6.1. The spin image is conceptually
constructed by measuring the total area of the input mesh intersecting each of these torus-like
volumes. The spin vertex and spin normal combined define a line, referred to as the central
axis.

In order to generate a single image, five parameters must be given: the spin vertex (which
usually lies on the surface of the sample model), the spin normal (usually the surface normal
at the location of the spin vertex), the image width in bins (pixels), the support radius Sr,
and the support angle.

S
v

S
n

Figure 6.1: Spin image computation: the volume captured by rotating a spin image bin around the
central axis. Sv and Sn are the spin vertex and the spin normal respectively. The dashed line represents
the central axis.

Accurately calculating the area of a mesh intersecting the aforementioned torus-like
volume (shown in Figure 6.1) for each spin image bin is complex, and thus time consuming.
The authors of the original paper instead opted for using uniformly distributed surface point
samples. The idea is that a linear increase in the area intersecting the torus-like volume
implies a linear increase in the number of point samples intersecting it, thus approximating
the computation of area. This approximation can however cause a reduction in matching
performance, as shown by Carmichael et al. [2].

While the spin image descriptor has been shown to perform well in scenes with
significant quantities of clutter [13] [10] [18], and has been used successfully in a number of
applications [5] [2] [16] [3], several alternate forms have been proposed to address some of
its shortcomings or improve its matching performance.

Effective matching of spin images requires setting a support radius parameter [18].
Additionally, comparing spin image pairs requires computing the Pearson correlation
coefficient, which can be computationally costly. Dinh et al. [7] addressed these issues by
proposing a multiscale spin image. Their method generates downsampled spin images for
faster matching or matching at different support radii, albeit not simultaneously.

Another method attempting to simplify the image comparison process, is the spin image
signature method proposed by Assfalg et al. [1]. This method computes a signature from
each spin image, thereby significantly reducing the computation time necessary to compare
two images. However, the spin image generation time was not addressed.
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Finally, Davis et al. and Gerlach et al. showed significant speedups can be achieved
when using the GPU for comparing spin images, reporting speedups of one to two orders of
magnitude compared to a CPU implementation [5] [11]. However, neither of these show
implementations for generating spin images on the GPU.

6.3 Quasi Spin Images

6.3.1 Motivation

An important observation regarding spin images is that the content of an image is independent
of any other image. This in turn means the generation of spin images can be run in parallel
across a number of threads. Typically, a large number of images are generated for a particular
mesh to increase the probability of finding a matching pair when comparing them. Moreover,
the process of computing individual images is identical. For these reasons, the generation
algorithm exhibits favourable characteristics for its implementation on GPUs.

Profiling our GPU implementation of the spin image algorithm showed the main
bottleneck to be the large volume of memory transactions required to generate individual
images. This quantity of transactions is mainly caused by two factors.

First, in order to obtain a representative image which accurately portrays the support
volume of the spin image, a significant number of uniformly sampled surface points are
needed to ensure that the produced images can be matched against other images.

Second, in the original SI generation method, point samples are divided over the four
adjacent pixels using bilinear interpolation. On a GPU this causes four reads and four writes
to memory per pixel update.

Therefore, limiting the number of memory transactions necessary per image is the
primary issue which must be addressed for an effective implementation of the spin image
generation algorithm.

CPUs, as opposed to GPUs, are capable of containing an entire spin image in L1 cache.
Therefore the effects of the large quantities of transactions on performance are not as
significant. The main reason for this is the good spatial locality of these requests relative to
the size of the cache. In contrast, on a GPU, these transactions generally require explicit
memory transactions, and accesses tend to be spread over a range of cache lines. This in
turn causes both high pressure on the memory bus while simultaneously not fully utilising
the available bandwidth.

Unfortunately, keeping an image in the GPU’s shared memory and only committing it
to memory upon its completion severely limits the number of blocks which can be active
per GPU streaming multiprocessor, significantly reducing performance. Therefore, the only
means to address these problems is to reduce the number of required memory transactions.

6.3.2 Definition

We thus propose the Quasi Spin Image descriptor (QSI). A QSI is formed by counting the
number of intersections of the model geometry with circles defined by points (pixel centres)
on the QSI plane and the central axis, as shown in Figure 6.2, as opposed to measuring
area as done by the SI. This definition effectively yields a stack of layers, each containing a
number of circles with linearly increasing radii. The number of intersections between each
circle and the mesh surface can be represented in an image, as shown in Figure 6.3.

While the definition of the QSI deviates from the original SI, the images produced are
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S
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Figure 6.2: Quasi spin image computation: the circle captured by rotating a spin image bin around the
central axis. Sv and Sn are the spin vertex and the spin normal respectively. The dashed line represents
the central axis.
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Figure 6.3: The correspondence between intersection circles and the produced QSI image.

similar visually, especially when compared to other descriptors. A visual comparison of QSI
and SI is shown in Figure 6.6.

The main advantage of QSI relative to the SI is that it requires significantly fewer
memory transactions. This is due to the fact that when generating an SI, projecting an
additional surface on to the image on average requires each affected pixel to be updated
more than once. This is mainly caused by projected point contributions being spread over
neighbouring pixels using bilinear interpolation, as discussed previously. In contrast, the
QSI only requires one additional update per rasterised pixel.

Additionally, since the number of intersections between a circle and a triangle mesh is
an integer value, the values of individual QSI pixels can be computed consistently and are
free of noise. This is in contrast to the SI method which uses a (uniformly sampled) point
cloud as input instead, which is inherently noisy.

The QSI requires the same parameters as the SI, most important of which are the spin
vertex Sv and spin normal Sn. The only difference is that since the QSI uses a triangle mesh
as input directly, no uniform mesh sampling is needed. A sample count does not therefore
need to be set. The separation between layers and the separation between radii of circles
within layers is defined by a single constant value computed from the support radius and the
image width.
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6.4 Results

We evaluated the QSI and SI GPU implementations with two distinct experiments:

• Execution times of GPU implementations of QSI and SI generation algorithms
compared to a reference CPU implementation.

• The similarity between the correlations computed over different SI and QSI.

Each of these experiments are described in detail below.

6.4.1 QSI / SI Generation Execution Times on GPU and CPU

The performance of the SI and QSI generation implementations were tested by applying
them on the training models from the SHREC17 dataset [31], which includes over 35,000
models. Each algorithm was executed 10 times per model in the dataset, and the execution
times were subsequently averaged.

For each implementation, only the time spent on computing the images themselves was
measured. The time requirements for loading, partitioning, and uniform surface sampling
(in case of the original SI method) were not included in the execution time measurements.
These processing steps only represent a minor or negligible portion of the total execution
time.

A reference single-threaded implementation, part of the command line tools from Point
Cloud Library, was used as a CPU baseline to compare against [29]. To the best of our
knowledge, this implementation is the fastest one currently available at the time of writing.

For both the SI and QSI method, one spin image was generated per vertex/surface normal
present in the model. This is a means of keeping the number of generated images per model
consistent between the two methods and is identical to the approach used in the original spin
image paper by Johnson et al. [18].

A noteworthy issue is that the SHREC17 benchmark does not guarantee the models to
be at similar scale, while at the same time different models may exhibit different features at
different scales.

Both SI and QSI require a support radius parameter to be set. In the original paper by
Johnson et al. this radius was calculated by assuming that the optimal bin size (the physical
width of a spin image bin/SI pixel) was equivalent to the mesh resolution, arguing that
most features present in the model would be at this scale. However, we do not consider
this argument to be valid anymore given the wide variety in mesh resolution across models
available today.

We instead choose the support radius in such a way that the image covers as much of
the model as possible, while simultaneously ensuring high-level features within the model
remain visible on the images themselves. To this effect we use a support radius that creates
images based on the scale of the model, rather than using a constant support radius. To
achieve this, we first compute the axis-aligned bounding box of the model. We subsequently
determine the length of the side of a cube whose volume is equal to the volume of this
bounding box. The length of the side p of this cube is used as the “support diameter”, which
is halved to produce the support radius. Equation 6.1 computes the support radius Sr, in a
manner that satisfies the above requirements:

Sr =
3√BBox.x ·BBox.y ·BBox.z

2
(6.1)
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Figure 6.4: A comparison of the execution times of the proposed and reference implementations.

The original SI algorithm also requires a sample count parameter to be given. We set
this number equal to three times the model’s triangle count, uniformly distributed across the
model. For many models, this was the minimum number of samples needed to produce an
image of satisfactory quality.

The image size was set to 64x64 bins for the GPU tests (both SI and QSI). For stability
reasons, the image size of the reference CPU implementation was set to 8x8 pixels. Here
it should be noted that we could not detect a measurable performance difference between
using 8x8 and 64x64 pixels, most likely because both image sizes are able to fit in the CPU’s
L1 cache.

The results of the SI and QSI generation times on the GPU are shown in Figure 6.4 along
with the reference CPU implementation.

The average speedup of GPU QSI compared to GPU SI calculated over the models in
the SHREC17 training set was 3.44.

The trend lines in Figure 6.4 show that when generating 200,000 images, the GPU QSI
implementation outperforms the reference CPU one by approximately a factor of 35.

It’s also worth noting that in “A Comprehensive Review of Local Feature Descriptors”
by Quo et al. a performance evaluation is listed of an SI generation method implemented in
MATLAB. For a model of 100,000 points, they measured an execution time of approximately
750ms in order to generate a single image. Our GPU implementation of the SI method, for
models of an equivalent number of points, generates images at approximately 4700 images
per second. This implies our GPU implementation is approximately 3500 times faster.

6.4.2 Correlation Between QSI and SI

It is interesting to investigate how QSI relates to the original SI. To this effect we used the
models of the SHREC14 benchmark [14] [9] 1.

The devised experiment analyses one model in the benchmark at a time. For each
vertex/normal pair in the model, an image is generated using each method, resulting in two

1The SHREC17 benchmark was not used here as a number of models in the set did not contain normals.
Properly defined models are crucial to good matching performance.
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Figure 6.5: The correlation between the calculated correlations of SI and QSI for each model in the
SHREC14 benchmark.

images per vertex/normal. The original SI method compared images by calculating the
Pearson correlation coefficient. To estimate the similarity of QSI to SI, we thus estimate
the Pearson correlation coefficient for the image pair generated by each method for the
same vertex/normal. We compared the correlation values of image pairs generated by each
method for each unique vertex/normal. We subsequently calculated the Pearson correlation
coefficient over the resulting sequence of correlations. This yields a single correlation value
representing the overall similarity of correlations calculated for each method for that model.

The resulting values for the entire benchmark are shown in Figure 6.5. The graph shows
that 42.4% of the models have a correlation coefficient over 0.9, and 74.5% have 0.8 or
higher.

Figure 6.6 shows a visual comparison of images generated by both methods. The images
were generated from a Utah teapot and a Chrystalline structure. The following observations
can be made from these Figures. First, since both methods generate images in cylindrical
coordinate space, the produced shapes are similar. Second, an additive response can be
observed in images generated by both methods, where specific parts of the model appear
superimposed on the image. An example of this is the teapot handle visible on the top row of
Figure 6.6b. Both the original SI and QSI methods exhibit this behaviour, due to the inherent
greater area intersected by a bin and greater number of surface intersections encountered,
respectively. Third, despite the fact that 1,000,000 point samples were used for both objects
using the SI method, a level of noise is still visibly present. The images from our method
are, apart from some single-pixel rounding errors, free of noise. Moreover, given the same
input model and settings, the generated images of QSI are deterministic. Finally, the original
SI method exhibits responses from surfaces orthogonal to the spin image plane, as in these
cases greater numbers of point samples project to similar cylindrical coordinates. This is
particularly visible on the images of the chrystalline structure (Figure 6.6c).
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(a) (b)

(c) (d)

Figure 6.6: A visual comparison between the original SI (Figures 6.6a and 6.6c) and proposed QSI
method (Figures 6.6b and 6.6d). All grayscale values have been logarithmically scaled for clarity.

6.5 Implementation Details

All testing took place on a system with an Intel Core i7-5820K processor and an NVidia
Quadro P5000 graphics card. The GPU algorithms have been implemented using CUDA
9.0.

6.5.1 QSI Implementation

In order to cull geometry wherever possible as well as simplifying work division, we used a
voxel space subdivision (we also used this in the SI implementation).

We cull flat triangles before rasterising them, as these are prone to cause rounding errors
during the intersection test.

Finally, our implementation stores the values of individual bins in unsigned short
variables, which proved more than adequate for the tested benchmark.

6.5.2 Model Scaling

When computing the QSI, one needs to convert from model space to QSI pixel space; this
operation requires a division for all pixel updates in the case of SI and most pixel updates
in the case of QSI, which is expensive. Instead, at pre-processing time the model is scaled
so that one distance unit is equivalent to the physical size of a pixel/bin on the spin image
plane.

6.6 Conclusion

It was shown that the workload characteristics of the generation of local shape descriptors,
such as spin images, are suitable for GPU implementation (as they consist of similar
operations that must be performed over multiple data items) and can thus offer significant
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speedups over conventional CPU implementations. Moreover, targeted alterations to the
local descriptor creation algorithm, such as QSI, can further improve the utilisation of the
GPU hardware.

The quasi spin image local shape descriptor introduced in this paper is not only better
capable of exploiting the available GPU resources, but also offers a number of other
advantages. A reference GPU implementation of the original spin image algorithm is
also given.

The GPU implementation for the generation of SI images was shown to outperform a
reference CPU implementation by an order of magnitude, bringing the possibility of real-
time applications within reach. Moreover, our GPU QSI implementation further outperforms
the GPU SI implementation on average by over a factor of 3.

The source code for our implementations of SI and GSI are being made publicly available
as part of this paper to serve the research community in benchmarking and further developing
GPU based descriptors.

6.7 Future Work

While the generation efficiency, noise-free, and consistent generation properties of the
QSI have been shown in this paper, a more complete numerical analysis of its matching
capabilities using a recent benchmark should be done. As Figure 6.5 shows that correlations
between similarity values produced when comparing images using each method are similar,
and can therefore be expected to produce similar results in a matching performance
experiment.

Moreover, since the largest deviations in pixel intensities between the QSI and SI occur
on pixels intersecting surfaces near orthogonal to the SI plane, means performing an analysis
including the support angle could yield closer matching performance between the two
methods.

Additionally, since the QSI is noise free (as opposed to the spin image), it may be worth
investigating other means for measuring image similarity, potentially improving its matching
capabilities.
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Abstract

Content-based querying of 3D object collections has the intrinsic difficulty of
creating the query object and previous approaches have concentrated in producing
global simplifications such as sketches. In contrast, in this paper, the concept of
querying 3D object collections based on local shape is introduced. Microshapes
are very promising in terms of generality and applicability and is based on a
variation of the spin image descriptor. This descriptor uses intersection counts to
determine the presence of boundaries in the support volume. These boundaries
can be used to recognise local shape similarity. Queries based on this descriptor
are general, easy to specify and robust to geometric clutter.

7.1 Introduction

A large number of objects, in particular man-made ones, inherently exhibit smaller shapes
which together define the appearance of the whole object. For instance, shelving units are
commonly constructed using rectangular planks, which in turn can be considered to contain
straight corners as well as flat surfaces of various sizes.

On a semantic level, it is possible to describe objects by combinations of such
“Microshapes”, examples of which include circular, rounded corner, slight bend, and
concave edge.

Local shape descriptors which have been proposed to date primarily aim at creating a
summary of their support volume [10] [13]. They exploit qualitative properties which are a
result of microshapes. For instance, the curvature at a specific surface point on a model is
the result of the shape being convex or concave at that location, rather than the cause.

In this paper, we present a novel method which is, amongst others, able to detect the
occurrence of specific microshapes within an object, as defined by a 2D search query image
which can be created intuitively and efficiently.

In addition to its matching capability, our method has some distinct advantages:

• Capable of matching occluded sections of a mesh

• Invariant to pose
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Figure 7.1: An illustration of the main difference between the original spin image, which measures
the mesh area intersecting a torus-like volume generated for each pixel shown in 7.1a, and a quasi spin
image, which measures the number of intersections made by a circle with the mesh surface for each
pixel, as shown in 7.1b.

• Resistant to geometric clutter

• Easily compressible and efficiently comparable due to its binary nature

7.2 Related Work

Of previously proposed approaches, those in the Bag-of-Visual-Words (BoVW) shape
retrieval [3] category can be considered to be closest to Microshape images. These methods
commonly compute a vector of descriptors from a sample object, which is in turn used to
locate similar points or surfaces in other models. Several distinct approaches have been
proposed in this paradigm which were shown to have state-of-the-art performance. These
include using Global Fisher vectors [10] and image features computed from panoramic views
[12]. While our method can potentially be applied in the BoVW paradigm, we consider
Microshape query construction sufficiently intuitive such that queries can be formulated
and used for querying directly. Using a query model is therefore not a necessity. Moreover,
Microshapes search for curves or lines, where existing methods have focused on matching
surface patches.

In terms of using curves for querying objects, sketch-based methods could to some extent
be considered to use a similar approach to the one presented in this paper. A wide variety of
such methods have previously been proposed, whose general goal is to match a user sketch
of a desired object to objects in a database. This is commonly done by generating views of
each mesh in the database from different angles, and comparing the shape of outlines and
edges to those drawn in the sketched query through various means [13] [15] [5]. However,
these methods match entire sketches against entire models, and as such do not allow smaller
shapes to be located.

The spin image, initially proposed by Johnson et al. [18], is a descriptor generated
by rotating a square plane divided into pixels around a central axis for one revolution,
and subsequently measuring the area of the mesh intersecting with the torus-like volume
generated by each pixel (as shown in Figure 7.1a). In the author’s implementation, the
area computation is approximated by accumulating uniformly sampled points instead. The
descriptor has been shown to be noise resistant, and perform well in cluttered scenes.
Moreover, due to the spin image’s use of a cylindrical coordinate system centred around the
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spin vertex, it is pose invariant. This property is inherited by our method.
A number of methods have been derived from the original spin image in order to address

various aspects of its weaknesses. Such methods include multi-resolution spin images,
proposed by Dinh et al. [7], which aimed to address their lack of scale invariance, and
computing signatures from spin images for faster matching, as proposed by Assfalg et al. [1].
Additionally, a version of the spin image which does not use point samples to approximate
area intersected per pixel was described by Carmichael et al. [2].

A more recent method derived from the spin image, which bears some similarities to
the one presented in this paper, is the Spin Contour proposed by Liuang et al. [9]. The
spin contour is generated by computing a spin image, and subsequently locating the contour
around all nonzero pixels on that image, which can be used for matching. However, the
method only looks at the extreme outlines of a shape in cylindrical coordinate space, and, as
we show in this paper, this discards curves present within the object which can potentially
be used for matching. Moreover, the parts of a model which could be considered similar are
not guaranteed to be part of the spin outline.

7.3 Background: Quasi Spin Images

The Microshape Image (MSI), introduced in this paper as an efficient query tool (see next
Section), is a derivation of the Quasi Spin Image (QSI) descriptor, which was proposed as an
efficient GPU-based alternative to Spin Images in [14]. We briefly describe the QSI below.

The QSI is constructed around a 3D point (referred to as the spin vertex), and a surface
normal at this point (referred to as the spin normal). The spin vertex and spin normal
combined describe a line, referred to as the central axis. Computing a QSI involves placing
square plane (referred to as the spin plane) divided into pixels along the central axis, rotating
it for one revolution, and in the process counting the number of intersections between each
pixel centre and the mesh surface. A visualisation of this is shown in Figure 7.1b.

These intersections are effectively performed in a cylindrical coordinate space defined by
the spin vertex and the central axis. Let α be a variable denoting the distance to the central
axis and β denote distance along the central axis (the spin normal) from the origin (the spin
vertex). Imagine a sequence of planes P placed perpendicular to the central axis at equal
increments of β. Then, for each such plane, imagine concentric circles centred at the central
axis with radii corresponding to linearly increasing values of α. Each plane corresponds
to a row of the QSI and each circle corresponds to a pixel within that row. The number of
intersections of such a circle with the mesh surface gives the value of the corresponding QSI
pixel. One aspect worth observing here is that the intersections of one of the above planes
and the mesh surface produces two-dimensional curves.

Using intersection counts yields images which can both be computed consistently and are
inherently free of noise. In contrast, the original spin image algorithm created a histogram of
uniformly sampled point samples, and is therefore noisy. This is not acceptable in our case,
as our method compares the values of neighbouring pixels (see next section). Moreover,
because pixels in the original Spin Image represent sums of areas, distinguishing internal
borders of objects is not possible. The properties exploited by our proposed descriptor
therefore only exist in QSI images.
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0 1 2 3 4 5 6

Figure 7.2: The generation of a single row in the MSI image. The portion of a shape intersecting
with a plane described by a point along the central axis and the spin normal is shown. Circles with
linearly increasing radii are intersected with the mesh. The computed values of the corresponding row
of pixels in the MSI image are shown below each row index.

Figure 7.3: The object on the left causes a decrease in the number of encountered intersections with
increasing circle radii, irrespective of the presence of the object on the right.

7.4 Microshape Images

The use of the MSI for querying 3D object collections based on local shape, was inspired
by a specific observation in the behaviour of the QSI, which exploits its noise-free and
consistency properties. Note that the intersection of the object mesh with the plane P used
when computing a QSI, produces planar curves, as shown in Figure 7.2. The key observation
which the MSI image exploits, is that the number of intersections with these curves, and
thus the mesh surface, encountered by circles at linearly increasing radii only decreases
whenever a specific section of the mesh is no longer encountered.

Since the MSI contains only the changes in the intersection counts of the QSI, it
represents local shape more directly and is therefore more suitable as a local shape descriptor.

A reduction in intersection count can be observed in the vast majority of cases,
irrespective of the presence of clutter, as shown in Figure 7.3. The only exception is
whenever from one radius to the next, a section of the mesh which is no longer encountered,
is replaced by another. However, this requires some rather specific circumstances and was
not found to be a significant problem in practice. We therefore consider the MSI image to be
resistant, albeit not immune, to clutter.

Moreover, the radii at which intersection counts decrease tend to be relatively similar
across neighbouring rows of MSI pixels, describing shapes which are present in the object.
An example of this is shown in Figure 7.4.
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A database of microshape images corresponding to each vertex of a collection of 3D
objects is queried by computing their distances from a constructed query MSI. We will
refer to the query MSI as the “needle image” and to a database MSI as a “haystack image”.
Algorithm 1 describes the Offline and Online parts of the proposed query method.

Algorithm 1: Microshapes: offline and online algorithms
Offline
for every 3D object O in haystack do

for every vertex v in O do
• Compute QSI for v on GPU (Section 7.3)

• Compute microshape image m from QSI (Section 7.4.1)

• Store m as vertex v data

Online

• Design needle (query) microshape image q

• Compute distance function between q and the microshape image of every vertex of
every object in the collection (Section 7.4.2)

• Produce ranked retrieval list of 3D objects based on distances of vertices from q

We have identified two limitations of our method. First, as MSI inherits some of the
properties of QSI, the MSI are not scale invariant. However, the distance function is lenient
and allows a certain degree of scale variations. Second, since MSI are discrete images
and thus susceptible to aliasing effects, sampling detailed geometry which exhibit rapidly
varying intersection counts (high frequencies), details can potentially be missed. But it
should be noted that since MSI are bit vectors, they require 16 times less storage space
compared to QSI, one can afford to generate them at a higher spatial resolution.

7.4.1 Microshape Computation

Computing a microshape image (MSI) consists of two steps. First, for a given vertex (spin
vertex) and its associated normal (spin normal), a QSI is generated. Then, the QSI is
converted into a binary MSI as follows. The value of each pixel in the QSI (number of
intersections) is compared to its right neighbour. If the number of intersections in the right
pixel is smaller than those in the left pixel, the left pixel is set to “active” (1), and “inactive”
(0) otherwise.

A sample QSI and its corresponding MSI is shown in Figure 7.4.

7.4.2 Microshape Distance Function

The main idea behind our distance function is to evaluate to which degree the pattern
in needle MSI is contained in a haystack MSI. We have identified four properties a
distance function should exhibit to achieve our goal, and our implementation satisfies
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(a) (b)

Figure 7.4: A sample quasi spin image (QSI) (7.4a) with its corresponding microshape image (MSI)
(7.4b).

these requirements.
First, if active pixels in the haystack MSI are close to active pixels in the needle MSI

then a low distance value must be produced. Second, the distance function should allow for
minor differences in active pixels to occur; this is to allow for rounding errors and minute
differences in shape. Third, in order to avoid taking geometric clutter into account, we
should only be concerned with the haystack MSI patterns that correspond to active patterns
in the needle MSI. Fourth, we should avoid matches resulting from haystack MSI geometric
clutter close to the needle MSI pattern.

The above requirements resulted in the following distance algorithm, which works
on a row by row basis. It is worth mentioning here that because MSIs are binary, our
implementation stores and processes them as bit vectors.

For each row, we look at the location of the active bits in the needle MSI, and for each
of these bits locate the closest active bit in the same row of the haystack MSI; this covers
the first and second requirements. To satisfy the third requirement, we seek haystack MSI
matches in a width of 2 pixels from the active needle pixels; unmatched haystack active
pixels are given the maximum penalty of 2, since they have not been matched within the
2-pixel band. To address the fourth requirement, we calculate the hamming distance between
needle and haystack MSIs within the 2-pixel band around each active needle pixel and add
this to the distance measure of the row.

Our implementation uses 64x64 images, which means an entire row of an MSI can be
stored in a single unsigned 64-bit integer. Our comparison method thus uses boolean bitwise
operations, which allows it to be implemented efficiently.

The distance algorithm can be implemented efficiently by taking the bit string
representing a needle image row and iteratively filtering away bits for which corresponding
bits are located in the haystack row at increasing distances (up to 2 pixels in each direction).
This can be done through a series of bit shifts, boolean operators, and the population count
instruction (which counts the number of set bits in a bit string).

7.5 Experiments

We evaluated the potential of our method by designing query MSI images to retrieve objects
from the SHREC17 training dataset [31] based on the local shape characteristics described
by the MSI.

We generated an MSI for each vertex/normal present in each model, and created a
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Figure 7.5: Search results produced by a query for a perfect quarter circle, as shown in 7.5a. The
meshes shown in 7.5b to 7.5d are example objects from the top ranks of the retrieval list.

database of the produced MSIs. The size of the spin plane was set to be half of the side of a
cube whose volume is equivalent to the axis-aligned bounding box of the input model. This
implies that MSI are generated at a scale close to that of the model. The resolution of the
MSI was set to 64x64 pixels.

For each query MSI, we computed a distance score against all vertex MSIs and sorted
the corresponding objects by ascending score. In Figures 7.5 to 7.8, we have indicated the
location of the detected vertex with a red dot, and any matched microshapes with red lines
in example objects from the top ranks of the retrieval lists of particular interest. The top 20
unique objects are shown in Figures 7.9, 7.10, 7.11, and 7.12.

It should be noted that our search algorithm matches individual vertices. Some objects
contain repeating shapes or patterns, and will therefore often appear multiple times in the
retrieval list. Only the top appearance of each object has been indicated in the results list.

The generality of the approach should be observed here; simply giving the main
characteristic of a local shape results in objects that possess it from various distinct object
classes. This is a complex endeavour with global content-based queries. Figure 7.6a indicates
that queries can be formulated which do not require the desired local shape to be originating
from the sampled vertex.

It is particularly worth mentioning that the query MSIs were created in a simple image
editor in the order of 1 minute each.
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(a) (b) (c)

(d) (e) (f)

Figure 7.6: Search results returned by our algorithm based on the query MSI image shown in Figure
7.6a, representing a long straight edge some distance away from the sample point.

(a) (b) (c)

(d) (e) (f)

Figure 7.7: Search results returned by our algorithm based on the query MSI image shown in Figure
7.7a, representing a rounded corner followed by a straight edge.
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(a) (b) (c)

(d) (e) (f)

Figure 7.8: Search results returned by our algorithm based on the query MSI image shown in Figure
7.8a. The image represents a “grating”-like pattern.

7.6 Conclusion and Future Work

We have strong indications that querying based on microshapes is very general, widely
applicable and quite simple in terms of the user interface required. Its local nature appears
to simplify the problem of query formulation when searching 3D object collections based
on content. A descriptor derived from a variant of the spin image that can be effectively
computed on the GPU proved a highly suitable microshape descriptor.

While initial qualitative experiments indicate that the microshape method is very
promising, a more thorough evaluation is required leading to quantitative results. For
example, we can annotate the 3D objects of a certain collection with the microshapes (out of
a finite set) that each contains and then perform microshape queries and count false positives
and false negatives, thus leading to the standard retrieval metrics.

We believe the work presented in this paper opens the possibility for semantically
querying 3D object collections, based on individual local features of a desired object. This
is in contrast to conventional querying approaches, which concentrate on global appearance
and thus do not offer the possibility of specifying detailed desired local shape characteristics.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q)

(r) (s) (t) (u)

Figure 7.9: The top 20 unique models (shown in order) in the search results returned by our algorithm
for the “quarter circle” query image shown in 7.9a.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

(u)

Figure 7.10: The top 20 unique models (shown in order) in the search results returned by our
algorithm for the “grating” query image shown in 7.10a.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

(u)

Figure 7.11: The top 20 unique models (shown in order) in the search results returned by our
algorithm for the “long straight edge” query image shown in 7.11a.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

(l) (m) (n) (o) (p)

(q) (r) (s) (t) (u)

Figure 7.12: The top 20 unique models (shown in order) in the search results returned by our
algorithm for the “rounded corner” query image shown in 7.12a.
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Abstract

A novel shape descriptor for cluttered scenes is presented, the Radial Intersection
Count Image (RICI), and is shown to significantly outperform the classic Spin
Image (SI) and 3D Shape Context (3DSC) in both uncluttered and, more
significantly, cluttered scenes. It is also faster to compute and compare. The
clutter resistance of the RICI is mainly due to the design of a novel distance
function, capable of disregarding clutter to a great extent. As opposed to the SI
and 3DSC, which both count point samples, the RICI uses intersection counts
with the mesh surface, and is therefore noise-free. For efficient RICI construction,
novel algorithms of general interest were developed. These include an efficient
circle-triangle intersection algorithm and an algorithm for projecting a point into
SI-like (α, β) coordinates. The ’clutterbox experiment’ is also introduced as
a better way of evaluating descriptors’ response to clutter. The SI, 3DSC, and
RICI are evaluated in this framework and the advantage of the RICI is clearly
demonstrated.

8.1 Introduction

Local shape descriptors have seen extensive use in a wide variety of applications where
determining shape correspondences are beneficial or even required. Such applications
include registration [24] [22] [32], shape segmentation [25] [15] [31], and retrieval [8] [4].

Many local 3D shape descriptor methods rely on the surfaces present in the volume
around a point to compute the degree to which two points are similar. This also makes them
susceptible to any unwanted geometry present in the neighbourhood, commonly referred
to as clutter. For this reason, clutter has been named as a major factor degrading the
performance of current descriptors [13].

The degree to which different descriptors are capable of resisting the negative effects of
clutter varies. One classical method which has shown to be significantly resistant to clutter
is the Spin Image [18] (SI). This descriptor is invariant under rigid transformations, and
has been applied successfully for applications such as shape registration [16] and facial
recognition [19].
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In this paper, we present the Radial Intersection Count Image (RICI) combined with a
novel distance function. The new descriptor shares the original concept of the Spin Image
but is advantageous in terms of its generation speed and clutter resistance.

In order to show the effectiveness of the RICI, we propose a repeatable experiment aimed
at quantifying the effects of clutter on the matching performance of 3D shape descriptors.
The main advantage of this evaluation method is that it can be used with datasets of any size,
and ensures scenes are cluttered with natural shapes.

In summary, the contributions of this paper are:

1. The novel RICI descriptor and an accompanying distance function, capable of resisting
clutter.

2. Algorithms for efficient generation of RICI descriptors, also capable of accelerating
SI construction.

3. The clutterbox experiment for quantifying the effects of clutter.

4. Evidence that the Support Angle filter proposed in the original SI paper does not
necessarily improve matching performance.

5. Freely available GPU implementations for generating and comparing Spin Image,
3DSC, and RICI descriptors, as well as an implementation of the proposed clutterbox
experiment.

8.2 Background and Related Work

Numerous local shape descriptors have been proposed to date [13]. The Spin Image has been
the foundation for a number of methods, which attempt to improve its matching performance
or other limitations. Clutter is a major challenge for object descriptors and few methods
have addressed it.

8.2.1 Spin Images

The Spin Image [18], originally presented by Johnson et al., is a classic descriptor generated
from an oriented point cloud (vertices with position and normal).

An SI is constructed around an oriented point, the position of which is in this paper
referred to as the Spin Vertex Sv. The corresponding normal is referred to as the Spin Normal
Sn. The combined oriented point describes a line, which is called the Central Axis.

Computing the descriptor involves placing a square plane whose left side is on the
Central Axis, with the Spin Vertex at its vertical halfway point. This plane is subsequently
subdivided into (Nbins×Nbins) equivalently sized bins, and rotated for one revolution around
the Central Axis. As the plane rotates, the number of point samples intersecting each bin is
counted. The descriptor itself is a histogram of the resulting value of each bin, which can be
visualised as an image.

In practice, the locations where point samples will intersect with the rotating square can
be computed directly as two-dimensional cylindrical coordinates. Here the α coordinate
refers to the distance from the point sample to the closest point on the Central Axis, and the
β coordinate refers to the distance from this closest point to the Spin Vertex. The projection
of a given point P is shown in Figure 8.1.
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Figure 8.1: A visualisation of the α and β coordinates corresponding to a given point P,
relative to the Spin Vertex Sv and Spin Normal Sn. The Central Axis; the line described by
the Spin Vertex and Spin Normal is also shown.

The physical width and height of the square plane is the Support Radius of the descriptor.
By rotating the plane around the Central Axis, a cylindrical volume is created, which
represents the Support Volume of the descriptor. Additionally, point sample contributions
are divided over nearby bins using bilinear interpolation to reduce the effects of aliasing.

Johnson et al. also describe a prefiltering step called the Support Angle, where a sample
oriented point is not included in the computation of the descriptor if the angle between its
normal vector and the Spin Normal exceeds a set threshold.

The descriptor’s core idea is that a pair of points with identical surfaces surrounding
them, and assuming both have been uniformly sampled, will have proportional quantities
of projected points in similar locations. Images can thus be compared using statistical
correlation.

8.2.2 Methods related to the SI

One of the major issues with the Spin Image is its volatility. Uniform sampling of triangle
meshes as well as scans from 3D capture devices are inherently noisy. Carmichael et
al. proposed a method to address this by computing the exact area of the support region
intersecting each pixel [2].

Other methods aim to address specific limitations of the spin image. Assfalg et al.
proposed the spin image signature aimed at simplifying the ease of image retrieval from a
large database [1]. Dinh et al. aimed at addressing the issue of selecting bin sizes by creating
a spin image variant with variable sized histogram bins [7], although their solution involves
the manual setting of parameters.

An alternate spin image variant, proposed by Guo et al. used three spin images per vertex
rather than a single one for better matching performance [14]. Accelerating spin image
generation using a GPU was first proposed by Davis et al. [5] [11]. Alternate derivative
methods include Spin Contours, proposed by Liang et al. [20] and colour spin images by
Pasqualotto et al. [26].
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8.2.3 The 3D Shape Context

The 3D Shape Context, proposed by Frome et al. [11], is a histogram descriptor constructed
by accumulating points by their spherical coordinates and distance relative to an oriented
reference point in a spherical support region. The support region is divided into J equally
spaced spherical wedges, centred around the central axis described by the reference oriented
point (similar to the SI). Each wedge is subsequently divided into K elevation divisions.
The bin volumes are finally created by the intersection volume of each radial and elevation
divisions with the volume bounded by two of L successive spheres with exponentially
increasing radii.

The descriptor has a degree of freedom around the Central Axis, which the Authors
solve by generating J different descriptors for each vertex, where each of the wedges has
been offset by a multiple of the angle 2π

J . However, due to its self-symmetry, this step is
unnecessary for descriptors used for querying.

8.2.4 Other Clutter-Resistant Shape Matching Methods

Some methods which have been proposed to date, in addition to the Spin Image and 3DSC,
have been shown to perform better in cluttered scenes than others [13] [23].

Mian et al. presented a method which creates a three-dimensional grid of voxels based
on two randomly selected vertices, referred to as a Tensor [23]. Their results outperform the
Spin Image, and show resistance to clutter being present in the scene.

The THRIFT descriptor, proposed by Flint et al. [10], uses an approach similar to the
Scale-Invariant Feature Transform (SIFT) by Lowe et al [30]. The method aims to find
distinctive points which can be detected reliably under a wide range of conditions. This is
accomplished by computing a three-dimensional density map of the input point cloud, and
selects interest points by locating local maxima of the Hessian matrix.

Local surface patches, proposed by Chen et al. [3], is a two-dimensional histogram
descriptor generated from points in an oriented point cloud. Each descriptor accumulates
points in a spherical support volume, by their shape index and the cosine of the angles
between their normal vectors. The authors only test their method on range images, and do
not expose the descriptor to significant levels of clutter themselves. However, experiments
performed in the review by Guo et al. [13] suggest that this method performs well in
cluttered scenes.

Unfortunately, the above works on clutter resistant descriptors used very small datasets
for testing their methods (1 to 56 objects). Therefore, the provided results may be statistically
biased, since the proposed descriptors were not subjected to a sufficiently wide range of
possible surface features. The datasets used were also not made public, making it difficult to
compare their results. In addition, some used very similar objects (such as cars), presumably
for ease of creation, which is not representative of all forms of clutter that can be encountered
in a real scene.

8.2.5 Learning Approaches

More recent shape matching methods have attempted to utilise Neural Networks. One of
the major hurdles these methods need to overcome is the inherent irregularity present in 3D
shape data, as opposed to more regular data such as images on which learning methods have
been applied successfully.
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To this end, many methods, such as the PPFNet proposed by Deng et al. [6], make use of
existing descriptors or features in a pre-processing step to regularise the input to the neural
network. PPFNet specifically uses point pair features, and was shown to outperform many
current state-of-the-art handcrafted methods.

Another regularisation approach is the voxelisation of the input point cloud or mesh,
which has amongst others been exploited in the 3DMatch method proposed by Zeng et al.
[33], who successfully apply their proposed method on point cloud alignment and keypoint
matching, outperforming both handcrafted and earlier learning methods.

While these learning methods show great promise, their applicability depends highly on
the used dataset for training, and may require retraining for new environments. Moreover,
current learning methods tend to be highly computationally expensive, which can limit their
applicability to small datasets only [17].

8.3 Radial Intersection Count Images (RICI)

The novel RICI descriptor is now detailed, which shares some conceptual similarities with
the original Spin Image, and has preliminarily been proposed as a quasi Spin Image [30].

8.3.1 RICI Generation

A RICI descriptor is a 2D histogram of integers. It is constructed around an oriented point,
and has a Central Axis around which a square plane is conceptually rotated, similar to the
Spin Image. The square plane is divided into (Nbins×Nbins) bins, producing a histogram
which can be visualised as a grayscale image.

The primary difference between the RICI and the SI is what is counted in each histogram
bin. In Spin Images, projected point samples are accumulated to create an estimate of the
surface area intersecting each bin or pixel as the square plane is rotated for a full revolution.
In contrast, RICI bins count the number of intersections of circles with the surfaces of the
scene and are thus integers.

The conceptual construction method, i.e. the relationship between the aforementioned
intersection circles and the produced descriptor is visualised in Figure 8.3. Consider a set of
circles that are centred at fixed distances from the Spin Vertex on the Central Axis and have
a fixed number of radii. Each bin in the RICI image stores the number of intersections of the
corresponding circle with the surfaces of the scene. RICI rows thus represent circles on the
same plane, and RICI columns circles with equivalent radii.

The remainder of this section presents a method for efficiently computing RICI
descriptors. The general idea is to iterate over each triangle in the scene, and determine the
set of circles in cylindrical coordinates (see Figure 8.1) which will intersect with it. This
implies a complexity of O(T), where T is the number of triangles in the scene, as in the
worst case, the number of circles is fixed and equal to the resolution of a RICI image. The
bins corresponding to these circles are incremented. Note that cylindrical projections will
not preserve the linearity of a triangle’s edges (as shown in Figure 8.2), thus not allowing
the use of common rasterisation methods. Instead we exploit a circle-triangle intersection
algorithm in order to determine the correct projections.

To summarise, a RICI image is generated by iterating over each triangle in the scene,
and in turn each triangle is processed in 3 steps:

1. Project the triangle vertices into cylindrical coordinate space, as described in Section
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Figure 8.2: A triangle depicted alongside its projection in cylindrical coordinate space. The area in
which circles centred and directed along the z-axis intersect the triangle twice is coloured in dark grey.
Sizes may not be to scale.
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Figure 8.3: A visualisation of the construction of a RICI image.

8.3.1.1.

2. Using the circle-triangle intersection method outlined in Section 8.3.1.2, compute the
range of α coordinates which will intersect with the triangle for each β coordinate in
the triangle’s β-extent.

3. Increment the histogram bins that correspond to these intersections.

8.3.1.1 Projecting Vertices into Cylindrical Coordinate Space

An efficient method for projecting points from Euclidean coordinates into cylindrical
coordinates is presented. Apart from the RICI, this method can also be applied directly in
the construction of SI descriptors.

The algorithm projects a point P = (Px,Py,Pz) by computing two transformations. First,
a translation that moves the Spin Vertex Sv = (Svx,Svy,Svz) to the origin (Equation 8.2), and
second, a rotation which aligns the Spin Normal Sn = (Snx,Sny,Snz) with the z-axis. The
projected point’s α and β coordinates can be computed trivially afterwards.
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Figure 8.4: Direct approach for vector alignment. First, compute the vector product Sn×Z between
the spin normal Sn and z-axis. Second, rotate Sn around Sn×Z to align it with the z-axis.
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(a) Rotation 1: Align the spin
normal with the XZ-plane by
a rotation around the Z-axis
(Equation 8.3)
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(b) Rotation 2: Align the spin
normal with the Z-axis by a rota-
tion around the Y-axis (Equation
8.4)

Figure 8.5: Visual representation of the rotations that form our alignment method.

For the z-axis alignment transformation, a common technique for aligning two vectors
consists of a vector product followed by a rotation (shown in Figure 8.4). While the vector
product itself is inexpensive (due to one of the vectors being the z-axis) the subsequent
alignment rotation requires a relatively expensive multiplication with a 3x3 matrix.

Our alignment method instead uses two rotations, exploiting the observation that only
distance must be preserved for the α coordinate. We align the spin normal with the xz-plane
using a rotation around the z-axis (see Figure 8.5a and Equation 8.3). We then align the
transformed normal with the z-axis by a rotation around the y-axis (Figure 8.5b and Equation
8.4).

[Nax,Nay] = Normalize[Snx,Sny]

[Nbx,Nbz] = Normalize[Snx,Snz]
(8.1)

P′x = Px−Svx

P′y = Py−Svy

P′z = Pz−Svz

(8.2)
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P′′x = Nax ·P′x +Nay ·P′y
P′′y =−Nay ·P′x +Nax ·P′y

(8.3)

Tx = Nbz ·P′′x −Nbx ·P′z
Ty = P′′y
Tz = Nbx ·P′′x +Nbz ·P′z

(8.4)

αi = |(Tx,Ty)|
βi = Tz

(8.5)

The coefficients of the rotation transformations Na and Nb can be calculated inexpensively
from components of the spin normal Sn, as shown in Equation 8.1. When both coefficients
of either Na or Nb are zero, that rotation step is unnecessary and an identity rotation is
used instead. The key here is that, considering a two-dimensional coordinate system xy,
the coordinates of a normalised vector represent the sine and cosine values of a rotation
which aligns that vector with the x-axis. These normalised coordinates can therefore be used
directly for this purpose.

It should be noted that since the rotation coefficients only depend on the spin normal,
they are constant for the entire spin image. Therefore they only need to be computed once
per image, essentially taking this computation out of the inner loop. This is the primary
reason for the method’s efficiency compared to previous work.

8.3.1.2 Circle-Triangle Intersection

A circle-triangle intersection test can result in four outcomes; no intersection, one
intersection, two intersections, or infinite intersections. However, due to floating point
rounding errors, handling the latter, while possible, is not feasible in practice and is thus not
addressed by the proposed algorithm.

Our algorithm starts off with the triangle vertices in cylindrical coordinate space. For
a given β coordinate, it determines the range of α coordinates which result in a single or
double intersection. This information is subsequently used to “rasterise” a row of pixels for
the triangle in the RICI descriptor.

The method operates in three distinct stages. First, the triangle is intersected with
the plane π of the circle, which is parallel to the xy plane, as shown in Figure 8.6. Next,
the triangle vertices are rotated around the z-axis in order to further simplify subsequent
computations. Finally, the ranges of circle radii in which respectively single and double
intersections occur, are calculated.

Prior to detailing these stages individually, we will outline the geometric background
used in the intersection test calculations.

Figure 8.6 shows a given β coordinate. The triangle being tested is defined by its
transformed vertices T0, T1, and T2, using the previously described alignment transformation.
Here all points with equal β coordinates lie on the plane π.

Where the triangle intersects the plane, it forms an intersection line segment E0E1, which
defines a line L. The range of α coordinates either intersecting the triangle once or twice can
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Figure 8.6: A triangle defined by the vertices T0, T1, and T2 intersecting with the horizontal plane
through an arbitrary coordinate β on the z axis.
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Figure 8.7: Aligning an ~E0E1 vector with the x-axis. Any value of C can be chosen for which an
~E0E1 vector exists for this purpose. A sample ~E0E1 vector has been indicated in the Figure. Point A

represents the point on the Central Axis marked by β in Figure 8.6.

be calculated by determining which radii intersect with this line segment. This reduces the
determination of intersection distances to a two-dimensional problem.

For single intersections, the lower and upper bounds of radii is
[min(|E0|, |E1|),max(|E0|, |E1|)]. Note that the 2D coordinates of E0 and E1 are equivalent
to the vectors ~βE0 and ~βE1, respectively.

A double intersection occurs when the closest point to β on line L is also on the line
segment E0 E1. When double intersections exist, the range of radii in which they occur is
[|C|,min(|E0|, |E1|)].

Given the aforementioned background, the next step of our method is aligning the vector
~βC with the y-axis, as illustrated in Figure 8.7. The objective of this step is to simplify the
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remaining calculations for the intersection test. Alignment is done by normalising the vector
between E0 and E1, and subsequently rotating the triangle vertices around the z-axis; the
coordinates of the normalised vector can be used directly as sine and cosine coefficients for
the rotation.

At this stage, determining the existence of a double intersection is inexpensive, and can
be achieved by comparing signs of the x components of the aligned E0 and E1 coordinates.
Different signs indicate that a double intersection exists. If so, the length of ~βC (the
rotated y-coordinate of C) represents the lower bound of radii which correspond to double
intersections.

The intersection test itself can be done by comparing a given radius against the computed
ranges, which yields an intersection count corresponding to that radius.

Summarising, computing the range of values of α that will result in a single or double
intersection for a given value of β involves the following steps:

1. Determine the intersection points E0 and E1 for any value of value of β where L is
defined, as shown in Figure 8.6.

2. Rotate E0 and E1 around the z-axis such that the vector ~E0E1 is aligned with the x-axis
(as shown in Figure 8.7).

3. Determine the distance of E0 and E1 from the z-axis.

4. The range of circle radii in which single intersections occur is
[min(|E0|, |E1|),max(|E0|, |E1|)].

5. Determine the existence of a double intersection by comparing the signs of the x-
coordinates of E0 and E1. If they are different then a double intersection exists.

6. If a double intersection exists, the range of α coordinates (circle radii) corresponding
to the double intersection is the y-coordinate of either E0 or E1 and the shortest
distance between the z-axis and E0 or E1.

8.3.2 A Clutter-Resistant RICI Distance Function

Spin Images, by their nature of being generated from oriented point clouds, are inherently
noisy. They have as such relied on statistical correlation to compute similarity. The idea here
is that two matching bins tend to have proportionally similar accumulated sample counts.
Unfortunately, this method is susceptible to the effects of clutter. Additional geometry
present in the support volume causes portions of the image to receive additional projected
point samples, which consequently negatively affects the computed correlation value.

When it comes to comparing RICIs, one important downside of the Pearson Correlation
Coefficient is that it is not defined for sequences of constant values. While this scenario
is unlikely to occur for Spin Images, there exist situations in which RICIs consist solely
of pixels with equivalent intersection counts. For these situations, the Pearson correlation
coefficient is undefined, and therefore an insufficient solution for comparing RICIs. Handling
these edge cases separately is possible, but results in a solution that requires balancing
awarded scores against normal situations.

Meanwhile, the RICI does not have the aforementioned issue of noise, and is as such
not bound solely to using statistical methods for measuring similarity. For these reasons
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(a) Intersection counts without
clutter

4 4 40 0 2 4 4

(b) Intersection counts with clut-
ter

Figure 8.8: Demonstration of changes in intersection counts generally being unaffected by clutter. A
portion of a single layer of intersection circles is shown. Intersections with the shape surface have
been marked.

we propose a new distance function, which is by design able to resist some of the negative
effects of clutter, primarily by exploiting features of the RICI.

First, the distance function does not consider the values of pixels in the RICI. Instead,
changes in pixel values (i.e. intersection counts which show up as edges in the RICI) are
compared. As RICIs are free of noise, it is possible to interpret pixel values directly. The
main advantage of this approach is that changes in intersection counts are largely unaffected
by clutter. The reason for this can be seen in Figure 8.8.

In Figure 8.8a, a cross section is shown of an arbitrary 3D shape. On the same plane,
circles are drawn with increasing radii, similar to how RICI images are computed. The
numbers below each circle indicate the number of intersections they encounter, which
corresponds to the value of their respective pixels in the RICI image.

Similarly, Figure 8.8b shows the same situation in which a clutter object has been added.
From the intersection counts can be seen that even though the absolute intersection counts
have now changed, the change in intersection counts from the third to the fourth circle,
caused by the original object, is still present.

Second, when searching, our distance function treats the needle (query) and the haystack
image asymmetrically, in contrast to the Pearson correlation coefficient. One can use the
needle image to deduce what features to look for in a given haystack image.

This asymmetry consists of only computing a sum of squared differences distance on
pixels where there are changes in the needle RICI image.

Returning to Figure 8.8, we’ll assume that Figure 8.8a shows a cross section of the
needle object that we are attempting to locate in the cluttered haystack scene shown in
Figure 8.8b. In our needle image, only the increased intersection counts from the third to the
fourth circle are relevant. Including other pixels is not relevant, as there are no changes in
the needle image’s intersection counts. We can therefore ignore these pixels in our distance
computation. This also means any clutter present in the haystack image is ignored by this
method.

The proposed Clutter Resistant Distance function CRD(needleRICI,haystackRICI) is
shown in Equation 8.7, and the corresponding pseudocode is given in Listing 1. Note here
that the distance function is positive, but not symmetric. It has a complexity of O(1), because
comparing a descriptor pair requires a fixed number of operations.
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def clutterResistantDistance(needle, haystack):
score = 0
for row r in [0..N_bins]:

# Skip first column
for column c in [1..N_bins]:

needleDelta = needle[r][c] - needle[r][c-1]
haystackDelta = haystack[r][c] - haystack[r][c-1]
if needleDelta != 0:

score += (needleDelta - haystackDelta) *
(needleDelta - haystackDelta)

return score

Listing 1: Pseudocode for our proposed method for computing the distance between two RICI images.

D(rici,r,c) = rici(r,c)− rici(r,c−1) (8.6)

CRD(n,h) =
Nbins

∑
r=0

Nbins

∑
c=1

{
(D(n,r,c)−D(h,r,c))2, if D(n,r,c) 6= 0
0, otherwise

(8.7)

8.4 Evaluation

The proposed method has been evaluated in terms of its clutter resistance, generation
speed, and matching performance. Where applicable, we compare our method against the
two most referenced among those listed in survey [13] as being clutter resistant. These
are the Spin Image1 and the 3D Shape Context. It is worth noting that the survey also
observes that popular descriptors such as the Fast Point Feature Histogram [29], Unique
Signatures of Histograms [33], and Rotational Projection Statistics [14], do not exhibit
optimal performance under cluttered conditions. We have therefore implemented the above
two most referenced clutter resistant methods on the GPU, to allow a direct comparison on
the same dataset.

The novel Clutterbox Experiment is proposed in order to evaluate the effect of clutter on
the descriptors’ matching performance.

8.4.1 The Clutterbox Experiment

In previous work, clutter has typically been defined as the proportion of area within the
support volume that does not belong to the object being recognised. Greater proportions
of clutter generally imply worse descriptor performance. The expression used in previous
work, initially proposed by Johnson et al. [18] is shown in Equation 8.8. Here Aall is the
surface area of all objects within the support volume and Aob ject is the surface area of the
object of interest.

clutter =
Aall−Aob ject

Aall
(8.8)

The objective of the proposed evaluation method, which we call the “clutterbox

1[33] and [14] also support the SI as a clutter resistant descriptor.
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experiment”, is to measure the relationship between increasing levels of clutter and the
resulting performance of the descriptor being tested.

In previous clutter experiments, clutter has generally been evaluated by measuring
descriptor performance against levels of clutter present at points in a scene without
controlling the points’ identities. However, this measures the effects of two parameters
combined; the descriptor’s ability to recognise the desired shape, and the level of clutter
present around it. Ideally an evaluation of the effects of clutter should control the former of
these parameters, while varying the latter. This is the primary objective that the clutterbox
experiment addresses.

Varying clutter levels in the neighbourhood of an object can be done trivially by adding
triangles, points, spheres, or cubes in random locations and sizes around an object. However,
this kind of clutter is not representative of the clutter that can be expected in a realistic 3D
scene. The clutterbox experiment therefore inserts complete objects rather than random
noise. This results in a more natural distribution of clutter in the scene, and therefore more
directly measures the effect of clutter that can be expected of a given descriptor when applied
in a practical context.

The clutterbox experiment is executed a large number of times by varying objects and
their transformations, in order to provide robust results, independent of object type.

The steps of the experiment are outlined below:

1. Define the clutterbox as a cube of side s.

2. Select n objects at random from a large object collection.

3. Scale and translate each object such that it fits exactly inside a unit sphere.

4. Pick one of the n objects at random. This is the reference object.

5. Compute the reference descriptor set {RD}, by computing one descriptor for each
unique vertex of the reference object.

6. For each of the n objects in random order, but starting with the reference object:

a) Place the object within the clutterbox, at a randomly chosen orientation and
position, with the constraint that the bounding sphere fits entirely within the
clutterbox.

b) Compute the set of cluttered descriptors {CD}, by computing one descriptor for
each unique vertex of the combined mesh in the clutterbox.

c) For each d ∈ {RD}, create a list of ranked distances to all c ∈ {CD}. Keep the
rank where the corresponding cluttered descriptor was found in the ranked list
(0≤ rank ≤ |{CD}|−1). Note that lower ranks are better.

d) Create a histogram where bin i holds the number of times the correct vertex is
found in the search results at rank i.

Thus the output of the clutterbox experiment is a list of histograms, one for each level
of clutter. A visualisation of a sequence of scenes with increasing clutter generated by the
above experiment is shown in Figure 8.9.
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Figure 8.9: Visual representation of the increasing number of clutter objects added into the clutterbox.
The leftmost image only contains the reference object.

8.4.2 Clutter Resistance Evaluation

We used the clutterbox experiment to quantify the effects of clutter on the SI and 3DSC
versus the proposed RICI descriptor. For our object collection, we selected the combined
SHREC2017 dataset [31], which consists of 51,162 triangle meshes.

In the case of the SI and 3DSC, the combined triangle mesh of the reference and clutter
objects was sampled into a point cloud before generating their descriptors; RICI descriptors
are generated from the triangle mesh directly. For optimal performance, SI and 3DSC require
a high number of samples to ensure a low level of noise in the produced descriptors. However,
one cannot increase the sample count indefinitely as that results in a lower generation rate.
Based on our experimental evidence on the given dataset, we feel that 10 samples per triangle
is a reasonable point on this trade-off.

While Johnson et al. define the bin size (thus the support radius) of the SI to be equal to
the mesh resolution, we do not believe their reasoning holds any longer for present day 3D
objects. Similar objects can have significant variance in their resolution. As such, making
the support radius dependent on the mesh resolution is not a guarantee for better matching
performance. We therefore use a constant support radius for all tested methods, set to
0.3 units, relative to the bounding unit sphere, for all scenes in the experiment for ease of
reproducibility. For the 3DSC, we set the minimum support radius to rmin = 0.048 units,
which is proportionally the same as the one originally used by Frome et al. [11].

We executed the experiment 1,500 times, iteratively cluttering a scene with n = 1 (the
reference object only), n = 5, and n = 10 objects, into a clutterbox of size s = 3. The size
of the RICI and SI descriptors Nbins was set to 64x64 bins, while the 3DSC descriptor’s
dimensions were left the same as those used in previous work (J = 15, K = 11, L = 12 [13]
[11]). A more detailed discussion on size settings can be found in Section 8.5.2. In order to
visualise the histograms generated by the clutterbox experiment, we opted to compute the
fraction of the bin representing rank 0 in the histogram against the sum of all bins (all search
results). For clarity, each sequence of such fractions has been sorted individually to produce
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Figure 8.10: Percentage of search results for all tested methods that ended up at rank 0 for each of
the 1500 performed experiments.

monotonically increasing curves. The results are shown in Figure 8.10.
The support angle parameter used to generate the SI results in Figure 8.10 requires

further elaboration. In their original SI paper, Johnson et al. claim this filter reduces the
effects of self-occlusion and clutter. However, our testing which compared using a support
angle filter to not filtering any input points (Figure 8.11) could not confirm this. All SI
results in this paper therefore do not apply any support angle filter, as this favours the SI.

While Figure 8.10 shows that our RICI descriptor clearly outperforms both the SI and
3DSC in scenes that contain clutter (see Equation 8.8), it is also relevant to gain insight in
the relationship between descriptor performance and the specific clutter level present in the
support region. Figure 8.12 shows a heatmap plot of the fractional area of clutter present in
the support volume around each Spin Vertex, versus the rank of the corresponding descriptor
in the haystack. It can be observed that the RICI trends towards lower ranks than the SI
and 3DSC, even at high levels of clutter. Furthermore, while the 3DSC generally does not
outperform the SI, it appears more clutter resistant than the SI at extreme clutter levels (>
90%).

The heatmaps have been computed over 73.5 million search results extracted from scenes
with 4 added clutter objects, based on the results of the Clutterbox experiment.

It is not expected that a RICI image would be very dependent on mesh resolution (which
may be related to scanning) as intersection counts should in most cases not be very sensitive
to that.

The experiment was implemented using C++, with the descriptor generation and search
kernels written in CUDA 10.0. The code was written in such a way that given a dataset
of objects, a single random seed determines all randomly chosen parameters, making all
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Figure 8.11: Percentage of SI search results that ended up at rank 0 for each of the 1500 performed
experiments for two different support angles.

RICI 3DSC SI

Figure 8.12: Visualisation of the clutter resistance of RICI, SI, and 3DSC. Colours are mapped using
a logarithmic function (colours toward the red end of the spectrum lower in the images is better). A
pixel’s colour represents the number of search results, i.e. descriptors, that ended up in the specific
rank in relation to the amount of clutter within their support volume.
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Figure 8.13: Relationship between the number of triangles present in the scene, and the rate at which
our implementations generate RICI, SI, and 3DSC descriptors.

results reproducible. The experiment was executed on a combination of Nvidia Tesla cards
(P100 16GB, V100 16GB, and V100 SXM3 32GB). All time-based results were exclusively
gathered on the latter. One relevant implementation detail is that in cases where multiple
search results have the same distance (which may occur due to reasons such as object
self-similarity), we use the highest (best) rank of the matched haystack image for the sake of
consistency.

8.4.3 Generation Performance

Figure 8.13 shows the difference in the rate at which the RICI, SI, and 3DSC descriptors are
generated. As can be seen, the RICI is approximately one order of magnitude faster than the
3DSC, and two orders faster than the SI for the given settings.

8.4.3.1 Performance of Point Projection Algorithm

The largest portion of the computational effort involved in the RICI and SI generation
algorithms require projecting points into cylindrical coordinate space. We have proposed an
efficient algorithm for this, as outlined in Section 8.3.1.1.

A similar algorithm is included in Point Cloud Library [29], as part of the Spin Image
generation implementation. To the best of our knowledge, this was up to now the most
efficient implementation available. We therefore compare our projection algorithm against
this previous work.

We evaluate both algorithms using a microbenchmark which projects a sequence of
1 ·109 randomly generated points. To ensure a fair comparison, all code unrelated to point
projection has been removed from the Point Cloud Library SI generation implementation.
The results are shown in Table 8.1.

It’s worth noting that points are projected into cylindrical coordinates relative to the
same oriented point. Our method can therefore precompute the values of Nax, Nay, Nbx, and
Nbz, as outlined in section 8.3.1.1. Both methods were tested on an Intel Core i7-8750H
CPU.
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PCL (s) Proposed method (s)
7.559 3.084

Table 8.1: Point projection algorithm average execution times for projecting 1 ·109 points.

Figure 8.14: Image matching rates in a scene with 5 objects. For clarity, each sequence has been
sorted individually to produce a monotonically increasing curve.

8.4.4 Matching Rate

The rates of evaluating the distance functions for each method are shown in Figure 8.14. As
can be seen, the RICI distance function’s execution times are similar to the SI’s Pearson
correlation coefficient, while 3DSC is significantly slower.

For all methods, the bandwidth of the GPU memory bus is the main factor limiting the
comparison rate. As our proposed distance function relies on computing the difference
between neighbouring pixels, this would in a naive implementation, have required double
the bandwidth. Instead, we use specialised “shuffle instructions” to read the value of
neighbouring pixels without having to resort to another memory transaction, thereby
halving the needed memory bandwidth. The result is a kernel whose memory bandwidth
requirements, and consequently execution time, is similar to the Pearson Correlation
Coefficient used to compare Spin Images.

We further optimised our implementation by using an early exit condition. Since the
distance score can only go up for every subsequent pixel being processed, if the only
objective is determining whether the distance between two images is smaller than some
given threshold distance (as is the case in many retrieval applications), it is possible to
cease execution when a predetermined distance threshold is exceeded. In our clutterbox
experiment, this threshold can be trivially precomputed. Utilising this early exit condition
resulted on average in a 4.2 times speedup over the SI distance function.

8.5 Observations and Discussion

There are several topics and observations that may be relevant for the interpretation of the
presented results.
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8.5.1 Analysis of Experimental Results

While analysing the results presented in Section 8.4, we made several observations that are
relevant to their interpretation. Figure 8.15 contains a visualisation of a subset of these.

Figure 8.15a shows the result set where RICI experienced the smallest decrease in
matching performance between 0 and 9 added clutter objects in the scene. It is also
possible to observe the clutter resistant properties of RICI. The seat part of the desk chair
is significantly cluttered, while the wheels experience relatively small amounts of clutter
(and remain visible). All three methods are capable of reasonably recognising these exposed
wheels, however, the SI and 3DSC descriptors in large part fail to recognise the cluttered
seat part.

Figure 8.15b shows the result set where RICI experienced the largest drop in performance
between the scenes with 0 and 9 added clutter objects. The primary cause of this drop is
due to the cuboid-like shape and low level of details on the police van, which causes a
low number of changes in intersection counts. In turn, the produced RICI images become
relatively susceptible to clutter.

Figure 8.15c shows the experiment where RICI performed worst on the uncluttered
reference object. The particular object, a bookshelf, has high levels of self-similarity; a
property which is also, to varying degrees, present in other objects in the CAD-oriented
SHREC2017 dataset. Thus any local descriptor would rank vertices belonging to self-similar
regions equally and whether they end up at Rank 0 is a matter of luck. One would expect to
find them within the top s ranks, where s is the number of self-similar vertices. On the other
hand, this is a useful tool for detecting self-similar regions.

To investigate this further we visualised the results of an experiment where the reference
object had countable symmetric features, as shown in Figure 8.16. As opposed to Figure
8.15, we highlighted in red those vertices that were detected in the top s ranks instead of only
rank 0. For instance, vertices in the table’s legs are expected to constitute 12 self-similar
partitions (6 legs with a symmetric front and backside each), which are all detected in the
top 12 results, as shown in Figure 8.16d. Also all vertices in the base of the tabletop are
correctly detected within the top 4 results (4-way symmetry).

In contrast to Figure 8.15c, Figure 8.15d shows the experiment in which RICI had the
highest recognition rate in the uncluttered scene. Little matching performance is lost after
adding significant amounts of clutter.

In Figure 8.15e the experiment whose drop in matching performance was closest to the
total average of all performed 1500 experiments is shown. Worth noting here is the relatively
low drop in recognition performance between the uncluttered scene, and the scene with 9
added clutter objects.

Finally, in Figure 8.15f a rare phenomenon is shown where matching performance
slightly improves between 4 and 9 added clutter objects.

8.5.2 Performance of 3DSC

As can be seen in Figure 8.10, in contrast to the results obtained in previous work [11]
[13], the SI generally outperforms the 3DSC descriptor. The primary cause of this is that
in previous work, the SI resolution was set to the 15x15 bins used originally by Johnson et
al. [18]. In contrast, we used a resolution of 64x64 bins for parity with the RICI descriptor,
which we also consider to be a resolution more suitable to the capabilities of modern
processors. This significant increase in resolution meant the SI descriptor in our testing
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performs better than 3DSC with our chosen settings.
The decision to use the same bin dimensions for 3DSC as in previous work was primarily

motivated by a tradeoff between comparison performance and GPU hardware limitations.
Our implementation makes use of shared memory when comparing 3DSC descriptors, due
to the needle and haystack descriptor both being accessed once for each radial division.
Current GPU shared memory pools allow fitting of approximately 2 image pairs sized at
default settings simultaneously, which implies the number of bins can either be left intact,
or doubled, or performance can be expected to be suboptimal. While it would be possible
to double the number of bins in the 3DSC descriptor (which would make its memory
requirements equal to the SI and RICI) leading to an increase in matching performance, the
matching rate would decrease below acceptable levels because of the distance algorithm
used. We therefore consider the used settings to be the best balance between quality and
execution time for 3DSC.

8.6 Conclusion

In this paper, a clutter resistant shape descriptor, RICI, is presented and evaluated using
a novel evaluation framework for such descriptors, called the clutterbox experiment.
Novel algorithms for cylindrical coordinate projection, circle-triangle intersection, and the
rasterization of triangles in cylindrical coordinates were presented. The largest quantitative
evaluation of the SI, 3DSC, and RICI methods to date is also made, along with a useful
observation for the SI support angle.

The main advantages of RICI are its noise-free nature and generation speed, while the
related distance function makes it clutter resistant. We anticipate that the proposed clutterbox
experiment, which is being made public, will aid future benchmarking of shape descriptors
for cluttered scenes.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.15: Visualised results from 6 selected experiments. For each of the 6 subfigures, the
Clutterbox scene (with 1, 5, and 10 objects) is shown on the left hand side, with the reference object
highlighted in blue. Vertices correctly ranked at index 0 are highlighted in red, other vertices are
coloured grey.
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(a) Top rank (b) Top 4 ranks

(c) Top 6 ranks (d) Top 12 ranks

Figure 8.16: Symmetric object whose vertices were present in the top s ranks of the search results,
with varying values of s.
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1) Norwegian University of Science and Technology, Norway

Abstract

A binary descriptor indexing scheme based on Hamming distance called the
Hamming tree for local shape queries is presented. A new binary clutter resistant
descriptor named Quick Intersection Count Change Image (QUICCI) is also
introduced. This local shape descriptor is extremely small and fast to compare.
Additionally, a novel distance function called Weighted Hamming applicable to
QUICCI images is proposed for retrieval applications. The effectiveness of the
indexing scheme and QUICCI is demonstrated on 828 million QUICCI images
derived from the SHREC2017 dataset, while the clutter resistance of QUICCI is
shown using the clutterbox experiment.

9.1 Introduction

The problem of shape retrieval has thus far primarily been posed as an object based one.
Many proposed algorithms aim to answer queries such as ‘find all chairs’, or ‘find buses
similar to this sample bus’. However, objects are not a single large shape; they are the sum
of many small details that combined produce a larger, more complex whole. For instance, a
wheelbarrow may contain shapes such as a slightly bent flat surface, a curved cylinder, or
a large disc. Individually these shapes may not be unique to that object, but their specific
combination and arrangement makes it an object useful for garden work.

It may be argued that querying of such smaller (partial) shapes fall under the existing
class of partial object retrieval. Thus one can pose retrieval queries such as ’find all objects
that contain a spout like this’, which would presumably retrieve teapots (as well as other
objects with spouts). Unfortunately, partial retrieval requires the availability of the partial
shape that is to be retrieved.

However, in many cases it is useful to be able to pose more general geometric queries
such as ’retrieve objects containing an S-bend’ for finding bottles with that specific cross-
section. This could be easily specified by drawing such a curve in 2D thus not necessitating
the existence of a partial query object.
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One important problem with this type of approach, which would have to describe shape at
a very low level, is the sheer volume of local descriptors that would be generated, potentially
one for every vertex. Not only would they require a large amount of storage but it would
also be quite slow to search them.

We thus propose:

• A robust and efficient novel local binary shape descriptor (called QUICCI)

• An efficient novel indexing scheme called Hamming Tree for bit strings such as
QUICCI

• A novel distance function used for retrieval of bit strings (called Weighted Hamming
distance)

After an introduction to relevant background material in Section 9.2, each of these
contributions are described in the above listed order in Sections 9.3, 9.4, and 9.5, respectively.
The various methods are evaluated in Section 9.6, and some specifics are discussed in Section
9.7.

9.2 Background and Related Work

This section is divided in two parts, corresponding to the main contributions of the paper:
indexing bit strings and local shape descriptors.

9.2.1 Indexing Bit Strings

The need for indexing collections of bit strings primarily stems from two main categories of
methods; those utilising dimensionality reduction to map higher dimensional descriptors on
to shorter binary vectors, and binary feature descriptors.

Dimensionality reduction is often done through a method utilising Locality-Sensitive
Hashing (LSH), initially described by Har-Peled et al. [24]. These aim to represent
larger, more varied feature vectors in shorter bit strings, where similar feature vectors
will produce similar bit strings, thereby significantly reducing the search space for finding
closest neighbours. Popular methods applying LSH include Minhash proposed by Broder et
al. [12] (as well as a more scalable variant [11]), and Simhash [42] by Sadowski et al.

A number of binary feature descriptors have been proposed aimed at various retrieval
applications. For images, the most popular binary features proposed to date include BRIEF
by Calonder et al. [13], a rotation invariant extension named ORB by Rublee et al. [40], and
a both rotation and scale invariant keypoint descriptor called BRISK by Leutenegger et al.
[27]. An example of a binary descriptor for 3D point matching is B-SHOT, proposed by
Prakhya et al. [37]. The lengths of these descriptors vary between 128 and 512 bits.

While LSH derived methods are capable of significantly reducing dimensionality in the
source data, large quantities of indexed data may cause a high number of hash bins to be
created. However, not all hash bins may receive a similar number of entries, and the creation
of all possible bins for a given bit string length is not always feasible, thereby creating the
need to discover the existence of nearby hash bins with relatively low Hamming distances.
This discovery process can be costly, particularly when no close neighbours exist. Binary
feature descriptors are inherently longer, and for that reason face a similar problem.
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Retrieval from large collections of bit strings, where each bit string is ranked by hamming
distance from a query string, is known in the literature as the n Nearest Neighbours Hamming
problem, and a variety of methods have been proposed [10] [9] [3] [31].

However, these early methods are limited in their design to the efficient retrieval of
neighbours with Hamming distances of up to 2, support for short bit sequences only, or both.
More recent methods have addressed the problem more effectively, and do not exhibit the
aforementioned problems.

Norouzi et al. proposed the Multi-Index Hashing (MIH) algorithm [32]. The method
works by dividing all indexed bit strings into equally sized disjoint substrings, and
constructing a hash table for each set of corresponding substrings. These can be queried
by subdividing the query string in a similar fashion, and querying each hash table for
all permutations of the query substring within a given Hamming distance. The set of
candidate matches can be refined when testing subsequent hash tables, as strings which
surpass the Hamming distance limit can be excluded prematurely. The authors show that
MIH outperforms the most significant previous work, however, the requirement that all
permutations within a given Hamming distance must be tried on hash sets becomes a
performance bottleneck when this limit is high.

Chappell et al. proposed a system for approximate nearest-neighbour search of bit strings
[14] aimed at locating such nearest neighbour hashes by creating inverted lists of smaller
bit string “slices”, similar to the divisions done in MIH. However, for larger collections of
longer bit strings, such as binary descriptors, the method does not scale due to each slice list
increasing in size linearly.

Reina et al. [39] presented an improved variation of MIH. This is a hybrid indexing
scheme, where a trie (prefix tree) is used to store the index tree itself, and a separate hash
table is exploited to prune tree branches during a query by checking a specific bit string’s
existence in the index when the tree node’s common prefix has reached a given Hamming
distance limit. In similar fashion to MIH, bit strings are divided into substrings, and from
each corresponding substring a separate index is constructed. While the method is shown to
outperform MIH, it is hampered by the fact that for its efficiency (the pruning of branches
which are known not to contain matches) it relies on the existence of a fixed Hamming
distance limit. Constructing a querying algorithm which does not contain this optimisation
is possible, but as the authors themselves state, this would significantly degrade querying
performance. Moreover, creating one index for each subdivision in the input string, as well
as the corresponding hash table and trie that each of these includes, adds significant storage
overhead.

The Hamming Tree data structure proposed in this paper commands a significantly lower
overhead, as only a single indexing structure is created. The proposed querying algorithm
can dynamically cut off the querying process and does not necessarily require a Hamming
distance limit to be set.

9.2.2 Local 3D Shape Descriptors

Local approaches to 3D object retrieval are advantageous to global methods due to their
inherent resistance to clutter and shape variations. The field is well developed, and numerous
descriptors have been proposed to date, e.g. [33] [10] [14] [12].

One popular descriptor is the Fast Point Feature Histogram (FPFH) [41]. It is constructed
in two phases. First, a Simplified Point Feature Histogram (SPFH) is computed for each
point in the scene, by constructing a Darboux frame to each neighbour in the point’s vicinity,
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and accumulate its components over a fixed number of bins. Next, the FPFH descriptor of a
point is constructed by adding the average SPFH histogram of the point’s neighbours (albeit
also weighted by distance to the point itself) to the point’s own SPFH.

While many such descriptors have been shown to perform well at recognition tasks,
one of their primary challenges is the presence of geometry unrelated to the queried shapes
within the support volume of a descriptor, referred to as “clutter” [13]. Not every descriptor
is equally resistant to the negative effects of clutter on matching performance.

One example of a descriptor that has been shown to resist clutter is the classic Spin Image
(SI) proposed by Johnson et al. [18]. An SI is generated by projecting points uniformly
sampled from a surface on to a rotating square plane whose side is on the axis of rotation.
The plane is divided into square bins, which count the number of point samples projecting
onto them, thus creating a 2D histogram. Similar surfaces will result in a high correlation
between their Spin Images.

An extension to the Spin Image which is related to the descriptor proposed in this paper,
is the Spin Contour descriptor proposed by Liang et al [20]. The authors post-process high
resolution Spin Images by detecting edges between zero and nonzero histogram bins. The
resulting outlines, called “Spin Contours”, are used for shape detection. However, the Spin
Contour can only be used to represent an object in its entirety, due to its inability to detect
edges within a Spin Image. Moreover, due to the method’s reliance on outlines, its clutter
resistance is not expected to be good.

Another descriptor shown to be resistant to clutter is the 3D Shape Context (3DSC)
proposed by Lowe et al [30]. 3DSC has a spherical support volume, which is subdivided into
bins through horizontal and vertical cuts, as well as spheres placed within it. Point samples
of the surrounding region intersecting each bin are subsequently accumulated, creating a
histogram. 3DSC descriptors are compared using a Euclidean distance function.

The Radial Intersection Count Image (RICI) [34] is a descriptor aimed at shape matching
in highly cluttered scenes. A set of three dimensional circles are defined with centers along
the normal to a vertex and with varying radii. The number of intersections between each
circle and the mesh surface is counted, resulting in a 2D histogram. This is similar to
the arrangement of circles seen in Figure 9.1. Comparing exact changes in intersection
counts from a circle to its neighbour can be used to determine correspondence between
RICI descriptors. The authors also propose a distance function that is capable of largely
disregarding clutter within the support region, and show that this results in better matching
performance in heavily cluttered scenes.

9.3 Quick Intersection Count Change Image (QUICCI)

In contrast to the previously proposed RICI descriptor, which stores integers representing
intersection counts, the QUICCI descriptor stores booleans representing changes in
intersection counts. The differences between the two descriptors also propagate to their
distance functions, which due to the different representations require them to be tailored
specifically to each method.

Circles are arranged in layers, each layer containing circles of increasing radii by a
constant amount increment. The distance between circle layers, and the radius increment
between circles within a layer, are equal. One thus forms a cylindrical “grid”, where the
y-coordinate corresponds to a layer of circles, and the x-coordinate to a circle within that
layer. These coordinates in turn can be used to create an image. A visualisation of this is
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Figure 9.1: Visualisation of the “layers of circles” used for the construction of a 4x4 RICI, or a 3x4
QUICCI descriptor (pairs of circles are used, thus the effective width is one less than the number of
circles per layer). The 4 layers containing 4 circles each can be seen in the image, some of which
intersect with the object surface towards the right side. The circles combined form a cylindrical support
volume.

shown in Figure 9.1.
The descriptor is constructed around an oriented point, consisting of a vertex and a

normal, referred to as the Reference Vertex and Reference Normal for the remainder of this
paper. The oriented point defines a three-dimensional line, called the Central Axis. All
circles are orthogonal to the Reference Normal, and centred around the Central Axis. The
Reference Vertex lies at the exact centre of the support region.

Computing a QUICCI descriptor for a Reference Vertex involves intersecting all circles
with the mesh surface, and subsequently subtracting each circle’s intersection count from
that of its smaller neighbour in the same layer, as illustrated in Figure 9.2. If this difference
is nonzero, the corresponding bit will be set to 1, else to 0. This implies that a layer with C
circles will result in a QUICCI descriptor of C−1 bits.

The function for comparing two QUICCI descriptors is asymmetric, and distinguishes
between a needle image (describing the shape that should be located) and a haystack image
(describing any other shape to which a similarity score should be computed). Intersection
count changes present in the needle image are characteristic to the shapes being queried,
and this can be exploited by only including those specific bits in the distance computation.
Due to the QUICCI image’s tendency to be sparse, this excludes the majority of the image’s
bits from the distance computation, making it resistant to clutter (see Section 9.6.2). An
algebraic representation of the distance function is shown in Equation 9.1.

DQUICCI(In, Ih) =
N

∑
r=0

N

∑
c=0

((In[r,c]⊕ Ih[r,c])∧ In[r,c]) (9.1)

Where In and Ih are the needle and haystack images, respectively, I[r,c] denotes the bit at
row r and column c of image I, and N denotes the QUICCI image width. A lower distance
value indicates that the two images are more similar. The ⊕ and ∧ operators denote the
bitwise XOR and AND functions, respectively.

Constructing the QUICCI descriptor as a binary image has significant advantages. Many
of the previously discussed local shape descriptors use 32-bit floating point or integer
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Central Axis

Nearby Mesh

0 0 2 2 4 2 2 0 Intersection counts

QUICCI bit sequence

Figure 9.2: Visualisation of the construction of a single row of a QUICCI descriptor. First,
intersections between circles with increasing radii and a mesh surface are counted (intersection
points are indicated in red). Next, neighbouring intersection counts are compared. If they are different,
the corresponding bit in the QUICCI image is set to 1 (white), otherwise to 0 (black).

representations. The QUICCI descriptor thus uses about an order of magnitude less memory.
This smaller size means both less disk storage and significantly faster comparison rates,
mainly due to the smaller memory bandwidth requirements.

Moreover, QUICCI descriptors can be constructed efficiently on the GPU due to its
advantageous memory access patterns and bandwidth requirements. The intersection
computation between the circles and the mesh surface is the most demanding part of
this process, which can be done using the efficient algorithm presented in [34].

9.4 Hamming Tree

The Hamming Tree is introduced as a means for indexing bit strings of arbitrary length, such
as QUICCI images, for the purpose of k-Nearest-Neighbour searches using the Hamming
distance function [16] as a ranking metric. In this paper, the method is discussed and tested
only on the proposed QUICCI descriptor, where the rows of the complete 2D image are
concatenated to produce a 1D bit string that can be indexed and queried. However, the
application of the tree is not limited to it and can be used for indexing arbitrary bit strings.
For this reason the explanations in this section will use QUICCI images as an example, but
the contents of the tree being indexed is referred to as “bit string” throughout the paper.

The observation central to the design of the tree is that the total set bit count of a bit
string can be used to compute a lower bound of the Hamming distance between a given
pair of bit strings. For example, two bit strings with 3 and 5 bits set, respectively, must
have a Hamming distance of at least 2. This minimum distance can subsequently be used
as a heuristic for navigating a tree, where the set bit count of consecutive, equally sized,
substrings determines which next branch to pick. Each branch taken will place stricter
requirements on the distribution of set bits within the string, increasing the probability a
match is found.
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Figure 9.3: Visual representation of navigating a Hamming tree. On the left hand side, a 64×64
QUICCI image is shown, where two columns are removed at each step (128 bits). The right hand side
shows the corresponding path in the tree.

9.4.1 Hamming Tree Construction

Construction of the tree is done by iteratively inserting bit strings, dynamically expanding the
tree where necessary. It consists of two node types; internal nodes and leaf nodes. Internal
nodes contain references to leaf nodes and other internal nodes. Leaf nodes in turn contain a
list of bit strings. Initially, the tree consists of one root internal node, and one leaf node for
each possible bit count. When the length of all bit strings being indexed is N, that implies
the root node has N +1 children. For levels underneath the root node, the branching factor
is at most the number of set bits corresponding to that node plus one.

The tree is navigated (both during insertion and querying) by iteratively cutting off a
fixed number of bits from the front of the bit string. After removal, the number of set bits
in the remaining string determines the next branch to take in the tree. This process has
been visualised in Figure 9.3. While this approach does not place requirements on the exact
positions of set bits, it aims to filter the indexed bit strings by those whose distribution of
bits are similar to a given query string, thereby increasing the likelihood a relevant match is
found.

Thus to insert a new bit string into a Hamming tree, one navigates down to the leaf node
corresponding to the bit string. The new bit string is then inserted in the list of that leaf node.
If afterwards the count of that list exceeds a constant threshold, the leaf node is replaced by
an internal node and the list of bit strings is distributed among the lists of its new child leaf
nodes.
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9.4.2 Querying the Hamming Tree

Our algorithm for querying a Hamming tree takes in a needle bit string, a Hamming tree,
and the maximum number of search results that should be returned as input, and returns a
list of bit strings whose Hamming distance is closest to the provided needle string.

It first attempts to locate an exact match for the needle string and subsequently widens
the search so as to include the nearest matches within the requested search result limit count.

Internally, the algorithm maintains a list and a priority queue. The list stores the best
search results that have been found up to that point and its size is limited by the search result
limit parameter. The priority queue contains unvisited internal tree nodes (initialised with
the tree’s root node), sorted by the minimum possible distance between the needle and all
possible descriptors in the subtree rooted at a node.

The query algorithm visits one internal node at a time, until the node at the front of the
unvisited node queue (with the lowest minimum distance) has a greater distance than the
worst entry in the search result list, or the unvisited node queue is empty (a similar strategy
to the one adopted by Chappell et al. [7] [14]). This process is illustrated in Figure 9.4.

Visiting an internal node involves iterating over the node’s outgoing edges. When there
is a bit string list at the end of that edge, compute the Hamming distance between the needle
and haystack strings contained within. Any strings which improve the list of search results
are inserted into the search result list. When the outgoing edge points to an internal node, the
minimum distance to that node is computed (as a function of the needle string and the node’s
position in the tree), and if that minimum distance is lower than the current worst entry in
the search result list, it is inserted in the unvisited node queue. This condition prevents the
unvisited node queue from growing indefinitely, and excludes bit strings that are certainly
not going to be part of the search results anyway.

The Hamming Tree is capable of efficiently locating all bit strings which have low
distance scores relative to a needle string. However, as the distances get larger than a few bit
flips, the number of permutations, and thus nodes that need to be visited, increases to such a
degree that it may be necessary to visit a significant part of the tree before the algorithm can
ensure that no better search results exist. It is therefore advisable to set a distance threshold
that is used in conjunction with the worst search result score, and set this threshold as low as
possible when querying a Hamming tree.

In terms of complexity, in the worst case, a completely unbalanced tree is in effect
equivalent to a linked list. Insertion therefore has constant complexity (O(1)), while search
is linear (O(n)).

9.5 Weighted Hamming Distance

With respect to QUICCI, for a proportion of needle images, the previously proposed indexing
strategy is capable of locating QUICCI images containing similar shapes as to the ones
requested in the needle. However, it is not universally applicable for this task. Most notably,
needle images which are close to fully saturated with set (1) or unset (0) bits are likely to
yield search results containing irrelevant shapes. An example of such a needle image and
the corresponding search results can be seen in Figure 9.5. The needle image shown in the
Figure is also a good example of a local shape query of the kind described in Section 9.1.

The cause of this problem is that the Hamming distance considers each bit to be
equivalent in importance. However, when the number of set bits in a needle image is
low, for the purpose of shape retrieval, it is more important that the bits set in the needle
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Insert into Unvisited Node List

Insert into Search Result List

Figure 9.4: Visualisation of the Hamming tree query algorithm. At each iteration, the contents of the
node with the lowest minimum distance in the unvisited node queue, which consists of child internal
nodes and bit string lists, is inserted into the univisited node list and search result list, iff there is a
possibility that they can potentially improve the search results.

Query Hamming Distance

Weighted Hamming Distance

Figure 9.5: Top 30 search results for the shown needle image when search results are ranked using
Hamming distance (above) and the proposed Weighted Hamming (below) distance functions.
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are also set in the haystack image than unset needle bits being unset in the haystack image.
We therefore observe that the lower the number of set bits in the needle image, the more
important it is for these bits to be set in a haystack image. The opposite also holds true for
needle images nearly saturated with set bits.

With this observation, we propose an alternate distance function, called “Weighted
Hamming”, which can be used for ranking QUICCI search results. The function broadly
resembles Hamming distance, but the distance cost for the two types of bit mismatches
(incorrectly set and incorrectly unset) are weighted differently, depending on the proportion
of set to unset bits in the needle image. The definition of this function is given in Equation
9.2.

DWH(In, Ih) =
∑

N
r=0 ∑

N
c=0(In[r,c](1− Ih[r,c]))

max(∑N
r=0 ∑

N
c=0 In[r,c],1)

+
∑

N
r=0 ∑

N
c=0((1− In[r,c])Ih[r,c])

max(N−∑
N
r=0 ∑

N
c=0 In[r,c],1)

(9.2)

Here In and Ih are respectively the needle and haystack images being compared, I[r,c]
represents the bit at row r and column c of a needle or haystack image I, and N is the width
of the QUICCI image in bits.

It’s worth noting that removing the denominators of the fractions in the Equation makes
it equivalent to the regular Hamming distance function. Moreover, the weighted Hamming
distance function is effectively a hybrid between Hamming distance and the clutter-resistant
QUICCI distance function used for locating shapes in clutter heavy scenes shown in Equation
9.1. When the second term in Equation 9.2 is nullified, its ranking becomes equivalent to
the clutter-resistant distance function. However, the removal of the second term also means
there is a possibility for false positives, where a high variation in intersection counts may
cause the desired needle bits to be set accidentally in a given haystack image, even though
the surroundings of the corresponding haystack point does not actually contain the shapes
requested by the query. We therefore consider the function given in Equation 9.2 to be more
suitable for retrieval purposes. An in-depth evaluation of this claim is done in Section 9.6.5.

9.5.1 Indexing for Weighted Hamming

The remainder of this section is dedicated to the construction of an index that allows querying
using the presented weighted Hamming distance function, and a discussion of insights and
some negative results that were obtained in the process. It is assumed that needle images
will generally have a low number of bits set, otherwise a regular Hamming tree is likely a
more suitable solution.

A good indexing strategy is closely tied to the distance function used. For weighted
Hamming, this means that since the function primarily looks for the bits which are set in the
needle image, the indexing structure should focus on discovering those in haystack images.
One observation that can be made for QUICCI images is that edges of 3D geometry tend to
create line or curve responses in QUICCIs. Thus, groups of bits that are in close proximity
to one another in a QUICCI image are likely to be related.

There are a number of ways in which this can be exploited, however, a problem is
the exponential increase of permutations in the possible arrangements of a group of bits.
However, it can be observed that due to the image’s construction, these lines have a tendency
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Figure 9.6: All 21 possible sequences of consecutively set bits in a single column of a 6 bit high
image. White represents unset bits, whereas those marked green are set. A single column may contain
multiple (albeit non-overlapping and separated by at least one unset bit) such sequences.

to be vertical. This allows a relatively simplistic approach where permutation counts remain
within reasonable limits.

The indexing algorithm detects segments of consecutively set bits within each column
of the QUICCI image. Vertical bit sequences are advantageous due to their aforementioned
common occurrence, and limited number of permutations in which they can occur within a
given column.

For every possible bit sequence, an inverted list is created of all images which contain
that exact bit sequence (with the same starting position and length). As an example, all
possible consecutive bit sequences that can be found in an image that is 6 bits high are
shown in Figure 9.6.

Querying involves combining the contents of all lists whose bit sequence overlaps by at
least 1 bit with the given needle image. Since the total number of set bits for each image is
also stored with each entry in the inverted lists, the exact weighted Hamming distance can
be computed and used to rank results.

Unfortunately, the major issue of this approach is also the main advantage of the
Weighted Hamming function; the value of matching set bits between the needle and haystack
images far outweighs the cost of mismatched unset needle bits. The query algorithm must
therefore consider all haystack bit sequences that overlap by at least one bit with the needle
image, and cannot preemptively disregard entries. This causes many inverted lists to be
searched, incurring long query execution times (typically resulting in a cost similar to a
sequential search). Furthermore, the storage requirements of this index are high due to the
inverted list construction.

9.6 Evaluation

All experiments involving time measurements in this section were executed on the same
hardware. For CPU implementations, an Intel Xeon Platinum 8168 was used, and GPU
kernels were executed on an NVidia Tesla V100 SXM3. The remainder of the results were
in part gathered on the NTNU IDUN Cluster [50] computing cluster.

9.6.1 Hamming Tree Search Acceleration

The Hamming Tree was implemented in C++. Nodes and image lists stored on disk are
compressed using the LZMA2 algorithm [9]. This was selected after empirically testing a
number of state-of-the-art compression methods; LZMA2 yielded good compression ratios
and speed for QUICCI images.
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A Hamming Tree was constructed over the first 12,500 objects of the SHREC2017
dataset [31], which resulted in a total of 828.5 million QUICCI images. The resolution of
the QUICCI images was set to 64x64 bits, and the support radius to 0.3 (for consistency
all objects are translated and scaled to fit into a unit sphere prior to QUICCI generation).
The number of bits removed at each level of the Hamming tree was set to 128 bits, or 2
image columns. The threshold at which leaf nodes (image lists) are split was set to 256
images, which balances index compactness with granularity. 1000 queries were executed on
the constructed Hamming Tree. The needle images were randomly selected from the entire
SHREC2017 QUICCI dataset (51,109 objects).

While the algorithm can to some extent be parallelised, the testing was done using
a single threaded implementation. The time from the start of each query to when all
nearest neighbours up to each Hamming distance were located using the Hamming Tree
was measured. These timings were averaged across the 1000 queries for every value of
Hamming distance. For comparison, the cost of performing a linear search through the set
of QUICCI images is also reported; this has a constant time as it has to traverse the entire
list of 828.5 million QUICCI images. The results are shown in Figure 9.7.

The Figure shows that, particularly for small bit distances, the Hamming Tree is very
effective at reducing query times. This makes it a good candidate for neighbour discovery
when using LSH-derived methods. Query execution times are highly dependent on the
presence of close neighbours to a given needle image and the number of search results
requested, but generally follow the timing pattern shown.

It is worth noting here that the average number of set bits per QUICCI image in the
created dataset was measured to be 610.1. When the Hamming Tree reaches parity with a
linear search at a Hamming distance of about 800, the relevance of the search results is not
expected to be high. Moreover, the vast majority of the algorithm’s execution time is spent
on reading and decompressing files stored on disk. This applies to both the sequential and
the indexed query implementations. Chappell et al. [14] performed all searches in memory,
which complicates direct comparison of the two implementations.

Figure 9.7: Chart showing the average time in seconds required to locate all neighbours up to a given
Hamming distance for a Hamming Tree and a linear search.
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9.6.2 QUICCI Descriptiveness and Clutter Resistance

The descriptiveness and clutter resistance of the QUICCI descriptor is evaluated using the
Clutterbox experiment proposed in [34], and used to compare the performance of QUICCI
against the RICI, SI, 3DSC, and FPFH descriptors. The RICI descriptor was chosen due to
its similarity to the QUICCI descriptor, SI and 3DSC for being the most referenced methods
known for their clutter resistance [13], and FPFH is an example of a popular descriptor.

The experiment aims to quantify the clutter resistance of the descriptors by measuring
the response of a tested descriptor to increasing levels of clutter. The experiment is executed
a large number of times by varying objects and their transformations, in order to provide
robust results independent of object type.

The Clutterbox experiment is performed using the following steps:

1. Define a cube volume whose edge size is s.

2. From a large object collection, draw n objects at random.

3. Fit each of the randomly chosen objects in a unit sphere centred around the origin.

4. From the selected objects, select one at random to be what is referred to as the
“reference object”.

5. Compute a descriptor for each unique vertex in the reference object, thereby creating
the set of reference descriptors {RD}.

6. Iterating over the list of chosen objects in a random order, though always starting with
the reference object, do the following for each:

a) Place the object at a randomly chosen orientation and position whose bounding
sphere fits entirely within the cube volume.

b) Compute a descriptor for each unique vertex present in the combined mesh
present inside the cube volume. The result is a set of cluttered descriptors {CD}.

c) For each d ∈ {RD}, compute a list of distances for each c ∈ {CD}, and sort it.
Locate the corresponding cluttered descriptor in this list, and store its rank in
the list (0≤ rank ≤ |{CD}|−1). Note that lower ranks are better, and rank 0 is
the front/top of the list.

d) From the computed list ranks, construct a histogram where bin i stores the
number of occurrences where the corresponding cluttered descriptor was found
at rank i.

The procedure is repeated for each tested descriptor, where all randomly selected values
are kept constant. The result of the experiment is therefore a list of histograms, one for each
level of clutter. While performing the experiment, the parameters listed in Table 9.1 were
used.
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Parameter Value
Clutterbox size s = 3
Object counts n = 1, n = 5, n = 10
Support radius (all descriptors) r = 0.3 1

QUICCI resolution 63x64 bits 2

RICI / SI resolution 64x64 pixels
SI support angle 180◦ (disabled) 3

3DSC minimum support radius rmin = 0.048 4

3DSC bin dimensions J = 15, K = 11, L = 12 5

FPFH bins per feature 11 6

Mesh sampling resolution 10 point samples
per triangle in mesh 7

Table 9.1: Parameters that were used during the evaluation of the different methods.

The clutterbox experiment was executed 1,500 times on objects from the SHREC2017
dataset [31], which contains a total of 51,162 triangle meshes. An exception has been made
to the FPFH descriptor, which was only executed 500 times due to excessive execution times.
For clarity, all curves of this descriptor have been stretched for easier comparison against
other descriptors.

To visualise the resulting histograms, the fraction of search results correctly being ranked
as the best match for each uncluttered reference descriptor (at rank 0) was computed for each
descriptor and clutter object count. The produced measurements exhibited a high degree
of noise, which did not allow the data to be displayed in a comprehensive manner. Each
sequence was therefore sorted individually to produce a monotonically increasing curve, for
the purpose of chart readability. The result of this is shown in Figure 9.8. The clutterbox
experiment was implemented in C++, and the tested descriptors have been implemented on
the GPU using CUDA 10.1.

The results show that the QUICCI descriptor outperforms previous work in terms of
resistance to clutter. However, it is also advantageous to investigate the relationship between
the degree of clutter present in the support radius, and the resulting matching performance
of each descriptor. To this end, a set of heatmaps was created from the search results of
n = 5 (4 added clutter objects), showing this relationship. This result set corresponds to a
total of 70.0M needle descriptors and associated search results. These can be seen in Figure
9.9. The vertical axis in these heatmaps represents the rank where the correct search result
was found (lower rank is better), and the horizontal axis denotes the fraction of clutter (the
proportion of surface area in the descriptor’s support region not belonging to the object being
queried). Higher fractions of clutter generally imply greater difficulty for a given descriptor
to correctly identify the correct matching vertex.

1Note that all objects are first fit inside a unit sphere.
2Corresponds to the equivalent RICI resolution.
3We have not found evidence for its claimed benefits.
4Proportionally equivalent to previous work.
5Equivalent to previous work [13] [11].
6Equivalent to previous work.
7SI, 3DSC, and FPFH require point clouds, necessitating uniform sampling.
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Figure 9.8: Fraction of search results that were correctly ranked at the top of the list of search results
for each tested descriptor and added clutter object count. Each sequence has been sorted individually
to create monotonically increasing curves.

From these heatmaps it can be seen that the QUICCI descriptor has similar characteristics
to RICI in terms of clutter resistance, albeit with slightly better performance. This reflects the
observations from the results of Figure 9.8. One possible reason why QUICCI outperforms
RICI, is that RICI compares absolute intersection counts, while QUICCI only looks at
differences. In the presence of clutter, these absolute values may become noisy, and
consequently reduce matching performance.

The FPFH heatmap has a distinct appearance relative to the other methods, which can be
attributed to its poor matching performance, particularly in cluttered scenes. The heatmap
only counts results that appeared in the top 256 ranks, and shows that even in situations with
low fractions of clutter, very few results end up within the top 256 ranks shown in the image.

9.6.3 QUIICI Comparison Rate

The number of QUICCI image comparisons performed per second was also measured during
the experiments and compared to the other descriptors. In similar fashion to Figure 9.8,
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QUICCI RICI SI 3DSC FPFH

Figure 9.9: Heatmaps showing the relationship between varying degrees of clutter and each
descriptor’s matching performance. The horizontal axis represents fraction of area in the support
region not part of the matched object, while the vertical axis denotes ranks in the list of search results
(where lower is better).

Figure 9.10: Comparison of the number of descriptor pairs each method can compare per second.
For readability, each sequence has been sorted individually to create monotonically increasing curves.

there was a degree of noise present in the results, and sorting each shown curve individually
allowed for the best chart readability. The results are shown in Figure 9.10. As can be seen,
many billions of comparisons can be done per second and, on average, outperforms previous
work by over an order of magnitude. This is due to the binary nature of QUICCI.

For the RICI measurements, two variants of the distance function are tested. When
an upper distance bound is known, as is often the case in retrieval applications, distance
computation can cease early as this value can only grow. Results with early exit disabled
serve as a baseline execution time, whereas those with the early exit enabled represent a
best case. While this early exit could also be implemented for QUICCI images, it is not
expected to improve performance much, if at all, due to the additional instruction overhead.
Instruction counts are more relevant for QUICCI than RICI, as many QUICCI bits can be
compared with a single bitwise instruction, whereas RICI compares each pixel individually.
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Figure 9.11: A plot showing the relationship between scene size measured in triangles and the rate at
which descriptors are computed per second.

9.6.4 QUICCI Generation Rate

Finally, the rate at which the tested descriptors are computed was measured during the
performed experiments. The results are shown in Figure 9.11. The chart shows that QUICCI
and RICI descriptors can be generated at similar speeds, which is about an order of magnitude
better than the next best descriptor.

9.6.5 Weighted Hamming

An experiment was constructed in order to quantify our claim that the Weighted Hamming
distance function is superior for retrieval purposes of QUICCI images over the clutter
resistant distance and Hamming distance functions. The premise of this experiment is to
evaluate the distance values returned by each distance function. We compare two different
settings: where the surface points being compared have distinctly different support regions
and where the support regions are quite similar.

The values returned by the distance functions where object surfaces are distinctly
different gives insight into the range of distances that can be expected to be returned
by the distance function under “nominal” conditions.

With that background, one can then investigate what happens to the distance values
when point pairs have varying degrees of similarity. In order to obtain quantitative results,
it must be possible to generate these varying degrees of similarity automatically 8. It is
possible to simulate variations in geometric similarity through the addition of geometry,
whose shape does not necessarily matter. In the devised experiment, spheres are added
touching on randomly sampled points on the object’s surface. An example of an object with

8There exist various ways of generating variants of similar shapes, notably those utilising shape grammars
[23] [15]. However, the complexity of constructing these shape grammars tends to be high, while the variety of
local surfaces produced is often low due to the reuse of a limited set of “aphabet” shapes.
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spheres added to its surface in this manner is shown in Figure 9.12.

Figure 9.12: A visualisation of an object on which 500 spheres have been placed (the highest number
used in the described experiment).

For computing distance values under “nominal” conditions, two objects were selected
from the (same as previously used) SHREC2017 dataset [31] at random, and scaled to
fit within a unit sphere. For each unique vertex in each object, a QUICCI descriptor was
computed with the same generation parameters as in Section 9.6.2. Each pair of QUICCI
descriptors corresponding to vertices with the same index9 across the 2 objects (which have
a random degree of similarity) was used to compute the distance value for each of the 3
distance functions. These values were used to construct the histograms of Figure 9.13a. This
process was repeated for 10,000 object pairs, generating 176.2M image pairs.

The next step is to check the stability of the distance functions across the same object
vertices as the environment of the vertices is changed. To this end, a random object from
the SHREC2017 dataset is selected and fitted within a unit sphere. For each object vertex,
a QUICCI descriptor is computed. Next, 10 random points on the object’s surface are
chosen and normal vectors are computed for these points by interpolation. At each of these
points, a sphere of radius 0.05 units is placed such that it touches the selected sample point.
This is achieved by displacing the sphere’s origin by its radius along the point’s normal.
After each step of adding 10 spheres (up to a limit of 500 spheres), QUICCI descriptors
are computed for the vertices of the original object. Distance values are then computed for
each of the 3 distance functions between corresponding vertex QUICCI descriptors of the
original and modified objects. After repeating this experiment for 1000 random objects from
SHREC2017, histograms of the combined distance values are computed (from a total of
26.79M QUICCI images), see Figure 9.13b.

A good distance function should clearly discriminate between relevant and irrelevant
descriptors with respect to a query. For the presented experiment, objects with fewer spheres
applied to their surface should be considered closer to their original (unmodified) version
by a given distance function. As can be seen from Figure 9.13b, this is indeed the case; all
tested distance functions return on average lower scores for objects with fewer spheres.

However, the performance of these distance functions varies when it comes to their
ability to discount images not relevant to the needle. For example, when comparing results
for Hamming Distance, in Figure 9.13a (right) and 9.13b (right) it can be observed that

9The number of generated images is bounded by the object with the fewest vertices.
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(a) Distribution of measured distance values under nominal conditions for each tested distance
function.

(b) Visualisation of all 51 distance function response histograms produced when comparing object
pairs having varying degrees of surface similarity. Each column represents a single histogram similar
to the one shown in Figure 9.13a, corresponding to the distance value distribution when the modified
object has a set number of spheres applied to its surface.

Figure 9.13: Visualisation of the histograms of distance function responses that were obtained as part
of the evaluation of these functions under both nominal and similar surface conditions.

the histograms (columns of Figure 9.13b (right)) quickly approach the histogram of Figure
9.13a (right) for random vertices.

At a glance, the clutter resistant distance function appears to have the same issue.
However, closer inspection of the data shows that the cause of this behaviour is the commonly
low number of set bits present in needle images. As the distance function is bounded by the
number of set bits present in the image (with the exception of cases where none are set),
computed distances have a tendency to be low. However, the vast majority of scores ends up
being the highest possible score that the distance function allows for that particular needle
image.

While this behaviour is effective at discerning close matches (as demonstrated in Section
9.6.2), it is less advantageous for retrieval purposes, where more granularity is desirable for
the purpose of ranking search results. The Weighted Hamming distance function is the one
of the three tested functions which is the most capable of this. Moreover, of the three, it is
also the one which shows the clearest separation between distances of matching surfaces
relative to distances measured under ’nominal’ conditions. A significant amount of variation
can be applied before the range of computed scores reaches the same territory as the one
shown in the nominal occurrence chart above. Moreover, under these circumstances only a
small fraction of results overlaps with this nominal range. For these reasons we conclude
that, among the tested distance measures, the Weighted Hamming distance is most suitable
for the purposes of retrieval.
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9.7 Issues with FPFH

Some issues were discovered while testing the well-known FPFH descriptor. The most
notable of which pertains to the equation used to construct the FPFH during the second stage
of generation, listed in Equation 4 in [41], reproduced here as Equation 9.3.

FPFH(p) = SPF(p)+
1
k

k

∑
i=1

1
ωk
·SPF(pk) (9.3)

The Equation computes an FPFH descriptor at point p, using a set of SPF histograms
that were computed for each point in a previous step, and includes all k neighbours present
within the support radius.

Of specific interest here is the distance weighting component 1
ωk

, which discounts the
contribution of each point neighbour’s SPF histogram by the distance to the point p for
which the FPFH histogram is computed. The issue is that, as this distance is not normalised,
the weighting between the left (SPF(p)) and right (∑k

i=1
1

ωk
·SPF(pk)) terms of the equation

depend on the scale of the object.
Also worth noting is that the original FPFH paper does not give a distance function to

compare descriptors. We have used Pearson correlation in our implementation.
Finally, one detail that we noted in the currently available GPU implementation of Point

Cloud Library [29] is that the aforementioned weighted distance factor uses the squared
distance as a the value of ωk, which deviates from the original paper.

9.8 Conclusion

This paper addressed the problem of querying by local shape. A new binary descriptor,
QUICCI, is proposed which is robust to clutter, highly descriptive and quite small in size.
To overcome the cost of searching the huge number of such descriptors that result from
an object collection, a binary image indexing scheme, the Hamming Tree, was proposed
which can significantly accelerate searching, especially for small Hamming distances. The
effectiveness of an indexing structure is, however, highly dependent on the distance function
used. The Weighted Hamming distance function is also proposed, which can be used to rank
QUICCI descriptors in a retrieval setting.
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Abstract

A complete pipeline is presented for accurate and efficient partial 3D object
retrieval based on Quick Intersection Count Change Image (QUICCI) binary
local descriptors and a novel indexing tree. It is shown how a modification to
the QUICCI query descriptor makes it ideal for partial retrieval. An indexing
structure called Dissimilarity Tree is proposed which can significantly accelerate
searching the large space of local descriptors; this is applicable to QUICCI
and other binary descriptors. The index exploits the distribution of bits within
descriptors for efficient retrieval. The retrieval pipeline is tested on the artificial
part of SHREC’16 dataset with near-ideal retrieval results.

10.1 Introduction

There exist many circumstances in which it is desirable to determine which larger object a
smaller surface patch belongs to; occlusions and missing parts can result in this problem.
This problem is known as Partial 3D Object Retrieval, and a number of methods have
been proposed to date which address it [23] [29] [43] and finds application in areas such as
archaeology [47] [19].

One successful strategy for partial 3D object retrieval is using the descriptiveness of
local shape descriptors, as local surface similarity tends to be maintained when other parts
of the object are missing. A problem with retrieval using local shape descriptors is the large
number of such descriptors that are generated, potentially one for every vertex. This can
be somewhat counteracted by using a salient point detector, but then the retrieval quality is
affected by the consistency of this detector. An efficient indexing scheme is therefore called
for.

To address this issue, a complete pipeline is presented in this paper which is capable
of indexing and retrieving arbitrary 3D objects based on partial queries. Under ideal
circumstances the system can achieve near perfect retrieval, even with low degrees of
partiality, within reasonable time constraints.
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The pipeline utilises the recently introduced Quick Intersection Count Change Image
(QUICCI) descriptor [52] whose binary nature makes it storage-efficient and fast to compare.

As part of this complete partial retrieval pipeline, the following novelties are introduced:

1. An indexing scheme called “Dissimilarity Tree” for efficiently retrieving binary
descriptors, especially nearest neighbours with high Hamming distance.

2. An algorithm for accelerating partial 3D object retrieval using the aforementioned
indexing scheme.

3. An adaptation of the QUICCI descriptor generation process to greatly improve its
performance in partial 3D object retrieval applications.

The primary descriptor and distance function used in this pipeline, along with relevant
background, is given in Section 10.2. The pipeline is described at a high level in Section
10.3, and the two other main contributions which are used in this pipeline are detailed in
Sections 10.4 and 10.5. The various methods are evaluated in Section 10.6, and some aspects
of those are discussed in Section 10.7.

10.2 Related Work

The problem of Partial Object Retrieval has to date received significant attention, both using
global and using local descriptors. A number of binary descriptor indexing strategies have
also been proposed. This work builds upon the QUICCI local descriptor and the Weighted
Hamming distance function, which are discussed in detail.

10.2.1 Partial Object Retrieval

Partial Object Retrieval approaches presented to date can be divided into three main
categories; Bag of Visual Words (BoVW) based, View-based, and Part-based [29] [43].
Other methods also exist, addressing particular applications such as CAD shape retrieval [5].

BoVW based methods use local feature descriptors to exploit that from the perspective
of a local neighbourhood, shapes in a query remain similar to those in the corresponding
object in a database. Lavoué et al. [26] segment a surface into small patches, and compute
a codebook for each patch. Object classification is subsequently done by matching new
patches against words in the codebook. Savelonas et al. [45] propose an extension to the
FPFH [41] descriptor called dFPFH, which is used for both local and global matching in
their retrieval pipeline. Ohbuchi et al. [34] combine the BoVW and the view-based paradigm
by computing a bag of features over range images of an object rendered from different
viewpoints, and comparing features of a query against those in a codebook. More recently,
Dimou et al. [18] used features computed from patches from segmented depth images.

Part-based methods use segmentation to divide a shape into smaller distinct patches,
computing one feature vector for each of them, then match these against a database of
feature vectors from other parts. Agathos et al. [1] used a graph of segmented parts to locate
objects with a similar structure. Tierny et al. [51] used Reeb graphs for both segmenting and
encoding relationships between surface patches for partial object retrieval. Furuya et al. [21]
proposed the RSVP algorithm, which partitions an object into random cuboid volumes, and
describes each partition as a binary string, against which other parts can be matched. They,
and others, [22] later utilised a Siamese-like network pair to project handcrafted features
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Figure 10.1: Visualisation of a 4x4-bit QUICCI descriptor construction along with the corresponding
generated descriptor. White pixels in the descriptor image correspond to a bit value set to 1 (i.e.
intersection counts changed), and 0 otherwise.

extracted from segmented parts into a common feature space, allowing for fast surface patch
comparison.

View-based methods are able to adapt work on image matching and recognition to 3D
shapes. Examples of such methods include work by Axenopoulos et al. [20], who proposed
a combination of several features computed from object silhouette outlines to create the
Compact Multi-View Descriptor (CMVD). The SIFT local feature [30] is used by several
methods on images extracted from 3D shapes [20] [33]. One specific example is work by
Sfikas et al. [47], where the Authors used the PANORAMA descriptor [35] for matching
parts of archaeological to complete objects. More recently, Tashiro et al. [23] proposed a
pipeline relying extensively on the SURF [6] local feature descriptor.

In the SHREC’16 Partial 3D Object Retrieval track [38], a number of additional view-
based methods were introduced. Aono et al. presented three variant methods which each
encoded KAZE features [2] extracted from different object views with Vector of Locally
Aggregated Descriptors (VLAD) [25], Gaussian of Local Distribution (GOLD) [46], and
Fisher Vectors (FV) [36]. Pickup et al. used a variant of the view-based method by Lian et
al. [28], using rendered views and SIFT descriptors to find matching points.

10.2.2 The QUICCI Local Binary Descriptor

The Quick Intersection Count Change Image, proposed by van Blokland et al. [52], is a
binary descriptor which captures changes in intersection counts between circles and an
object’s surface. These circles are laid out in layers, where each layer contains circles with
linearly increasing radii. A visualisation of this structure can be seen in Figure 10.1.

As can be seen in the Figure, a grid of 4x4 circles is intersecting a 3D surface. A total of
5 circles intersect with this surface, and the remainder do not. To its right the corresponding
QUICCI descriptor is shown, where black pixels indicate a bit value of 0, and white a value
of 1. Note that each bit has a corresponding circle, where the bit in the bottom left corner of
the descriptor is mapped to the innermost circle on the bottom layer.

Each bit in the descriptor denotes whether the number of intersections between the circle
corresponding to that bit, and the circle one step smaller on the same layer, has changed.
In the Figure, the bottom right 2x2 bits all have corresponding circles which intersect the
object surface, which causes a response in the bottom half of column 3, but not in the bottom
half of column 4, as the intersection counts did not change.

The resulting descriptor will commonly show outlines of surfaces present near the
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oriented point around which the descriptor is generated. This point lies at the centre of the
grid of circles, which on the descriptor corresponds to the grid point closest to the arrow’s
head in Figure 10.1.

10.2.3 Weighted Hamming Distance Function

There exist two possible bit errors when comparing a pair of binary descriptors (correspond-
ing to a query shape and a target shape from a database, respectively) using a bitwise distance
function such as Hamming distance. A type A error occurs when a bit set to 1 in the query is
set to 0 in the target, and a type B error represents the case where a bit set to 0 in the query
is set to 1 in the target. The Hamming distance function considers both of these bit errors as
equivalent in importance.

Meanwhile, the Weighted Hamming distance function proposed by van Blokland et al.
[52] observes that it may not always be desirable to weigh both types of bit errors equally. In
the case of QUICCI descriptors, bits set to 1 represent surface outlines. A good match must
also contain these bits, but may also include others due to responses from other geometry.
For QUICCI descriptors the type A error is therefore more important than the type B error.

The Weighted Hamming distance function normalises the contribution of each bit error
type by the total number of such errors that can occur, thereby weighting the importance of
each bit error type equally as a group. Thus the Weighted Hamming distance function is
asymmetric. In a sparse descriptor, this implies that a type A error is weighted much more
than a type B error. The distance function is listed in Equation 10.1.

δWH(Dq,Dt) =
∑

N
r=1 ∑

N
c=1(Dq[r,c](1−Dt [r,c]))

max(∑N
r=1 ∑

N
c=1 Dq[r,c],1)

+
∑

N
r=1 ∑

N
c=1((1−Dq[r,c])Dt [r,c])

max(N−∑
N
r=1 ∑

N
c=1 Dq[r,c],1)

(10.1)

Where Dq and Dt are respectively the query and target descriptors being compared,
D[r,c] represents the bit at row r and column c of descriptor D, and the size of the descriptor
is NxN bits.

Experiments by van Blokland et al. showed that using the Weighted Hamming distance
function resulted in improved retrieval performance relative to Hamming distance of QUICCI
descriptors when additive noise was applied.

10.2.4 Indexing of Binary Descriptors

The need for indexing binary descriptors commonly arises in algorithms representing shape
features as binary descriptors, but also in other fields such as dimensionality reduction
through Locality-Sensitive Hashing (LSH) [24]. Some popular methods utilising LSH
include Minhash proposed by Broder et al. [12] [11] and Simhash [42] by Sadowski et al.

There exist a number of methods which produce and compare binary shape features,
such as BRIEF by Calonder et al. [13], an extension called ORB by Rublee et al. [40], and
BRISK by Leutenegger et al. [27]. A binary descriptor which has specifically been proposed
for 3D point matching is B-SHOT by Prakhya et al. [37], and the aforementioned QUICCI
descriptor by van Blokland et al. [52].

Local binary descriptors are often produced in large quantities, which raises the need for
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Figure 10.2: An overview of the proposed partial retrieval pipeline. A dissimilarity tree is constructed
offline over the QUICCI descriptors of a set of complete objects. Querying these objects with a partial
object involves computing modified QUICCI descriptors for each vertex, iteratively, selecting one such
query descriptor at random, determining the closest indexed descriptor to the one randomly selected,
and finally voting for the object from which the nearest neighbour originated. When an object has
reached a set number of votes, it is deemed the closest match to the partial query.

acceleration structures capable of efficiently locating nearest neighbours in Hamming space.
A number of methods have been proposed for this purpose [10] [9] [3] [31]. Unfortunately,
these initial attempts only support short descriptors, are limited to the retrieval of neighbours
up to a Hamming distance of 2, or both. This significantly limits their applicability.

More recent work includes the Multi-Index Hashing (MIH) algorithm proposed by
Norouzi et al. [32], which subdivides descriptors into regions, building inverted hash tables
for each subdivision. Chappell et al. [14] proposed a similar approach, instead using inverted
lists. An improved variation of MIH was presented by Reina et al. [39], utilising a prefix
tree to store the index itself, and a separate hash table for pruning irrelevant branches while
querying.

The Hamming Tree proposed by van Blokland et al. [52] exploits the notion that
descriptors with a low Hamming distance must by necessity have a similar number of bits
set to 1. The tree first categorises descriptors by the total number of 1 bits, then divides
descriptors into regions, categorising them by the number of bits set to 1 within each region.

Unfortunately, the previously introduced binary indexes typically assume that the nearest
neighbour to a query in the database has a low Hamming distance, which is not a property
which can be assumed consistently. This issue is particularly significant for the application
of QUICCI descriptors on the problem of partial retrieval. The discussed indexing strategies
tend to scale poorly with increasing distance from a descriptor to its nearest neighbour,
which makes their application intractable when this distance is high.

Moreover, they cannot be adapted to use the Weighted Hamming distance function,
which is a highly desirable property for the application of QUICCI descriptors.

10.3 Partial Retrieval Pipeline

The proposed partial retrieval pipeline consists of an online and offline component, and is
visualised in Figure 10.2. In the offline phase, one QUICCI descriptor is extracted from
each vertex in a set of complete objects. Using these descriptors, a dissimilarity tree is
constructed, which is described in detail in Section 10.4.

The online phase takes a partial query object as input. In similar fashion to the offline
phase, one descriptor is computed for each of the object’s vertices, albeit a modified version
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Figure 10.3: A visualisation of vote counts received by objects as more query descriptors are
processed, while using the proposed pipeline to locate the nearest neighbour of a single partial query
object. Each line represents a single object from the SHREC’16 partial retrieval dataset [38]. For
example, the best match (blue line) received 300 of the first 700 votes cast. The linear nature of these
curves suggests that the probability that a particular object will receive a vote is approximately constant
across the voting process.

of the QUICCI descriptor is used here, see Section 10.5. The voting steps outlined below
are then repeated until an object match is found or all vertices have been exhausted.

One descriptor is first selected from the set of query descriptors at random. Using the
dissimilarity tree structure, the nearest neighbour in terms of Weighted Hamming Distance
is found in the set of descriptors extracted from the complete objects. Next, a vote is cast for
the object containing the found nearest neighbour. This process is repeated until an object
has received a predefined number of votes (threshold), upon which this object is considered
the best match for the partial query. Our evaluation shows that a threshold of 10 votes is
sufficient. Additional search results can be obtained by evaluating additional queries until
the desired number of other objects reaches the vote threshold.

The motivation for using a voting threshold to exit the counting process can be seen in
Figure 10.3, which shows the number of votes received by different objects with respect to
the number of processed query descriptors using the proposed method. As this relationship
is approximately linear, it is possible to terminate the search early by using a vote threshold.

For each randomly selected query descriptor, only the nearest neighbour descriptor is
considered. The motivation for not considering other neighbours in addition to the nearest is
shown in Figure 10.4. The Figure shows the average Weighted Hamming distance scores
of the closest 50 matches to 1,000 descriptor queries. For legibility, distance scores for
each neighbour have been normalised relative to the Weighted Hamming distance of the
nearest neighbour (search result index 0) of the same query. The Figure shows that the
average distance score to the query descriptor increases between the nearest and second
nearest neighbours by over a factor of 7, where further neighbours exhibit similar scores.
We therefore conclude only the nearest neighbour to the query is relevant to the retrieval
process.
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Figure 10.4: Average Weighted Hamming distance of the top 50 descriptor search results (where the
top search result has index 0) of 1,000 descriptor queries normalised to the distance score of the top
search result. As the average distance between the top and second ranked search result is high, it is
unlikely that any result but the best result is relevant to the query.

10.4 Dissimilarity Tree for Indexing Binary Descriptors

The Hamming Tree [52] and other binary descriptor indexing structures proposed in previous
work (see Section 10.2.3) have the ability to efficiently locate descriptors similar to a
given query when the Hamming distance to those matches is generally low. However, in
applications where this distance is large, the search time of these methods tends to increase
significantly.

This problem has a high likelihood of occurring when using QUICCI descriptors for
partial object retrieval. In this case, a partial query descriptor will generally contain a subset
of the bits set compared to those for the correctly matching descriptor of the complete object.

A new tree indexing structure, the Dissimilarity Tree, is proposed here which is capable
of efficiently retrieving nearest neighbours when the distance to these neighbours is high. The
Dissimilarity Tree is also capable of supporting the Weighted Hamming distance function
for querying, which has been shown to be superior for QUICCI descriptor ranking [52]. The
Dissimilarity Tree can be used for arbitrary binary descriptors, but in the remainder of this
paper will be explained in the context of QUICCI descriptors.

The Dissimilarity Tree is a binary tree that exploits the assumption that bits set to 1
in a binary descriptor are not distributed randomly, and aims to cluster descriptors which
have similar bits set. It does so by attempting to create subtrees where patterns of bits are
consistently set in all contained descriptors.

When it is known that a specific bit will have a consistent value (0 or 1) across all
descriptors in a subtree, it is possible to compute the (Weighted) Hamming distance that will
be incurred for that bit for a given query descriptor. The more effectively this can be done,
the greater the ability of the search algorithm to prune irrelevant branches.

For each node in the Dissimilarity Tree, two characteristic binary images are computed,
one representing the bitwise sum (OR) of all descriptors contained in both subtrees and one
representing the bitwise product (AND). These allow a minimum distance to be computed
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Figure 10.5: Visualisation showing the four top layers of the Dissimilarity tree generated from
all descriptors in the SHREC’16 dataset. Each node is represented by its sum image. All outgoing
branches from nodes directed to the left represent the similar branch of that node, and those directed to
the right are those that are dissimilar. Two examples of leaf nodes are also shown, along with a subset
of the descriptors contained within each.

from the query descriptor to all descriptors contained in that particular node, as the sum and
product descriptors denote which bits in a subtree are consistently set to 0 and 1, respectively.

At each node, the set of descriptors is partitioned into two roughly equal subsets. The
similar subset contains descriptors which maximise the number of bits consistently set to 0
or 1. The remaining descriptors form the dissimilar subset. A visualisation of an example
dissimilarity tree can be seen in Figure 10.5.

For descriptors which are either highly sparse or dense, the product and sum images
respectively do not provide meaningful value to the querying process when the Weighted
Hamming distance function is used. Since QUICCI descriptors are highly sparse, we omit
the product image. Section 10.4.1 details the algorithm for constructing a Dissimilarity Tree
while Section 10.4.2 describes the querying process.

10.4.1 Dissimilarity Tree Construction

The tree construction algorithm described in this section details how a dissimilarity tree can
be constructed from a fixed set of descriptors. However, it should be possible to construct a
tree incrementally by recomputing only the affected parts of the tree, in a similar fashion to
the heapify algorithm [17].

The root of the tree represents the set of all descriptors in the index. The tree construction
algorithm divides this set into two approximately equally sized disjoint subsets. The similar
subset of these contains descriptors where regions of bits set consistently to 0 or 1 are
created, by moving descriptors where those bits are set otherwise to the dissimilar set. For
each of these subsets a new node is created, and the procedure is repeated recursively until
the set of descriptors represented by a node is smaller than a threshold. Pseudocode for the
construction algorithm is shown in Listing 2.

In order to maximise the size of the region of bits set to a consistent value, the number
of descriptors in a given set is determined for which a specific bit is set to the value 1, which
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def buildDissimilarityTree(node, descriptors):
if descriptors.length <= maxDescriptorsPerLeaf:

markAsLeafNode(node)
return

similarDescriptors = descriptors.copy()
dissimilarDescriptors = create_set() # empty
# Count popularity of set bits in descriptors
counts = computeBitResponseCounts(descriptors)
bitOrder = sortAscending(counts)

# Split descriptors into similar and
# dissimilar subsets
for bitIndex in bitOrder:

for descriptor in similarDescriptors:
if descriptor[bitIndex] == 1:

similarDescriptors.remove(descriptor)
dissimilarDescriptors.insert(descriptor)

# Recurse for similar and dissimilar branches
node.similarBranch = create_node()
buildDissimilarityTree(node.similarBranch,

similarDescriptors)
node.dissimilarBranch = create_node()
buildDissimilarityTree(node.dissimilarBranch,

dissimilarDescriptors)

node.productImage = computeAND(descriptors)
node.sumImage = computeOR(descriptors)

Listing 2: Pseudocode of the Dissimilarity Tree construction algorithm.

will be referred to as the popularity of that bit. The bit popularity can be visualised in a
heatmap, an example of which, computed over the entirety of the SHREC’16 Partial Object
Retrieval dataset, is shown in Figure 10.6. As can be seen in the Figure, there are areas
where bits are frequently set to 1 (middle left), and others less so (top and bottom left, middle
right).

The popularity heatmap in Figure 10.6 represents the occurrence counts for the root
node of Figure 10.5. In the latter Figure, the sum image of the node along the similar branch
shows that the less common areas of the heatmap have been cut away as part of the first
subdivision, leaving zero-valued areas in the sum image.

The division strategy starts by computing the aforementioned bit popularity heatmap.
Next, bit positions within the descriptor are sorted in order of ascending popularity, the
bitOrder.

Next all descriptors of the current node are placed in a the similarDescriptors set and the
dissimilarDescriptors set is initalised to the empty set. Then, for each bit position in bitOrder
starting from the least popular one, all descriptors are found in similarDescriptors which
have that particular bit set to 1. These descriptors are moved over to dissimilarDescriptors.
Moving all descriptors that have a specific bit set may result in a tree which is not perfectly
balanced, however, only moving a part of the descriptors which have a particular bit set to 1
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Figure 10.6: Heatmap showing occurrence counts of bits of all descriptors of complete objects in the
SHREC’16 partial retrieval dataset.

does not yield the advantage of that particular bit being set to 0 in the similar node’s sum
image.

If the node being visited contains a set of descriptors which has fewer descriptors than
a set threshold, the subdivision can stop. By constructing a number of indices, it was
determined that the value of 32 for this threshold yields optimal execution times for QUICCI
descriptors.

10.4.2 Dissimilarity Tree Querying

As mentioned previously, the sum and product images of each node allow a minimum
distance to be computed between the query descriptor and all descriptors contained within
both branches of a particular node. This is possible because the sum and product images by
definition represent all descriptors contained within the node having a particular bit set to 0
or 1, respectively.

If for instance a particular bit in the query descriptor is set to 1, and the sum image of a
node has that same bit set to 0, every single descriptor contained within the node will incur a
distance penalty at that bit.

By summing up all such universal distances using a distance function, such as Hamming
or Weighted Hamming, a minimum distance can be computed between the query descriptor
and all descriptors contained in the node being considered, thus allowing to make decisions
on culling a subtree.

The querying algorithm of the dissimilarity tree works in an iterative fashion, and is
outlined in Listing 3. A priority queue is kept of open nodes, sorted by their minimum
distance. The queue is initialised to the root node. During each iteration, the node with the
lowest minimum distance is removed from the queue. If the node is a leaf node, the list of
descriptors contained is searched for matches. If the node is not a leaf node, the minimum
distance to the similar and dissimilar branch nodes is computed, and both are inserted into
the queue.

Meanwhile, a list of fixed size is kept with the closest matching descriptors found up
to that point. The list is sorted by each result’s Weighted Hamming distance to the query.
When the list of search results has the desired size and the worst result in the list is lower
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def queryDissimilarityTree(query, rootNode, resultCount):
openQueue = create_priority_queue()
openQueue.insert(rootNode)
searchResults = create_list()
# While we need more results and nodes
# that can improve the results exist
while len(searchResults) < resultCount

and searchResults[-1].distance > openQueue[0].minDistance:
node = openQueue.remove(0)
if isLeafNode(node):

searchResults.append(node.descriptors)
searchResults.computeDistanceTo(query)
searchResults.sortByDistance()
searchResults.shrinkTo(resultCount)

else: # node is intermediate node
node.similarBranch.minDistance

= minWHDist(query, node.similarBranch)
node.dissimilarBranch.minDistance

= minWHDist(query, node.dissimilarBranch)

# Only consider child nodes if
# they can improve search results
if node.similarBranch.minDistance

< searchResults[-1].distance:
openQueue.insert(node.similarBranch)

if node.dissimilarBranch.minDistance
< searchResults[-1].distance:
openQueue.insert(node.dissimilarBranch)

# Compute minimum weighted Hamming distance
def minWHDist(query, node):

return sum(popcnt(query and not node.sumImage))

* (len(query) / popcnt(query))
+ sum(popcnt(not query and node.productImage))

* (len(query) /
(len(query) - popcnt(query))

Listing 3: Pseudocode showing the main steps of the Dissimilarity Tree querying algorithm. The
procedure takes a query descriptor, the root of a Dissimilarity Tree, and the desired number of closest
search results to retrieve.

than the minimum distance to the next unvisited open node, all search results have been
found and the search can terminate.

10.5 Adapting QUICCI Descriptors for Partial Retrieval

Partial objects that constitute queries are generally not closed surfaces. They commonly
contain surface discontinuities, which we shall call boundaries. Thus if the QUICCI
descriptor is used on vertices of such a partial object, one would get responses to boundaries,
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Figure 10.7: A query mesh along with two pairs of hypothetical circles used during the construction
of the QUICCI descriptor. The green circles on top indicate an intersection count change of 2, while
the blue circle pair on the bottom indicates an intersection count change of 1.

that have no match in the corresponding complete object.
An example of a partial query object can be seen in Figure 10.7, where the intersections

count changes of successive circle pairs result in QUICCI descriptor responses. The green
ones will result in a response which has a match in the corresponding complete object but
the blue ones (across a boundary) will not. Ideally, these boundary responses should be
filtered out.

Fortunately, a slight modification to the computation process of QUICCI descriptors for
partial query objects, effectively filters out most interference caused by boundaries. This is
based on the fact that boundaries result in intersection count changes by 1, whereas closed
surfaces result in intersection count changes by 2. Thus, during QUICCI construction of
partial query objects we only record intersection deltas of at least 2.

Figure 10.8 shows a comparison between the existing QUICCI descriptor and the
proposed modification for partial query objects, along with the matching descriptor for the
corresponding complete object. The proposed change filters out nearly all responses induced
by boundaries, leaving responses belonging to the shape being queried. Ideally, the response
set of the modified query image is a subset of the corresponding set for the complete object.

10.6 Evaluation

The proposed partial retrieval pipeline was evaluated on a set of real 3D object scans. The
primary dataset chosen for this purpose is the SHREC’16 Partial Object Retrieval track
dataset [38], which consists of a variety of historic artefacts, primarily ceramic pottery. We
create additional partial query objects from this dataset to form a new augmented dataset of
partial query objects, detailed in Section 10.6.1.

The three primary contributions are subsequently evaluated individually. The Dissimilar-
ity Tree is evaluated in Section 10.6.2. The proposed QUICCI modification for partial query
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Figure 10.8: QUICCI descriptors for a vertex from a partial query object (left side), and its
corresponding matching vertex in the complete object (right side). The top left is an original QUICCI
descriptor while the bottom left is a modified QUICCI. Both query-match pairs are shown overlaid on
top of each other in the middle, and show a significant reduction in noise in the query descriptor when
using the modified QUICCI.

objects is evaluated for its ability to filter responses to query boundaries in Section 10.6.3,
and for its matching capabilities in Section 10.6.4. The complete partial retrieval pipeline is
finally externally evaluated using the augmented SHREC’16 dataset in Section 10.6.5 and
on part of the original SHREC’16 query objects in Section 10.6.6.

All algorithms presented were implemented in C++ and CUDA where applicable. All
implementations were executed on a machine with an AMD R9 3900X 12-core CPU and an
Nvidia GeForce RTX 3090 GPU. The authors intend to make source code publicly available,
and apply for the Graphics Replicability Stamp (GRSI) [4] upon publication.

Unless stated otherwise, the QUICCI descriptor resolution was set to 64x64 bits for all
experiments. The support radius used was 100 units, which was found to be able to capture
shapes in the local area. This trend is visible in the heatmap shown in Figure 10.6. All
objects in the SHREC’16 dataset have been scanned at the same scale, and thus no scale
alteration or correction was required.

10.6.1 SHREC’16 Dataset Augmentation

The SHREC’16 Partial Retrieval track dataset [38] has been chosen for the evaluation of the
proposed retrieval pipeline. This allows direct comparison to results from other methods
which were evaluated using this benchmark. While the dataset contains a variety of query
objects, their quantity is limited, and is therefore augmented.

The used augmentation is similar to the one used in the SHREC’13 track for partial
object retrieval [49]; a first partial query set is created by generating meshes of all triangles
in view from a random viewpoint. We used this to create one partial query mesh for each
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Figure 10.9: A part of two identical surfaces shown in wireframe form overlaid on top of one another,
where one of the two has been remeshed. Vertices of both meshes have been highlighted.

object in the SHREC’16 dataset, thereby creating 383 query objects. This query dataset is
called AUGMENT EDBest .

However, while the extracted query meshes give a good indication for best case retrieval
performance, a more realistic retrieval scenario could involve subsequent scans of the
same object with different triangulations. We therefore also generated a second augmented
dataset by remeshing all meshes in AUGMENT EDBest , creating the AUGMENT EDRem
query dataset. In particular, we have used the remeshing algorithm proposed by Botsch et al.
[8] as it works on non-watertight meshes, which has been made available as part of PMP
library [48]. An example of the effect of this remeshing step can be seen in Figure 10.9.

The generated query datasets will be made available upon publication.

10.6.2 Dissimilarity Tree

The effectiveness of the dissimilarity tree index structure was evaluated by querying a tree
constructed over all descriptors from all complete objects in the SHREC’16 dataset, which
amounts to a total of 36.5M indexed descriptors. A set of 100,000 unique descriptors was
randomly selected from the descriptors of all objects in the AUGMENT EDBest set.

Each descriptor was subsequently used to query the tree. The resulting execution time of
each query was counted in a histogram with bins of 0.1 seconds. As a reference, the first
2,500 queries were also used to measure the execution time of a sequential search, which
resulted in another execution time distribution histogram. The results are shown in Figure
10.10.

The histograms show that significant speedups are achieved using the proposed
dissimilarity tree structure over a sequential search. Out of the 100,000 queries, only
25 took longer than the average sequential search.

The perf profiling tool showed that for a given query, on average 26.2% of execution
time is spent on visiting intermediate nodes, and 56.1% is spent on visiting leaf nodes. The
remainder is spent on open node queue management. Visiting leaf nodes is almost entirely
(99.0%) spent on the computation of weighted hamming distances.

10.6.3 Modified QUICCI evaluation

We evaluate here the effect of the modification to the QUICCI descriptor proposed in Section
10.5, which removes descriptor responses to object boundaries that typically exist in the
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Figure 10.10: Histogram with bins of 0.1s showing the distribution of execution times of 64x64 bit
queries using indexed and sequential searches. All sequential search occurrence counts have been
scaled up by a factor of 10 for legibility.

Figure 10.11: A histogram with bins of size 0.01, computed over 12.3M 64x64 bit partial query
object descriptors, showing the fraction of undesirable (most boundary response) bits remaining in a
modified QUICCI descriptor over the corresponding number of bits in the original QUICCI.

partial query objects only.
The AUGMENT EDBest set is used to evaluate this modification. As each partial query

object is extracted from a dataset object, there exists an exact correspondence between their
vertices (ground truth). It is subsequently possible to determine the exact bits which are set
in a query descriptor, but not in the correctly matching descriptor of the complete object,
which are thus undesirable.

The chart in Figure 10.11 shows that in 78.0% of the tested descriptors, the number
of undesirable bits is reduced to under 10%. In 24.5% of all cases, the undesirable bits
are removed entirely. The shown results have been computed over a set of 12.4M partial
query descriptors, from which a relatively small number (105,448) have been excluded
for not containing any query boundary responses (to avoid divisions by 0) or unreliable
correspondence between vertices.

However, the modification also removes some bits which are set in both the partial and
complete descriptors, and are thus desirable. A histogram over the fraction of bits set to 1 in
both descriptors relative to the total number of such bits in the complete descriptor is shown
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Figure 10.12: A histogram with bins of size 0.01, computed over 12.3M 64x64 bit partial query
object descriptors, showing the distribution of fractional overlap of bits set to 1 in a partial query
descriptor relative to the complete object from which the query was extracted.

QUICCI AUGMENT EDBest AUGMENT EDRem
Original 0.72 0.17
Modified 0.99 0.49

Table 10.1: The fraction of correctly retrieved nearest neighbours when using combinations of the
original and modified QUICCI, measured using the AUGMENT EDBest and AUGMENT EDRem query
object sets.

in Figure 10.12.
The Figure shows that the average of fractional overlap decreases from 61.5% to 42.7%

when using the QUICCI modification, a loss of 30.6%. However, while the fraction
of desirable bits in query descriptors decreased, the average number of undesirable bits
decreased even further, from an average of 84.2 bits per descriptor to 4.06 bits. Thus in the
modified QUICCI, responses in the query descriptor can, to a high degree, also be expected
to be present in the descriptor of the corresponding complete object.

10.6.4 Modified QUICCI for Partial Object Retrieval

While Section 10.6.3 showed the proposed modification to the QUICCI descriptor to produce
more reliable query descriptors, its effect on matching performance must be evaluated too.

A distance score for each of the query objects in AUGMENT EDBest and AUGMENT EDRem
was computed for each of the complete objects in the SHREC’16 dataset. The distance
score of an object pair was computed by summing the distances of each descriptor in the
query object to its nearest neighbour in the set of descriptors of the complete object. Next,
all objects were ranked by their total distance to the query object. The results are outlined
in Table 10.1. As can be seen, the nearest neighbour matching performance improves
significantly when using the modified QUICCI descriptors, for both the AUGMENT EDBest
and AUGMENT EDRem datasets.

Confusion matrices were also computed across the query and complete objects, see
Figure 10.13. Each row in these matrices represents the scores of a single query object to
each complete object it was compared against. For each of these rows, the distance scores
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Remeshed Queries
(AUGMENTEDRem)

Best Case Queries
(AUGMENTEDBest)

Query Object ID

Query Object ID

Dataset Object ID Dataset Object ID

Figure 10.13: Confusion matrices showing summed Weighted Hamming distances from all objects
in each of the augmented query object datasets to all objects in the SHREC’16 dataset. Since one
partial query object is computed from each SHREC’16 dataset object, objects with matching IDs
should correspond, and therefore have a low distance (leading diagonal). Distances of each row are
normalised for legibility. Both query object datasets contain a visible desirable leading diagonal of low
distances, although this is less pronounced for the remeshed query objects, which is also reflected in
worse nearest neighbour matching performance.

Best

(32x32)

Remeshed

(32x32)

Best

(64x64)

Remeshed

(64x64)

Best

(96x96)

Remeshed

(96x96)

Figure 10.14: Fraction of correct nearest neighbour object matches for several voting thresholds,
using the proposed partial object retrieval pipeline, tested using the AUGMENT EDBest (Best) and
AUGMENT EDRem (Remeshed) partial query object datasets.

have been normalised to the range [0, 1].
The confusion matrix from the AUGMENT EDBest set shows a clear distinction between

partial query and complete objects. For the remeshed partial queries AUGMENT EDRem,
the nearest neighbour distance scores naturally increase.

10.6.5 Partial Retrieval Pipeline

Considering the proposed partial object retrieval pipeline, in this section we consider the
nearest neighbour retrieval performance and the effect of the threshold parameter, as well as
the execution times for querying objects.

Figure 10.14 shows the effect of the threshold parameter on nearest object neighbour
retrieval performance for objects from AUGMENT EDBest and AUGMENT EDRem, for
three different descriptor resolutions. As can be seen, the method is almost resilient to this

154



10.6. EVALUATION

Figure 10.15: Execution times of the AUGMENT EDBest and AUGMENT EDRem query meshes
when using them in the proposed pipeline with a descriptor resolution of 64x64 and a vote threshold of
10.

parameter across resolutions and a low value can be used.
While there is little variation in the results of query objects from AUGMENT EDBest ,

different descriptor resolution yields a significant variation in matching performance for the
query objects of AUGMENT EDRem.

The execution times of the queries are shown in Figure 10.15 using a vote count threshold
of 10 and descriptor resolution of 64x64. It is also worth noting that queries based on
different descriptors can be executed in parallel, although most of this acceleration was
lost due to ensuring that results are reproducible. As can be seen in the Figure, there is a
significant difference in the execution times of query objects from AUGMENT EDBest and
AUGMENT EDRem. These results are discussed further in Section 10.7.

10.6.6 SHREC’16 Partial Retrieval Performance

The proposed partial retrieval pipeline is compared against the results presented in the
SHREC’16 Partial Shape Query track [38] as well as the results for the equivalent benchmark
presented by Savelonas et al. [45], which also includes results for the PANORAMA
descriptor by Sfikas et al. [47] and Global Fisher features [44]. As the source code of these
works was not available, we have used the results from the referenced papers. Dimou et
al. [18] have also tested their work against this dataset, but no nearest neighbour retrieval
performance was provided.

The majority of the SHREC’16 benchmark focuses on the classification of objects into
classes rather than specific object retrieval. Only the artificial queries, which are culled
versions of the database objects, have matching objects in the database. Fortunately, they
also provide Nearest Neighbour data. Because the proposed retrieval pipeline is intended for
exact part-in-whole matching, this comparison focuses on Nearest Neighbour. The results
are shown in Figure 10.16.

As shown in the Figure, the proposed method is able to correctly identify all partial
queries in the benchmark, across multiple descriptor resolutions. While Tran et al. also
accomplish this, their method uses the Iterative Closest Point (ICP) algorithm [15] [7] 512
times per candidate match [38]. While no execution times are listed, we estimate that our
method is likely to run faster.
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Figure 10.16: Comparison of nearest neighbour retrieval performance of the Virtual Hampson
Museum collection. Query objects with 25% and 40% partiality were used. Results for the Tran et al.,
RSVP, KAZE+VLAD, KAZE+FV, KAZE+GOLD, and Pickup et al. methods are taken from [38] and
dFPFH, Global Fisher, and PANORAMA were taken from [45]. The latter does not show results for
the 40% partiality queries which are therefore missing.

Figure 10.17: The relationship between the execution time of a query using the dissimilarity tree,
and the number of tree nodes visited during that query’s execution. For each time slice of 0.1 second,
the minimum, maximum, and average number of nodes visited for all queries which executed within
that time slice is shown.

10.7 Discussion

Figure 10.17 shows that there appears to be a linear relationship between the query execution
time and the number of tree nodes visited by the algorithm. As the querying algorithm
iterates until it determines that no nodes with smaller distances than the ones found are
present in the Dissimilarity Tree, one can conclude that the more dissimilar a query descriptor
is from its nearest neighbour descriptors in the tree, the longer querying will take.

Figure 10.14 shows that there is a non-insignificant effect on partial object retrieval
performance when using remeshed versions of the query objects. The severity of this effect
varies across different descriptor resolutions.
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The cause of this loss in matching performance is that the positions of vertices on the
object surfaces are slightly shifted causing changes in intersection counts to occur elsewhere
on the descriptor, which can be seen in Figure 10.9.

Because the distance between each vertex and its closest neighbour in the remeshed
mesh is small, and based on anecdotal evidence, the resulting effect is that corresponding
QUICCI descriptors on the unmodified and remeshed object contain portions of bits which
have either been shifted left or right by 1 bit. As the Weighted Hamming distance function
only considers bits in exactly the same position, this incurs a distance penalty on what would
otherwise have been a good match.

The probability of this distance penalty occurring is diminished when the descriptor
resolution is lowered. As the distances between QUICCI intersection circles is increased to
cover the same support radius, the probability of bit shifts decreases, thereby resulting in the
improved matching performance observed in Figure 10.14.

The distance penalty also has the downside of increasing query execution times. As
indicated in Figure 10.17, we observed a relationship between the similarity of a query
descriptor and the nearest neighbour in the set of complete object descriptors, and the
execution time of that query. When the distance to the nearest neighbour increases, so does
the execution time of the dissimilarity tree search algorithm. This increase is visible in
Figure 10.15.

Given the extremely promising nature of the retrieval results of the partial query
objects from the AUGMENT EDBest dataset, we conjecture that if in future work a distance
function is found which can remedy the aforementioned distance penalty issue, it should be
possible to both significantly increase the matching performance of remeshed queries while
simultaneously reduce query times.

10.8 Conclusion

A small modification to the QUICCI descriptor was shown to be advantageous for partial
retrieval tasks. An indexing scheme for binary descriptors called Dissimilarity Tree
was also proposed, and was shown to greatly reduce nearest neighbour retrieval time.
Finally, an accurate and efficient search algorithm for partial 3D object retrieval using the
aforementioned Dissimilarity indexing structure was proposed.
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