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Abstract

In this dissertation we show our advances in the field of 3D reconstruc-
tion of human faces using commodity hardware. Beside the reconstruc-
tion of the facial geometry and texture, real-time face tracking is demon-
strated. The developed algorithms are based on the principle of analysis-
by-synthesis. To apply this principle, a mathematical model that represents
a face virtually is defined. In addition to the face, the sensor observation
process of the used camera is modeled. Utilizing this model to synthesize
facial imagery, the model parameters are adjusted, such that the synthe-
sized image fits the input image as good as possible. Thus, in reverse, this
process transfers the input image to a virtual representation of the face. The
achieved quality allows many new applications that require a good recon-
struction of the face. One of these applications is the so-called ”Facial Reen-
actment”. Our developed methods show that such an application does not
need any special hardware. The generated results are nearly photo-realistic
videos that show the transfer of the mimic of one person to another per-
son. These techniques can for example be used to bring movie dubbing to
a new level. Instead of adapting the audio to the video, which might also
include changes of the text, the video can be post-processed to match the
mouth movements of the dubber. Since the approaches that we show in
this dissertation run in real-time, one can also think of a live dubber in a
video teleconferencing system that simultaneously translates the speech of
a person to another language.

The published videos of our projects in this dissertation led to a broad dis-
cussion in the media. On the one hand this is due to the fact that our meth-
ods are designed such that they run in real-time and on the other hand that
we reduced the hardware requirements to a minimum. In fact, after some
preprocessing, we are able to edit ordinary videos from the Internet in real-
time. Amongst others, we impose a different mimic to faces of prominent
persons like former presidents of the United States of America. This led in-
evitably to a discussion about trustworthiness of video material, especially
from unknown source. Most people did not expect that such manipula-
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tions are possible, neglecting existing methods that are already able to edit
videos (e.g. special effects inmovie productions). Thus, beside the advances
in real-time face tracking, our projects raised the awareness of videomanip-
ulation.
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CHAPTER 1

Motivation

Nowadays, computing devices are omnipresent. To interact with the real
world these devices are equipped with a bunch of sensors like cameras, mo-
tion sensors, fingerprint sensors andmuchmore. A goal of these sensors in
devices like Smart-phones is to improve the man-machine interaction. E.g.
instead of typing a password the fingerprint of a person can be used as an
identification characteristic. Or a camera can be used to track the eyes of
a person, which can be used to analyze the user’s behavior and focus. As
a result of this analysis, specific content can be generated for the user, like
hints with additional information. It can also be used to render the focused
point on the screen with a higher resolution, while the other regions in the
visual periphery are rendered with a reduced resolution. This technique is
called foveated rendering [GFD∗12], since it considers the structure and
the visual acuity of the human eye.

Similar to a fingerprint, a camera can be used to identify the face of a person.
But beside the identification task, the face gives much more information of
the state of a person [Ekm82]. E.g. expressions give insides of the current
emotions (e.g. surprise, anger or happiness). Thus, based on the emotional
state of a user, a computer is able to make other decisions and can adapt
its content accordingly, e.g. adjust a playlist of music such that it fits to the
mood of the user.

Beside the analysis of the user, cameras are also used to reconstruct the
surrounding, especially reconstructing a three dimensional representation
of the surfaces of objects in the scene. In particular, depth cameras are
used for this purpose, e.g. in ”KinectFusion” [NIH∗11] or in ”Real-time
3D Reconstruction at Scale Using Voxel Hashing” [NZIS13]. The three di-
mensional representation allows a variety of new applications in the field of
Augmented Reality (AR) and Virtual Reality (VR). Objects are measured
without a rule and modifications of the scene can be simulated virtually.

3



CHAPTER 1 Motivation

For example a virtual mirror that simulates different make-up or make-up
suggestions [SRH∗11]. One can also think of tailored fashion based on a
three dimensional reconstruction of an individual, e.g. a customized glasses
frame that exactly fits the head.

These applications have in common that they need a good (and probably
dynamic) 3D reconstruction. This dissertation tackles the problem of re-
constructing and tracking faces in 3D. To demonstrate the effectiveness of
the developed algorithms, we do not only show tracking results, but also
synthesize photo-realistic facial images. This allows us not only to demon-
strate a virtual mirror, but also facial reenactment. Facial reenactment is
a synonym of puppeteering another face. To this end, we reconstruct and
track the faces of two actors, a source and a target actor. Using the recon-
struction we transfer the expressions of the source actor to the target actor
and re-render the manipulated face on top of the original video stream, re-
sulting in a photo-realistic video.

The proposed facial tracking and reenactment has several use-cases. In
movie productions it can be used as a video editing tool to change for ex-
ample the expression of an actor in a scene. It can also be used to modify
the appearance of a face in a post-process, e.g. changing the illumination
situation. Another field in post-processing is the synchronization of speech
to the video. If a movie is translated to another language, the movements of
the mouth do not match the audio of the dubber. Nowadays, to match the
video, the audio including the spoken text is adapted, which might result
in loss of information. Using facial reenactment instead, the expressions of
the dubber are transferred to the actor in the movie and thus, synchroniz-
ing audio and video. Since our reenactment approaches run in real-time it
is also possible to setup a teleconferencing system with a live dubber that
simultaneously translates the speech of a person to another language.

In contrast to state-of-the-art production setups that work with markers
and complex camera setups, our systems presented in this dissertation only
need commodity hardware without the need of markers. Our tracking re-
sults can also be used to animate virtual characters like the Augustus bust
in Fig. 1.1. These virtual characters can be part of animation movies, but
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Figure 1.1: Reenacted virtual Augustus bust. Left the neutral pose of the Augus-
tus bust, right the modified bust.

also in computer games. With the introduction of virtual reality glasses,
also called head mounted displays (HMD’s), the realistic animation of such
virtual avatars, becomes more and more important for an immersive game-
play. We demonstrate in our FaceVR project (see Part III) that facial track-
ing is also possible if the face is mostly occluded by such an HMD. The
project also paves the way to new applications like teleconferencing in VR
including HMD removal.

Beside these consumer applications, social psychological researchers are in-
terested in the reenactment system. For example, they want to analyze how
the visual impression of a person biases the trustworthiness in a conversa-
tion. Thus, in such an experiment the voice and the message would stays
the same, but the face would differ. You can also think of a training sys-
tem that helps patients to train expressions after a stroke. To help surgeons,
reconstruction and tracking methods are also very important in modern
medicine. The reconstruction of a head can be used to plan a surgery vir-
tually. Then, during the real surgery, the tracking will be used to guide a
surgeon, considering the previously planned surgery or additional data like
CT scans that are attached to the 3D reconstruction.

Our reconstruction and photo-realistic re-rendering allows to manipulate
videos in real-time. In addition with a voice imitator or a person specific
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CHAPTER 1 Motivation

voice synthesis, it allows to generate facial videos to defame people or to
spread so-called ”fake-news”. The generation of such videos is already pos-
sible, but it is time consuming (c.f. movie production) and specialists are
needed. The striking demonstrations of our reenactment systems teach the
people to rethink the value of videos without proof of origin. Beside this
effect, our reconstructionmethods can be used to analyze the physical plau-
sibility of an image (→ digital forensic / fraud detection). An important
indicator whether an image is manipulated or not, is the consistency of the
illumination. The techniques presented in this dissertation compute the il-
lumination of the face region. To detect manipulations, this estimate can
be compared to illumination estimations in other parts of the scene.

To summarize, our primary goal is to create a mathematical representation
of a real world scenario. Thesemodels enable computers to reconstruct, un-
derstand, and interact with it. New technologies like Virtual Reality or Aug-
mented Reality rely on such data. Better reconstructions lead to a more im-
mersive experience. Our projects concentrate on the reconstruction of non-
static faces, even in uncontrolled environments. Most existing real-time
face trackers are based on sparse features and thus capture only a coarse
face model. Our approach tries to use all available information of a cap-
tured image of a face, i.e. every pixel of the face. That’s why we call it a
dense face tracker, which is the heart of all listed use-cases above. The pre-
sented face trackers follow the principle of analysis-by-synthesis which is
described in the next chapter. It also shows the underlying models and
assumptions. These fundamentals build the basis of the selected projects
presented in Part I, Part II and Part III.
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CHAPTER 2

Analysis-by-Synthesis

To reconstruct and track a face we tackle the inverse rendering problem.
Inverse rendering is a field of computer vision that tries to invert the image
formation process. A commonly applied scheme is the principle of analysis-
by-synthesis. The idea of analysis-by-synthesis is to synthesize something
(e.g. an image) such that it matches the observation as close as possible in
an iterative manner [Koc93]. Thus, the result describes the synthesis of an
observation. In our case the rendering of a face (including the geometry,
albedo and the illumination of the face).

To run an analysis-by-synthesis approach, a model has to be defined to syn-
thesize new data. In this dissertation we concentrate on facial imagery. The
synthesis of facial images is described in Section 2.1 and Section 2.2. De-
pending on the observed information an analysis-by-synthesis approach an-
alyzes the difference between the synthetic and the observed data. Based
on this difference, a parameter update of the model is computed. Using the
newparameters, a new synthetic image can be generated. These steps of syn-
thesizing and analyzing are repeated until convergence. Convergence can
be either measured in parameter space or in the residual of the fitting error
(difference of the images). Often, you have to find a compromise between
convergence and runtime, especially in the case of real-time applications
where you only have a time-frame of 33ms.

The analysis and the computation of a parameter update in each iteration re-
sults in an optimization problem. As most (non-linear) optimization prob-
lems, an analysis-by-synthesis approach heavily depends on the initial guess
of parameters. Otherwise it might converge to a wrong solution (local min-
imum) or it might diverge. The used optimization strategies are described
in Section 2.3 and more detailed information can be found in the chapters
of the single projects of this dissertation.
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CHAPTER 2 Analysis-by-Synthesis

2.1 Parametric Face Model

This section is about the parametric face model that is used in this disser-
tation. It manly consists of a statistical model that describes the shape and
albedo of a human’s face (see Sec. 2.1.1). On top of this so-called identity,
we model expressions using a blendshape model (see Sec. 2.1.2). To ren-
der the face model we also need to incorporate illumination. Therefore, we
apply a commonly used approximation of environment maps - spherical
harmonics (see Sec. 2.1.3). The following sections show the details of these
components.

2.1.1 Statistical Model - Morphable Model

To allow a reconstruction of a face based on incomplete or noisy data, we
use a prior that models faces in a low dimensional space. This prior is based
on the work of Blanz and Vetter [BV99]. Blanz and Vetter built a database
of 200 scanned human faces using a laser scanner (for details see [BV99]).

Beside geometry they also captured the il-
lumination corrected textures of the faces.
Based on non-rigid template-fitting these
scans are registered and aligned in a com-
mon coordinate system. The resulting faces
share the same topology, but differ in geom-
etry and albedo. The average mesh of the
scanned faces is depicted in the figure on the
right.The template mesh is a simple trian-
gle mesh and consists of 53490 vertices and
106466 triangles. Beside the position, every
vertex also stores an albedo value.

To reduce the dimensionality of the dataset a principle component analysis
(PCA) is independently applied to geometry and albedo. The PCA com-
putes the principle components of a dataset and the corresponding standard
deviations. As one can see in Fig. 2.1 the standard deviation of the shape

8



2.1 Parametric Face Model

Figure 2.1: Standard deviation σshape of the first 160 principle components of the
shape. The horizontal axis shows the index of the principle component, the ver-
tical axis the standard deviation.

Figure 2.2: Standard deviation σalbedo of the first 160 principle components of the
albedo. The horizontal axis shows the index of the principle component, the
vertical axis the standard deviation.

dimension σshape drops very quickly. The standard deviation of the albedo
dimension σalbedo (see Fig. 2.2) has a similar shape. We exploit this behavior
to reduce the number of dimensionality, i.e., instead of using all 199 prin-
ciple components of the dataset, we use a lower number of the principle
components (e.g. 80 in Face2Face [TZS∗16b]). Using this PCA model,
new faces are synthesized via a linear combination of n principle compo-
nents S ∈ R3·53490×n plus the average face S̄ ∈ R3·53490. Resulting in the
mathematical description of face geometry:

Shape(α) = S̄+ Sα

The albedo of a face is described in the same way using the principle com-
ponents A ∈ R3·53490×n plus the average face albedo Ā ∈ R3·53490:

Albedo(β) = Ā+ Aβ

9



CHAPTER 2 Analysis-by-Synthesis

The shape parameter vector α and the albedo parameter vector β describe
the identity of a person, and, thus, are called identity parameters. Fig. 2.3
shows some synthetic faces that were generated using this model.

Figure 2.3: Statistical face model: the face in the middle shows the average face
geometry and albedo. The red arrow shows how the albedo is changed if the
first principle component of the albedo times the std. dev. is added (right) and
subtracted (left). The green arrow illustrates the shape dimension. The face on
the top is the result of adding the first component of the shape times the std.
dev. to the average face, the bottom face shows the result when this principle
component is subtracted from the average face.
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2.1 Parametric Face Model

The standard deviations allow us to estimate how likely a face with certain
shape and albedo parameter is. We use a measurement R(α, β) that sets the
parameters in relation to their std. dev.:

R(α, β) =
n∑
i=1

∣∣∣∣∣
∣∣∣∣∣ αi
σshapei

∣∣∣∣∣
∣∣∣∣∣
2

+

∣∣∣∣∣∣∣∣ βi
σalbedoi

∣∣∣∣∣∣∣∣2
This measurement is used as a regularizer in this dissertation to prevent de-
generation of faces during reconstruction. An important property of the
PCA model is the global support of the principle components. The global
support of the principle components allows us to estimate regions that are
unobserved, based on the regions that are visible. As can be seen in Fig. 2.4
the single principle components influence thewholemodel. Another inside
that we can read out of this figure is that the first principle component is the
smoothest principle component. The smoothness is reduces with increas-
ing index of the principle component (i.e. the last principle components
mainly consist of higher frequencies that stem from noise).

Figure 2.4: The principle components have global support. Here we show the
first 15 principle components of the shape projected onto the normal of the av-
erage face. These distances are visualized in the texture space of the facemodel.
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2.1.2 Expression Augmentation - Blendshapes

To bring the neutral pose of a reconstructed face to life, we use so called
blendshapes. Blendshapes are meshes that share the same topology but
have a different geometry, i.e., another pose or in our case expression (see
Fig. 2.5).

Figure 2.5: Blendshapes: set of example poses.

These blendshape meshes are blended together to form a new expression.
Since the expressions of a face and the resulting deformations are mostly
linear, we use a linear combination of these blendshape meshes. The linear
coefficients are called blendshape weights. The statistical model of Blanz
and Vetter does not provide such blendshapes. Thus, we built our own ex-
pression blendshapes, which is described in the following. There is a couple
of possibilities to generate blendshapes. In the film industry blendshapes
of characters are typically created by artists who deform the neutral mesh
manually. This task is very time consuming and needs skilled artists. An
advantage is that this allows to animate characters that do not exist in real-
ity. In contrast, if the character is an existing person, blendshapes can be
reconstructed from real data. Alexander et al. [ARL∗09] used a light stage
in their ”Digital Emily” project to reconstruct 33 facial expressions of an
actress. These 33 expressions are based on the Facial Action Coding Sys-
tem (FACS) [EF78]. Similar Cao et al. [CWZ∗14] built a database called
FaceWarehouse where faces including different expressions where scanned
with a Kinect depth sensor. Using the deformation transfer technique of
Sumner et al. [SP04] we transfer the expressions of both datasets (Digital
Emily and FaceWarehouse) to the average face of the statistical model. In
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Figure 2.6: Non-rigid registration of the digital Emilymesh [ARL∗09] against the
average face of the statistical model. From left to right: original Emilymesh, non-
rigid deformed Emily mesh, target mesh (averagemesh of the statistical model).

the following the face from these two datasets are called source meshes and
the average of the statistical model target mesh. A face in rest pose (i.e.,
with no expression) is called neutral face pose. In a first step we register
the neutral face meshes non-rigidly to the statistical face model (see mid-
dle of Fig. 2.6) to establish a correspondence between the source mesh and
the target mesh. The correspondences between the deformed source mesh
and the target mesh are established based on the distance. Since there is
a 1:1 correspondence between the source and the deformed source mesh,
we also have a correspondence between the original source mesh and the
target mesh. Using this correspondence, we transfer the deformations of
every source blendshape model to the target mesh, solving a linear system
of equations (for details see [SP04]). Fig. 2.7 shows some transfer results.
In total we use 76 transferred expressions of both datasets.

Figure 2.8: ”Anchor” mask.

When generating blendshapes, a consis-
tent global alignment is important. Thus,
after deformation transfer we rigidly align
all blendshapes using an ICP (Iterative
closest point)method. Instead of using the
whole face we restrict the method to a cer-
tain region of the face (see Fig. 2.8). This
mask represents the ”anchor” of the blend-
shape model, and contains the region that
stays relatively rigid during all expressions.

13



CHAPTER 2 Analysis-by-Synthesis

Figure 2.7: Deformation Transfer: the first row shows the source meshes from
the Digital Emily project [ARL∗09], the second row shows the resulting blend-
shapes of our face model.

As described above we only transfer the expressions to the average mesh
of the statistical model. To allow the deformation of other faces generated
with the statistical model, we use delta blendshapes. A delta blendshape
describes a mesh relative to its neutral pose. Thus, delta blendshapes are
displacement vectors for every vertex of a mesh, similar to the principle
components of the statistical model. But in contrast to the principle com-
ponents of the statistical model the delta blendshapes are relatively sparse
(see Fig. 2.9). The sparsity of the delta blendshapes is not exploited in this
dissertation, but can be used in future projects to reduce run-time during
reconstruction. Another advantage of the blendshapes is that they have a
semanticmeaning. There is for example a blendshape that opens themouth
and one that lifts the right eye brow. In contrast, the principle components
of the statistical face model do not have such a semantic meaning. This al-
lows us to directly transfer expression blendshape weights from one model
to another, if the corresponding blendshapes exist.
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2.1 Parametric Face Model

Figure 2.9: The blendshapes have relatively local support. Here we show 10 of
our 76 delta blendshapes projected onto the normal of the average face. The
distances are visualized in the texture space of the face model.

2.1.3 Illumination - Spherical Harmonics

Illumination plays an important role in our parametric face model. Since
we use a analysis-by-synthesis approach in our reconstruction / tracking
methods, we have to match the virtual model with the real face. The real
world illumination situation can bemodeled by amultitude of illumination
models which differ in complexity and in their assumptions. An important
property of the light model in our methods is that it is differentiable and
easy/fast to evaluate. A simple representation would be a point light illumi-
nationmodel, where only a single point light emits light into the scene. This
might be suitable for a specific setup, but has problems with multiple light
sources and indirect illumination. Most real scenes have such a complex
lighting situation. A commonly used representation to model the illumi-
nation of a certain scene is the usage of environment maps. The idea of
environment maps is to store the light that the surrounding emits to the ob-
ject. The surrounding is assumed to be distant, such that the same map can
be used for arbitrary points on the surface of the model. A cube map can
be used to store such information. Depending on the resolution k, there
are 6 · k2 variables per color channel for all 6 faces. To compute the out-
going light of a point x in the scene (irradiance), the incoming light (ra-
diance) has to be integrate over the hemisphere. This integration acts like
a smoothing filter on the environment map if the material of the object is
Lambertian [RH01a]. Most of the surface of a face fulfills such an assump-
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tion from a macroscopic view. Effects like subsurface scattering or specu-
lar skin regions are ignored. Following [RH01a] the so-called irradiance
environment map can be represented by spherical harmonics. They state
that because of the smoothness only three bands are required to achieve an
average error of 1% which results in nine variables (coefficients) per color
channel. Spherical harmonics are basis functions defined on the unit sphere.
They are organized in bands with increasing frequency. Spherical harmon-
ics can be written in polar angle representation or in Euclidean coordinates.
To avoid conversions we use Euclidean coordinates. The basis functions
Ym
l ((x, y, z)T) of the first three bands are listed in Table 2.1. As can be seen,

Band Index within a band (m)
(l) −2 −1 0 1 2
0 1

2
√
π

1
√
3

2
√
π y

√
3

2
√
π z

√
3

2
√
π x

2
√
15

4
√
π (x

2 − y2)
√
15

2
√
π xz

√
5

4
√
π (3z

2 − 1)
√
15

2
√
π yz

√
15

2
√
π xy

Table 2.1: Spherical harmonics basis functions Ym
l ((x, y, z)T) [Jar08].

the first band represents the average irradiance (basis function is constant),
the second band the average light direction (basis functions are linear). The
third band contains the quadratic basis functions. Using these basis func-
tions the color of a surface point x with surface normal n and albedo a is
evaluated with:

L(n, a) = a ◦
2∑

l=0

l∑
m=−l

cml · Ym
l (n) (2.1)

Here ◦ is used for the component-wise product of two vectors. cml ∈ R3

is the coefficient of the corresponding basis function. Thus, the represen-
tation of the irradiance environment map with spherical harmonics needs
3 ·9 = 27 parameters. The nine basis functions of the first three bands and
their partial derivatives are fast to evaluate without the need of any trigono-
metric functions. An example for a light situation is shown in Fig. 2.10.
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2.1 Parametric Face Model

Figure 2.10: Example of spherical harmonics illuminating a sphere. Left: the
three bands of the spherical harmonics; Right: composition of all three bands.
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2.2 Sensors

To capture the reality and especially the surrounding a computer needs sen-
sors. These sensors allow for an interaction of a human with a computer. In
this dissertation we use optical sensors, i.e., commodity RGB cameras and
depth cameras. These sensors have a variety of advantages. They are easy
to use and do not need a special setup. RGB cameras are passive, thus, they
do not influence the scene that is captured.

Amajor advantage is that nearly every Laptop and Smart-phone is equipped
with such a RGB camera (also known as webcam). Beside a RGB camera,
new devices also have depth cameras or multiple RGB cameras included.
This allows new applications that need depth information like segmenta-
tion, refocusing or measuring tools. We use these devices (both RGB or
depth cameras) to reconstruct human faces and to track their facial expres-
sions. Since we are using an analysis-by-synthesis approach, we have to
model these cameras. Details on both camera types are given in the follow-
ing sections.

2.2.1 Commodity RGB Cameras

RGB Cameras are wildly spread and can be found in Laptops and Smart-
Phones. Thus, they are ideal to develop algorithms that can be used by
(basically) everyone. To model a RGB camera we use the Pinhole Cam-
era Model (see Fig. 2.11). An overview of different camera models is given
in [HZ03] (Chapter 6 Camera Models). The pinhole camera model can be
described by a perspective projection. In this dissertation, we assume that
the viewing frustum is not skewed. Thus, the perspective projection can be
written as:

Π((x, y, z)T) =

(
fovx·x
z + cx

fovy·y
z + cy

)
(2.2)

fovx and fovy are the field of view in x and y-direction in pixels. (cx, cy)T is
the center of the image (also known as principle point).
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2.2 Sensors

Figure 2.11: Pinhole camera model. On the left you see a pinhole camera that
captures the 3D scene on the right.

In a controlled setup, these camera parameters can be estimated in a cali-
bration step. Typically, a calibration board is captured by the camera. A
calibration board has features that are easy to detect in a 2D image (e.g.
corners, circles). The features have a known alignment in 3D space. If the
feature alignment is non-symmetric, there is a unique correspondence be-
tween the observed 2D image of the camera and the 3D model of the cali-
bration board.

In an uncontrolled setup, which is the case for videos from the Internet, we
do not have observations of a calibration pattern. Instead, we estimate the
intrinsics of the camera using automatic detected facial landmarks [SLC11a]
(see Fig. 2.12). Every landmark point corresponds to a point of the mor-
phable model. At this initialization stage we do not have a reconstruction
of the face, thus, we are using the average mesh as an approximation. Lever-
aging the 3D-2D correspondences in both scenarios (controlled and uncon-
trolled setup) also known as world to image correspondences, we have to
solve the classical resectioning problem [HZ03].
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Figure 2.12: 3D-2D correspondence used for re-sectioning. The landmarks in
the 2D observation are computed by the method of Saragih et al. [SLC11a].

For every corresponding pair xi ∈ R3 and yi ∈ R2 the following equation
has to be solved:

Π(R · xi + t) = yi (2.3)

Where R ∈ R3×3 and t ∈ R3 define the unknown extrinsic transformation
of the camera. R is a rotation matrix and t a translation vector. In homoge-
neous coordinates the equation 2.3 is:fx 0 0 cx

0 fy 0 cy
0 0 1 0


︸ ︷︷ ︸

K

·
(
R t
0 1

)
︸ ︷︷ ︸

E

·x′i = P · x′i = y′i (2.4)

P ∈ R3×4 is the unknown camera matrix including the projection matrix
K (camera intrinsics) and the extrinsic transformation E. Using the Gold
Standard algorithm [HZ03] (Algorithm 7.1, page 181) we can solve for the
unknown camera matrix P. To decompose the camera matrix into intrin-
sics and extrinsics we apply a RQ decomposition [HZ03] (A4.1.1 Givens
rotation and RQ decomposition, page 579).

Note, in case of an uncontrolled setup this estimation of the camera param-
eters is only an initial guess and is refined afterwards in a joint optimization
problem with the other model parameters.
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2.2.2 Depth Cameras

In contrast to RGB cameras, RGBD cameras have an additional depth chan-
nel. To compute the depth of a scene, the cameras typically utilize the epipo-
lar geometry or they measure the round-trip time that light needs from the
camera to the scene and back to the sensor. Both variants are used in today’s
consumer hardware.

Cameras that are based on the epipolar geometry need at least two views of
the scene. There are two kinds of such stereo cameras - active and passive.
A passive stereo camera consists of two cameras that observe the scene (see
Fig. 2.13).

Figure 2.13: Custom stereo setup consisting of two commodity webcams (left).
On the right you can see the output of the camera setup.

If a point is found in both views of a calibrated stereo setup, the 3D point
can be reconstructed by triangulation. Finding a corresponding point for
one pixel of the first image in the second view, is a hard problem. Utiliz-
ing the epipolar geometry of calibrated cameras, the search problem can be
reduced to a 1D search. The search is based on features (e.g. color, color
gradients, edges), but if there are no unique features the search fails. This
problem occurs for example if you want to reconstruct the depth of a white
wall. To solve this problem, one of the cameras is replaced with a projector
resulting in an active stereo camera setup (see Fig. 2.14). The projector is
assumed to act like a ”inverse camera”. Thus, the projector projects known
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Figure 2.14: Asus Xtion Pro: An active stereo camera.

feature patterns into the scene. These patterns are then searched in the ob-
served camera image using their structure (→ structured light). Since the
projector changes the scene the cameras are called active. To avoid that
humans can see this change, active stereo cameras typically work with IR
light and IR sensors. For example Fig. 2.15 shows the observation of an
Asus Xtion Pro. This RGBD camera is an active stereo camera like the Mi-
crosoft Kinect and the Primesense Carmine cameras. The named active
stereo cameras have problems with sun light, since the sun outshines the IR
projector. This problem is tackled with the new Intel Realsense R200 cam-
eras that combine active and passive stereo using two IR cameras and one
projector. The projector emits a random pattern, thus, generating features
in the scene. These augmented features enable the passive stereo setup to
reconstruct depth in otherwise homogeneous regions. In an outdoor en-
vironment the projector has no effect over the IR light of the sun and the
system works as a classical passive stereo setup.

Figure 2.15: RGBD camera (Asus Xtion Pro) output: Left the RGB image, in the
middle the Phong-shaded depth map and right the corresponding normal map
(the red areas indicate that there is no observation).
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In contrast to stereo cameras, time-of-flight cameras (ToF cameras) like the
Micosoft Kinect One compute the depth by measuring the round-trip time
of the light from the camera to the scene and back. Because of the speed of
light, measuring the time is a big challenge. These cameras have in contrast
to the active stereo cameras a poor depth resolution and higher noise in the
near range. But this is the important range for our face tracking/reconstruc-
tion scenarios. Thus, we concentrate our work on stereo cameras.

As can be seen in Fig. 2.15 the depth information of an active stereo depth
camera typically has noise and regions with no data. The regions with no
data stem from missing correspondences, especially regions that are only
seen from one perspective or reflections. To reduce the noise of the depth
data, a Gaussian filter can be used. Similar to the RGB camera model in
the previous chapter we model the depth camera as a pinhole camera (see
Equation 2.2). Thus, given the depth z at a certain pixel position (u, v)T, we
re-project it to a 3D point p in the camera coordinate system:

p =


z · (u−cdepthx )

fovdepthx

z · (v−cdepthy )

fovdepthy

z

 (2.5)

Using this equation with the calibrated depth camera parameters fovdepthx ,
fovdepthy and cdepthx , cdepthy a position map is generated. For simplicity we
project the positions into the RGB camera space, and thus, align the po-
sition with the color information of the camera. To compute a normal map
of the position map, central differences of the position values of the sur-
rounding pixel are applied (see Fig. 2.15).
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2.3 Optimization

One of the main components of an analysis-by-synthesis approach is the
estimation of parameters that reduce the difference between the input and
the synthesized data. In general, to get a new estimation of parameters an
optimization problem has to be solved. Optimization problems can have
different levels of difficulty. It depends on the number of unknowns, the
error measurement and whether additional constraints have to be fulfilled.

In our algorithmswe are typically confrontedwith unconstrainednon-linear
optimization problems. In the following it is briefly discussed, how we
tackle these optimization problems.

2.3.1 Non-Linear Optimization

An analysis-by-synthesis approach iteratively computes a new set of param-
eters xi+1 based on the synthesis generated with the old parameters xi.

The parameters xi+1 are chosen such that the energy that measures the dif-
ference between the observation and the synthetic data is minimized. An
energy function E(x) of an analysis-by-synthesis approach has in general
the following form:

E(x) = D(I−M(x))

Here, D(r) : Rn → R≥0 is a function that maps the difference between
the observation I ∈ Rn and the model M(x) ∈ Rn to a scalar. n is the
dimensionality of the observation, e.g. the number of pixels. Note, the di-
mensionality of the observation n does not have to be static, i.e., it might
changes during the analysis-by-synthesis iterations.

We are using different error metrics in our projects. The most common
metric is to use the ℓ2-norm (D(r) = ||r||2). This results in a least-squares
problem. If the model M(x) is linear, it collapses to a linear least-squares
problem (||A ·x+b||2 → min) that can be solved by solving the correspond-
ing normal equation which is linear (AT · (A · x+ b) = 0).
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In general, to solve non-linear least-squares problems, iterative methods
like gradient descent, Gauss-Newton or Levenberg-Marquardt are applied.
The Gauss-Newton algorithm is an approximation of the Newton method.
The Newton method can be applied to non-linear problems and calculates
iteratively a new solution xi+1 using the formula:

xi+1 = xi −HE(xi)−1 · ∇E(xi)

HE(x) is the Hessian of the energy function, thus, involving second order
derivatives of the residuum vector r(x) = I − M(x). The Gauss-Newton
method is limited to non-linear least-squares problems and approximates
the Hessian using only first order derivatives of the residuum vector r(x):

HE(x) ≈ 2 · JTr (x) · Jr(x)

Here, Jr(x) is the Jacobian of the residual function r(x). Using this approxi-
mation, results in the following update rule:

xi+1 = xi − (JTr (xi) · Jr(xi))−1 · JTr (xi) · r(xi)︸ ︷︷ ︸
Δi

(2.6)

Thus, to compute the parameter update Δi the following linear equation has
to be solved:

(JTr (xi) · Jr(xi)) · Δi = JTr (xi) · r(xi) (2.7)

In our experiments we solve these kinds of linear equations using a precon-
ditioned conjugate gradient (PCG) solver. Using a Jacobi preconditioner,
the PCG converges fast (see convergence of the Gauss-Newton solver in
Fig. 9.2). Considering a limited time budget, an iterative method has the
advantage that it can be stopped after a certain amount of time / iterations.

The Gauss-Newtonmethod is an iterative algorithm which is highly depen-
dent on the initial guess. We use sparse detected landmarks to initialize
our face tracking and then propagate the solution from one frame to the
following frame. To allow fast motions we are using a hierarchical opti-
mization strategy, i.e., we down-sample our observations (half the image
resolution) and optimize starting from a coarse level and propagate the so-
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lution to the next finer level. A pixel of a down-sampled image covers a
larger part of the scene. Thus, if a motion in the original image is for ex-
ample four pixels in x-direction it is a motion of two pixels in the once and
a motion of only one pixel in the twice down-sampled image. Optimizing
first on a down-sampled image, the numerical derivatives of the observed
image have a more global footprint and the residual function is smoother
than the residual function of the original image. This reduces localminimas
and leads to a good initial solution for the next finer level which optimizes
a less smoothed residual function.

To allow for real-time tracking we built our ownGPU-basedGauss-Newton
optimization framework. Details are given in the next section.

2.3.2 GPU-based Analysis-by-Synthesis Optimization Framework

Modern graphic processing units (GPU’s) are equipped with thousands of
small processors. We utilize this computing power to enable a real-time
tracking and optimization of the analysis-by-synthesis energy. As described
in the previous chapters about the face model and sensors, the synthetic
image is generated using a pinhole camera model. The graphics pipeline is
optimized to render triangle meshes with such a camera model. Thus, we
synthesize facial images using the graphics card of a computer. Beside the
synthesis, we also utilize the graphics card to analyze the difference between
the synthetic and the original image. We therefore make use of so-called
compute shaders. A compute shader enables the usage of graphics cards
for general purpose computing (GPGPU). Since a GPU consists of many
small processors, the workload of a computing step has to be distributed
and parallelized. For example the synthesis of the 3D face model can be
done for every single vertex in parallel. Each vertex of the face model is a
weighted sum of the principle components and independent of other ver-
tices. Thus, we can launch a single thread per vertex, to compute the current
3D mesh.

The Gauss-Newton algorithm solves a linear system of equations in every
iteration (see Equation 2.7). To compute the right hand side of this system
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of equations (the gradient of E(x)), we have to evaluate the Jacobian Jr(x).
Thus, while computing the gradient of E(x), we store the Jacobian of the
residuum function r(x). To evaluate the gradient of E(x) we first have to
determine the dimensionality of the residuum, i.e., we only compare pixels
that are visible in both the synthetic and the observed image. This is done by
using aGPU-based scan, which is based on a prefix sum. Knowing the num-
ber of pixels that have to be compared, we start threads for every pixel i and
unknown variable xj, to compute the per pixel partial derivative δri(x)

δxj and
the local gradient δri(x)

δxj · ri(x) (ri(x) ∈ R is the component of the residuum
function r(x) corresponding to pixel i, for simplicitywe assumehere a scalar
per pixel residuum). To compute the per pixel partial derivative δri(x)

δxj we
need to know which vertex contributes to that pixel. Therefore, we use a de-
ferred renderer that stores all information that are used to generate a single
pixel. Especially it has to store the vertex indices per pixel and the corre-
sponding barycentric coordinates. Storing this additional data results in a
differentiable renderer. Using the reduction schema of Harris [Har07], the
local gradients are summed-up to the global gradients∇E(x). As described
in the previous section, we employ a PCG. We use an adapted form of the
classical PCG that does not need to explicitly compute JT · J. Computing
JT · J is in O(m2 · n), where n is the number of residuals and m the num-
ber of unknowns. In our scenarios, n is typically magnitudes larger thanm
(e.g. 80000 pixels versus 269 unknowns). To evaluate a conjugated update
step, the PCG method has to compute JT · J · p amongst other steps. Thus,
instead of computing JT · J and then a matrix-vector product, we compute
two matrix-vector multiplications in succession: (JT · J) · p = (JT · (J · p)).
Which results in a complexity of only O(m · n).

To avoid unnecessary staging and remapping overhead, the whole optimiza-
tion framework is written in DirectX11, since it allows rendering and com-
pute shaders in one context. Especially copying data from CPU memory
to GPU memory and vice versa is reduced to a minimum, since the GPU
and the CPU has to be synchronized to execute such an operation, wasting
compute power.
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CHAPTER 3

Contribution and Outline

In this dissertation, we show the advances in face tracking and facial reen-
actment. We focus our work on real-time algorithms that are based on
consumer-grade hardware. The first part presents a live reenactment sys-
tem that is based on the input of an active stereo RGBD camera (see Sec-
tion 2.2.2). This setup is using a calibrated camera and depth information,
thus, it is not suitable to be applied to videos from the internet, where
these information are missing. To reduce the hardware requirements we
concentrated our work on an RGB-only tracking and reenactment system.
Part 2 demonstrates the enhancements, which allow us to modify ordinary
monocular videos. For the upcoming VR-devices like Oculus Rift or HTC
Vive, a monocular video is not sufficient. Stereo videos are needed. An-
other problem that arises, is the strong occlusion of the face if such a head
mounted display is worn. In Part 3 we show an adapted tracking algorithm
that can handle the strong occlusions. It also enables gaze-aware reenact-
ments of stereo videos. In the following a more detailed abstract of the
single projects is given.

Part 1: Real-time Expression Transfer for Facial Reenactment

We present a method for the real-time
transfer of facial expressions from an ac-
tor in a source video to an actor in a tar-
get video, thus enabling the ad-hoc control
of the facial expressions of the target ac-
tor. The novelty of our approach lies in the
transfer and photo-realistic re-rendering
of facial deformations and detail into the target video in a way that the
newly-synthesized expressions are virtually indistinguishable from a real
video. To achieve this, we accurately capture the facial performances of the
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source and target subjects in real-time using a commodity RGB-D sensor.
For each frame, we jointly fit a parametric model for identity, expression,
and skin reflectance to the input color and depth data, and also reconstruct
the scene lighting. For expression transfer, we compute the difference be-
tween the source and target expressions in parameter space, and modify
the target parameters to match the source expressions. A major challenge
is the convincing re-rendering of the synthesized target face into the corre-
sponding video stream. This requires a careful consideration of the lighting
and shading design, which bothmust correspond to the real-world environ-
ment. We demonstrate ourmethod in a live setup, where wemodify a video
conference feed such that the facial expressions of a different person (e.g.,
translator) are matched in real-time. This work has been published and
presented at Siggraph Asia 2015 [TZN∗15].

Part 2: Face2Face: Real-time Face Capture and Reenactment of RGB
Videos

We present a novel approach for real-time
facial reenactment of a monocular target
video sequence (e.g., Youtube video). The
source sequence is also a monocular video
stream, captured live with a commodity
webcam. Our goal is to animate the facial
expressions of the target video by a source
actor and re-render the manipulated out-
put video in a photo-realistic fashion. To this end, we first address the
under-constrained problem of facial identity recovery from monocular
video by non-rigid model-based bundling. At run time, we track facial ex-
pressions of both source and target video using a dense photometric con-
sistency measure. Reenactment is then achieved by fast and efficient defor-
mation transfer between source and target. The mouth interior that best
matches the re-targeted expression is retrieved from the target sequence
and warped to produce an accurate fit. Finally, we convincingly re-render
the synthesized target face on top of the corresponding video stream such
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that it seamlessly blends with the real-world illumination. We demonstrate
our method in a live setup, where Youtube videos are reenacted in real time.
Face2Face has been published and presented at CVPR 2016 [TZS∗16b] and
a demonstration has been given at Siggraph Emerging Technologies 2016
[TZS∗16a].

Part 3: FaceVR: Real-Time Facial Reenactment and Eye Gaze Control
in Virtual Reality

We introduce FaceVR, a novel method for
gaze-aware facial reenactment in the Vir-
tual Reality (VR) context. The key compo-
nent ofFaceVR is a robust algorithm to per-
form real-time facial motion capture of an
actor who is wearing a head-mounted dis-
play (HMD), as well as a new data-driven
approach for eye tracking from monocular videos. In addition to these
face reconstruction components, FaceVR incorporates photo-realistic re-
rendering in real time, thus allowing artificial modifications of face and eye
appearances. For instance, we can alter facial expressions, change gaze di-
rections, or remove the VR goggles in realistic re-renderings. In a live setup
with a source and a target actor, we apply these newly-introduced algorith-
mic components. We assume that the source actor is wearing a VR device,
and we capture his facial expressions and eye movement in real-time. For
the target video, we use a stereo camera rig that enables us to reconstruct a
stereoscopic avatar. To capture a face in a stereo video, we propose a novel
tracking approach, leveraging the information of both cameras. Finally, we
map the expressions of the source input to the stereo target including gaze-
aware eye animations. In the end, FaceVR produces compelling results for a
variety of applications, such as gaze-aware facial reenactment, reenactment
in virtual reality, removal of VR goggles, and re-targeting of somebody’s
gaze direction in a video conferencing call. FaceVR is currently unpub-
lished work that is available as a technical report on ArXiv [TZS∗16c].
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Real-time Expression
Transfer for Facial
Reenactment





CHAPTER 4

Introduction

In recent years, several approaches have been proposed for facial expression
re-targeting, aimed at transferring facial expressions captured from a real
subject to a virtual CG avatar [WBLP11, LYYB13, CHZ14]. Facial reenact-
ment goes one step further by transferring the captured source expressions
to a different, real actor, such that the new video shows the target actor reen-
acting the source expressions photo-realistically. Reenactment is a farmore
challenging task than expression re-targeting as even the slightest errors in
transferred expressions and appearance and slight inconsistencies with the
surrounding video will be noticed by a human user. Most methods for fa-
cial reenactment proposed so far work offline and only few of those produce
results that are close to photo-realistic [DSJ∗11, GVR∗14].

In this paper, we propose an end-to-end approach for real-time facial reen-
actment at previously unseen visual realism. We believe that in particular
the real-time capability paves the way for a variety of new applications that
were previously impossible. Imagine a multilingual video-conferencing
setup in which the video of one participant could be altered in real time

Figure 4.1: Our live facial reenactment technique tracks the expression of a
source actor and transfers it to a target actor at real-time rates. The synthetic
result is photo-realisticly re-rendered on top of the original input stream main-
taining the target’s identity, pose and illumination.
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to photo-realistically reenact the facial expression and mouth motion of a
real-time translator. Or imagine another setting in which you could reenact
a professionally captured video of somebody in business attire with a new
real-time face capture of yourself sitting in casual clothing on your sofa.
Application scenarios reach even further as photo-realistic reenactment en-
ables the real-time manipulation of facial expression and motion in videos
while making it challenging to detect that the video input is spoofed.

In order to achieve this goal, we need to solve a variety of challenging al-
gorithmic problems under real-time constraints. We start by capturing the
identity of the actor in terms of geometry and skin albedo maps; i.e., we ob-
tain a personalized model of the actor. We then capture facial expressions
of a source actor and a target actor using a commodity RGB-D camera (Asus
Xtion Pro) for each subject. The ultimate goal is to map expressions from
the source to the target actor, in real time, and in a photo-realistic fashion.
Note that our focus is on the modification of the target face; however, we
want to keep non-face regions in the target video unchanged.

Real-time Face Tracking and Reconstruction Our first contribution is
a new real-time algorithm to reconstruct high-quality facial performance of
each actor in real time fromanRGB-D streamcaptured in a general environ-
ment with largely Lambertian surfaces and smoothly varying illumination.
Our method uses a parametric face model that spans a PCA space of facial
identities, face poses, and corresponding skin albedo. This model, which is
learned from real face scans, serves us as a statistical prior and an intermedi-
ate representation to later enable photo-realistic re-rendering of the entire
face. At runtime, we fit this representation to the RGB-D video in real time
using a new analysis-through-synthesis approach, thus minimizing the dif-
ference between model and RGB-D video. To this end, we introduce a new
objective function which is jointly optimized in the unknown head pose,
face identity parameters, facial expression parameters, and face albedo val-
ues, as well as the incident illumination in the scene. Our energy function
comprises several data terms that measure the alignment of the model to
captured depth, the alignment to sparsely-tracked face features, as well as
the similarity of rendered and captured surface appearance under the es-
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timated lighting. Note that we fundamentally differ from other RGB and
RGB-D tracking techniques [WBLP11, LYYB13, CHZ14], as we aim to ma-
nipulate real-world video (rather than virtual avatars) and as we optimize
for (dense) photo-consistency between the RGB video and the synthesized
output stream. In order to enable the minimization of our objective in real
time, we tailor a new GPU-based data-parallel Gauss-Newton optimizer.
The challenge in our setup is the efficient data-parallel optimization of a
non-linear energy with a highly-dense Jacobian. To this end, we reformu-
late the optimization by Zollhöfer et al. [ZNI∗14] in order to minimize the
amount of global memory access required to apply the Jacobian matrix.

In practice, our system has two distinct stages. Immediately after recording
commences, identity, head pose, initial coarse skin albedo, and incident
illumination are jointly estimated in an interactive calibration stage that is
only a few seconds long. Once our system is initialized, a personalized iden-
tity and fine-grained albedomap is available. In the second stage, we fix the
identity and albedo, and continuously estimate the head pose, facial expres-
sion, and incident lighting for all subsequent frames at real-time rates.

Expression Transfer and Photo-realistic Re-rendering Our second
contribution is a new technique to map facial expressions from source to
target actors, and a method to photo-realistically render the modified tar-
get. The core idea behind the facial expression transfer is an efficient map-
ping between pose spaces under the consideration of transfer biases due to
person-specific idiosyncrasies. For the final visualization of the target, we
require face rendering to be photo-realistic under the estimated target il-
lumination, and we need to seamlessly overlay face regions of the original
target video with the synthesized face. To this end, we use a data-parallel
blending strategy based on Laplacian pyramids. In addition, we propose
an efficient way to synthesize the appearance of the mouth cavity and teeth
in real time. To achieve this, we augment the face with a parametric teeth
model and a cavity texture which is deformed along with the underlying
shape template.

In our results, we demonstrate our reenactment approach in a live setup,

37



CHAPTER 4 Introduction

where facial expressions are transferred from a source to a target actor
in real time, with each subject captured by a separate RGB-D sensor (see
Fig. 4.1). We show a variety of sequences with different subjects, challeng-
ing head motions, and expressions that are realistically reenacted on tar-
get facial performances in real time. In addition, we provide a quantitative
evaluation of our face tracking method, showing how we achieve photo-
realism by using dense RGB-D tracking to fit the shape identity (in con-
trast to sparse RGB feature tracking). Beyond facial reenactment, we also
demonstrate the benefits of photo-realistic face capture and re-rendering, as
we can easily modify facial appearances in real-time. For instance, we show
how one would look like under different lighting, with different face albedo
to simulate make-up, or after simply transferring facial characteristics from
another person (e.g., growing a beard).
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CHAPTER 5

RelatedWork

5.0.1 Facial Performance Capture

Traditional facial performance capture for film and game productions
achieves high-quality results using controlled studio conditions [BPL∗03,
PL06]. A typical strategy to obtain robust features is the use of invisible
makeup [Wil90] or facial markers [GGW∗98, BBA∗07, HCTW11]. An-
other option is to capture high-quality multi-view data from calibrated
camera arrays [BHPS10, BHB∗11, VWB∗12, FJA∗14]. Dynamic active
3D scanners, for instance based on structured light projectors, also pro-
vide high-quality data which has been used to capture facial performances
[ZSCS04, WHSL∗04, WLGP09]. Under controlled lighting conditions and
the consideration of photometric cues, it is even possible to reconstruct
fine-scale detail at the level of skin pores [ARL∗09, WGP∗10].

Monocular fitting to RGB-D data from a depth camera by non-rigid mesh
deformation was shown in [CWS∗13], but neither photo-realistic nor ex-
tremely detailed reconstruction is feasible. Recently, monocular off-line
methods were proposed that fit a parametric blend shape [GVWT13] or
multi-linear face model [SWTC14] to RGB video; both approaches extract
fine-scale detail via lighting and albedo estimation from video, followed by
shading-based shape refinement.

While these methods provide impressive results, they are unsuited for
consumer-level applications, such as facial reenactment in video telephony,
which is the main motivating scenario of our work.

5.0.2 Face Re-targeting and Facial Animation

Many lightweight face tracking methods obtain 2D landmarks from RGB
video and fit a parametric face model to match the tracked positions. A
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prominent example is active appearance models (AAM) [CET01] which
are used to determine the parameters of a 3D PCA model while only us-
ing 2D features [XBMK04]. Another popular representation is the blend
shape model [PHL∗98, LA10] which embeds pose variation in a low-
dimensional PCA space; blend shapes can be constrained by image fea-
ture points [CB02, CXH03]. The key advantage of these approaches is that
they work on unconstrained RGB input. Unfortunately, retrieving accurate
shape identities is either challenging or computationally expensive. An al-
ternative research direction is based on regressing parameters of statistical
facial models, enabling face tracking using only RGB [CWLZ13, CHZ14]
input. As these methods run at high real-time rates, even on mobile hard-
ware, they focus on animating virtual avatars rather than photo-realistic
rendering or detailed shape acquisition.

Fitting face templates directly to multi-view or dense RGB-D input enables
facial reconstructions to reflect more skin detail [VWB∗12, SKS14]; how-
ever, these methods are relatively slow and limited to offline applications.
Real-time performance on dense RGB-D input has recently been achieved
by tracking a personalized blend shape model [WBLP11, LYYB13, BWP13,
HMYL15], or by the deformation of a face template mesh in an as-rigid-
as-possible framework [ZNI∗14]. The results of these methods are quite
impressive, as they typically have ways to augment the low-dimensional
face template with fine-scale detail; however, they only show re-targeting
results for hand-modeled or cartoon-like characters. In this paper, we fo-
cus on the photo-realistic capture and re-rendering of facial templates, as
our goal is the expression transfer between real actors. The main differ-
ence in our tracking pipeline is a new analysis-through-synthesis approach
whose objective is the minimization of the photometric re-rendering error.

5.0.3 Face Replacement in Video

One type of face replacement techniques uses a morphable 3D model as
an underlying face representation that parameterizes identity, facial ex-
pressions, and other properties, such as visemes or face texture [BV99,
BBPV03, BSVS04, VBPP05]. These systems can produce accurate 3D tex-
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tured meshes and can establish a one-to-one expression mapping between
source and target actor, thereby simplifying and speeding up expression
transfer. Morphable models are either generated by learning a detailed 3D
multi-linear model from example data spanning a large variety of identi-
ties and expressions [VBPP05], or by purposely building a person-specific
blend shape model from scans of an actor using specialized hardware
[EG98, ARL∗09, WBLP11]. The morphable model based face replacement
technique of Dale et al. [DSJ∗11] could be used for similar purposes as ours
to replace the face region of a target video with a new performance. How-
ever, their approach is neither automatic, nor real-time, and only works
if the source and target actor are the same person, and have comparable
head poses in the source and target recordings. Our method, on the other
hand, is fully automatic and tracks, transfers and renders facial expressions
in real-time between different individuals for a large variety of head poses
and facial performances.

Another line of research for synthesizing novel facial expressions finds sim-
ilarities in head pose and facial expression between two videos solely based
on image information. These image-based methods track the face using
optical flow [LXW∗12] or a sparse set of 2D facial features [SLC11b], and
often include an image matching step to look up similar expressions in a
database of facial images [KSSS10], or a short sequence of arbitrary source
performances [GVR∗14]. Many image-based face replacement systems do
not allowmuch headmotion and are limited in their ability to rendering fa-
cial dynamics, especially of the mouth region. Moreover, most approaches
cannot handle lighting changes, such that substantial differences in pose
and appearance may produce unrealistic composites or blending artifacts.
In this paper, we demonstrate stable tracking and face replacement results
for substantial head motion and because we model environment lighting
explicitly we also succeed under changing illumination. If the task is to
create a new facial animation, additional temporal coherence constraints
must be embedded in the objective to minimize possible in-between jumps
along the sequence [KSSGS11]. Expression mapping [LSZ01] transfers a
target expression to a neutral source face, but does not preserve the target
head motion and illumination, and has problems inside the mouth region,
where teeth are not visible. In this paper, we generate a convincingly ren-
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dered inner mouth region by using a textured 3D tooth proxy that is rigged
to the tracked blend shapemodel andwarping an image of themouth cavity
according to tracked mouth features.

Our approach is related to the recent virtual dubbing method by Garrido et
al. [GVS∗15]who re-render the face of an actor in video such that itmatches
a new audio track. Themethod uses a combination of model-basedmonoc-
ular tracking, inverse rendering for reflectance, lighting and detail estima-
tion, and audio-visual expression mapping between a target and a dubbing
actor. This yields highly realistic results, but processing times are far from
real-time.
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CHAPTER 6

Overview

The key idea of our approach is to use a linear parametric model for facial
identity, expression, and albedo as an intermediate representation for track-
ing, transferring and photo-realistically re-rendering facial expressions in a
live video sequence.

Tracking We use a commodity RGB-D sensor to estimate the parame-
ters of the statistical face model, the head pose, and the unknown inci-
dent illumination in the scene from the input depth and video data. Our
face model is custom built by combining a morphable model for identity
and skin albedo [BV99] with the expression space of a blend shape model
[ARL∗09, CWZ∗14] (see Sec. 7). The face model is linear in these three at-
tributes, with a separate set of parameters encoding identity, expression,
and reflectance. In addition to this parametric prior, we use a lighting
model with a Lambertian surface reflectance assumption to jointly estimate
the environment lighting. This is necessary for robustly matching the face

Figure 6.1: Our live facial reenactment pipeline.
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model to the video streamand for the convincing rendering of the final com-
posite. We determine the model and lighting parameters by minimizing
a non-linear least squares energy that measures the discrepancy between
the RGB-D input data and the estimated face shape, pose, and albedo (see
Sec. 8). We solve for all unknowns simultaneously using a data parallel
Gauss-Newton solver which is implemented on the GPU for real-time per-
formance and specifically designed for our objective energy (see Sec. 9).
The tracking stage is summarized in Fig. 8.1

Reenactment Once we have estimated the model parameters and the
head pose, we can re-render the face back into the underlying input video
stream (see Sec. 8.0.2) in photo-realistic quality. By modifying the different
model parameters on-the-fly, a variety of video modification applications
become feasible, such as re-lighting the captured subject as if he would ap-
pear in a different environment and augmenting the face reflectance with
virtual textures or make-up (see Sec. 10.0.5). Yet, the key application of
our approach is the transfer of expressions from one actor to another with-
out changing other parameters. To this end, we simultaneously capture the
performance of a source and target actor and map the corresponding ex-
pression parameters from the source to the target (see Sec. 10). While the
identity of the target actor is preserved, we can composite the synthesized
image on top of the target video stream. An illustration of this pipeline
based on our real-time tracking and fitting stage is shown in Fig. 6.1.
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Synthesis of Facial Imagery

To synthesize and render new human facial imagery, we use a parametric
3D face model as an intermediary representation of facial identity, expres-
sion, and reflectance. This model also acts as a prior for facial performance
capture, rendering it more robust with respect to noisy and incomplete data.
In addition, wemodel the environment lighting to estimate the illumination
conditions in the video. Both of these models together allow for a photo-
realistic re-rendering of a person’s face with different expressions under gen-
eral unknown illumination.

7.0.1 Parametric Face Model

As a face prior, we use a linear parametric face model Mgeo (α, δ) which
embeds the vertices vi ∈R3, i∈{1, . . . , n} of a generic face template mesh
in a lower-dimensional subspace. The template is a manifold mesh defined
by the set of vertex positions V = [vi] and corresponding vertex normals
N = [ni], with |V| = |N| = n. The model Mgeo (α, δ) parameterizes
the face geometry by means of a set of dimensions encoding the identity
with weights α and a set of dimensions encoding the facial expression with
weights δ. In addition to the geometric prior, we also use a prior for the
skin albedo Malb (β), which reduces the set of vertex albedos of the tem-
plate mesh C = [ci], with ci ∈ R3 and |C| = n, to a linear subspace with
weights β. More specifically, our parametric face model is defined by the
following linear combinations

Mgeo (α, δ) = aid + Eid α + Eexp δ , (7.1)
Malb (β) = aalb + Ealb β . (7.2)

Here,Mgeo∈R3n andMalb∈R3n contain the n vertex positions and vertex
albedos, respectively, while the columns of the matrices Eid, Eexp, and Ealb
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contain the basis vectors of the linear subspaces. The vectors α, δ and β
control the identity, the expression and the skin albedo of the resulting face,
and aid and aalb represent themean identity shape in rest and themean skin
albedo. While vi and ci are defined by a linear combination of basis vectors,
the normals ni can be derived as the cross product of the partial derivatives
of the shape with respect to a (u, v)-parameterization.

Our face model is built once in a pre-computation step. For the identity
and albedo dimensions, we make use of the morphable model of Blanz and
Vetter [BV99]. This model has been generated by non-rigidly deforming
a face template to 200 high-quality scans of different subjects using optical
flow and a cylindrical parameterization. We assume that the distribution of
scanned faces is Gaussian, with a mean shape aid, a mean albedo aalb, and
standard deviations σid and σalb. We use the first 160 principal directions to
span the space of plausible facial shapes with respect to the geometric em-
bedding and skin reflectance. Facial expressions are added to the identity
model by transferring the displacement fields of two existing blend shape
rigs by means of deformation transfer [SP04]. The used blend shapes have
been created manually [ARL∗09] 1 or by non-rigid registration to captured
scans [CWZ∗14] 2. We parameterize the space of plausible expressions by
76 blendshapes, which turned out to be a good trade-off between computa-
tional complexity and expressibility. Note that the identity is parameterized
in PCA space with linearly independent components, while the expressions
are represented by blend shapes that may be overcomplete.

7.0.2 Illumination Model

To model the illumination, we assume that the lighting is distant and that
the surfaces in the scene are predominantly Lambertian. This suggests the
use of a Spherical Harmonics (SH) basis [Mül66] for a low dimensional rep-
resentation of the incident illumination. Following Ramamoorthi andHan-
rahan [RH01b], the irradiance in a vertex with normal n and scalar albedo

1Faceware Technologies www.facewaretech.com
2Facewarehouse http://gaps-zju.org/facewarehouse/
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c is represented using b=3 bands of SHs for the incident illumination:

L(γ, n, c) = c ·
b2∑
k=1

γk yk(n) , (7.3)

with yk being the k-th SH basis function and γ =
(
γ1, . . . , γb2

)
the SH

coefficients. Since we only assume distant light sources and ignore self-
shadowing or indirect lighting, the irradiance is independent of the vertex
position and only depends on the vertex normal and albedo. In our ap-
plication, we consider the three RGB channels separately, thus irradiance
and albedo are RGB triples. The above equation then gives rise to 27 SH
coefficients (b2=9 basis functions per channel).

7.0.3 Image Formation Model

In addition to the face and illumination models, we need a representation
for the head pose and the camera projection onto the virtual image plane.
To this end, we anchor the origin and the axis of the world coordinate frame
to the RGB-D sensor and assume the camera to be calibrated. The model-
to-world transformation for the face is then given byΦ(v)=R v+t, whereR
is a 3×3 rotation matrix and t ∈ R3 a translation vector. R is parameterized
using Euler angles and, together with t, represents the 6-DOF rigid trans-
formation that maps the vertices of the face between the local coordinates
of our parametric model and the world coordinates. The known intrinsic
camera parameters define a full perspective projection Π that transforms
the world coordinates to image coordinates. With this, we can define an
image formation model S(P), which allows us to generate synthetic views
of virtual faces, given the parameters P that govern the structure of the
complete scene:

P = (α, β, δ, γ,R, t) , (7.4)

with p= 160+160+76+27+3+3=429 being the total amount of parame-
ters. The image formation model enables the transfer of facial expressions
between different persons, environments and viewpoints, but in order to
manipulate a given video stream of a face, we first need to determine the
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parameters P that faithfully reproduce the observed face in each RGB-D
input frame. In the next section, we will describe how we can optimize for
P in real-time. The use of the estimated parameters for videomanipulation
will be described in Sec. 10.
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Parametric Model Fitting

For the simultaneous estimation of the identity, facial expression, skin
albedo, scene lighting, and head pose, we fit our image formation model
S(P) to the input of a commodity RGB-D camera recording an actor’s per-
formance. Our goal is to obtain the best fitting parameters P that explain
the input in real-time. We will do this using an analysis-through-synthesis
approach, where we render the image formation model for the old set of
(potentially non-optimal) parameters and optimize P further by compar-
ing the rendered image to the captured RGB-D input. This is a hard inverse
rendering problem in the unknownsP and in this section we will describe
how to cast and solve it as a non-linear least squares problem. An overview
of our fitting pipeline is shown in Fig. 8.1.

8.0.1 Input Data

The input for our facial performance capture system is provided by an RGB-
D camera and consists of the measured input color sequence CI and depth
sequenceXI . We assume that the depth and color data are aligned in image
space and can be indexed by the same pixel coordinates; i.e., the color and
back-projected 3D position in an integer pixel location p = (i, j) is given

Figure 8.1: Overview of our real-time fitting pipeline.
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by CI(p) ∈ R3 and XI(p) ∈ R3, respectively. The range sensor implicitly
provides us with a normal field NI , where NI(p) ∈ R3 is obtained as the
cross product of the partial derivatives ofXI with respect to the continuous
image coordinates.

8.0.2 Implementation of the Image Formation Model

The image formation model S(P), which generates a synthetic view of the
virtual face, is implemented by means of the GPU rasterization pipeline.
Apart from efficiency, this allows us to formulate the problem in terms of
2D image arrays, which is the native data structure for GPU programs. The
rasterizer generates a fragment per pixel p if a triangle is visible at its lo-
cation and barycentrically interpolates the vertex attributes of the underly-
ing triangle. The output of the rasterizer is the synthetic color CS , the 3D
position XS and the normal NS at each pixel p. Note that CS(p), XS(p),
andNS(p) are functions of the unknown parametersP . The rasterizer also
writes out the barycentric coordinates of the pixel and the indices of the ver-
tices in the covering triangle, which is required to compute the analytical
partial derivatives with respect toP .

From now on, we only consider pixels belonging to the set V of pixels for
which both the input and the synthetic data is valid. An input pixel is valid
if color and depth of the pixel is valid.

8.0.3 Energy Formulation

We cast the problem of finding the virtual scene that best explains the input
RGB-D observations as an unconstrained energy minimization problem in
the unknownsP . To this end, we formulate an energy that can be robustly
and efficiently minimized:

E(P)=Eemb(P) + wcolEcol(P) + wlanElan(P) + wregEreg(P) . (8.1)

The design of the objective takes the quality of the geometric embedding
Eemb, the photo-consistency of the re-rendering Ecol, the reproduction of a

50



sparse set of facial feature points Elan, and the geometric faithfulness of the
synthesized virtual head Ereg into account. The weights wcol, wlan, and wreg
compensate for different scaling of the objectives. They have been empiri-
cally determined and are fixed for all shown experiments. In the following,
we detail on the different components of the objective function.

Geometry Consistency Metric The reconstructed geometry of the vir-
tual face shouldmatch the observations captured by the input depth stream.
To this end, we define ameasure that quantifies the discrepancy between the
rendered synthetic depth map and the input depth stream:

Eemb(P) = wpointEpoint(P) + wplaneEplane(P) . (8.2)

The first termminimizes the sumof the projective Euclidean point-to-point
distances for all pixels in the visible set: V

Epoint(P) =
∑
p∈V

∥∥dpoint(p)∥∥22 , (8.3)

with dpoint(p) = XS(p)−XI(p) the difference between the measured 3D
position and the 3D model point. To improve robustness and convergence,
we also use a first-order approximation of the surface-to-surface distance
[CM92]. This is particularly relevant for purely translational motion where
a point-to-point metric alone would fail. To this end, we measure the sym-
metric point-to-plane distance from model to input and input to model at
every visible pixel:

Eplane(P)=
∑
p∈V

[
d2plane (NS(p), p) + d2plane (NI(p), p)

]
, (8.4)

with dplane(n, p)= nTdpoint(p) the distance between the 3D point XS(p) or
XI(p) and the plane defined by the normal n.

Color ConsistencyMetric In addition to our facemodel beingmetrically
faithful, we require that the RGB images synthesized using our model are
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photo-consistent with the given input color images. Therefore, we mini-
mize the difference between the input RGB image and the rendered view
for every pixel p∈V :

Ecol(P) =
∑
p∈V

∥CS(p)− CI(p)∥22 , (8.5)

whereCS(p) is the illuminated (i.e., shaded) color of the synthesizedmodel.
The color consistency objective introduces a coupling between the geome-
try of our template model, the per vertex skin-reflectance map and the SH
illumination coefficients. It is directly induced by the used illumination
model L.

Feature SimilarityMetric The face containsmany characteristic features,
which can be tracked more reliably than other points. In addition to the
dense color consistency metric, we therefore track a set of sparse facial
landmarks in the RGB stream using a state-of-the-art facial feature tracker
[SLC11a]. Each detected feature fj = (uj, vj) is a 2D location in the image
domain that corresponds to a consistent 3D vertex vj in our geometric face
model. If F is the set of detected features in each RGB input frame, we can
define a metric that enforces facial features in the synthesized views to be
close to the detected features:

Elan(P) =
∑
fj∈F

wconf,j
∥∥fj − Π(Φ

(
vj
)∥∥2

2 . (8.6)

We use 38manually selected landmark locations concentrated in themouth,
eye, and nose regions of the face. We prune features based on their visibility
in the last frame and assign a confidence wconf based on its trustworthiness
[SLC11a]. This allows us to effectively prune wrongly classified features,
which are common under large head rotations (> 30◦).

Regularization Constraints The final component of our objective is a
statistical regularization term that expresses the likelihood of observing the
reconstructed face, and keeps the estimated parameters within a plausible
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range. Under the assumption of Gaussian distributed parameters, the in-
terval [−3σ•,i,+3σ•,i] contains≈ 99% of the variation in human faces that
can be reproduced by our model. To this end, we constrain the model pa-
rameters α, β, and δ to be statistically small compared to their standard
deviation:

Ereg(P) =
160∑
i=1

[( αi
σ id,i

)2
+

( βi
σalb,i

)2]
+

76∑
i=1

( δi
σexp,i

)2
. (8.7)

For the shape and reflectance parameters, σid,i and σalb,i are computed from
the 200 high-quality scans (see Sec. 7.0.1). For the blend shape parameters,
σexp,i is fixed to 1 in our experiments.

Analytical Partial Derivatives In order to minimize the proposed en-
ergy, we need to compute the analytical derivatives of the synthetic images
with respect to the parameters P . This is non-trivial, since a derivation
of the complete transformation chain in the image formation model is re-
quired. To this end, we also emit the barycentric coordinates during ras-
terizeration at every pixel in addition to the indices of the vertices of the
underlying triangle. Differentiation of S(P) starts with the evaluation of
the face model (Mgeo andMalb), the transformation to world space via Φ,
the illumination of the model with the lighting model L, and finally the
projection to image space via Π. The high number of involved rendering
stages leads to many applications of the chain rule and results in high com-
putational costs.
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CHAPTER 9

Parallel Energy Minimization

The proposed energy E(P) :Rp→R of Eq. 8.1 is non-linear in the param-
eters P , and finding the best set of parameters P∗ amounts to solving a
non-linear least squares problem in the p unknowns:

P∗ = argmin
P

E(P) . (9.1)

Even at the moderate image resolutions used in this paper (640×480), our
energy gives rise to a considerable amount of residuals: each visible pixel p∈
V contributes with 8 residuals (3 from the point-to-point term of Eq. 8.2, 2
from the point-to-plane termof Eq. 8.4 and 3 from the color termof Eq. 8.5),
while the feature term of Eq. 8.6 contributes with 2 · 38 residuals and the
regularizer of Eq. 8.7 with p− 33 residuals. The total number of residuals is
thusm=8|V|+76+p−33, which can equal up to 180K equations for a close-
up frame of the face. To minimize a non-linear objective with such a high
number of residuals in real-time, we propose a data parallel GPU-based
Gauss-Newton solver that leverages the high computational throughput of
modern graphic cards and exploits smart caching to minimize the number
of global memory accesses.

9.0.1 Core Solver

Weminimize the non-linear least-squares energy E(P) in a Gauss-Newton
framework by reformulating it in terms of its residual r : Rp → Rm, with
r(P)=(r1(P), . . . , rm(P))

T. If we assume that we already have an approx-
imate solutionPk, we seek for an parameter increment ΔP that minimizes
the first-order Taylor expansion of r(P) aroundPk. So we approximate

E(Pk + ΔP)≈
∥∥r(Pk) + J(Pk)ΔP

∥∥2
2 , (9.2)
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CHAPTER 9 Parallel Energy Minimization

for the update ΔP , with J(Pk) the m×p Jacobian of r(Pk) in the current
solution. The corresponding normal equations are

JT(Pk)J(Pk)ΔP = −JT(Pk)r(Pk) , (9.3)

and the parameters are updated as Pk+1 = Pk + ΔP . We solve the nor-
mal equations iteratively using a preconditioned conjugate gradient (PCG)
method, thus allowing for efficient parallelization on the GPU (in contrast
to a direct solve). Moreover, the normal equations need not to be solved
until convergence since the PCG step only appears as the inner loop (anal-
ysis) of a Gauss-Newton iteration. In the outer loop (synthesis), the face is
re-rendered and the Jacobian is recomputed using the updated barycentric
coordinates. We use Jacobi preconditioning, where the inverse of the diag-
onal elements of JTJ are computed in the initialization stage of the PCG.

Close in spirit to [ZNI∗14], we speed up convergence by embedding the en-
ergy minimization in a multi-resolution coarse-to-fine framework. To this
end, we successively blur and resample the input RGB-D sequence using a
Gaussian pyramid with 3 levels and apply the image formation model on
the same reduced resolutions. After finding the optimal set of parameters
on the current resolution level, a prolongation step transfers the solution to
the next finer level to be used as an initialization there.

9.0.2 Memory Efficient Solution Strategy on the GPU

The normal equations 9.3 are solved using a novel data-parallel PCG solver
that exploits smart caching to speed up the computation. The most expen-
sive task in each PCG step is the multiplication of the system matrix JTJ
with the previous descent direction. Pre-computing JTJ would take O(n3)
time in the number of Jacobian entries andwould be too costly for real-time
performance, so instead we apply J and JT in succession. In previous work
[ZNI∗14], the PCG solver is optimized for a sparse Jacobian and the entries
of J are computed on-the-fly in each iteration. For our problem, on the other
hand, J is block-dense because all parameters, except for β and γ, influence
each residual (see Fig. 9.1). In addition, we optimize for all unknowns si-
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Figure 9.1: Non-zero structure of JT for 20k visible pixels.

multaneously and our energy has a larger number of residuals compared to
[ZNI∗14]. Hence, repeatedly recomputing the Jacobian would require sig-
nificant read access from global memory, thus significantly affecting run
time performance.

The key idea to adapting the parallel PCG solver to deal with a dense Ja-
cobian is to write the derivatives of each residual in global memory, while
pre-computing the right-hand side of the system. Since all derivatives have
to be evaluated at least once in this step, this incurs no computational over-
head. We write J, as well as JT, to global memory to allow for coalesced
memory access later on when multiplying the Jacobian and its transpose
in succession. This strategy allows us to better leverage texture caches and
burst load of data on modern GPUs. Once the derivatives have been stored
in global memory, the cached data can be reused in each PCG iteration by
a single read operation.
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CHAPTER 9 Parallel Energy Minimization

The convergence rate of our data-parallel Gauss-Newton solver for differ-
ent types of facial performances is visualized in Fig. 9.2. These timings are
obtained for an input frame rate of 30 fps with 7 Gauss-Newton outer itera-
tions and 4 PCG inner iterations. Even for expressive motion, we converge
well within a single time step.

Figure 9.2: Convergence of the Gauss-Newton solver for four different facial per-
formances. The horizontal axis breaks up convergence for each captured frame
(at 30 fps); the vertical axis shows the fitting error. Even for expressive motion,
we converge well within a single frame.

9.0.3 Initialization of Identity and Albedo

As we assume that facial identity and reflectance for an individual remain
constant during facial performance capture, we do not optimize for the cor-
responding parameters on-the-fly. Both are estimated in an initialization
step by running our optimizer on a short control sequence of the actor turn-
ing his head under constant illumination. In this step, all parameters are op-
timized and the estimated identity and reflectance are fixed for subsequent
capture. The face does not need to be in rest for the initialization phase and
convergence is usually achieved between 5 and 10 frames.

For the fixed reflectance, we do not use the values given by the linear face
model, but compute a more accurate skin albedo by building a skin texture
for the face and dividing it by the estimated lighting to correct for the shad-
ing effects. The resolution of this texture is much higher than the vertex
density for improved detail (2048× 2048 in our experiments) and is gener-
ated by combining three camera views (front, 20◦ left and 20◦ right) using
pyramid blending [AAB∗84]. The final high-resolution albedo map is used
for rendering.
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CHAPTER 10

Facial Reenactment and Applications

The real-time capture of identity, reflectance, facial expression, and scene
lighting, opens the door for a variety of new applications. In particular, it
enables on-the-fly control of an actor in a target video by transferring the
facial expressions from a source actor, while preserving the target identity,
head pose, and scene lighting. Such face reenactment can, for instance, be
used for video-conferencing, where the facial expression andmouthmotion
of a participant are altered photo-realistically and instantly by a real-time
translator or puppeteer behind the scenes. In this section, we will simulate
such a scenario and describe the hardware setup and algorithmic compo-
nents. We will also touch on two special cases of this setup, namely face
re-texturing and re-lighting in a virtual mirror application.

10.0.1 Live Reenactment Setup

To perform live face reenactment, we built a setup consisting of two RGB-D
cameras, each connected to a computer with a modern graphics card (see
Fig. 4.1). After estimating the identity, reflectance, and lighting in a cali-
bration step (see Sec. 9.0.3), the facial performance of the source and target
actor is captured on separate machines. During tracking, we obtain the
rigid motion parameters and the corresponding non-rigid blend shape co-
efficients for both actors. The blend shape parameters are transferred from
the source to the target machine over an Ethernet network and applied to
the target face model, while preserving the target head pose and lighting.
The modified face is then rendered and blended into the original target se-
quence, and displayed in real-time on the target machine.

59



CHAPTER 10 Facial Reenactment and Applications

Figure 10.1:Wrinkel-level detail transfer. From left to right: (a) the input source
frame, (b) the rendered target geometry using only the target albedo map, (c)
our transfer result, (d) a re-texturing result.

10.0.2 Expression Transfer

We synthesize a new performance for the target actor by applying the 76
captured blend shape parameters of the source actor to the personalized
targetmodel for each frameof target video. Since the source and target actor
are tracked using the same parametric facemodel, the new target shapes can
be easily expressed as

Mgeo (αt, δs) = aid + Eid αt + Eexp δs , (10.1)

where αt are the target identity parameters and δs the source expressions.
This transfer does not influence the target identity, nor the rigid head mo-
tion and scene lighting, which are preserved. Since identity and expression
are optimized separately for each actor, the blend shape activationmight be
different across individuals. In order to account for person-specific offsets,
we subtract the blendshape response for the neutral expression [GVS∗15]
prior to transfer.

After transferring the blend shape parameters, the synthetic target geome-
try is rendered back into the original sequence using the target albedo and
estimated target lighting as explained in Sec. 8.0.2.

10.0.3 Wrinkel-Level Detail Transfer

Fine-scale transient skin detail, such as wrinkles and folds that appear and
disappear with changing expression, are not part of our face model, but are
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important for a realistic re-rendering of the synthesized face. To include
dynamic skin detail in our reenactment pipeline, we model wrinkles in the
image domain and transfer them from the source to the target actor. We
extract the wrinkle pattern of the source actor by building a Laplacian pyra-
mid [BA83] of the input source frame. Since the Laplacian pyramid acts as
a band-pass filter on the image, the finest pyramid level will containmost of
the high-frequency skin detail. We perform the same decomposition for the
rendered target image and copy the source detail level to the target pyramid
using the texture parametrization of themodel. In a final step, the rendered
target image is recomposed using the transferred source detail.

Fig. 10.1 illustrates our detail transfer strategy, with the source input frame
shown on the left. The second image shows the rendered target face with-
out detail transfer, while the third image shows the result obtained using
our pyramid scheme. The last image shows a re-texturing result with trans-
ferred detail obtained by editing the albedo map (see Sec. 10.0.5).

10.0.4 Final Compositing

Our face model only represents the skin surface and does not include the
eyes, teeth, and mouth cavity. While we preserve the eye motion of the
underlying video, we need to re-generate the teeth and inner mouth region
photo-realistically to match the new target expressions. This is done in a
compositing step, where we combine the rendered face with a teeth and
innermouth layer before blending the results in the final reenactment video
(see Fig. 10.2).

Teeth Proxy andMouth Interior

To render the teeth, we use two textured 3D proxies (billboards) for the up-
per and lower teeth that are rigged relative to the blend shapes of our face
model and move in accordance with the blend shape parameters. Their
shape is adapted automatically to the identity by means of anisotropic scal-
ing with respect to a small, fixed number of vertices. The texture is obtained
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Figure 10.2: Final compositing: we render the modified target geometry with
the target albedo under target lighting and transfer skin detail. After rendering
a person-specific teeth proxy and warping a static mouth cavity image, all three
layers are overlaid on top of the original target frame and blended using a fre-
quency based strategy.

from a static image of an openmouth with visible teeth and is kept constant
for all actors.

A realistic inner mouth is created by warping a static frame of an open
mouth in image space. The static frame is recorded in the calibration step
of Sec. 9.0.3 and is illustrated in Fig. 10.2. Warping is based on tracked 2D
landmarks around the mouth and implemented using generalized barycen-
tric coordinates [MBLD02]. The brightness of the rendered teeth and
warped mouth interior is adjusted to the degree of mouth opening for real-
istic shadowing effects.

Image Compositing

The three image layers, produced by rendering the face and teeth and warp-
ing the inner mouth, need to be combined with the original background
layer and blended into the target video. Compositing is done by building a
Laplacian pyramid of all the image layers (see also Sec. 10.0.3) and perform-
ing blending on each frequency level separately. Computing and merging
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Figure 10.3: Re-texturing and re-lighting of a facial performance.

the Laplacian pyramid levels can be implemented efficiently usingmipmaps
on the graphics hardware. To specify the blending regions, we use binary
masks that indicate where the face or teeth geometry is. These masks are
smoothed on successive pyramid levels to avoid aliasing at layer boundaries,
e.g., at the transition between the lips, teeth, and inner mouth.

10.0.5 Re-Texturing and Re-Lighting Applications

Face reenactment exploits the full potential of our real-time system to in-
stantly change model parameters and produce a realistic live rendering.
The same algorithmic ingredients can also be applied in lighter variants of
this scenario where we do not transfer model parameters between video
streams, but modify the face and scene attributes for a single actor captured
with a single camera. Examples of such an application are face re-texturing
and re-lighting in a virtual mirror setting, where a user can apply virtual
make-up or tattoos and readily find out how they look like under differ-
ent lighting conditions. This requires to adapt the reflectance map and illu-
mination parameters on the spot, which can be achieved with the render-
ing and compositing components described before. Since we only modify
the skin appearance, the virtual mirror does not require the synthesis of a
new mouth cavity and teeth. An overview of this application is shown in
Fig. 10.3. We show further examples in the experimental section.
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CHAPTER 11

Results

We evaluate the performance of our tracking and reconstruction algorithm,
and show visual results for facial reenactment and virtual mirror applica-
tions. For all our experiments, we use a setup consisting of an Nvidia
GTX980, an Intel Core i7 Processor, and an Asus Xtion Pro RGB-D sensor
that captures RGB-D frames at 30 fps. In order to obtain high-resolution
textures, we record color at a resolution of 1280×1024, and upsample and
register depth images accordingly. Since a face only covers the center of an
image, we can safely crop the input to 640×480. During the evaluation,
it turned out that our approach is insensitive to the choice of parameters.
Therefore, we use the following values in all our experiments: wcol = 20,
wlan = 0.125, wreg = 0.025, wpoint = 2, wplane = 10.

11.0.1 Real-time Facial Performance Capture

We track several actors in different settings. Tracking results for facial reen-
actment (see Sec. 11.0.2) are also shown in Fig. 11.9. Our approach first per-
forms a short calibration phase to obtain themodel identity and albedo (see
Sec. 9.0.3). This optimization requires only a few seconds, after which the
tracker continues to optimize expression and lighting in real time. Visually,
the estimated identity resembles the actor well and the tracked expressions
are very close to the input performance. In the following, we will provide a
quantitative analysis and compare our method to state-of-the-art tracking
approaches. Note, however, that facial tracking is only a subcomponent of
our algorithm.

Run Time Performance capture runs in real-time, leveraging a 3-level
coarse-to-fine hierarchy to speed up convergence. In our experiments, we
found that the finest level does not contribute to stability and convergence
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1st Level 2nd Level total
#res Syn Ana #res Syn Ana

S1 33k 10.7ms 13.2ms 132k 1.6ms 7.1ms 32.6ms
S2 18k 11.5ms 8.2ms 72k 1.7ms 4.3ms 25.7ms
S3 22k 11.5ms 9.5ms 85k 1.7ms 5.2ms 27.9ms

Table 11.1: Run times for three of the sequences of Fig. 9.2 (S1: Still, S2: Speak-
ing, S3: Expression). Run time scales with the number of visible pixels in the face
(distance from actor to camera), which is largest for S1, but all are real-time. ’#res’
is the number of residuals on that coarse-to-fine level, ’Syn’ the time needed for
the synthesis step and ’Ana’ the time needed for the analysis step. All timings
are average per-frame values computed over approx. 1000 frames.

due to the noise in the consumer-level RGB-D input and the lack of infor-
mation in the already upsampled depth stream. Hence, we only run our
Gauss-Newton solver on the 1st and 2nd coarsest levels. Per-frame timings
are presented in Table 11.1 for different sequences. Major pose and expres-
sion changes are captured on the 1st (coarsest) level using 7 Gauss-Newton
iterations and 4 PCG steps, while parameters are refined on the 2nd level
using a single Gauss-Newton iteration with 4 PCG steps. We also refer to
Fig. 9.2 for a convergence plot. Preprocessing, including the 2D feature
tracker, takes about 6ms, and blending the face with the background 3.8ms.
Detail transfer between two actors for face reenactment takes about 3ms.

Tracking Accuracy To evaluate the accuracy of the reconstructed face
shape, we capture the facial performance of synthetic input data with
known ground truth geometry. This data was generated from a sequence of
200 high-quality facial meshes, obtained by the binocular performance cap-
ture method of Valgaerts et al. [VWB∗12] 1, by rendering successive depth
maps from the viewpoint of one of the cameras. By construction, the syn-
thetic depth sequence and the input RGB video have the same HD reso-
lution and are aligned. Our results for a representative frame of synthetic
input is shown in Fig. 11.1. We display the Euclidean distance between
our reconstruction and the ground truth, as computed between the closest
vertices on both meshes and color coded according to the accompanying

1Available at http://gvv.mpi-inf.mpg.de/projects/FaceCap/

66

http://gvv.mpi-inf.mpg.de/projects/FaceCap/


Figure 11.1: Tracking accuracy. Left: the input RGB frame, the tracked model
overlay, the composite and the texturedmodel overlay. Right: the reconstructed
mesh of [VWB∗12], our reconstructed shape, and the color coded distance be-
tween both reconstructions.

scale. We see that our reconstruction closely matches the ground truth in
identity and expression, with an average error of 1.5mm and a maximum
error of 7.9mm over all frames. While we are able to achieve a high track-
ing accuracy, our face prior does not span the complete space of identities.
Consequently, there will always be a residual error in shape for people who
are not included in the training set.

Tracking Stability Fig. 11.2 demonstrates the tracking stability under
rapid lighting changes. All shots are taken from the same sequence inwhich
a light source was moved around the actor. Each shot shows the complete
face model rendered back into the video stream using the albedo map with
an inserted logo as well as the per-frame lighting coefficients. Note that the
auto white balance of the sensor attempts to compensate for these lighting
changes. In our experiments, we found that optimizing for the lighting pa-
rameters during tracking and re-rendering eliminates auto white balancing
artifacts (i.e., the synthesized model will not fit the changed brightness in
the input color).

Fig. 11.3 shows the robustness of our method under large and fast headmo-
tion. The third and fourth row depict the tracked and textured face model
overlaid on the original sequence. The second row visualizes the 38 tracked
landmark vertices from the feature similarity term of Eq. 8.6. The projec-
tions of these vertices can be compared to the feature locations of the 2D
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Figure 11.2: Stability under lighting changes.

Figure 11.3: Stability under headmotion. From top to bottom: (a) 2D features of
[SLC11a], (b) our 3D landmark vertices, (c) overlaid face model, (d) textured and
overlaid face model. Our method recovers the head motion, even when the 2D
tracker fails.

tracker of Saragih et al. [SLC11a]; this difference is used in the energy term.
Even when the sparse 2D tracker fails, our method can recover the head
pose and expression due to the dense geometric and photo-consistency
terms.
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Tracking Energy We evaluate the importance of the data terms in our
objective function; see Fig. 11.4. To this end, we measure the residual geo-
metric (middle) and photometric error (bottom) of the reconstructed pose.
Geometric error is computed with respect to the captured input depth val-
ues. Photometric error is measured as the magnitude of the residual flow
field between the input and re-rendered RGB image. As we can see, relying
only on the simple feature similarity measure (first column) leads to severe
misalignments in the z-direction, as well as local photometric drift. While
using a combination of feature similarity and photometric consistency (sec-
ond column) deals with the drift in the re-rendering, the geometric error is
still large due to the inherent depth ambiguity. In contrast, relying only on
the geometric consistencymeasure (third column) removes the depth ambi-
guity, but is still prone to photometric drift. Only the combination of both
strategies (fourth column) allows for the high geometric and photometric
accuracy required in the presented real-time facial reenactment scenario.

Comparison to FaceShift We compare the tracking results of our ap-
proach to the official implementation of FaceShift, which is based on the
work of Weise et al. [WBLP11]. Note, this sequence has been captured
with a Microsoft Kinect for Windows sensor. Our method is still able to
produce high-quality results, despite the fact that the face covers a smaller
2D region in the image due to the camera’s higherminimum range. In terms
of the model-to-depth alignment error, our approach achieves comparable
accuracy (see Fig. 11.5). For both approaches, the measured mean error is
about 2mm (standard deviation of 0.4mm). Our approach achieves amuch
better photometric 2D alignment (measured as the magnitude of the resid-
ual flow field between the re-rendering and the RGB input); see Fig. 11.5
(bottom). The photometric error for the FaceShift reconstruction is evalu-
ated based on an illumination-corrected texture map generated based on
the approach employed in our identity initialization stage. While the mean
error for FaceShift is 0.32px (standard deviation of 0.31px), our approach
has a mean error of only 0.07px (standard deviation of 0.05px). This sig-
nificant improvement is a direct result of the proposed dense photomet-
ric alignment objective. Specifically in the context of photo-realistic facial
reenactment (e.g., see Fig. 11.9), accurate 2D alignment is crucial.
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Figure 11.4: Importance of the different data terms in our objective function:
tracking accuracy is evaluated in terms of geometric (middle) and photometric
error (bottom). The final reconstructed pose is shown as an overlay on top of the
input images (top). Mean and standard deviations of geometric and photomet-
ric error are 6.48mm/4.00mm and 0.73px/0.23px for Feature, 3.26mm/1.16mm
and 0.12px/0.03px for Features+Color, 2.08mm/0.16mm and 0.33px/0.19px for
Feature+Depth, 2.26mm/0.27mm and 0.13px/0.03px for Feature+Color+Depth.
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Comparison to Cao et al. 2014 We also compare ourmethod to the real-
time face tracker of Cao et al. [CHZ14], which tracks 2D facial landmarks
and infers the 3D face shape from a single RGB video stream. In a first com-
parison, we evaluate how well both approaches adapt to the shape identity
of an actor. To this end, we use a high-quality structured light scanner to
capture a static scan of the actor in rest (ground truth). We then capture
a short sequence of the same rest pose with a commodity RGB-D camera
for fitting the shape identity. The results of both methods are shown in
Fig. 11.6, along with the per-vertex Euclidean distance to the ground truth
scan. The error color scale is the same as in Fig. 11.1. Overall, our method
approximates the identity of the actor better; however, please note that Cao
et al. [CHZ14] only use RGB video data as input.

Figure 11.5: Comparison to FaceShift. From top to bottom: Reconstruction over-
laid on top of the RGB input, closeups, geometric alignment error with respect
to the input depth maps, and photometric re-rendering error. Note that while
FaceShift [WBLP11] is able to obtain a comparablemodel-to-depth alignment er-
ror, our reconstructions exhibit significantly better 2D alignment.
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Figure 11.6: State-of-the-art comparison for fitting the shape identity on a neu-
tral expression. From left to right: (a) structured light scan (ground truth), (b)
result of [CHZ14], (c) our result. Using depth data allows us to achieve a better
identity fit.

In Fig. 11.7, we compare our 3D tracking quality to Cao et al. [CHZ14]
for the input sequence in the top row. Overall, we get more expressive re-
sults and a closer visual fit to the input expression. This is illustrated by the
eyebrow raising in the second column and the cheek folding in the fourth
column. A close visual fit to the input video is necessary for the applications
that we aim for, namely a re-rendering of the geometry for believable video
modification. Again, we would like to point out that Cao et al. [CHZ14]
only track a sparse set of features. While less accurate, their method is sig-
nificantly faster and runs in real-time even on mobile phones.

11.0.2 Facial Reenactment

The core of our approach is the live facial reenactment setup as shown in
Fig. 4.1. Fig. 11.9 shows examples of three different actor pairs, with the
tracked source and target shown at the top and the reenactment at the bot-
tom. As can be seen, we are able to track various kinds of expressions re-
sulting in a photo-realistic reenactment.

11.0.3 Virtual Mirror

Our photo-realistic re-rendering can be also used to create a virtual mirror,
where re-texturing and re-lighting can be applied to a single RGB-D input
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stream. For re-texturing, we apply a new texture to the albedo map, such
as a logo, and render the face back into the video. To re-light the face, we
replace the estimated illumination coefficients by new ones, and render the
estimated face geometry under the new lighting. To avoid high-frequency
changes of the illumination, we only re-light the foreground of the coarsest
level of the Laplacian input pyramid that is used to composite the final out-
put. Note that the coarsest level of the Laplacian pyramid contains only the
low frequencies of the image.

Figure 11.7: State-of-the-art comparison for fitting shape expressions (i.e., track-
ing) assuming a fixed shape identity (cf. Fig. 11.6). From top to bottom: (a) input
color sequence, (b) result of [CHZ14] (RGB input), (c) our result (RGB-D input).

Figure 11.8: Re-texturing and re-lighting a facial performance.
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Figure 11.9: Results of our reenactment system. The gray arrows show thework-
flow of our method.
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Conclusion and Discussion

Ourmethod employs a newGPU-based face tracking algorithm using a sin-
gle RGB-D camera. It fits a parametric face model of shape identity, face
expression, and detailed albedo to RGB and depth cues, and continuously
re-estimates the scene illumination. A limitation of our method is the as-
sumption of Lambertian surface reflectance and smoothly varying illumi-
nation, which is parameterized by spherical harmonics. These may lead to
artifacts in general environments (e.g., with strong subsurface scattering,
high-frequency lighting changes, or self-shadowing). Note, however, that
our method shares this limitation with related (even off-line) state-of-the-
art approaches (e.g., general shape-from-shading methods or most monoc-
ular face capture methods).

In contrast to the method of Cao et al. [CHZ14], our real-time tracker uses
dense depth and color information, which allows for tight fitting, but also
leads to a high number of residuals. Currently, this makes it infeasible for
our approach to run on a mobile platform, and requires a desktop com-
puter to run in real time. Very fast head motion or extreme head poses,
such as a lateral side view, may also lead to tracking failures. However, as
the 2D sparse features can be robustly tracked without relying on tempo-
ral coherency, we can easily recover from tracking failures, even if previous
frames were significantly misaligned. Unfortunately, darker environments
introduce noise to the RGB stream of commodity depth sensors, such as the
Kinect or PrimeSense, which reduces temporal tracking stability. While we
are able to track extreme mouth expressions, the illusion of the mouth inte-
rior breaks at some point; i.e., if the mouth is opened too wide, the mouth
interior warping and the teeth proxy lead to unnatural-looking results.

Our facial reenactment transfers expression characteristics from the source
to the target actor. Thus, the reenacted performance may contain the
unique style of the source actor, which is undesired in some situations. We
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transfer blend shape parameters one-to-one, but to account for personal
differences in blend shape activation, a better mapping might be learned
from the captured performances. We also assume that all actors share the
same blend shapes, which might not be true in practice. An adaptation of
the blend shapes to the actor [LYYB13, BWP13] may improve tracking re-
sults. Copying wrinkles from people with significantly different skin detail
leads to implausible results. Predicting an actor- and expression-specific fa-
cial detail layer requires a custom-learned detail model. Unfortunately, this
would involve a learning phase for each actor and expression. Nonetheless,
our simple transfer strategy produces convincing results at real-time rates
for a large variety of facial shapes, especially if the age of the actors is similar.

Maintaining a neutral expression for the target actor is not a hard constraint,
as the non-rigid motion of the target is also tracked. However, if the synthe-
sized face does not completely cover the input (i.e., due to strong expression
changes), artifacts may appear. This could be solved using in-painting or by
extending the face model (e.g., adding a neck).

To conclude, we have presented the first real-time approach for photo-
realistic transfer of a source actor’s facial expressions to a target actor. In
contrast to traditional face tracking methods, our aim is to manipulate an
RGB video stream, rather the animation of a virtual character. To this end,
we have introduced a novel analysis-through-synthesis approach for face
tracking, whichmaximizes photometric consistency between the input and
re-rendered output video. We are able to solve the underlying dense opti-
mization problem with a new GPU solver in real time, thus obtaining the
parameters of our face model. The parameters of the source actor are then
mapped in real time to the target actor, and in combination with the newly-
synthesized mouth interior, we are able to achieve photo-realistic expres-
sion transfer. Overall, we believe that the real-time capability of ourmethod
paves the way formany new applications in the context of virtual reality and
teleconferencing. We also believe that our method opens up new possibili-
ties for future research directions; for instance, instead of tracking a source
actor with an RGB-D camera, the target video could be manipulated based
on audio input.
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CHAPTER 13

Introduction

In recent years, real-time markerless facial performance capture based on
commodity sensors has been demonstrated. Impressive results have been
achieved, both based on RGB [CWLZ13, CBZB15] as well as RGB-D data
[WBLP11, CWS∗13, LYYB13, BWP13, HMYL15]. These techniques have
become increasingly popular for the animation of virtual CG avatars in
video games and movies. It is now feasible to run these face capture and
tracking algorithms from home, which is the foundation for many VR and
AR applications, such as teleconferencing.

In this paper, we employ a new dense markerless facial performance cap-
ture method based on monocular RGB data, similar to state-of-the-art
methods. However, instead of transferring facial expressions to virtual
CG characters, our main contribution is monocular facial reenactment in
real-time. In contrast to previous reenactment approaches that run offline
[BCS97, DSJ∗11, GVR∗14], our goal is the online transfer of facial expres-
sions of a source actor captured by an RGB sensor to a target actor. The tar-
get sequence can be any monocular video; e.g., legacy video footage down-
loaded from Youtube with a facial performance. We aim to modify the tar-

Figure 13.1: Proposed online reenactment setup: a monocular target video se-
quence (e.g., from Youtube) is reenacted based on the expressions of a source
actor who is recorded live with a commodity webcam.
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get video in a photo-realistic fashion, such that it is virtually impossible to
notice the manipulations. Faithful photo-realistic facial reenactment is the
foundation for a variety of applications; for instance, in video conferencing,
the video feed can be adapted to match the face motion of a translator, or
face videos can be convincingly dubbed to a foreign language.

In our method, we first reconstruct the shape identity of the target actor
using a new global non-rigid model-based bundling approach based on a
prerecorded training sequence. As this preprocess is performed globally
on a set of training frames, we can resolve geometric ambiguities common
to monocular reconstruction. At runtime, we track both the expressions
of the source and target actor’s video by a dense analysis-by-synthesis ap-
proach based on a statistical facial prior. We demonstrate that our RGB
tracking accuracy is on par with the state of the art, even with online track-
ing methods relying on depth data. In order to transfer expressions from
the source to the target actor in real-time, we propose a novel transfer func-
tions that efficiently applies deformation transfer [SP04] directly in the used
low-dimensional expression space. For final image synthesis, we re-render
the target’s face with transferred expression coefficients and composite it
with the target video’s background under consideration of the estimated
environment lighting. Finally, we introduce a new image-based mouth syn-
thesis approach that generates a realistic mouth interior by retrieving and
warping best matching mouth shapes from the offline sample sequence. It
is important to note that we maintain the appearance of the target mouth
shape; in contrast, existing methods either copy the source mouth region
onto the target [VBPP05, DSJ∗11] or a generic teeth proxy is rendered
[GVS∗15, TZN∗15], both of which leads to inconsistent results. Fig. 13.2
shows an overview of our method.

We demonstrate highly-convincing transfer of facial expressions from a
source to a target video in real time. We show results with a live setup
where a source video stream, which is captured by a webcam, is used to
manipulate a target Youtube video. In addition, we compare against state-
of-the-art reenactment methods, which we outperform both in terms of
resulting video quality and runtime (we are the first real-time RGB reenact-
ment method).
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Figure 13.2:Method overview.

In summary, our key contributions are:

• dense, global non-rigid model-based bundling,
• accurate tracking, appearance, and lighting estimation in uncon-
strained live RGB video,

• person-dependent expression transfer using subspace deformations,
• and a novel mouth synthesis approach.
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RelatedWork

Offline RGB Performance Capture Recent offline performance capture
techniques approach the hard monocular reconstruction problem by fit-
ting a blendshape [GVWT13] or a multi-linear face [SWTC14] model to
the input video sequence. Even geometric fine-scale surface detail is ex-
tracted via inverse shading-based surface refinement. Ichim et al. [IBP15]
build a personalized face rig from just monocular input. They perform
a structure-from-motion reconstruction of the static head from a specifi-
cally captured video, to which they fit an identity and expression model.
Person-specific expressions are learned from a training sequence. Suwa-
janakorn et al. [SKS14] learn an identity model from a collection of images
and track the facial animation based on a model-to-image flow field. Shi et
al. [SWTC14] achieve impressive results based on global energy optimiza-
tion of a set of selected keyframes. Our model-based bundling formulation
to recover actor identities is similar to their approach; however, we use ro-
bust and dense global photometric alignment, which we enforce with an
efficient data-parallel optimization strategy on the GPU.

Online RGB-D Performance Capture Weise et al. [WLGP09] capture fa-
cial performances in real-time by fitting a parametric blendshape model
to RGB-D data, but they require a professional, custom capture setup.
The first real-time facial performance capture system based on a commod-
ity depth sensor has been demonstrated by Weise et al. [WBLP11]. Fol-
low up work [LYYB13, BWP13, CWS∗13, HMYL15] focused on correc-
tive shapes [BWP13], dynamically adapting the blendshape basis [LYYB13],
non-rigid mesh deformation [CWS∗13], and robustness against occlusions
[HMYL15]. These works achieve impressive results, but rely on depth data
which is typically unavailable in most video footage.
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Online RGB Performance Capture While many sparse real-time face
trackers exist, e.g., [SLC11b], real-time dense monocular tracking is the
basis of realistic online facial reenactment. Cao et al. [CWLZ13] pro-
pose a real-time regression-based approach to infer 3D positions of facial
landmarks which constrain a user-specific blendshape model. Follow-up
work [CBZB15] also regresses fine-scale face wrinkles. These methods
achieve impressive results, but can not directly be used as a component in
facial reenactment, since they do not facilitate dense, pixel-accurate track-
ing.

Offline Reenactment Vlasic et al. [VBPP05] perform facial reenactment
by tracking a face template, which is re-rendered under different expres-
sion parameters on top of the target; the mouth interior is directly copied
from the source video. Dale et al. [DSJ∗11] achieve impressive results us-
ing a parametric model, but they target face replacement and compose the
source face over the target. Image-based offline mouth re-animation was
shown in [BCS97]. Garrido et al. [GVR∗14] propose an automatic purely
image-based approach to replace the entire face. These approaches merely
enable self-reenactment; i.e., when source and target are the same person;
in contrast, we perform reenactment of a different target actor. Recent work
presents virtual dubbing [GVS∗15], a problem similar to ours; however, the
method runs at slow offline rates and relies on a generic teeth proxy for the
mouth interior. Kemelmacher et al. [KSSGS11] generate face animations
from large image collections, but the obtained results lack temporal coher-
ence. Li et al. [LXW∗12] retrieve frames from a database based on a sim-
ilarity metric. They use optical flow as appearance and velocity measure
and search for the k-nearest neighbors based on time stamps and flow dis-
tance. Saragih et al. [SLC11b] present a real-time avatar animation system
from a single image. Their approach is based on sparse landmark tracking,
and the mouth of the source is copied to the target using texture warping.
Berthouzoz et al. [BLA12] find a flexible number of in-between frames for
a video sequence using shortest path search on a graph that encodes frame
similarity. Kawai et al. [KIM∗14] re-synthesize the inner mouth for a given
frontal 2D animation using a tooth and tongue image database; they are
limited to frontal poses, and do not produce as realistic renderings as ours
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under general head motion.

Online Reenactment Recently, first online facial reenactment ap-
proaches based on RGB-(D) data have been proposed. Kemelmacher-
Shlizerman et al. [KSSS10] enable image-based puppetry by querying simi-
lar images from a database. They employ an appearance cost metric and
consider rotation angular distance, which is similar to Kemelmacher et
al. [KSSGS11]. While they achieve impressive results, the retrieved stream
of faces is not temporally coherent. Thies et al. [TZN∗15] show the first on-
line reenactment system; however, they rely on depth data and use a generic
teeth proxy for the mouth region. In this paper, we address both shortcom-
ings: 1) our method is the first real-time RGB-only reenactment technique;
2) we synthesize the mouth regions exclusively from the target sequence
(no need for a teeth proxy or direct source-to-target copy).

85





CHAPTER 15

Synthesis of Facial Imagery

Weuse amulti-linear PCAmodel based on [BV99, ARL∗09, CWZ∗14]. The
first two dimensions represent facial identity – i.e., geometric shape and
skin reflectance – and the third dimension controls the facial expression.
Hence, we parametrize a face as:

Mgeo(α, δ) = aid + Eid · α + Eexp · δ , (15.1)
Malb (β) = aalb + Ealb · β . (15.2)

This prior assumes a multivariate normal probability distribution of shape
and reflectance around the average shape aid ∈ R3n and reflectance aalb ∈
R3n. The shape Eid ∈ R3n×80, reflectance Ealb ∈ R3n×80, and expression
Eexp ∈ R3n×76 basis and the corresponding standard deviations σid ∈ R80,
σalb ∈ R80, and σexp ∈ R76 are given. The model has 53K vertices and 106K
faces. A synthesized image CS is generated through rasterization of the
model under a rigid model transformation Φ(v) and the full perspective
transformation Π(v). Illumination is approximated by the first three bands
of Spherical Harmonics (SH) [RH01b] basis functions, assuming Lamber-
tian surfaces and smooth distant illumination, neglecting self-shadowing.

Synthesis is dependent on the face model parameters α, β, δ, the illumina-
tion parameters γ, the rigid transformationR, t, and the camera parameters
κ defining the perspective transformation Π. The vector of unknownsP is
the union of these parameters.
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Energy Formulation

Given a monocular input sequence, we reconstruct all unknown parame-
ters P jointly with a robust variational optimization. The proposed objec-
tive function is highly non-linear in the unknowns and has the following
components:

E(P)=wcolEcol(P) + wlanElan(P)︸ ︷︷ ︸
data

+wregEreg(P)︸ ︷︷ ︸
prior

. (16.1)

The data termmeasures the similarity between the synthesized imagery and
the input data in terms of photo-consistency Ecol and facial feature align-
ment Elan. The likelihood of a given parameter vector P is taken into ac-
count by the statistical regularizer Ereg. The weights wcol, wlan, and wreg bal-
ance the three different sub-objectives. In all of our experiments, we use the
empirically chosen parameters wcol = 1, wlan = 10, and wreg = 2.5 · 10−5.
In the following, we introduce the different sub-objectives.

Photo-Consistency We seek to reproduce the appearance of the person
in the input image as close as possible

In order to quantify how well the input data is explained by a synthesized
image, we measure the photo-metric alignment error on pixel level:

Ecol(P) =
1
|V|
∑
p∈V

∥CS(p)− CI(p)∥2 , (16.2)

where CS is the synthesized image, CI is the input RGB image, and p∈V
denote all visible pixel positions in CS . We use the ℓ2,1-norm [DZHZ06]
instead of a least-squares formulation to be robust against outliers. In our
scenario, distance in color space is based on ℓ2, while in the summation over
all pixels an ℓ1-norm is used to enforce sparsity.
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Feature Alignment In addition to dense photo-metric alignment, we en-
force feature similarity between a set of salient facial feature point pairs de-
tected in the RGB stream:

Elan(P) =
1

|F|
∑
fj∈F

wconf,j
∥∥fj − Π(Φ

(
vj
)∥∥2

2 . (16.3)

To this end, we employ a state-of-the-art facial landmark tracking algorithm
by [SLC11a]. Each feature point fj ∈ F ⊂ R2 comes with a detection con-
fidence wconf,j and corresponds to a unique vertex vj = Mgeo(α, δ) ∈ R3

of our face prior. This helps avoiding local minima in the highly-complex
energy landscape of Ecol(P).

Statistical Regularization We enforce plausibility of the synthesized
faces based on the assumption of a normal distributed population. To this
end, we enforce the parameters to stay statistically close to the mean:

Ereg(P) =
80∑
i=1

[( αi
σid,i

)2
+

( βi
σalb,i

)2]
+

76∑
i=1

( δi
σexp,i

)2
. (16.4)

This commonly-used regularization strategy prevents degenerations of the
facial geometry and reflectance, and guides the optimization strategy out of
local minima [BV99].
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Data-parallel Optimization Strategy

The proposed robust tracking objective is a general unconstrained non-
linear optimization problem. We minimize this objective in real-time us-
ing a novel data-parallel GPU-based Iteratively Reweighted Least Squares
(IRLS) solver. The key idea of IRLS is to transform the problem, in each it-
eration, to a non-linear least-squares problem by splitting the norm in two
components:

||r(P)||2 = (||r(Pold)||2)−1︸ ︷︷ ︸
constant

· ||r(P)||22 .

Here, r(·) is a general residual andPold is the solution computed in the last
iteration. Thus, the first part is kept constant during one iteration and up-
dated afterwards. Close in spirit to [TZN∗15], each single iteration step is
implemented using the Gauss-Newton approach. We take a single GN step
in every IRLS iteration and solve the corresponding system of normal equa-
tions JTJδ∗ = −JTF based on PCG to obtain an optimal linear parameter
update δ∗. The Jacobian J and the systems’ right hand side −JTF are pre-
computed and stored in device memory for later processing as proposed by
Thies et al. [TZN∗15]. As suggested by [ZNI∗14, TZN∗15], we split up the
multiplication of the old descent direction d with the system matrix JTJ in
the PCG solver into two successive matrix-vector products. Additional de-
tails regarding the optimization framework are provided in the Chapter 21.

91





CHAPTER 18

Non-Rigid Model-Based Bundling

To estimate the identity of the actors in the heavily underconstrained sce-
nario of monocular reconstruction, we introduce a non-rigid model-based
bundling approach. Based on the proposed objective function, we jointly
estimate all parameters over k key-frames of the input video sequence. The
estimated unknowns are the global identity {α, β} and intrinsics κ as well
as the unknown per-frame pose {δk, Rk, tk}k and illumination parameters
{γk}k. We use a similar data-parallel optimization strategy as proposed for
model-to-frame tracking, but jointly solve the normal equations for the en-
tire keyframe set. For our non-rigid model-based bundling problem, the
non-zero structure of the corresponding Jacobian is block dense. Our PCG
solver exploits the non-zero structure for increased performance (see Chap-
ter 21). Since all keyframes observe the same face identity under potentially
varying illumination, expression, and viewing angle, we can robustly sepa-
rate identity from all other problem dimensions. Note that we also solve
for the intrinsic camera parameters of Π, thus being able to process uncali-
brated video footage.
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Expression Transfer

To transfer the expression changes from the source to the target actor while
preserving person-specificness in each actor’s expressions, we propose a
sub-space deformation transfer technique. We are inspired by the defor-
mation transfer energy of Sumner et al. [SP04], but operate directly in the
space spanned by the expression blendshapes. This not only allows for the
precomputation of the pseudo-inverse of the system matrix, but also dras-
tically reduces the dimensionality of the optimization problem allowing for
fast real-time transfer rates. Assuming source identity αS and target identity
αT are fixed, transfer takes as input the neutral δSN, deformed source δS, and
the neutral target δTN expression. Output is the transferred facial expression
δT directly in the reduced sub-space of the parametric prior.

As proposed by [SP04], we first compute the source deformation gradients
Ai ∈ R3×3 that transform the source triangles from neutral to deformed.
The deformed target v̂i = Mi(αT, δT) is then found based on the unde-
formed state vi = Mi(αT, δTN) by solving a linear least-squares problem. Let
(i0, i1, i2) be the vertex indices of the i-th triangle, V = [vi1 − vi0 , vi2 − vi0 ]
and V̂ = [v̂i1 − v̂i0 , v̂i2 − v̂i0 ], then the optimal unknown target deformation
δT is the minimizer of:

E(δT) =
|F|∑
i=1

∣∣∣∣AiV− V̂
∣∣∣∣2
F . (19.1)

This problem can be rewritten in the canonical least-squares form by sub-
stitution:

E(δT) =
∣∣∣∣AδT − b

∣∣∣∣2
2 . (19.2)

The matrix A ∈ R6|F|×76 is constant and contains the edge information of
the template mesh projected to the expression sub-space. Edge informa-
tion of the target in neutral expression is included in the right-hand side
b ∈ R6|F|. b varies with δS and is computed on the GPU for each new input
frame. The minimizer of the quadratic energy can be computed by solving
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Figure 19.1:Mouth Retrieval: we use an appearance graph to retrieve new
mouth frames. In order to select a frame, we enforce similarity to the previously-
retrieved frame while minimizing the distance to the target expression.

the corresponding normal equations. Since the system matrix is constant,
we can precompute its Pseudo Inverse using a Singular Value Decomposi-
tion (SVD). Later, the small 76 × 76 linear system is solved in real-time.
No additional smoothness term as in [SP04, BWP13] is needed, since the
blendshapemodel implicitly restricts the result to plausible shapes and guar-
antees smoothness.

19.1 Mouth Retrieval

For a given transferred facial expression, we need to synthesize a realistic
target mouth region. To this end, we retrieve and warp the best matching
mouth image from the target actor sequence. We assume that sufficient
mouth variation is available in the target video. It is also important to note
that we maintain the appearance of the target mouth. This leads to much
more realistic results than either copying the sourcemouth region [VBPP05,
DSJ∗11] or using a generic 3D teeth proxy [GVS∗15, TZN∗15].

Our approach first finds the best fitting target mouth frame based on a
frame-to-cluster matching strategy with a novel feature similarity metric.
To enforce temporal coherence, we use a dense appearance graph to find a

96



19.1 Mouth Retrieval

compromise between the last retrieved mouth frame and the target mouth
frame (cf. Fig. 19.1). We detail all steps in the following.

Similarity Metric Our similarity metric is based on geometric and pho-
tometric features. The used descriptorK = {R, δ,F ,L} of a frame is com-
posed of the rotationR, expression parameters δ, landmarksF , and a Local
Binary Pattern (LBP) L. We compute these descriptorsKS for every frame
in the training sequence. The target descriptorKT consists of the result of
the expression transfer and the LBP of the frame of the driving actor. We
measure the distance between a source and a target descriptor as follows:

D(KT,KS
t , t) = Dp(KT,KS

t ) + Dm(KT,KS
t ) + Da(KT,KS

t , t) .

The first term Dp measures the distance in parameter space:

Dp(KT,KS
t ) = ∥δT − δSt ∥22 + ∥RT − RS

t ∥2F .

The second term Dm measures the differential compatibility of the sparse
facial landmarks:

Dm(KT,KS
t ) =

∑
(i,j)∈Ω

(
∥FT

i −FT
j ∥2 − ∥F S

t,i −F S
t,j∥2
)2

.

Here, Ω is a set of predefined landmark pairs, defining distances such as
between the upper and lower lip or between the left and right corner of the
mouth. The last term Da is an appearance measurement term composed of
two parts:

Da(KT,KS
t , t) = Dl(KT,KS

t ) + wc(KT,KS
t )Dc(τ, t) .

τ is the last retrieved frame index used for the reenactment in the previous
frame. Dl(KT,KS

t ) measures the similarity based on LBPs that are com-
pared via a Chi Squared Distance (for details see [GVR∗14]). Dc(τ, t)mea-
sures the similarity between the last retrieved frame τ and the video frame t
based onRGB cross-correlation of the normalizedmouth frames. Note that
the mouth frames are normalized based on the models texture parameteri-
zation (cf. Fig. 19.1). To facilitate fast frame jumps for expression changes,
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we incorporate the weight wc(KT,KS
t ) = e−(Dm(KT,KS

t ))
2 . We apply this

frame-to-frame distance measure in a frame-to-cluster matching strategy,
which enables real-time rates and mitigates high-frequency jumps between
mouth frames.

Frame-to-Cluster Matching Utilizing the proposed similarity metric,
we cluster the target actor sequence into k = 10 clusters using a modified
k-means algorithm that is based on the pairwise distance function D. For
every cluster, we select the frame with the minimal distance to all other
frames within that cluster as a representative. During runtime, we measure
the distances between the target descriptor KT and the descriptors of clus-
ter representatives, and choose the cluster whose representative frame has
the minimal distance as the new target frame.

Appearance Graph We improve temporal coherence by building a fully-
connected appearance graph of all video frames. The edgeweights are based
on the RGB cross-correlation between the normalized mouth frames, the
distance in parameter spaceDp, and the distance of the landmarksDm. The
graph enables us to find an inbetween frame that is both similar to the last
retrieved frame and the retrieved target frame (see Fig. 19.1). We com-
pute this perfect match by finding the frame of the training sequence that
minimizes the sum of the edge weights to the last retrieved and current
target frame. We blend between the previously-retrieved frame and the
newly-retrieved frame in texture space on a pixel level after optic flow align-
ment. Before blending, we apply an illumination correction that considers
the estimated Spherical Harmonic illumination parameters of the retrieved
frames and the current video frame. Finally, we composite the new output
frame by alpha blending between the original video frame, the illumination-
corrected, projected mouth frame, and the rendered face model.
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Results

Live Reenactment Setup Our live reenactment setup consists of stan-
dard consumer-level hardware. We capture a live video with a commodity
webcam (source), and download monocular video clips from Youtube (tar-
get). In our experiments, we use a Logitech HD Pro C920 camera running
at 30Hz in a resolution of 640×480; although our approach is applicable to
any consumer RGB camera. Overall, we show highly-realistic reenactment
examples of our algorithm on a variety of target Youtube videos at a reso-
lution of 1280× 720. The videos show different subjects in different scenes
filmed from varying camera angles; each video is reenacted by several vol-
unteers as source actors. Reenactment results are generated at a resolution
of 1280× 720. We show real-time reenactment results in Fig. 20.6.

Runtime For all experiments, we use three hierarchy levels for tracking
(source and target). In pose optimization, we only consider the second and
third level, where we run one and seven Gauss-Newton steps, respectively.
Within a Gauss-Newton step, we always run four PCG steps. In addition to
tracking, our reenactment pipeline has additional stages whose timings are
listed in Table 20.1. Ourmethod runs in real-time on a commodity desktop
computer with an NVIDIA Titan X and an Intel Core i7-4770.

CPU GPU FPS
SparseFT MouthRT DenseFT DeformTF Synth
5.97ms 1.90ms 22.06ms 3.98ms 10.19ms 27.6Hz
4.85ms 1.50ms 21.27ms 4.01ms 10.31ms 28.1Hz
5.57ms 1.78ms 20.97ms 3.95ms 10.32ms 28.4Hz

Table 20.1: Avg. run times for the three sequences of Fig. 20.6, from top to bot-
tom. Standard deviations w.r.t. the final frame rate are 0.51, 0.56, and 0.59 fps,
respectively. Note that CPU and GPU stages run in parallel.

99



CHAPTER 20 Results

Figure 20.1: Comparison of our RGB tracking to Cao et al. [CHZ14], and to RGB-D
tracking by Thies et al. [TZN∗15].

Tracking Comparison to Previous Work Face tracking alone is not the
main focus of our work, but the following comparisons show that our track-
ing is on par with or exceeds the state of the art.

Shi et al. 2014 [SWTC14]: They capture face performances offline from
monocular unconstrained RGB video. The close-ups in Fig. 20.2 show that
our online approach yields a closer face fit, particularly visible at the sil-
houette of the input face. We believe that our new dense non-rigid bundle
adjustment leads to a better shape identity estimate than their sparse ap-
proach.
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Figure 20.2: Comparison of our tracking to Shi et al. [SWTC14]. From left to right:
RGB input, reconstructedmodel, overlay with input, close-ups on eye and cheek.
Note that Shi et al. perform shape-from-shading in a post process.

Cao et al. 2014 [CHZ14]: They capture face performance from monocular
RGB in real-time. In most cases, our and their method produce similar
high-quality results (see Fig. 20.1); our identity and expression estimates
are slightly more accurate though.

Thies et al. 2015 [TZN∗15]: Their approach captures face performance in
real-time from RGB-D, Fig. 20.1. Results of both approaches are similarly
accurate; but our approach does not require depth data.

FaceShift 2014: We compare our tracker to the commercial real-time RGB-
D tracker from FaceShift, which is based on the work of Weise et al.
[WBLP11]. Fig. 20.3 shows that we obtain similar results from RGB only.

Reenactment Evaluation In Fig. 20.4, we compare our approach against
state-of-the art reenactment by Garrido et al. [GVS∗15]. Both methods
provide highly-realistic reenactment results; however, their method is fun-
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Figure 20.3: Comparison against FaceShift RGB-D tracking.

damentally offline, as they require all frames of a sequence to be present at
any time. In addition, they rely on a generic geometric teeth proxy which in
some frames makes reenactment less convincing. In Fig. 20.5, we compare
against the work by Thies et al. [TZN∗15]. Runtime and visual quality are
similar for both approaches; however, their geometric teeth proxy leads to
undesired appearance changes in the reenacted mouth. Moreover, Thies et
al. use an RGB-D camera, which limits the application range; they cannot
reenact Youtube videos. We show additional comparisons in Chapter 21
against Dale et al. [DSJ∗11] and Garrido et al. [GVR∗14].

20.1 Limitations

The assumption of Lambertian surfaces and smooth illumination is limit-
ing, and may lead to artifacts in the presence of hard shadows or specular
highlights; a limitation shared by most state-of-the-art methods. Scenes
with face occlusions by long hair and a beard are challenging. Furthermore,
we only reconstruct and track a low-dimensional blendshape model (76 ex-
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Figure 20.4: Dubbing: Comparison to Garrido et al. [GVS∗15].

Figure 20.5: Comparison of the proposed RGB reenactment to the RGB-D reen-
actment of Thies et al. [TZN∗15].

pression coefficients), which omits fine-scale static and transient surface
details. Our retrieval-based mouth synthesis assumes sufficient visible ex-
pression variation in the target sequence. On a too short sequence, or when
the target remains static, we cannot learn the person-specific mouth behav-
ior. In this case, temporal aliasing can be observed, as the target space of
the retrieved mouth samples is too sparse. Another limitation is caused by
our hardware setup (webcam, USB, and PCI), which introduces a small de-
lay of≈ 3 frames. Specialized hardware could resolve this, but our aim is a
setup with commodity hardware.
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Figure 20.6: Results of our reenactment system. Corresponding run times are
listed in Table 20.1. The length of the source and resulting output sequences
is 965, 1436, and 1791 frames, respectively; the length of the input target se-
quences is 431, 286, and 392 frames, respectively.
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20.2 Conclusion

The presented approach is the first real-time facial reenactment system that
requires justmonocular RGB input. Our live setup enables the animation of
legacy video footage – e.g., from Youtube – in real time. Overall, we believe
our system will pave the way for many new and exciting applications in
the fields of VR/AR, teleconferencing, or on-the-fly dubbing of videos with
translated audio.
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CHAPTER 21

Appendix: ”Face2Face: Real-time Face
Capture and Reenactment of RGB
Videos”

In this chapter, we provide additional information to the Face2Facemethod
[TZS∗16b]. More specifically, we include additional detail about our opti-
mization framework (see Section 21.1 and 21.2), and we show further com-
parisons to other methods (see Section 21.3). We also evaluate the recon-
struction error in a self-reenactment scenario.

21.1 Optimization Framework

Our Gauss-Newton optimization framework is based on the work of Thies
et al. [TZN∗15]. Our aim is to include every visible pixel p∈V in CS in the
optimization process. To this end, we gather all visible pixels in the synthe-
sized image using a parallel prefix scan. The computation of the Jacobian J
of the residual vector F and the gradient JTF of the energy function are then
parallelized across all GPU processors. This parallelization is feasible since
all partial derivatives and gradient entries with respect to a variable can be
computed independently. During evaluation of the gradient, all compo-
nents of the Jacobian are computed and stored in global memory. In order
to evaluate the gradient, we use a two-stage reduction to sum-up all local
per pixel gradients. Finally, we add the regularizer and the sparse feature
term to the Jacobian and the gradient.

Using the computed Jacobian J and the gradient JTF, we solve the corre-
sponding normal equation JTJΔx = −JTF for the parameter update Δx us-
ing a preconditioned conjugate gradient (PCG) method. We apply a Jacobi
preconditioner that is precomputed during the evaluation of the gradient.
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To avoid the high computational cost of JTJ, our GPU-based PCG method
splits up the computation of JTJp into two successive matrix-vector prod-
ucts.

Our complete framework is implemented using DirectX for rendering and
DirectCompute for optimization. The joint graphics and compute capabil-
ity of DirectX11 enables the processing of rendered images by the graphics
pipeline without resource mapping overhead. In the case of an analysis-by-
synthesis approach like ours, this is essential to runtime performance, since
many rendering-to-compute switches are required.

21.2 Non-rigid Bundling

For our non-rigid model-based bundling problem, the non-zero struc-
ture of the corresponding Jacobian is block dense. We visualize its non-
zero structure, which we exploit during optimization, in Fig. 21.1. In or-

Figure 21.1: Non-zero structure of the Jacobian matrix of our non-rigid model-
based bundling approach for three key-frames. Where Ii, Ei, Li,Ri are the i-th
per frame Jacobian matrices of the identity, expression, illumination, and rigid
pose parameters.

der to leverage the sparse structure of the Jacobian, we adopt the Gauss-
Newton framework as follows: we modify the computation of the gradi-
ent JT(P) · F(P) and the matrix vector product JT(P) · J(P) · x that
is used in the PCG method. To this end, we define a promoter function
Ψf : R|Pglobal|+|Plocal| → R|Pglobal|+k·|Plocal| that lifts a per frame parameter vec-
tor to the parameter vector space of all frames (Ψ−1

f is the inverse of this
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promoter function). Pglobal are the global parameters that are shared over
all frames, such as the identity parameters of the facemodel and the camera
parameters. Plocal are the local parameters that are only valid for one spe-
cific frame (i.e., facial expression, rigid pose and illumination parameters).
Using the promoter function Ψf the gradient is given as

JT(P) · F(P) =

k∑
f=1

Ψf(JTf (Ψ−1
f (P)) · Ff(Ψ−1

f (P))),

where Jf is the per-frame Jacobianmatrix and Ff the corresponding residual
vector.

As for the parameter space, we introduce another promoter function Ψ̂f
that lifts a local residual vector to the global residual vector. In contrast
to the parameter promoter function, this function varies in every Gauss-
Newton iteration since the number of residuals might change. As proposed
in [ZNI∗14, TZN∗15], we split up the computation of JT(P) · J(P) · x into
two successive matrix vector products, where the second multiplication is
analogue to the computation of the gradient. The first multiplication is as
follows:

J(P) · x =

k∑
f=1

Ψ̂f

(
Jf(Ψ−1

f (P)) · Ψ−1
f (x)

)
Using this scheme, we are able to efficiently solve the normal equations.

The Gauss-Newton framework is embedded in a hierarchical solution strat-
egy (see Fig. 21.2). This hierarchy allows to prevent convergence to local
minima. We start optimizing on a coarse level and propagate the solution to
the next finer level using the parametric face model. In our experiments we
used three levels with 25, 5, and 1 Gauss-Newton iterations for the coarsest,
the medium and the finest level respectively, each with 4 PCG steps. Our
implementation is not restricted to the number k of used keyframes. The
processing time is linear in the number of keyframes. In our experiments
we used k = 6 keyframes to estimate the identity parameters resulting in a
processing time of a few seconds (∼ 20s).
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Figure 21.2: Non-rigid model-based bundling hierarchy: the top row shows the
hierarchy of the input video and the second row the overlaid face model.

21.3 Reenactment Evaluation

In addition to the results in the main paper [TZS∗16b], we compare our
method to other existing reenactment pipelines. Fig. 21.3 shows a self-
reenactment scenario (i.e., the source and the target actor is the same per-
son) in comparison to Garrido et al. [GVR∗14]. Our online approach is
able to achieve similar or better quality as the offline approach of Garrido et
al. [GVR∗14]. In Fig. 21.4, we show a comparisons to Dale et al. [DSJ∗11]
and Garrido et al. [GVR∗14]. Note that both methods do not preserve
the identity of the target actor outside of the self-reenactment scenario. In
contrast, our method preserves the identity and alters the expression with
respect to the source actor, which enables more plausible results.
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21.3 Reenactment Evaluation

Figure 21.3: Self-Reenactment comparison to Garrido et al. [GVR∗14]. The ex-
pression of the actress is transferred to a recorded video of herself.

Figure 21.4: Comparison to Dale et al. [DSJ∗11] and Garrido et al. [GVR∗14]. The
expression of the left input actor is transferred to the right input actor without
changing the person’s identity.

We evaluate the presented reenactment method by measuring the photo-
metric error between the input sequence and the self-reenactment of an ac-
tor using cross-validation (see Fig. 21.5). The first 1093 frames of the video
are used to retrieve mouth interiors (training data). Thus, self-reenactment
of the first half results in a small mean photometric error of 0.33 pixels
(0.157px std.Dev.) measured via optical flow. In the second half (frames
1093-2186) of the video, the photometric error increases to a mean value of
0.42 pixels (0.17px std.Dev.).
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Figure 21.5: Self-Reenactment / Cross-Validation; from left to right: input frame
(ground truth), resulting self-reenactment, and the photometric error.
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PART III

FaceVR: Real-Time Facial
Reenactment and Eye Gaze
Control in Virtual Reality





CHAPTER 22

Introduction

Modern head-mounted virtual reality displays, such as the Oculus Rift™ or
the HTC Vive™, are able to provide very believable and highly immersive
stereo renderings of virtual environments to a user. In particular, for tele-
conferencing scenarios, where two ormore people at distant locationsmeet
(virtually) face-to-face in a virtual meeting room, VR displays can provide
a far more immersive and connected atmosphere than today’s teleconfer-
encing systems. These teleconferencing systems usually employ one or sev-
eral video cameras at each end to film the participants, whose video(s) are
then shown on one or several standard displays at the other end. Imagine
one could take this to the next level, and two people in a VR teleconference
would each see a photo-realistic 3D rendering of their actual conversational
partner, not simply an avatar, but in their own HMD. The biggest obstacle

Figure 22.1:We present FaceVR, a novel method to perform real-time gaze-
aware facial reenactment with a virtual reality device (left). In order to capture
a face, we use a commodity RGB-D sensor with a frontal view; the eye region is
tracked using a new data-driven approach based on data from an IR camera lo-
cated inside the head-mounted display. Using the 3D reconstructed face as an
intermediate, we can modify and edit the face, as well as re-render it in a photo-
realistic fashion, allowing for a variety of applications; e.g., removal of VRgoggles
or gaze re-targeting. In addition, we render our output in stereo (right), which
enables display on stereo devices such as other VR headsets.
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inmaking this a reality is thatwhile theHMDallows for very immersive ren-
dering, it is a large physical device which occludes the majority of the face.
In other words, even if each participant of a teleconference was recorded
with a 3D video rig, whose feed is streamed to the other end’s HMD, nat-
ural conversation is not possible due to the display occluding most of the
face.

Recent advancements in VR displays are flanked by great progress in
face performance capture methods. State-of-the-art approaches enable
dense reconstruction of dynamic face geometry in real-time, from RGB-
D [WBLP11, BWP13, LYYB13, ZNI∗14, HMYL15] or even RGB cam-
eras [CHZ14, CBZB15, TZS∗16b]. A further step has been taken by re-
cent RGB-D [TZN∗15] or RGB-only [TZS∗16b] real-time facial reenact-
ment methods. These methods estimate dense face geometry along with
scene illumination of a source and target actor, transfer the source expres-
sion to the target, and re-render and composite the modified face and the
target video in a photo-realistic fashion. In order to render the modified
mouth in the target view, 3D shape proxies [TZN∗15] or image-basedmeth-
ods [TZS∗16b] are used.

In the aforementioned VR teleconferencing setting, a (self-)facial reenact-
ment approach could be used to remove the display from the face of each
participant by rendering the unoccluded view of the face on top of the VR
display at the other end. Unfortunately, the stability of many real-time face
capture methods suffers if the tracked person wears anHMD. Furthermore,
existing reenactment approaches cannot transfer the appearance of eyes, in-
cluding blinking and eye gaze - yet exact reproduction of the entire face
expression, including the eye region, is crucial for conversations in VR.

In our work, we therefore propose FaceVR, a new real-time facial reenact-
ment approach that can transfer facial expressions and realistic eye appear-
ance between a source and a target actor video. Eye movements are tracked
using an infrared camera inside the HMD, in addition to outside-in cam-
eras tracking the unoccluded face regions (see Fig. 22.1). It is also suited
for self-reenactment with HMDs, thus enabling VR teleconferencing as de-
scribed above. In order to achieve this goal, we make several algorithmic
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key contributions:

• Robust real-time facial performance capture of a person wearing an
HMD, using an RGB-D camera stream, with rigid and non-rigid de-
grees of freedom, and an HMD-internal camera.

• Real-time eye-gaze tracking with a novel classification approach
based on random ferns, for video streams of an HMD-internal cam-
era or a regular webcam.

• Facial reenactment with photo-realistic re-rendering of the face re-
gion including the mouth and the eyes, using model-based face, ap-
pearance, and lighting capture.

• Capture of target actors using a lightweight stereo rig which signif-
icantly improves tracking accuracy over monocular setups and en-
ables photo-realistic re-rendering of stereo content.

• An end-to-end system for facial reenactment inVR,where the source
actor is wearing an HMD and the target actor is recorded in stereo.
This facilitates VR goggle removal from a video stream, allows for
gaze-aware VR conversations, and enables many other reenactment
applications such as eye-gaze correction in video chats.
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RelatedWork

A variety ofmethods exist to capture detailed static and dynamic face geom-
etry with specialized controlled acquisition setups [KRP∗15]. Some meth-
ods use passive multi-view reconstruction in a studio setup [BPL∗03, PL06,
BHB∗11, FJA∗14], optionally with the support of face markers [Wil90,
HCTW11]. Methods using active scanners for capture were also devel-
oped [ZSCS04, WLGP09].

Many approaches employ a parametric model of face identity [BV99,
BBPV03], and face expression [TDlTM11]. Blend shape models are
widely used for representing the expression space [PHL∗98, LAR∗14],
and multi-linear models jointly represent the identity and expression
space [VBPP05, SWTC14]. Newermethods enable dense face performance
capture in more general scenes with more lightweight setups, such as a
stereo camera [VWB∗12], or even just a single RGB video at off-line frame
rates [GVWT13, SKS14, SWTC14, FJA∗14]. Garrido et al. [GZC∗16] re-
construct a fully controllable parametric face rig including reflectance and
fine scale detail, and [SSK15] build a modifiable mesh model of the face.
[IBP15] reconstruct a game-type 3D face avatar from static multi-view im-
ages and a video sequence of face expressions. More recently, methods re-
constructing dense dynamic face geometry in real-time from a single RGB-
D camera [WBLP11, ZNI∗14, BWP13, LYYB13, HMYL15] were proposed.
Some of them estimate appearance and illumination along with geome-
try [TZN∗15]. Using trained regressors [CHZ14, CBZB15], or paramet-
ric face models, dense dynamic face geometry can be reconstructed from
monocular RGB video [TZS∗16b]. Recently, Cao et al. [CWW∗16] pro-
posed an image-based representation for dynamic 3D avatars that supports
various hairstyles and parts of the upper body.

The ability to reconstruct face models from monocular input data enables
advanced image and video editing effects. Given a portrait of a person, a
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limitless number of appearances can be synthesized [KS16] based on face
replacement and internet image search. Examples for video editing effects
are re-arranging a database of video frames [LXW∗12] such that mouth
motions match a new audio stream [BCS97, TTM15], face puppetry by
reshuffling a database of video frames [KSSS10], or re-rendering of an en-
tire captured face model to make mouth motion match a dubbed audio-
track [GVS∗15]. Other approaches replace the face identity in a target
video [DSJ∗11, GVR∗14]. When face expressions are modified, it is often
necessary to re-synthesize the mouth and its interior under new or unseen
expressions, for which image-based [KIM∗14, TZS∗16b] or 3D template-
based [TZN∗15] methods were examined. Vlasic et al. [VBPP05] describe
a model-based approach for expression mapping onto a target face video,
enabling off-line reenactment of faces under controlled recording condi-
tions. While Thies et al. [TZN∗15] (see also Part I) enable real-time dense
tracking and photo-realistic expression mapping between source and tar-
get RGB-D video, Face2Face [TZS∗16b] (see also Part II) enables real-time
face reenactment between captured RGB video of one actor and an arbi-
trary target face video. Under the hood, they use a real-time tracker captur-
ing dense shape, appearance and lighting. Expression mapping and image-
basedmouth-re-rendering enables photo-realistic target appearance. None
of the aforementioned capture and reenactment approaches succeeds under
strong face occlusion by a VR headset, nor can combine data from several
cameras – inside and outside the display – and thus cannot realistically re-
render the eye region and appearance, including correct gaze direction.

Parts of our method are related to image-based eye-gaze estimation ap-
proaches. Commercial systems exist for eye gaze tracking of the unoc-
cluded face using special externally placed cameras, e.g., from Tobii1, or
IR cameras placed inside a VR headset, e.g., from Pupil Labs2. Appearance-
based methods for gaze-detection of the unoccluded face from standard
externally placed cameras were also researched [SMS14, ZSFB15]. Wang
et al. [WSXC16] simultaneously capture 3D eye gaze, head pose, and facial
expressions using a single RGB camera at real-time rates. However, they
consider a different problem; we need to reenact – i.e., photo-realistically
1www.tobii.com
2www.pupil-labs.com
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synthesize – the entire eye region appearance in a target video of either a
different actor, or the same actor in a different lighting, from input video
of an in-display camera. Parts of our method are related to gaze correction
algorithms for teleconferencing where the eyes are re-rendered such that
they look into the web-cam, which is typically displaced from the video dis-
play [CSBT03, KPB∗12, KL15]. Again, this setting is different from ours, as
we need to realistically synthesize arbitrary eye region motions and gazes,
and not only correct the gaze direction.

Related to our paper is the work by Li et al. [LTO∗15] who capture moving
facial geometrywhile wearing anHMDwith a rigidly attached depth sensor.
In addition, they measure strain signals with electronic sensors to estimate
facial expressions of regions hidden by the display. As a result, they obtain
the expression coefficients of the face model which are used to animate vir-
tual avatars. Recently, Olszewski et al. [OLSL16] propose an approach for
HMD users to control a digital avatar in real-time based on RGB data. The
user’s mouth is captured by a camera that is rigidly attached to the HMD
and a convolutional neural network is used to regress from the images to
the parameters that control a digital avatar. They also track eyebrowmotion
based on a camera that is integrated into the headmounted display. Both of
these approaches only allow to control a virtual avatar – rather than a real
video – and do not capture the eye motion. Our approach takes this a step
further and captures facial performance as well as the eye motion of a per-
son using an HMD. In addition, we allow to re-render and reenact the face,
mouth, and eye motion of a target stereo stream photo-realistically and in
real-time. Note that our face tracking is also different since our camera is
not attached to the HMD (i.e., we solve for the rigid head pose).
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Hardware Setup

For our method, we consider a source and a target actor. The source actor
is wearing a head-mounted display (HMD), and we use a lightweight hard-
ware setup to reconstruct and track the source actor’s face. To this end, we
augment commodity VR goggles with a simple IR webcam on the inside
for tracking one eye. For tracking the rigid pose and facial expressions, we
use outside-in tracking with a real-time RGB-D sensor (Asus Xtion Pro), as
well as ArUco AR markers on the front panel of the HMD.

The tracking and reconstruction pipeline for the target actor differs. Here,
we use a lightweight stereo setup which is composed of two commodity we-
bcams. This allows for robust face tracking and generation of 3D video con-
tent that we can display on the source actor’s HMD.We typically pre-record
the target actor’s video stream, but we modify and replay it in real time. In
addition, we assume that faces in the target video are mostly unoccluded.

Figure 24.1: Hardware setups: a source actor experiences VR wearing an Oculus
DK2 headset (left). We track the source actor using a commodity RGB-D sensor
(front-facing), and augment the HMD with ArUco markers, as well as an IR web-
cam in the inside (mounted with Add-on Cups). The target actor footage is cap-
tured with a lightweight stereo rig, which is composed of two webcams (right).
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In the following paragraphs, we detail the hardware configuration of our
head-mounted display for source actor tracking, as well as the lightweight
stereo rig for target actor tracking. Both setups are shown in Fig. 24.1.

24.0.1 Head-Mounted Display for the Source Actor

For visualizing 3D content to the source actor, we use an Oculus Rift DK2
head-mounted display, and we integrate a simple IR webcam to track the
source actor’s eyes. The camera is integrated inside the HMD with Oculus
Rift DK2 Monocular Add-on Cups, which allows us to obtain a close-up
camera stream of the right eye [Lab16]; see Fig. 24.1, left. Although we
present results on this specific setup, our method is agnostic to the head-
mounted display, and can be used in combinationwith any other VR device,
such as the VR Box, Samsung Gear VR, or HTC Vive.

The monocular camera, which we integrate in the DK2, captures an IR
stream of the eye region at a resolution of 640 × 480 pixels at 120Hz. IR
LEDs are used as active light sources such that bright images can be ob-
tained, and the camera latency is 5.7ms. The camera is mounted on the top
of the VR device lens and an IR mirror is used to get a frontal view of the
eye without interfering with the view on the display. The camera is located
close to the lenses (see Fig. 24.1, left), and captures images IE of the eyes at
real-time rates.

Note that our prototype has only one internal camera. Thus, we use the
stream of the right eye to infer and reenact the motion of both the left and
the right eye. This is feasible as long aswe can assume that the focus distance
is the same as during calibration, that is eye vergence (squinting) does not
change. If this assumption does not hold, a second internal camera for the
left eye can be easily integrated into our design.

In addition, we augment the DK2 by attaching two ArUco AR markers to
the front of the HMD to robustly track the rigid pose. During face track-
ing, this allows us to decouple the rigid head pose from the facial expres-
sion parameters by introducing additional soft constraints obtained from
the markers. The combination of marker tracking and joint optimization
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allows to further stabilize the estimates of the rigid head pose, leading to
much higher tracking accuracy (see Fig. 27.1).

Tracking of the Source Actor For tracking the source actor in real-time,
we use a commodity RGB-D camera. Specifically, we use an Asus Xtion
Pro RGB-D sensor that captures RGB-D frames of 640 × 480 pixels at 30
fps (both color and depth). Every frame, the camera captures anRGB image
II and a depth image DI , which we assume to be spatially and temporally
aligned. Both images are parameterized by pixel coordinates p, each RGB
value is II(p) ∈ R3. Depth DI(p) ∈ R is reprojected into the same space
as II . Note that we are only considering visible pixel locations p ∈ P on
the face that are not occluded by the HMD.

24.0.2 3D Stereo Rig for Target Actor Tracking

In order to obtain a 3D reconstruction of the target actor, we use the binoc-
ular image stream of a lightweight stereo rig. Our setup is composed of two
commodity webcams (Logitech HD Pro Webcam C920), which are rigidly
mounted side-by-side and facing the same direction on a stereo bar; see
Fig. 24.1, right. The camera rig synchronously captures a stereo stream of
two RGB pairs I(c)I , c ∈ {1, 2} at real-time rates. The two cameras are syn-
chronized up to 33ms and capture images at the resolution of 800 × 600
pixels at 30Hz. The captured stereo content is used to capture the target
3D video content. We calibrate the stereo rig intrinsically and extrinsically
using standard OpenCV routines.

Note that we have the option to track the target actor from a monocular
stream (similar toThies et al. [TZS∗16b]); e.g., as shown in Fig. 29.2. How-
ever, our primary goal is the gaze-aware reenactment of a stereo stream
which can be rendered on a 3D display (e.g., a VR device).
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Synthesis of Facial Imagery

We parameterize human heads under general uncontrolled illumination
based on a multi-linear face and an analytic illumination model. A linear
PCA basis is used for facial identity [BV99] (geometry and reflectance) and
a blendshape basis for the expression variations [ARL∗09, CWZ∗14]. This
results in the spatial embedding of the underlying mesh and the associated
per-vertex color information parameterized by linear models,F(T, α, β, δ)
and C(β, γ), respectively. The mesh has 106K faces and 53K vertices. Here,
T ∈ R4×4 models the rigid head pose, α ∈ R80 the geometric identity,
β ∈ R80 the surface reflectance properties, δ ∈ R78 the facial expression,
and γ ∈ R3·9 the incident illumination situation. The 3 · 9 illumination
coefficients encode the RGB illumination based on 9 Spherical Harmonics
(SH) [RH01b] basis functions. For convenience, we stack all parameters of
the model in a vector X = (T, α, β, δ, γ) ∈ R265. Synthetic monocular im-
ages IS and synthetic stereo pairs (I(1)S , I(2)S ) of arbitrary virtual heads can
be generated by varying the parametersX and using the GPU rasterization
pipeline to simulate the image formation process. To this end, we use a
standard pinhole camera model under a full perspective projection Π (•).

Mouth Interior The parametric head model does not contain rigged
teeth, a tongue or a mouth interior, since these facial features are challeng-
ing to reconstruct and track from stereo input due to strong occlusions in
the input sequence. Instead, we use an image-based retrieval strategy in the
spirit of Thies et al. [TZS∗16b] to find suitable mouth frames in a training
sequence. In contrast to their approach, our retrieval clusters frames into
static and dynamic motion segments leading to temporally more coherent
results. The output of this step is then composited with the rendered model
using alpha blending.
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Eyeball and Eyelids We use a unified image-based strategy to synthesize
plausible animated eyes (eyeball and eyelid) that can be used for photo-
realistic facial reenactment in VR applications. This novel strategy is one
of the main contributions of this work and is described in the next section.
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An Image-based Eye and Eyelid Model

We propose a novel image-based retrieval approach to track and synthesize
the region of the eyes, including eyeballs and eyelids. This approach is later
used in all presented applications, namely gaze correction for video calls
(see Sec. 29.0.1), gaze-aware facial reenactment (see Sec. 29.0.2) and video
conferencing in VR (see Sec. 29.0.3). We chose an image-based strategy,
since it is specific to a person; it not onlymodels the behavior of the eyeballs,
but also captures idiosyncrasies of eyelid movement while enabling photo-
realistic re-rendering. Our approach uses a hierarchical variant of random
ferns [OCLF10] to robustly track the eye region. To this end, we propose a
novel actor-specific and fully automatic training stage. In the following, we
describe our fully automatic data generation process, the used classifier and
the optimizations that are required to achieve fast, robust, and temporally
stable gaze estimates.

26.0.1 Training Data Generation

To train our image-based eye regression strategy, we require a sufficiently
large set of labeled training data. Since manual data annotation for every
newuser is practically infeasible, we propose a very efficient approach based
on a short eye calibration sequence.

During the training process, we display a small circle at different positions
of a 7 × 5-tiled image grid on the screen in front of the user; see Fig. 26.1,
left. This allows us to capture the space of all possible look-at points on the
display. In addition, we capture an image of a closed eye for the synthesis
of eye blinks. The captured image data In is divided into 36 = 7 × 5 +

1 unique classes ln, where every class is associated with a view direction.
The ground truth gaze directions are given by the current position of the
dot on the screen in the training data. During training, the user focuses
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Figure 26.1: Left: the eye calibration pattern used to generate training data for
learning our image-based eye-gaze retrieval. In the training phase, we progress
row-by-row in a zig-zag order; each grid point is associated with an eye-gaze
direction. Right: to obtain robust results, we perform a hierarchical classification
where classes of thefiner level are accumulated into a smaller set of super classes.

on the displayed dot with his eye gaze. We show every dot for 2 seconds
for each location. The data captured in the first 0.4 seconds is rejected to
allow the user a grace period to adjust his eye-gaze to new positions. In the
remaining 1.6 seconds, we capture 50 frames which we use to populate the
corresponding class. After that, we proceed to the next class, and move the
dot to the next position. Note that the dot location for a given class is fixed,
but we obtain multiple samples within each class (one for each frame) from
the input data. This procedure progresses row-by-row in a zig-zag order;
see Fig. 26.1, left. Finally, we augment the samples in each class by jittering
each captured source image by±1 pixels, resulting in 9×50 training frames
per class.

Each cluster is also associated with a representative image of the eye region
obtained from the captured input data. The representative image of each
class is given by the median of the corresponding video clip, which is later
used for the synthesis of new eye movements. Finally, we add an additional
class which represents eye blinks; this class is obtained by asking the user
to close his eyes at the end of the training phase. This calibration sequence
is performed for both the source and target actor. Since the calibration se-
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quence is the same for both actors, we obtain one-to-one correspondences
between matching classes across actors. As detailed in the following sub-
sections, this allows us to train an eye-gaze classifier which predicts gaze
directions for the source actor at runtime. Once trained, for a given source
input frame, the classifier identifies cluster representatives from the target
actor. The ability to robustly track the eye direction of the source actors
forms the basis for real-time gaze-aware facial reenactment; i.e., we are able
to photo-realistically animate/modify the eyes of a target actor based on a
captured video stream of the source actor. In the following, we detail our
eye tracking strategy.

26.0.2 Random Ferns for Eye-gaze Classification

The training data {In, ln}Nn=1, which is obtained as described in the previous
section, is a set of N input images In with associated class labels ln. Each
label ln ∈ {cl}Cl=1 belongs to one ofC classes cl. In our case, the images of the
eye region are clustered based on gaze direction. We tackle the associated
supervised learning problem by an ensemble ofM random ferns [OCLF10],
where each fern is based on S features. To this end, we define a sequence
of K = MS binary intensity features F = {fk}Kk=1, which is split into M
independent subsets Fm of size S. Assuming statistical independence and
applying Bayes Rule, the log-likelihood of the class label posterior can be
written as:

log P(cl|F) ∼ log
[
P(cl) ·

M∏
m=1

P(Fm|cl)
]
.

The class likelihoods P(Fm|cl) are learned using random ferns. Each fern
performs S binary tests [OCLF10], which discretizes the per-class feature
likelihood into B = 2S bins. At first, we initialize all bins with one to pre-
vent taking the logarithm of zero. In all experiments, we use M = 800
ferns with S = 5 binary tests. Finally, the class with the highest posterior
probability is chosen as the classification result. Training takes only around
4.9ms per labeled image, thus training runs in parallel to the calibration
sequence. Once trained, the best class is obtained in less than 1.4ms.
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26.0.3 Hierarchical Eye-gaze Classification

In order to efficiently handle classification outliers, we perform eye-gaze
classification on a two-level hierarchy with a fine and a coarse level. The
35 + 1 classes of the fine level are defined by the grid points of the zig-zag
calibration pattern shown in Fig. 26.1, left. To create the coarse level, we
merge neighboring classes of the fine level into superclasses. For a set of
four adjacent classes (overlap of one), we obtain one superclass; see Fig. 26.1,
right. This leads to a grid with 25 = 4 × 6 + 1 unique classes (rather than
the 35+ 1 classes; the class for eye blink is kept the same).

During training, we train the two hierarchy levels independently. The train-
ing data for the fine level is directly provided by the calibration pattern, and
the data for the coarse level is inferred as described above. At test time,
we first run the classifier of the coarse level which provides one of the su-
perclasses. Then the classification on the fine level only considers the four
classes of the best matching superclass.

The key insight of this coarse-to-fine classification is to break up the task
into easier sub-problems. That is, the classification on the coarse level is
more robust and less prone to outliers of the fern predictions since there are
fewer classes to distinguish between. The fine level then complements the
superclass prediction by increasing the accuracy of the inferred eye-gaze di-
rections. In the end, this multi-level classifier leads to high accuracy results
while minimizing the probability of noisy outliers. In Fig. 26.2, we show a
comparison between a one and two level classifier. The two level approach
obtains a lower error (mean 0.217973, std.dev. 0.168094) compared to the
one level approach (mean 0.24036, std.dev. 0.18595).

26.0.4 Temporal Stabilization of Classification Results

In the previous sections, we introduced a classifier that infers the eye-gaze
direction froma single RGB frame – ormonochromatic IR frame in the case
of the HMD camera – without the assumption of a temporal prior. Due to
the probabilistic nature of random ferns, the classification results are some-
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Figure 26.2: Comparison of a one (orange) and a two level (blue) classifier.
Ground truth data is obtained by a test subject looking at a dot that appears
every 80 frames (2.6 seconds) at random (Sample Point); error is measured in
normalized screen space coordinates in [0, 1]2. As shown by the magnitude of
the positional error, the multi-level classifier obtains higher accuracy.

times temporally unstable. In practice, this can lead to jitter even in the
absence of eye motion.

In order to alleviate this problem, we introduce a temporal stabilizer that fa-
vors the previously-retrieved eye-gaze direction. This particularly helps in
the case of small eye motions, where the switch to a new class would intro-
duce unwanted jitter. To this end, we adjust the likelihood of a specific class
P(cl) using a temporal prior such that the previously-predicted eye-gaze di-
rection cold is 1.05× more likely than changing the state and predicting a
different class.We integrate the temporal stabilization on both levels of the
classification hierarchy. First, we favor the super class on the coarse level
using the aforementioned temporal prior. If the current and previous pre-
diction on the coarse level is the same, we apply a similar prior to the view
within the superclass. Otherwise, we use no temporal bias on the fine level.
This allows fast jumps of the eye direction, which is crucial for fast saccade
motion that pushes the boundary of the 30Hz temporal resolution of the
stereo setup.

133





CHAPTER 27

Parametric Model Fitting

Our approach uses two different tracking and reconstruction pipelines for
each (source and target) actor, respectively. The source actor, who is wear-
ing the HMD, is captured using an RGB-D camera; see Sec. 24.0.1. Here,
we constrain the face model F by the visible pixels on the face that are not
occluded by the HMD, as well as the attached ArUco AR markers. The
target actor reconstruction – which becomes the corresponding VR target
content that is animated at runtime – is obtained in a pre-process with
the lightweight stereo setup described in Sec. 24.0.2. For both tracking
pipelines, we use an analysis-by-synthesis approach to find the model pa-
rametersX that best explain the input observations. Theunderlying inverse
rendering problem is tackled based on energy minimization. For simplic-
ity, we first describe the energy formulation for tracking the target actor in
Sec. 27.0.1. Then, we introduce the objective function for fitting the face
model of the source actor in Sec. 27.0.2.

27.0.1 Target Actor Energy Formulation

In order to process the stereo video stream of the target actor, we introduce
amodel-based stereo reconstruction pipeline that constrains the facemodel
according to both RGB views per frame. That is, we aim to find the optimal
model parameters X constrained by the input stereo pair {I(c)I }2c=1.

Our model-based stereo reconstruction and tracking energy Etarget is a
weighted combination of alignment and regularization constraints:

Etarget(X ) =
[
wsteEste(X ) + wlanElan(X )

]
︸ ︷︷ ︸

alignment

+
[
wregEreg(X )

]
︸ ︷︷ ︸

regularizer

. (27.1)

We use dense photometric stereo alignment Este and sparse stereo landmark
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alignment Elan in combination with a robust regularization strategy Ereg.
The sub-objectives of Etarget are scaled based on empirically determined, but
constant, weights wste = 100, wlan = 0.0005, and wreg = 0.0025 that bal-
ance the relative importance.

Dense Photometric Stereo Alignment We enforce dense photometric
alignment to both views in the stereo pair. For robustness against outliers,
we use the ℓ2,1-norm [DZHZ06] instead of a traditional least-squares for-
mulation:

Este(X ) =

2∑
c=1

1
|P(c)|

∑
p∈P(c)

∥∥∥I(c)S (p)− I(c)I (p)
∥∥∥
2
. (27.2)

Here, P(c) is the set of visible model pixels p from the cth-camera. The visi-
ble pixels of themodel are determined by a forward rendering pass using the
old parameters. We normalize based on the total number of pixels |P(c)|
to guarantee that both views have the same influence. Note that the two
sets of visible pixels are updated in every optimization step, and for the for-
ward rendering pass we use the face parameters of the previous iteration or
frame.

Sparse Stereo Landmark Alignment We use sparse point-to-point
alignment constraints in 2D image space that are based on per-camera sets
L(c) of 66 automatically detected facial landmarks. The landmarks are ob-
tained by the detector of Saragih et al. [SLC11a]:

Elan(X ) =

2∑
c=1

1
|L(c)|

∑
(l,k)∈L(c)

wl,k ∥l− Π(Fk(T, α, β, δ)∥22 . (27.3)

The projected vertices Fk(T, α, β, δ) are enforced to be spatially close to
the corresponding detected 2D feature l. Constraints are weighted by the
confidencemeasureswl,k, which are provided by the sparse facial landmark
detector.
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Figure 27.1: Tracking with and without ArUco Marker stabilization.

Statistical Regularization In order to avoid implausible face fits, we ap-
ply a statistical regularizer to the unknowns ofX that are based on our para-
metric face model. We favor plausible faces where parameters are close to
the mean with respect to their standard deviations σid, σalb, and σexp.

Ereg(X ) =

80∑
i=1

[(
αi
σid,i

)2

+

(
βi

σalb,i

)2
]
+

76∑
i=1

(
δi

σexp,i

)2

. (27.4)

27.0.2 Source Actor Tracking Objective

At runtime, we track the source actor who is wearing the HMD and is cap-
tured by the RGB-D sensor. The tracking objective for visible pixels that
are not occluded by the HMD is similar to the symmetric point-to-plane
tracking energy in Thies et al. [TZN∗15]. In addition to this, we introduce
rigid stabilization constraints which are given by the ArUco AR markers
in front of the VR headset. These constraints are crucial to robustly sepa-
rate the rigid head motion from the face identity and pose parameters (see
Fig. 27.1). The total energy for tracking the source actor at runtime is given
by the following linear combination of residual terms:

Esource(X ) = wrgbErgb(X ) + wgeoEgeo(X ) + wstaEsta(X ) + wregEreg(X ) . (27.5)

The first term of this objective Ergb measures the photometric alignment of
the input RGB image II from the camera and the synthetically-generated
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rendering IS :

Ergb(X ) =
1
|P|

∑
p∈P

∥IS(p)− II(p)∥2 . (27.6)

This color term is defined over all visible pixels P in the bottom half of the
face that are not occluded by the HMD, and we use the same ℓ2,1-norm as
in Eq. 27.2.

In addition to the photometric alignment, we constrain the face model by
the captured range data:

Egeo(X ) = wpointEpoint(X ) + wplaneEplane(X ) . (27.7)

Similar to Ergb, geometric residuals of Egeo are defined over the same set
of visible pixels on the face. The geometric term is composed of two sub-
terms, a point-to-point Epoint term, where DI is the input depth and DS is
the rendered depth (both are back-projected into camera space),

Epoint(X ) =
∑
p∈P

∥DS(p)−DI(p)∥22 , (27.8)

as well as a symmetric point-to-plane term

Eplane(X ) =
∑
p∈P

[
d2plane(NS(p), p) + d2plane(NI(p), p)

]
, (27.9)

where dplane(n, p) =
[
(DS(p)−DI(p))T · n

]
, NI(p) is the input normal

and NS(p) the rendered model normal.

In addition to the constraints given by the raw RGB-D sensor data, the to-
tal energy of the source actor Esource incorporates rigid head pose stabiliza-
tion. This is required, since in our VR scenario the upper part of the face
is occluded by the HMD. Thus, only the lower part can be tracked and the
constraints on the upper part of the face, which normally stabilize the head
pose, are missing. To stabilize the rigid head pose, we use the two ArUco
markers that are attached to the front of the HMD (see Fig. 24.1, left).
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Figure 27.2: Building a personalized stereo avatar; from left to right: we first
jointly optimize for all unknowns of our parametric facemodel using a non-rigid
bundle adjustment formulation on the input of three stereo pairs. For tracking,
we only optimize for expression, lighting, and rigid pose parameters constrained
by synchronized stereo input; this optimization runs in real-time. Next, we train
our data-driven eye tracker with data from an eye-calibration sequence. In addi-
tion to eye calibration,webuild adatabaseofmouth stereopairs, which captures
the variation of mouth motion. As a result, we obtain a tracked stereo target,
which is used during live re-enactment (this is the target actor).

We first extract a set of eight landmark locations based on the two markers
(four landmarks each). In order to handle noisy depth input, we fit two
3D planes to the frame’s point cloud that bound each marker, respectively.
We then use the resulting 3D corner positions of the markers, and project
them into face model space. Using these stored reference positions Ak we
establish the rigid head stabilization energy Esta:

Esta(X ) =
1
|S|

∑
(l,k)∈S

∥l− Π(TAk)∥22 . (27.10)

Here,S defines the correspondences between the detected 2D landmark po-
sitions l in the current frame and the reference positions Ak. In contrast to
the other data terms, Esta depends only on the rigid transformation T of the
face and replaces the facial landmark term used by Thies et al. [TZN∗15].
Note that the Saragih tracker is unable to robustly track landmarks in this
scenario since only the lower part of the face is visible. The statistical regu-
larization term Ereg is the same as for the target actor (see Eq. 27.4).
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27.0.3 Data-Parallel Optimization

We find the optimum of both face tracking objectives X ∗
source =

argminX Esource(X ) andX ∗
target = argminX Etarget(X ) based on variational

energyminimization, leading to an unconstrained non-linear optimization
problem. Due to the robust ℓ2,1-norm used to enforce photo-metric align-
ment, we find theminimum based on a data-parallel Iteratively Re-weighted
Least Squares (IRLS) solver [TZS∗16b]. At the heart of the IRLS solver, a se-
quence of non-linear least squares problems are solved with a GPU-based
Gauss-Newton approach [ZNI∗14, WZN∗14, ZDI∗15, TZN∗15, DMZ∗16,
TZS∗16b] that builds on an iterative Preconditioned Conjugate Gradient
(PCG) solver. The optimization is done in a coarse-to-fine fashion using a
hierarchy with three levels. We only run tracking on the two coarser lev-
els using seven IRLS steps on the coarsest and one on the medium level.
For each IRLS iteration, we perform oneGauss-Newton step with four PCG
steps. In order to exploit temporal coherence, we initialize the face model
with the optimization results from the previous frame. First, this gives us a
good estimate of the visible pixel count in the forward rendering pass, and
second, it provides a good starting point for the Gauss-Newton optimiza-
tion. Note that we never explicitly store JTJ, but instead apply the multipli-
cation of the Jacobian (and its transpose) on-the-fly within every PCG step.
Thus, the compute cost for each PCG iteration becomes more expensive for
multi-view optimization of Etarget; although materialization is still less effi-
cient, since we only need a small number of PCG iterations. In addition to
optimizing for the parameters of the face model, we jointly optimize for the
spherical harmonics coefficients. Since we use three bands, this involves 27
unknowns for the lighting (three per RGB channel); cf. Sec. 25.
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Face Rig and Compositing

Generation of a Personalized Face Rig At the beginning of each record-
ing, both of the source and target actor, we compute a person-specific face
rig in a short initialization stage. To this end, we capture three keyframes
with slightly different head rotations in order to recover the user’s facial ge-
ometry and skin reflectance. Given the constraints of these three keyframes,
we jointly optimize for all unknowns of our face modelF – facial geometry,
skin reflectance, illumination, and expression parameters – using our track-
ing and reconstruction approach. Fig. 27.2 (left) shows this process for the
stereo reconstruction step. This initialization requires a few seconds; once
computed, we maintain a fixed estimate of the facial geometry and replace
the reflectance estimatewith person-specific illumination-corrected texture
maps. In the stereo case, we compute one reflectance texture for each of the
two cameras. This ensures that the two re-projections exactly match the
input streams, even if the two used cameras have slightly different color
response functions. In the following steps, we use this high-quality stereo
albedo map for tracking, and we restrict the optimizer to only compute the
per-frame expression and illumination parameters. All other unknowns
(e.g., geometry) are person-specific and can remain fixed for a given user.

In order to enable high-quality reenactment of the mouth and the eye-
/eyelids in the target video, we provide two additional short calibration se-
quences (each a few seconds); see Fig. 27.2 (right). First, the user slowly
opens and closes his mouth in front of the sensor. This allows us to gener-
ate a mouth motion database. The database clusters frames into static and
dynamic motion segments based on the space-time trajectory of the sparse
landmark detections. At runtime, we use the mouth calibration to synthe-
size realistic textures for the mouth interior and the teeth. Since we record
stereo mouth frames, we can retrieve coherent mouth frame pairs and visu-
alize the result on a 3D display. Second, we capture the person-specific ap-
pearance and motion of the eyes and eyelids during the initialization stage.
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The obtained eye-calibration data is then used for training our eye tracker
(cf. Sec. 26).

Real-time Compositing and Facial Reenactment At run-time, we use
the reconstructed face model along with its calibration data (eye and
mouth) to photo-realistically re-render the face of the target actor. We first
modify the facial expression parameters of the reconstructed face model
of the target actor. The expressions are transfered from source to target
in real-time using the subspace deformation transfer approach of Thies
et al. [TZS∗16b]. Based on the modified face parameters, the best fitting
mouth is retrieved by finding the frame that has the most similar spatial
distribution of 3D marker positions. In contrast to Thies et al. [TZS∗16b],
we prefer frames that belong to the same motion segment as the previously
retrieved one. This leads to higher temporal coherence and hence less vi-
sual artifacts. The retrieved mouth frames do not exactly match the trans-
fered facial expression. To account for this, Thies et al. [TZS∗16b] stretch
the texture based on the face parameterization leading to visual artifacts,
i.e., unnaturally stretched teeth, which are temporally unstable. To allevi-
ate this problem, we propose to match the retrieved texture to the outer
mouth contour of the target expression using a saliency preserving image
warp [WTSL08]. We use a modified as-rigid-as-possible regularizer that
takes local saliency of image pixels into account. The idea is to deform the
mouth texture predominantly in regions that will not lead to visual artifacts.
Stretching is most noticeable for the bright teeth, since they are perfectly
rigid in the physical world, while it is harder to detect in the darker regions
that correspond to the mouth interior. Therefore, we use pixel intensity
as a proxy to determine local rigidity weights (a high value for bright and
low value for dark pixels) that control the amount of warping in different
texture regions. Since our eye gaze estimator allows one-to-one correspon-
dence between the source and the target actor, we also know the index of
the gaze class in the eye database of the target actor. To synthesize temporal
coherent and plausible eye motion, we temporally filter the eye motion by
averaging the retrieved view direction of the gaze class in a small window
of frames. Afterwards, we use the average view direction to perform the
texture lookup. In the final compositing stage, we render the mouth tex-
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ture, the eye textures, and the (potentially modified) 3D face model on top
of the target video using alpha blending. Instead of a static face texture, we
use a per-frame texture based on the current frame of the target video. This
leads to higher resolution results, since slight miss-alignments during the
generation of the personalized face rig have no influence on the final texture
quality. Note that for the stereo rendering pipeline, we retrieve consistent
mouth and eye frame pairs to facilitate visualization on a 3D display.
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Results

In this section, we evaluate our gaze-aware facial reenactment approach
in detail and compare against state-of-the-art reenactment methods. All
experiments run on a desktop computer with an Nvidia GTX980 and a
3.3GHz Intel Core i7-5820K processor. For tracking the source and tar-
get actor, we use our hardware setup as described in Sec. 24. However, note
that our method is agnostic to the specific hardware components such as
the VR headset. Our approach is robust to the specific choice of parame-
ters, and we use a fixed parameter set in all experiments. For stereo track-
ing, we set the following weights in our energy formulation: wste = 100.0,
wlan = 0.0005, wreg = 0.0025. Our RGB-D tracking approach uses
wrgb = 100.0, wgeo = 10000.0, wsta = 1.0, wreg = 0.0025.

As our main results, we demonstrate three distinct applications for our real-
time gaze-aware facial reenactment approach: gaze correction in live video
footage, gaze-aware facial reenactment, and self-reenactment for VR gog-
gle removal. All three applications share a common initialization stage that
is required for the construction of a personalized face and eye/eyelid model
of the users; see Sec. 28. The source video content is always captured us-
ing the Asus Xtion depth sensor. Depending on the application, we use
our lightweight stereo rig (3D-stereo content; visualized as anaglyph) or
the RGB-D sensor (standard video content).

29.0.1 Gaze Correction for Video Conferencing

Video conference calls, such as Skype chats, suffer from a lack of eye contact
between participants due to the discrepancy between the physical location
of the camera and the screen. To address this common problem, we apply
our face tracking and reenactment approach to the task of online gaze cor-
rection for live video footage; see Fig. 29.1. Our goal is the photo-realistic
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Figure 29.1: Gaze Correction: a common problem in video chats is the discrep-
ancy between the physical location of the webcam and the screen, which leads
to unnatural eye appearance (left). We use our eye tracking and retrieval strat-
egy to correct the gaze direction in such a scenario, thus enabling realistic video
conversations with natural eye contact (right).

modification of the eye motion in the input video stream using our image-
based eye and eyelid model. To this end, we densely track the face of the
user, and our eye-gaze classifier provides us with an estimate of the gaze
direction; i.e., we determine the 2D screen position where the user is cur-
rently looking. Given the eye tracking result, we modify the look-at point
by applying a delta offset to the gaze direction which corrects for the dif-
ferent positions of the camera and screen. Finally, we retrieve a suitable
eye texture that matches the new look-at point and composite it with the
input video stream to produce the final output. A gaze correction example
is shown in Fig. 29.1.

29.0.2 Gaze-aware Facial Reenactment

Our approach enables real-time photo-realistic and gaze-aware facial reen-
actment of monocular RGB-D and 3D stereo videos; see Fig. 29.2 and 29.4.
In both scenarios, we track the facial expressions of a source actor using an
external Asus Xtion RGB-D sensor, and transfer the facial expressions – in-
cluding eye motion – to the video stream of a target actor. The eye motion
is tracked using our eye-gaze classifier based on the data captured by the ex-
ternal camera (monocular RGB-D reenactment) or the internal IR camera
which is integrated into the HMD (stereo reenactment). We transfer the
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Figure 29.2: Gaze-aware facial reenactment of monocular RGB-D video streams:
we employ our real-time performance capture and eye tracking approach in or-
der to modify the facial expressions and eye motion of a target video. In each
sequence, the source actor’s performance (top) is used to drive the animation of
the corresponding target video (bottom). 147
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Figure 29.3: Self-Reenactment for VR Video Conferences: our real-time facial
reenactment approach allows to virtually remove the HMD by driving a pre-
recorded target video of the same person.

tracked facial motion to a target video stream using the presented (stereo)
facial reenactment approach. The modified eye region is synthesized us-
ing our unified image-based eye and eyelid model. The re-rendering and
compositing is detailed in Sec. 28. This allows the source actor to take full
control of the face expression and eye gaze of the target video stream at
real-time frame rates.

29.0.3 Self-Reenactment for VR Video Conferencing

Our real-time facial reenactment approach can be used to facilitate natural
video chats in virtual reality. Themajor challenge for video conferencing in
the VR context is that the majority of the face is occluded; thus, the other
person in a VR conversation is unable to see the eye region. Rather than re-
enacting different target actors with our facial reenactment method, we can
self-reenact the source actor. Hence, our approach enables users to drive
a pre-recorded target stereo video stream of themselves, which does not
include the HMD. Using self-reenactment, the users can alter both the fa-
cial expression and the eye/eyelid motion of the pre-recorded video stream.
This virtually removes the HMD from the face and allows users to appear
as themselves in VR without suffering from occlusions due to the head
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mounted display; see Fig. 29.3. In addition, the output video stream mim-
ics the eye motion, which is crucial since natural eye contact is essential in
conversations. Note that the user can drive either a mono or a stereo video
stream.

Although compression is not the main focus of this paper, it is interesting
to note that the reenactment results can be be easily transferred over a net-
work with low bandwidth. In order to transmit the 3D video content at
runtime to the other participants in a video chat, we only have to send the
model parameters, as well as the eye and mouth class indices. The final
modified stereo video can be directly synthesized on the receiver side using
our photo-realistic re-rendering. Given that current video chat software,
such as Skype, still struggles under poor network connections, we believe
our re-enactment may open up interesting possibilities.

29.0.4 Evaluation of Eye Tracking Accuracy

We evaluate the accuracy of our monocular eye gaze classification strat-
egy on ground truth data and compare to the commercial Tobii EyeX eye
tracker1. To this end, a test subject looks at a video sequence of a dot that is
displayed at random screen positions for 80 successive frames (2.6 seconds
given 30Hz input) – this provides a ground truth dataset. During this test
sequence, we capture the eye motion using both the Tobii EyeX tracker and
our approach. We measure the per-frame magnitude of the positional 2D
error of Tobii and our approach with respect to the known ground truth
screen positions; see Fig. 29.5. Note that screen positions are normalized to
[0, 1]2 before comparison. As can be seen, we obtain consistently lower er-
rors. On the complete test sequence (more than 74 seconds), our approach
has a mean error of 0.206 (std. dev. 0.178). In contrast, the Tobii EyeX
tracker has a higher error of 0.284 (std. dev. 0.245). The high accuracy of
our approach is crucial for realistic and convincing eye reenactment results.
Note, the outside-in tracking of Tobii EyeX does not generalize to the VR
context, since both eyes are fully occluded by the HMD.

1www.tobii.com/xperience/
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Figure 29.4: Gaze-aware facial reenactment of stereo target video content. We
employ our real-time gaze-aware facial reenactment approach to modify the fa-
cial expressions and eye motion of stereo 3D content. The input (i.e., source ac-
tor) is captured with a frontal view and an internal IR camera. With our method,
we can drive the facial animation of the stereo output videos shown below the
input – the facial regions in these images are synthetically generated. The final
results are visualized as anaglyph images.
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Figure 29.5: Comparison to the commercial Tobii EyeX eye tracking solution.
The ground truth data is obtained by a test subject looking at a dot on the screen
that appears every 80 frames (2.6 seconds) at random (Sample Point); error is
measured in normalized screen space coordinates in [0, 1]2. We plot the magni-
tude of the positional error of Tobii EyeX (orange) and our approach (blue). Our
approach obtains a consistently lower error.

Figure 29.6: Accuracy of reconstructed identity: we compare our result against
Face2Face [TZS∗16b]. Note that our new approach obtains a better shape esti-
mate of the chin, nose, and cheek regions. For reference, we use a structured
light reconstruction from a David 3D scanner. The mean Hausdorff Distance of
Face2Face is 3.751mm (RMSE 4.738mm). Our approach has a mean distance of
2.672mm (RMSE 3.384mm).

29.0.5 Evaluation of Face Identity Estimation

The identity of the target actor is obtained using our model-based stereo
bundle adjustment strategy. We compare our identity estimate with the ap-
proach of Thies et al. [TZS∗16b] (Face2Face); see Fig. 29.6. As a reference,
we use a high-quality structured light scan of the same person taken with
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Figure 29.7: Stereo alignment: we compare the photometric alignment accu-
racy of our approach to Face2Face [TZS∗16b]. Face2Face only obtains a good
fit to the image captured by the left camera (average error of 0.011), but the re-
projection to the right camera suffers from strongmisalignments (average error
of 0.019). In contrast, our stereo trackingmethod obtains consistently low errors
for both views (average error of 0.011 left and 0.012 right).

a David 3D scanner. Our approach obtains a better reconstruction of the
identity, especially the chin, nose, and cheek regions are of higher quality.
Note that we estimate the identity by model-based bundle adjustment over
three stereo pairs. Face2Face uses only the three images of one of the two
RGB cameras.

29.0.6 Evaluation of Face Tracking Accuracy

In Fig. 29.7, we evaluate the stereo alignment accuracy of our approach and
compare to the monocular face tracker of Face2Face [TZS∗16b]. As input,
we use the binocular image stream captured by our custom stereo setup;
see Sec. 24. We measure the photometric error between the input frames
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Photometric Geometric
left right left right

RGB Mono 0.0130 0.0574 0.2028 0.1994
RGB-D Mono 0.0123 0.0183 0.0031 0.0031
RGB Stereo (Ours) 0.0118 0.0116 0.0046 0.0046

Table 29.1: Tracking accuracyof our approach (RGBStereo) compared to Thies et
al. [TZN∗15] (RGB-DMono) and Face2Face [TZS∗16b] (RGBMono). Our approach
achieves low photometric and geometric errors for both views since we directly
optimize for stereo alignment.

and the re-projection of the tracked face model. The tracking of Face2Face
is based on the left camera stream, since this approach uses only monocu-
lar input data. Thus, Face2Face obtains a good fit with respect to the left
camera (average error of 0.011), but the re-projection regarding the right
camera suffers from strong misalignments (average error of 0.019). In con-
trast, our stereo tracking approach obtains consistently low errors for both
views (average error of 0.011 left and 0.012 right), since we directly optimize
for the best stereo overlap. For the aforementioned re-enactment applica-
tions in VR, it is crucial to obtain high-quality alignment with respect to
both camera streams of the stereo setup.

We evaluate the accuracy of our approach on ground truth data; see
Fig. 29.8. As ground truth, we use high-quality stereo reconstructions
obtained by Valgaerts et al. [VWB∗12]. To this end, we synthetically
generate a high-quality binocular RGB-D stream from the reference data.
Our approach achieves consistently low photometric and geometric er-
rors. We also compare against the state-of-the-art face trackers of Thies
et al. [TZN∗15] (RGB-D Mono) and Face2Face [TZS∗16b] (RGB Mono)
on the same dataset. All three approaches are initialized using model-
based RGB-(D) bundling of three (stereo) frames. The RGB and RGB-D
trackers show consistently higher photometric errors for the right input
stream, since they do not optimize for stereo alignment; see also Tab. 29.1.
Given that Face2Face [TZS∗16b] only uses monocular color input, it suf-
fers from depth ambiguity, which results in high geometric errors. Due to
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Figure 29.8: Ground truth comparison: we evaluate the photometric and geo-
metric accuracy of our stereo tracking approach (RGB Stereo). As ground truth,
we employ the high-quality stereo reconstructions of Valgaerts et al. [VWB∗12].
Our approach achieves consistently low photometric and geometric error for
both views. We also compare to Thies et al. [TZN∗15] (RGB-D Mono) and
Face2Face [TZS∗16b] (RGB Mono). Both approaches show consistently higher
photometric error, since they do not optimize for stereo alignment. Note that
the RGB-D tracker uses the ground truth depth as input.
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the wrong depth estimate, the re-projection to the right camera image does
not correctly fit the input. The RGB-D based tracking approach of Thies
et al. [TZN∗15] resolves this ambiguity and therefore obtains the highest
depth accuracy. Note, however, that this approach has access to the ground
truth depth data for the sake of this evaluation. Since the two cameras have
slightly different response functions, the reconstructedmodel colors do not
match the right image, leading to high photometric error. Only our model-
based stereo tracker is able to obtain high-accuracy geometric and photo-
metric alignment in both views. This is crucial for the creation of 3D stereo
output for VR applications, as demonstrated earlier. None of the two other
approaches achieves this goal.
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CHAPTER 30

Conclusion and Discussion

Although FaceVR is able to facilitate a wide range of face appearance ma-
nipulations in VR, it is one of the early methods in a new field. As such, it
is a first stepping stone and thus constrained by several limitations. While
our eye tracking solution provides great accuracy with little compute cost,
it is specifically designed for the VR scenario. First, it is actor-specific, and
we need to calibrate and train our classifier for each new person indepen-
dently; this process takes only a few seconds, but it also makes the tracking
solution less suitable compared to a general purpose eye tracker. Second, in
the VR device, we track only one eye and infer the movement of the other
eye. To correctly capture vergence and squinting one would need to add a
second IR camera to the head mounted display. This is a straightforward
modification; however, we wanted to keep our setup as simple as possible.
Third, we assume that head rotation remains relatively constant with re-
spect to its initialization. This always holds for tracking within an HMD,
since the IR camera is rigidly attached; it also works for facial reenactment,
since both transfer and eye tracking is in model space. However, for gen-
eral eye tracking, one would want to include the rigid head pose into the
classification framework. One important limitation of our approach is that
we cannot modify the rigid head pose of the target videos. This would re-
quire a reconstruction of the background and the upper body of the actor,
which we believe is an interesting research direction. Our VR face track-
ing is based on the rigid head pose estimates and the unoccluded face re-
gions. Unfortunately, the field of view of the IR camera attached to the in-
side of the device is not large enough to cover the entire interior face region.
Thus, we cannot track most of the upper face except the eyeballs. Here, our
method is complementary to the approach of Li et al. [LTO∗15]; they use ad-
ditional sensor input from electronic strain measures to fill in this missing
data. The resulting constraints could be easily included in our face track-
ing objective; note, however, that their current tracking setup is different,
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since the outside-in camera is rigidly attached to the HMD. In the context
of facial reenactment, we have similar limitations to Thies et al. [TZN∗15]
and Face2Face [TZS∗16b]; i.e., we cannot handle occlusions in the target
video such as those caused by microphones or waving hands. We believe
that this could be addressed by computing an explicit foreground-face seg-
mentation; the work by Saito et al. [SLL16] already shows promising results
to specifically detect such cases.

To summarize, we have presented FaceVR, a novel approach for real-time
gaze-aware facial reenactment in the context of virtual reality. The key com-
ponents of FaceVR are robust face reconstruction and tracking, data-driven
eye tracking, and photo-realistic re-rendering of facial content on stereo dis-
plays. Therefore, we are able to show a variety of exciting applications, such
as re-targeting of gaze directions in video chats, virtual removal of VR gog-
gles in video streams, and most importantly, facial reenactment with gaze
awareness in VR. We believe that this work is a stepping stone in this new
field, demonstrating some of the possibilities of the upcoming virtual real-
ity technology. In addition, we are convinced that this is not the end of the
line, and we believe that there will be even more exciting future work tar-
geting photo-realistic video editing in order to improve the VR experience,
as well as many other related applications.
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CHAPTER 31

Summary and Outlook

In this dissertation, we developed new face reconstruction and tracking ap-
proaches. These approaches differ in their requirements and use-cases.

Part I shows the first real-time facial reenactment system based on RGB-D
cameras. In contrast to existing face trackingmethods [WLGP09,WBLP11,
LYYB13] that aim to animate virtual characters, our goal was to manipu-
late the RGB video stream photo-realistically. We therefore introduced an
analysis-by-synthesis approach that minimizes the photometric and geo-
metric error on a pixel level, resulting in a dense face tracker. To ensure
real-time frame rates, we solved the underlying dense optimization prob-
lem using an optimized GPU-basedGauss-Newton solver. Using this dense
face tracker, we showed real-time facial reenactment between a source and
a target actor that are both captured with an RGB-D camera. The estimated
expression parameters of the source actor are mapped to the target actor,
exploiting the expression blendshape representation of the underlying face
model. In combinationwith a generic teethmodel, we then re-rendered the
modified face of the target actor on top of the input video. The results of
this work show that we are able to achieve nearly photo-realistic expression
transfer in real-time, with consumer-grade hardware.

In Part II we developed a novel RGB-only face tracking and reenactment
technique. The method shown in Part I is limited in its use-cases because
of the required RGB-D camera. To this end, we developed a new approach
that is only based on uncalibrated RGB videos. The reconstruction of a face
in such a setting is way more challenging. Beside unknown camera param-
eters, there is no depth observation to rely on. To overcome the reduced
information, we show a novel model-based bundling scheme, where we
use several images of a person to reconstruct the shape, the albedo and the
camera parameters. Using these estimations, we are able to track the face
in a video stream in real-time. The parameter estimation during bundling
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and tracking is based on a dense photometric term that compares the syn-
thesized facial imagery with the observations. The optimization strategy
is based on an Iterative Re-weighted Least-Squares solver. Since the system
only requires monocular RGB input, we are able to process videos from the
Internet. Using a video sequence as input, we generate a person specific
database of mouth interiors. Based on this database, we enable real-time
facial reenactment of the person in the video. We track a source actor us-
ing an ordinary web-cam and apply the expressions to the target actor in the
video. Using themouth database to synthesize themouth interior, allows us
to increase the quality of our output to a level where the results are nearly
indistinguishable from real videos. Our demonstrations of the project at
several conferences and in the supplemental video on Youtube resulted in a
controversial discussion of the developed technique. People, who watched
our system for the first time, were thrilled by the results of our method and
thought of funny thinks they could do with it. But soon they realized that
it could also be used to manipulate videos for propaganda or other evil pur-
poses. In general they are right with this rating, but it is important to sen-
sitize people to such video manipulations. Existing methods that are used
for movie production bring dead actors virtually to life, but nobody thinks
of the abuse of such a technology. Demonstrating the simplicity of video
manipulation teach the people to not blindly trust videos from unknown
sources. Nevertheless, we believe that this system paves the way for many
new and exciting applications in the fields of VR/AR, teleconferencing, or
on-the-fly dubbing of videos with translated audio.

Part III presents FaceVR, a novel approach for real-time gaze-aware facial
reenactment in the context of virtual reality (VR). In contrast to the meth-
ods shown in Part I and II, FaceVR is able to track the facial expressions of a
person that is partially occluded by a head mounted display (HMD). Since
eye motions and eye contact are very important during a conversation, we
implemented a data-driven eye tracking method. Using this eye model we
are not only able to estimate the gaze of a person, but also to synthesize
photo-realistic images. To allow eye tracking of a person that is wearing an
HMD, we use an IR-camera that is mounted inside theHMD. Besides track-
ing a face of a person that is wearing a VR goggle, the VR context requires
stereoscopic results. Using a custom stereo camera, we reconstruct stereo-
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scopic avatars that can be reenacted. As a result we show the virtual removal
of the HMD that is based on gaze-aware self-reenactment. The shown re-
sults also demonstrate the stereoscopic reenactment where the source and
target actor differ.

We believe that our work showcases some of the possibilities of the upcom-
ing VR/AR technologies. And we are convinced that there will be even
more exciting future work targeting photo-realistic video editing. Thus, in
future projects, we plan to further extend and improve our shownmethods.
Currently, we require a good equipped PC or laptop, especially a modern
graphics card. To bring our trackingmethods tomobile devices, like Smart-
phones, the workload has to be reduced. Besides improving performance,
our goal is to extend our reenactment to the whole body. Reenacting a body
is way more ambitious than reenacting faces. Clothes and other occlusions
are challenging and make it hard to reconstruct the body. In addition, dur-
ing reenactment, the garment has to be animated to produce a believable
result. The whole head including hairs has to be modeled and simulated.

To conclude, we enhanced existing face reconstruction and tracking ap-
proaches to a level, where the synthesized facial images are nearly indistin-
guishable from real ones. Our reenactment results led to a broad discussion
in the media and opened up a new research field - real-time photo-realistic
facial reenactment.
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Face2Face: Übertragung von
Gesichtsausdrücken in Echtzeit





Kurzfassung

In dieser Dissertation werden die Fortschritte im Bereich der 3D-Re-
konstruktion von menschlichen Gesichtern, basierend auf herkömmlicher
Endverbraucher-Hardware gezeigt. Neben der Rekonstruktion der Geome-
trie und der Textur eines Gesichtes, wird auch die Verfolgung von Gesichts-
zügen in Echtzeit demonstriert. Die entwickelten Algorithmen basieren auf
dem Prinzip der Analyse durch Synthese. Um dieses Prinzip anwenden zu
können, muss zuerst ein mathematisches Modell definiert werden, welches
es ermöglicht ein Gesicht virtuell darzustellen. Neben dem Gesichtsmodell
wird auch der Aufnahmeprozess der verwendeten Kamera in einemModell
dargestellt werden. Durch die Möglichkeit ein Bild eines Gesichtes zu syn-
thetisieren, können iterativ dieModellparameter so angepasst werden, dass
das synthetisierte Bild bestmöglich das Eingabebild repräsentiert. Mit Hilfe
dieses Verfahrens überführt man somit imUmkehrschluss das Eingabebild
in eine virtuelle Darstellung eines Gesichtes. Die erreichte Qualität ermög-
licht eine Vielzahl von neuen Anwendungen, die auf eine detailgetreue Re-
konstruktion angewiesen sind. Dazu gehört auch das sogenannte ”Facial
Reenactment”. Unsere entwickelten Methoden zeigen, dass eine solche An-
wendung ohne spezielle Ausrüstung möglich ist. Die Resultate sind nahezu
Photo-realistisch Videos, in denen die Mimik einer Person auf eine andere
Person übertragen wird. Dadurch lässt sich zum Beispiel die Synchronisie-
rung von Filmen, also das Übersetzen in eine andere Sprache verbessern.
Anstatt die Audiospur an das Video anzupassen, was unter anderem auch
zu Änderungen am Text führt, können die Mundbewegungen des Dolmet-
schers in einemNachbearbeitungsschritt des Videomaterials auf den Schau-
spieler übertragen werden. Da die Techniken, die in dieser Dissertation ge-
zeigt werden, in Echtzeit ablaufen, kann auch in einemVideotelekonferenz-
system die Mundbewegung eines Live-Dolmetschers virtuell auf eine ande-
re Person übertragen werden.

Die Veröffentlichungen der Videos zu unseren hier gezeigten Projekten,
führten zu einer breiten Diskussion in den Medien. Dies lag zum einen an
der Tatsache, dass unsere Methoden so entwickelt wurden, dass sie in Echt-
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zeit ablaufen können und zum anderen daran, dass wir die Anforderungen
an Hardware auf ein Minimum reduziert konnten. So ist es uns möglich
gewöhnliche Videos aus dem Internet zu bearbeiten und in Echtzeit zu edi-
tieren. Unter anderem haben wir somit bekannten Persönlichkeiten, wie
zum Beispiel ehemaligen Präsidenten der USA, eine andere Mimik aufer-
legen. Dies führte unweigerlich zu einer Diskussion über die Glaubwürdig-
keit von Videomaterial, vor allem aus unbekannten Quellen. Das eine sol-
che Manipulation bereits vor unseren gezeigten Demonstrationen möglich
war, wenn auch mit einem höheren Aufwand, war den meisten Menschen
nicht bewusst. Damit konnten wir mit unseren Projekten, neben der Wei-
terentwicklung von Echtzeit Face Tracking, zu einer Sensibilisierung der
Öffentlichkeit beitragen.
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