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PROXIMO

– I was the best because the crowd loved me. Win the

crowd, win your freedom.

MAXIMUS

– I will win the crowd. I will give them something they

have never seen before.

Gladiator (2000) movie script by D. Franzoni, revised by J. Logan.





Abstract
Simulation, Animation and Rendering of Crowds in Real-Time

by Alejandro Beacco

Nowadays crowd simulation is becoming more important in computer applica-

tions such as building evacuation planning, training, videogames, etc., present-

ing hundreds or thousands of agents navigating in virtual environments. Some

of these applications need to run in real time in order to offer complete inter-

action with the user. Simulated crowds should seem natural and give a good

looking impression to the user. The goal should be to produce both the best

motion and animation, while minimizing the awkwardness of movements and

eliminating or hiding visual artifacts. Achieving simulation, animation and

rendering of crowds in real-time becomes thus a major challenge. Although

each of these areas has been studied individually and improvements have been

made in the literature, its integration in one real-time system is not straight for-

ward. In the process of integrating animation, simulation and rendering of real

time crowds, we need to assume some trade-offs between accuracy and quality

of results.

The main goal of this thesis is to work on those three aspects of a real-time

crowd visualization (simulation, animation and rendering) seeking for possi-

ble speed-ups and optimizations allowing us to further increase the number

of agents in the simulation, to then integrate them in a real-time system, with

the maximum number possible of high quality and natural looking animated

agents. In order to accomplish our goal we present new techniques to achieve

improvements in each one of these areas: In crowd simulation we work on a

multi-domain planning approach and on planning using footsteps instead of

just root velocities and positions; in animation we focus on a framework to elim-

inate foot sliding artifacts and on synthesizing motions of characters to follow

footsteps; in rendering we provide novel techniques based on per joint impos-

tors. Finally we present a novel framework to progressively integrate different

methods for crowd simulation, animation and rendering. The framework offers

level-of-detail for each of these areas, so that as new methods are integrated

they can be combined efficiently to improve performance.
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1 . Introduction

This chapter introduces the motivations and some of the main problems of this

thesis. We also present our goals, and list all the contributions to the area with

their related publications. Following this chapter, the reader can find a chapter

where all the main concepts related to the topics covered by this thesis are

explained in detail. The reader may want to skip this chapter if he is already

familiar with these topics.
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1. Introduction

1.1 . Motivations

In our everyday lives we encounter a lot of people. They conform an essential

part of our cities, our societies, our environments and definitely our lives. We

see people going to work, waiting for a train or bus, meeting friends, working

and performing a huge number of activities. People can create a rich tapestry

of activities during the day, one of which we might not be conscious about. But

if suddenly we would not see so much people or no one (this could obviously

happen at some time) we would immediately notice the difference, the absence

of it (Figure 1.2). Precisely this aspect, this diversity of characters, activities

and movements, is what a lot of computer graphic simulations, presenting 3D

environments inhabited by animated virtual humans [Pelechano et al., 2008],

lack of.

Figure 1.1: A street in a normal day in Chengdu, China.

Simulating and visualizing people’s activities can be done for different pur-

poses. There are a lot animation and simulation in computer applications where

you need modeling virtual crowds of autonomous agents. Some of these appli-

cations include planning, education, entertainment, training, and human fac-

tor analysis for building evacuations. Other applications include simulations

of huge scenarios where masses of people congregate, flow and disperse, like

transport centers, sport events, or concerts. A lot of crowd simulations only in-

clude basic movement behaviors, possibly along with some stochastic actions.
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Figure 1.2: We notice that something is wrong when seeing an empty London
street (photo extracted from the 28 Days Later motion picture).

From all these computer graphic applications simulating crowds we distinguish

the ones that are in real-time from the ones that are not. In the movies indus-

try it is easy to watch some scenes with high quality virtual crowds, masses,

armies, etc., like in The Lord Of The Rings (Figure 1.3); these are precomputed

simulations for which the visualization rendering process can require a lot of

hours. For real-time applications, like videogames or the ones for a virtual re-

ality system, where interactivity is crucial, the speed of computation becomes

fundamental. We thus require not only navigation algorithms for one agent

in a huge virtual environment while avoiding obstacles and other agents; we

also need efficient algorithms for rendering high complex scenes with animated

characters represented by completely jointed 3D figures or another equivalent

representation.

Figure 1.3: The Lord Of The Ring movies used the MASSIVE software to ren-
der army crowds.
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1.2 . Problems

Trying to achieve a high level of realism, each one of these areas can become a

bottle-neck for a real-time simulation. Therefore, it is necessary to have a trade-

off between accuracy and speed of computation. Simulating human motion

accurately, while satisfying physical constraints and maintaining its temporal

restrictions, is not an easy task. Although there are currently a lot of techniques

developed in order to synthesize motions for one agent [Treuille et al., 2007],

these are not easily extensible for large numbers of agents simulated in real-

time. Moreover, depending on how the agent is simulated the set of parameters

and constraints to animate its character can go from just a velocity vector to a

complete set of footprints to follow.

Figure 1.4: Grand Theft Auto V (2013) for Playstation 3 and XBox 360

For example, in videogames, since two generations ago the sandbox genre has

become very popular. This kind of game usually has the user controlling his

avatar in an open city or region, with no predefined paths. In this usually large

environment, the user decides almost always what to do and where to go. But

to be realistic the 3D environment must be inhabited by virtual characters. So,

if we take one videogame of this kind, such as the last hit Grand Theft Auto V

(Figure 1.4) from Rockstar Games or Assassin’s Creed IV Black Flag (Figure 1.5)

from UbiSoft, we are able to notice some things that still are far from perfect.
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Figure 1.5: Assassin’s Creed IV Black Flag (2013) for PC, Playstation 3, XBox
360, WiiU, Playstation 4 and XBox One

First of all, it is often noticeable that there are not as many characters in the

environment as one would expect in certain situations (street markets with just

a hand full of animated characters). And in the cases where big crowds are

involved in the game, these are mostly standing in the same place with no par-

ticular inner interaction, moving and reacting like a unique entity. So the first

desirable goal would be to have more people inhabiting real time virtual worlds

and that the particular agents of a crowd exhibit individual interactions and

goals.

Secondly, when staring at the virtual crowd for a certain amount of time, we

would notice, repetitions and lack of variety in the models, animations and

motions of the agents. The cloning impression of this is negative. Individuality

again should be a target.

Third, if we observe the visual quality of the non-controlled characters, they

will always have less detail than the main characters; sometimes we can even

notice the differences between levels of detail. Effects like popping are very

common, as well as limiting the maximum viewing distance with some fog

trick. Improving the performance while maintaining the visual impression over

the user is therefore a major challenge.

Fourth, we will have disturbing artifacts such as the foot-sliding effect, where

the feet seem to slide on the floor. This is often due to a mismatch between the
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simulation and the animation. Avoiding this and obtaining smooth, continu-

ous and natural motions of the characters should be fulfilled to not break the

illusion of the player.

Finally, we would sometimes find situations that are not controlled by the cur-

rent simulator and that may produce some unnatural behaviors. All these prob-

lems have an impact in the overall impression and immersion of the user, which

in the case of videogames or virtual reality applications, becomes critical.

1.3 . Goals

The main goal of this thesis is to find and propose solutions to some of the prob-

lems occurring in real-time crowd simulations, represented with 3D animated

characters, while trying to improve their overall realism. The work carried out

during this thesis has been focused in achieving that goal with the maximum

possible efficiency, while obtaining realistic results from the point of view of the

simulation, animation, and high visual quality. These techniques have been de-

veloped, with the final goal in mind of making possible to efficiently integrate

all of them in the same system.

In order to achieve this main goal, we have aimed at the following specific re-

search goals::

1. Simulation: to speed-up the simulation, and improve the natural behavior

of the agents and their interactions, by developing different and novel

granularities of planning control, such as planning at a footstep level, and

the capacity to use more than one at the same time.

2. Animation: to avoid animation artifacts and mismatch problems with the

simulation, by developing new animation controllers synthesizing motion

to accurately follow the different outputs of the simulators, while respect-

ing constraints. These controllers need to be efficient enough to work for

a large amount of characters.
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3. Rendering: to avoid the rendering computation bottleneck and being able

to support a higher number of agents in real-time during the simulation,

by developing novel and efficient image-based techniques for animated

characters.

As we can see, virtual crowd visualization is a complete field consisting of an

agglomeration of parts with its own problems that need to be solved. Obviously,

each one of these parts could constitute a single thesis on its own. But my PhD

research has focused on having all of them working at the same time in a real-

time system. Therefore, these elements are not explored in all its extension, but

they are researched in our concrete scenario of a real-time application.

1.4 . Contributions

The contributions of this thesis are a set of novel techniques which have in

common that they are meant to work for large groups of agents in real-time,

and a novel framework with an architecture that allows embedding all these

elements together:

Contributions to Crowd Simulation:

• A) A framework that decomposes a planning problem, of navigating in

complex and dynamic virtual environments, into multiple heterogeneous

problems of differing complexities. Related publication:

– 1. M. Kapadia, A. Beacco, F. Garcia, V. Reddy, N. Pelechano and N.I.

Badler. Multi-Domain Real-time Planning in Dynamic Environments.

ACM SIGGRAPH

/EUROGRAPHICS Symposium on Computer Animation 2013 (SCA

2013), Anaheim, CA, U.S.A., 2013

• B) A planner that given any set of animation clips outputs a sequence of

footsteps to follow from an initial position to a goal guaranteeing obstacle
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avoidance and correct spatio-temporal foot placement. Related publica-

tion:

– 2. A. Beacco, N. Pelechano and M. Kapadia. Dynamic Footsteps Plan-

ning for Multiple Characters. EUROGRAPHICS Spanish Conference

of Computer Graphics 2013 (EGse CEIG 2013), Madrid, Spain., 2013

Contributions to Crowd Animation:

• C) A technique focused on eliminating artifacts that are common in this

kind of visualization, such as the well-known foot-sliding effect. Related

publications:

– 3. N. Pelechano, B. Spanlang and A. Beacco. A framework for render-

ing, simulation and animation of crowds. EUROGRAPHICS Spanish

Conference of Computer Graphics (EGse CEIG 2009), Donostia (San

Sebastian), Spain. 9-11 September 2009.

– 4. A. Beacco, B. Spanlang, and N. Pelechano. Efficient elimination

of foot sliding for crowds. In Posters Proceedings, The ACM SIG-

GRAPH/EUROGRAPHICS Symposium on Computer Animation

(SCA 2010), pages 19-20, Madrid, Spain 2010

– 5. N. Pelechano, B. Spanlang, and A. Beacco. Avatar locomotion in

crowd simulation. In International Conference on Computer Anima-

tion and Social Agents (CASA 2011), Chengdu, China, 2011

• D) A new controller synthesizing motion that satisfies accurate foot place-

ment constraints.

– 6. A. Beacco, N. Pelechano, M. Kapadia, N.I. Badler. Footstep Param-

eterized Motion Blending using Barycentric Coordinates. Submitted to

Computer and Graphics. Currently under review.

Contributions to Crowd Rendering:

• E) A new image-based representation of the agents based on a novel per-

joint impostors approach, using relief mapping. Related publications:

8 Simulation, Animation and Rendering of Crowds in Real-Time by Alejandro Beacco



1.4. CONTRIBUTIONS

– 7. A. Beacco, B. Spanlang, C. Andujar, and N. Pelechano. Output-

sensitive rendering of detailed animated characters for crowd simulation.

In CEIG Spanish Conference on Computer Graphic, 2010

– 8. A. Beacco, B. Spanlang, C. Andujar, and N. Pelechano. A flexible

approach for output-sensitive rendering of animated characters. Com-

puter Graphics Forum,

30(8):2328 - 2340, 2011

• F) Another new image-based representation of the agents based on an im-

proved version of the per-joint approach, but using classic flat impostors.

Related publications:

– 9. A. Beacco, C. Andujar, N. Pelechano, and B. Spanlang. Efficient

rendering of animated characters through optimized per-joint impostors.

Computer Animation and Virtual Worlds, 23(1): 33 - 47, 2012

– 10. A. Beacco, C. Andujar, N. Pelechano and B. Spanlang. Crowd

Rendering with per joint impostors. Poster in the 24th EUROGRAPH-

ICS Symposium on Rendering (EGSR 2013), Zaragoza, Spain, 2013.

Contribution to the Integration of Simulation, Animation and Rendering of

Crowds in Real-Time:

• G) A new prototyping testbed for crowds that lets the researcher focus on

one of these areas at a time without loosing sight of the others. Related

publication:

– 11. A. Beacco and N. Pelechano. CAVAST: The Crowd Animation, Vi-

sualization, and Simulation Testbed. EUROGRAPHICS Spanish Con-

ference of Computer Graphics (EGse CEIG 2014), Zaragoza, Spain.

2-4 July 2014.

At the time of writing this document, two journal publications have been sub-

mitted and are now under revision: a publication covering our work on syn-

thesizing motion accurately following footsteps (D-6), presented in 5.2; and a

survey on real-time rendering of crowds, including most of the related work

presented in 3.3. Furthermore, we plan for one more journal submissions with

an extension of our multi-domain simulation work (A) presented in chapter 4.1.
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Notice how our work in rendering has yielded two JCR-indexed journal publi-

cations (numbers 8 and 9). Also, a short stay of 4 months at the Human Modeling

and Simulation Lab, of the University of Pennsylvania, in Philadelphia, yielded

2 publications (numbers 1 and 2), the first one at the Symposium in Computer

Animation, as well as the submitted work on footstep motion covered in 5.2.

1.5 . Document Organization

The present document is organized as follows. The next chapter introduces us

to the concepts of the crowd visualization taking simulation, animation and

rendering into account. The third chapter has a complete state of the art on

crowd simulation, animation and rendering. The following chapters present

our contributions in all these areas. Our last contribution chapter introduces

a framework for a novel prototyping development tool for crowds, allowing to

embed all these parts together, and allowing researchers to quickly build their

new projects on top of it. Finally we show our conclusions and expose our

future work in the last chapter.
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This chapters is dedicated to introduce the most relevant concepts appearing

in this thesis. It presents in more detail the different dimensions of the main

problem we want to attack, and provides an overview how all the different

elements of the research on crowds link together, bringing to first plane crowd

simulation, animation, rendering, and some of the difficulties when trying to

integrate them all.

11
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2.1 . Simulation

The first concept to address is simulation. The definition according to Wikipedia

is the following: “Simulation is the imitation of the operation of a real-world pro-

cess or system overt time. The act of simulating something first requires that a model

be developed; this model represents the key characteristics or behaviors of the se-

lected physical or abstract system or process. The model represents the system itself,

whereas the simulation represents the operation of the system over time. ... ” This

means, for the purposes of crowd research, that the goal is to imitate the real-

world process of crowds of people inhabiting an environment, and for that a

model representing both the crowd and the environment is needed.. The sim-

ulation will be in charge of operating the different actions and behaviors of the

crowd in the environment over time.

2.1.1 . Crowd Model

The arising question is therefore what is the model for a crowd simulation. And

also what is a crowd. In this research what we call a crowd is a group of people,

animals or other entity, moving, interacting and inhabiting an environment.

How large is the crowd depends on the scale of the problem addressed at each

time. But let us say we try to cover cases that go from 1 agent to hundreds or

event thousands of agents. We will resume this question about how big a crowd

is later on. A crowd is therefore an aggregation of people, what we will call in

our model agents. One agent is one of the individuals in the crowd. In the

model agents can move and perform different actions, as well as have different

interactions or reactions to the events of the simulation. Another key element

of the model is the environment, which should be also modeled by a 3D mesh,

or abstracted with some graph structure. Finally, the last element we need to

think of in our model is time and its discretization. Figure 2.1 illustrates this.
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Figure 2.1: A crowd simulation model is composed of an aggregation of agents
and the environment they inhabit. The simulation is then carried out over

time.

2.1.2 . Crowd Simulation

Crowds can be of many different types and of a wide variety of sizes, from just

a few tens, to thousands of people. Therefore, we could focus our study on a

group of not too many individuals (thousands at most), or we could focus our

study on a group of masses (even millions) as a whole. This lets us introduce

the two main approaches on crowd simulation:

• Microscopic models: those models focusing on simulating local behavior

of individual agents and their interaction with other agents in the crowd.

Figure 2.2 shows an example scenario that should be modeled at micro-

scopic level.

• Macroscopic models: those models simulating the group behavior, some-

times imitating other simulation models like fluids or particles. Figure

2.3 shows an example situation that should be modeled at a macroscopic

level.

In this thesis we only consider microscopic models since the main goal is to

have a real-time crowd simulation with animated characters rendered.
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Figure 2.2: A crowd at a microscopic level: the famous scrambled crossing in
Shibuya (Tokyo) stops vehicles in all directions to allow pedestrians to inun-

date the entire intersection.

Figure 2.3: A crowd at a macroscopic level: Thousands of African Muslims in
Mecca (Saudi Arabia) for the annual pilgrimage known as the Hajj.
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2.2 . Agent Complexity

Knowing what a crowd simulation consists of, we are ready to define one of the

dimensions of our problem. That is the agent complexity, or how an agent is

going to be represented by the simulation. On the one hand we need to choose

a visual representation, or output, for an agent. On the other hand we need to

determine what data is going to be stored for each agent instance.

2.2.1 . Representation

The simplest representation an agent can have is a point, just like a particle,

representing the position of the agent. A better one is a disc, where the center

is the position of the agents and the radius represents the area it occupies. A

cylinder adds the height in a 3D world. We can attach an arrow to indicate

what is the cylinder orientation. Another arrow can even model a vector whose

direction and size represents the velocity of the agent. All these representations

are basic and of a high-level of abstraction.

For humanoids, animals or characters having legs and feet, a more complex

representation can be to add their footsteps. The resulting simulation will out-

put the different footprints that the agent steps on. These footprints can be

represented by a foot plant shape, a position and one orientation.

A higher complexity is achieved using an articulated skeleton or character to

represent each agent. But this means we need to output the pose of that char-

acter at each time. Depending on the number of bones used to represent the

agent, and also on how the poses are computed, the performance of the simu-

lation should be highly affected. Finally, the more complex representation for

an agent is too have a complete skinned mesh representing the agent and be-

ing simulated at all levels. That could mean for example that we could really

detect collisions at mesh level, and therefore have physically accurate interac-

tions. Again, the cost of such computations would strongly affect the simulation

performance.

Figure 2.4 illustrates the axis of the agent complexity.

Simulation, Animation and Rendering of Crowds in Real-Time by Alejandro Beacco 15



2. Concepts

Point Mass Disc Footsteps
Articulated 
Skeleton

Skinned 
Mesh

Disc 
+

 Orientation

Disc 
+

 Orientation
+

Velocity 

Cylinder 
+

 Orientation
+

Velocity 

Figure 2.4: Axis of Agent Complexity

2.2.2 . Static Parameters

An agent can be accompanied of a series of static parameters defining its gen-

eral and timeless condition. Think about parameters such as the radius, the

height, the age, the maximum speed, etc.

2.2.3 . Variable Data

The data varying through time is the set of attributes that are affected by the

simulation over time. The most basic is position and velocity (direction and

speed), but an orientation should also be desired, provided that the representa-

tion is more complex than a cylinder. Depending on the simulation complexity

we could have other aspects such as the energy, the fatigue, mental state, etc.

that could affect the motion of the agent.

2.3 . Control Granularity

The second dimension of the crowd simulation problem is the control granu-

larity, that is, how to control the movements of our different characters. The

control granularity axis can go from computing only a reactive and local mo-

tion, to all possible behavior aspects, going through planning a global motion.
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2.3.1 . Reactive and Local Motion

We call steering the behavior of an agent when simulating motion at local level.

Basically that is to compute the velocity vector, with speed and direction of

movement, that has the agent, and to modify it accordingly by reacting to the

surrounding events such as possible collisions or pushes. The orientation of

the agent is also important if we want to distinguish the direction of movement

and the direction that the agent is facing. Adding orientation to the simulation

might also imply simulate rotation, turns, pivoting actions and torques. The

interactions that might happen at this level are purely reactive and may go

from collision avoidance forces to pushes, forming queues, waiting, and even

physical reactions.

An important distinction we should mention at this level is about how do we

represent the surface or space where agents are moving: as a discrete local space

or as a continuous space. A discretization of the local space, such as having a

grid, reduces somehow the dimensionality of the problem as we can work on

fixed units. We can easily know, for example, if a same unit of space is already

occupied and collisions can be avoided. The problem of using a discrete space

is that, depending on its granularity we do not allow agents to really get in

contact. A continuous space might have a higher computational cost to be

used, but it is more suitable to obtain effects such as pushes between agents as

its movements are not limited (see Figure 2.5).

2.3.2 . Planning and Global Motion

The terms planning and global motion apply to a series of simulation algo-

rithms that take place on a bigger scale than reactive and local motion. First

of all as the term planning itself states, they plan a series of actions to be per-

formed over time. These actions may come determined by the current state, a

desired goal state, and the environment as well as other possible events. There-

fore they usually take into consideration an abstract model of the environment

such as a grid composed of cells or navigation meshes.
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Figure 2.5: Continuous Vs. Discretized Local Space. With continuous space
real contact and interactions like pushing behaviors can be possible

2.3.2 . Navigation Meshes

The agents of crowd simulations move around in a virtual environment, which

is usually modeled in 3D. From the 3D mesh of the scene we can manually or

automatically extract features such as rooms, doors, or moreover a navigation

graph containing cells and portals, indicating the space where agents can walk

over. The navigation mesh is this graph, and it is necessary to have it in order

to efficiently compute plans to navigate from one place of the environment to

another. The applied algorithms to plan are usually pathfinding algorithms,

such as the well known A*. For example, our navigation mesh is composed of

polygons, and an agent might need to go from its current position to another

one. The planner will detect the polygons where those points lie into, and then

use a pathfinding algorithm to output a sequence of polygons, or waypoints,

conforming the plan or path of the agent (see Figure 2.6).

2.3.2 . Planner

A formal description of a planner requires that it works over a graph composed

of states and transitions. The states can be the nodes of a navigation mesh

or the composition of our articulated character, and the transitions are all the

possible actions that the agent can perform. Depending on the granularity of
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Figure 2.6: An example of a navigation mesh and a plan computed over it.

the planner these might go from moving to an adjacent cell to execute some

action or playback an animation clip. But the algorithms are always essentially

pathfinding algorithms trying to reach one state from another one by executing

actions.

These algorithms usually work by and exploring the search space while expand-

ing nodes, applying different transitions. Explored nodes are evaluated with a

cost function, determining how much effort it takes to get to that specific state.

An heuristic function is then needed to estimate the necessary cost to get to the

final goal state. Heuristics can be as simple as an euclidian distance function,

to any complex and high costly function.

2.3.2 . Prediction

When planning at a local level, only with a reactive behavior, an agent can pre-

dict the future position of an agent just by using its current velocity, and maybe

other forces interacting with it. But it can not foresee abrupt changes in the di-

rection, neither it can predict decelerations or accelerations. When planning at

a global level we can compute the plans of all agents. Since a planner can have

access to the other agent, it makes sense that it can access to their plans too.

Therefore we can foresee and predict possible collisions between agents. Such

a planner should be able to modify plans in order to avoid predicted collisions

(see Figure 2.7). Interactions between agents can then emerge at a collaborative

level, like wait for someone to come across, help another agent to perform an

action, etc.

Simulation, Animation and Rendering of Crowds in Real-Time by Alejandro Beacco 19



2. Concepts
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Figure 2.7: A collision prediction only by estimating the future position of an
agent using its velocity vector, like in a purely reactive behavior (left). With
global planning, agents can access to the real plan of other agents and make a

more accurate collision prediction to modify their own plan (right).

2.3.3 . Behavior

Behavior refers to the decisions and the set of actions or reactions that agents

can do or have in different situations. Simulating the behavior of a character

is a higher level AI than just planning for a specific goal or reacting to some-

thing. It implies a mind state, a more complex goal and even strategies. Interac-

tions between agents at this stage can be also more complex, with collaborative

strategies for a common goal.

2.3.4 . Complete Control

A crowd simulation system can work with agents having just a local reactive

motion, but they will lack the efficiency to find shortest paths to get a specific

goal, and the exhibition of a a specific behavior. Depending on how the global

planning is designed, including predictions and collision avoidance, a local mo-

tion might not be necessary. Although if we just plan waypoints to go through

different cells, a local steering behavior is sufficient to navigate within those

cells. A behavior simulation is needed when we want to give agents specific

goals and particular states at a higher level. Therefore, although these different
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levels of control granularity should be able to run a crowd simulation inde-

pendently, they are extremely connected and should be integrated and run in a

same system.

Reactive Predictive Planning Behavior

Figure 2.8: Axis of Control Granularity

2.4 . Environment Complexity

The environment is an essential part of the simulation. It limits and conditions

the actions of the agents. This is therefore another dimension of our problem

where the environment can be either static or dynamic.

2.4.1 . Static

A static environment can be preprocessed. As we have already explained, nav-

igation meshes can be the output of this preprocess and contain all the infor-

mation about the navigable surface. Static obstacles can be added to the scene,

and since they are not moving their collisions can be easily avoided at any time.

2.4.2 . Dynamic

An environment can be dynamic when obstacles move in it. In fact, other agents

can be considered as dynamic obstacles. But depending on how the simulation

is carried out, their treatment would be different.

Deterministic obstacles are those whose plan or animation curve is known,

being possible to predict their position at any given time. Collision prediction

is therefore possible and we can plan with collision avoidance.
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Undeterministic obstacles are unpredictable, and therefore its effects need to

be computed and updated at every step. They can only be handled by reactive

behaviors and physic reactions.

Static

...

Dynamic

Predictable

Dynamic

Non-
deterministic

Figure 2.9: Axis of Environment Complexity

2.5 . Time Discretization

As the definition says, a crowd simulation represents the operation of the sys-

tem over time. But how do we discretize time is essential for the output of the

simulation. If, for example, our steering behavior works with velocity vectors,

and our agents change their position multiplying their velocity by the elapsed

amount of time in the simulation step, it is clear that the resulting position is

strongly dependent on that elapsed amount of time.

Essentially, if the time step is too big the simulation will be less prone to

changes and agents will be less agile, meaning that collisions will be more prob-

able and inevitable. If the time step is too small, you may end up carrying out

repetitive and unnecessary computations, as the state of the simulation might

not have significant changes between consecutive time steps. A good choice

for the time step duration is therefore required. In our case we can link this

directly to the animation and real-time rendering requirements. That is, for a

local steering, we will desire a time step corresponding to the time between two

rendered frames, meaning that our simulations should be carried out for each

frame.

In fact, for a real-time simulation, the different processes associated to the dif-

ferent controls of granularity, should be executed for every time step. But then,

these different levels of control could have different time steps. We do not have

the same requirements for a local steering behavior than for a global planning.
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For example, computing a local steering motion can be done for every frame,

but the global plan of an agent does not need to be replanned every frame.

It may just need to be replanned in case that the environment has significant

changes, or if many unpredicted agents or obstacles are now in its field of view.

Therefore you could set the time step of the global planning to a higher value,

like 3 seconds for example. At the other extreme, collision avoidance might

need a time step higher than the frame rate of the application. Imagine an

agent or an object moving at high speed. If the time step is too big, a collision

between two consecutive steps may exist, but it will remain undetected (see

Figure 2.10).

Figure 2.10: Two agents at two consecutive positions of a simulation. The time
step for the collision check is too small and the collision is not detected.

2.6 . Animation

Our second big concept to address is animation. According to Wikipedia: “An-

imation is the process of creating a continuous motion and shape change illusion by

means of the rapid display of a sequence of static images that minimally differ from

each other. The illusion (as in motion pictures in general) is thought to rely on the

phi phenomenon. [...] Images are displayed in a rapid succession, usually 24, 25,

30, or 60 frames per second.” In our case the meaning of this implies we need to

show the motion of the agents at at least 24 frames per second. Therefore, as we

have previously mentioned, the simulation time step should be set at maximum

to 1/24 seconds.

Simulation, Animation and Rendering of Crowds in Real-Time by Alejandro Beacco 23



2. Concepts

2.6.1 . Frames and Keyframes

What we call a frame throughout this document is each one of the images dis-

played by the system in order to create the motion illusion. In a stored anima-

tion, a keyframe is a specific configuration or state for a particular instant of

time. As in simulation, to store a motion time must be discretized. Animation

data is therefore stored for a discrete set of instants, and a keyframe is all the

animation data corresponding to one of those instants having it.

2.6.2 . Blending Between Keyframes

Note how the display rate does not need to necessarily match the sampling

rate of an animation. That means, when playing and visualizing an animation,

we might not have to display the same number of frames than the number of

keyframes that our animation has. In both cases time is discretized, but at

different time steps.

If we have more keyframes than frames we need to display, we can just choose

the closer keyframe to the corresponding time of our current frame. If we have

less keyframes than frames, which is more usual, we need a way to display

inner frames between keyframes. That is usually done with some kind of inter-

polation technique, which is known as blending between keyframes.

2.6.3 . Character Animation

So far we have just talked about animation in general. In fact, if we are going to

represent agents with just a point, a disc, a cylinder or any other representation,

we do not need to worry about keyframes or any other element about stored

animations. In these cases we only need to worry about translation, and maybe

rotation, to move our agents. But if we choose an articulated 3D character to

display our agents, we will want to animate them, and this is where character

animation enters the scene.

Note how in this section we do not speak about mesh deformation, since we

will include this in the rendering section. In fact, most of the related work in
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character animation is done without taking into account any mesh or specific

character. They usually abstract and illustrate their results using some stan-

dard skeleton or stick figure. Therefore the mesh deformation concepts will be

explained in the corresponding rendering section.

2.6.3 . Skeleton

The most extended way of animating a character is to have it composed by an

articulated skeleton. This skeleton is usually a hierarchy of bones or joints (see

Figure 2.11), where the transformation applied to one of the joints is recursively

applied to all of its children. Those transformations are usually encoded using

matrices or quaternions.

From these bones or joints, we distinguish the most important one, which is

the root of the hierarchy. In humanoid characters, or biped characters, the root

is usually placed at the hips. The root is of a particular importance since it is

usually the bone that will guide the global movement or motion of the whole

skeleton, as all the other joints are hanging from it.

Figure 2.11: A biped skeleton (left) and its hierarchy of bones (right).

2.6.3 . Pose

A pose is a complete configuration of the skeleton, that is the whole set of

transformations for all the skeleton joints (see Figure 2.12). In an animation
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each keyframe might encode a pose, although it is possible that for compression

purposes, a keyframe only stores the joint transformations that have changed

from the previous keyframe to the current one.

Figure 2.12: Two different poses of the same skeleton.

2.6.3 . Blending Between Poses

In order to create new poses and new animations it is possible to mix different

poses. We can easily interpolate two poses by giving different weights to their

corresponding transformations and adding them together, although the sum

of weights should be one. This operation might be repeated with other poses

from other animations, so we can have a completely new pose generated from

existing ones. This is what we call blending between poses.

2.6.4 . Animation Clip

An animation clip is a set of pairs
〈
keyf rame, time

〉
each one with a pose of the

skeleton of the character. Animators work using animation software to man-

ually create them. This is a hard and tedious work usually performed by an

artist. Another possibility is to obtain animation clips using motion capture

techniques. Motion capture systems capture the real poses of actors at high

rates to obtain highly realistic and natural motions.
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2.6.4 . Transitions

Sometimes we will want to play one animation after another. Although an an-

imation clip presents continuity between its own keyframes, the final pose of

one animation clip does not have to be the same as the starting pose of the an-

other clip. Moreover, both clips could have different root positions. Therefore

continuity between both clips is no trivial.

A smooth transition can be generated between both clips to ensure continuity

between them. A transition can be a new animation clip explicitly created for

a pair of clips. But a transition can also be achieved by blending for a short

amount of time (a second or less) the two particular poses that need a smooth

transition. Although this can be a good solution when the poses are quite simi-

lar, and requires no extra effort in designing new clips, this can introduce prob-

lems when the poses are very different.

The major problem occurs at the level of the feet. If a foot is supposed to re-

main still on the ground, and we perform a simple blending between two poses

without taking this into account, the foot might slide on the floor to reach a

different foot position. This is an unpleasant effect known as foot sliding or

foot skating. Thus additional efforts and techniques should be applied in order

to avoid such undesired effect.

2.6.4 . Cycling Clip

We call a cycling clip an animation clip whose end pose is equal to its initial

pose, thus making it possible to easily produce an play continuous loop of the

same animation clip without noticing any discontinuity. Cycling clips are very

useful to perform character control, which we will explain in the next section.

2.6.4 . In Place Animation

We call an in place animation the one where the root has been removed of

its forward translation. That is, the character remains at the same Z coordinate

during the whole animation clip. This kind of clips can be useful for a character

control where we want to have full control of the translation of the character’s

root.
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2.7 . Character Control

By character control we mean the methods and techniques used to control the

motion and actions of a virtual character by animating it. To do so we can use a

database of animation clips, we can use inverse kinematics (IK) controllers, or

even physically based procedural methods. The goal is to produce an animation

to represent and reflect a desired input or behavior, such as a motion trajectory.

2.7.1 . Crowd Animation Synthesis

To synthesize the animation of a crowd means to control characters to reflect

the movement of the agents in the crowd simulation. Therefore the input of the

crowd animation synthesis will be the output of the current crowd simulation.

As we have previously said, the most basic crowd simulation will output for

every agent a position. If no other information is given the animation system

will need to compute and maintain at least a velocity vector. But it is most likely

that the crowd simulation already gives a velocity vector and an orientation.

The output that must produce the crowd animation synthesizer is a continuous

animation that reflects the motion of the agent without artifacts. The problem

in this case becomes how to synthesize an animation from just a root trajectory.

If we have an animation database we can use to blend the available clips and

obtain a motion that accurately follows the root trajectory. The output in this

case would be the blending weights for each clip to synthesize the current pose

of the character. If we do not have an animation database, we might need to

use some other methods to animate our character, such as IK or procedural

methods. In the case of having time foots prints, or a footstep trajectory, the

same applies in order to obtain our desired motion. The difference is that we

will have more constraints when synthesizing the motion.
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2.7.2 . Animation Preprocess

When working with a database of animation clips, we need a way of knowing

what are the properties of each one when applied to a character. For example,

an animation clip has an inherent data such as the duration of the clip and

the poses of the character, but we would like to know at what average speed

the character is moving on during the clip. Fortunately animation clips can

be analyzed in a preprocess phase in order to extract such data. Usually the

most relevant data would be the root velocity, the orientation of the character,

the turning velocity, a classification of the type of motion (walking motion,

running, jump, etc. ). In the footsteps case we might also want to extract the

footsteps information of the clip.

2.7.2 . Angle of Movement Vs. Orientation Angle

It is important to remark, since these concepts are often repeated in this thesis,

that there is an important difference between the angle of movement and the

orientation of an agent. The orientation can be expressed as the angle between

one axis of the world coordinate system (usually the ~X) and the direction vector

that the agent is facing. Since the moment our character has more than a disc to

represent it, this is necessary to render it correctly. On the contrary, the angle

of movement is the angle between the orientation angle and the velocity vector

that the agent is following. This is the common way to express it, meaning that

an angle of movement equal to 0º is equivalent to move forward, and an angle

of movement equal to 90º is a side stepping motion to the left. Figure 2.13

illustrates this difference.
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Orientation 
angle 

Angle of 
movement 

X 

Z 

Velocity 

Figure 2.13: The orientation is the angle that the agent is facing, while the
angle of movement is the velocity angle with respect to the orientation.

2.8 . Animation Quality

Having introduced most of the animation concepts, we can therefore see that in

our problem of visualizing real-time crowds simulations with animated charac-

ters, the achieved animation quality represents another dimension of our prob-

lem. It is not the same to use handmade animations than motion captured ones.

It is not the same to fulfill physical constraints such as footsteps than to ignore

them. It is better to have seamless and continuous transitions than to present

abrupt changes and discontinuities in the motion of a character. And also, an

animation will not have the same quality depending on the granularity of the

skeleton used. A different number of joints, can have different visual qualities

but also different performances. We must wonder if we need in a crowd simu-

lation to model the fingers or toes of the characters, or even if we need to have

complex facial animation.
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2.9 . Rendering

Although the term rendering is most related to achieving a highly realistic im-

age, in the case of crowd rendering it is commonly equivalent to visualization.

This visualization can be done by simply rendering a point per agent, a disc, a

cylinder or any static 3D model. But ultimately we want to visualize the output

of a crowd simulation by rendering animated 3D characters. An agent will be

therefore represented by one of these characters, also known as an avatar.

2.9.1 . Mesh Deformation

As we have mentioned previously, the most extended animation approach is

skeletal animation. This requires to have our animations created for a specific

skeleton. We therefore need a method to transfer those animations from the

skeleton to our 3D mesh.

The first step we do to animate a mesh of a 3D character is to create a skeleton

and fit it into the 3D mesh. This is known as fitting. Secondly we need to

attach our mesh to the skeleton. This is done by deciding which bones of the

skeleton will have an influence over which vertices of the mesh, and assigning

a transformation weight for each influence. This process is called rigging (see

Figure 2.14). Skinning is the technique which transforms each vertex of the

mesh. This is done every frame by adding, with the corresponding weights of

the rigging, the transformations of the influencing bones from the animation.

2.9.2 . Level of Detail

When a character model is rendered at a far distance it will cover a small size in

pixels on the screen. This means we will see it with less precision and that it can

be replaced with a lower quality version without noticing it. This is the princi-

ple of level of detail (LOD) (see Figure 2.15). In the case of crowd rendering,

using LOD presents some problems or challenges, such as how to generate good

low resolution meshes that can be correctly animated, when to switch from one
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Figure 2.14: Rigging: a character is composed by a 3D mesh representing the
skin (left) and a skeleton (right). The rigging process assigns each vertex of
the mesh to one or more bones of the skeleton with a weight (center). Vertices
influenced exclusively by one bone are represented in red, and other colors

indicate vertices that are influenced by several bones.

to the other (at what distances), and how to do it without producing popping

effects.

Figure 2.15: Five models of the same avatar with decreasing number of poly-
gons as they are placed further away.

As we will see in this thesis, a well known technique for LOD is to use im-

postors, that is replace the 3D animated mesh by another kind of structure to

fool the user. These structures can be image-based, like texture quads, or even

point-based. Finally, systems are known as hybrid systems when they combine

the use of geometry mesh for close up agents, and the use of impostor for far

away characters.
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2.9.3 . Impostor

Impostors are useful to fool the viewer when characters are far away from the

camera and we want to avoid the computational cost of rendering complex ge-

ometry. Impostors are usually simple quads textured with an image of the ren-

dered object, but they can be more complex in their construction, although their

rendering should remain more efficient than the original geometry.

2.10 . Visual Quality

Having introduced some of the rendering concepts, we have to add to our global

problem the visual quality dimensionality. 3D characters are modeled everyday

with more and more polygons, and reducing their number while maintaining

its quality is not straight forward. Moreover, scaling the crowd and render-

ing thousands of high quality models can reach the performance limits even

of modern GPU cards. If models have complex shapes and are animated the

problems becomes harder to resolve. Finally, applying special effects such as

lighting, shadows, cloth simulation or hair, increases the necessary resources

needed to render these crowd scenes. There is therefore a new axis were the

visual quality goes from a simple rough rendering to a completely realistic ren-

dering, using light shading, shadowing, and even cloth and hair simulation

rendering.

Static 3D
Models

Animated
Models

Lighting Shadows
Cloth Sim-

ulation
Hair Simulation...

Figure 2.16: Axis of the visual quality

2.10.1 . Uncanny Valley

The uncanny valley, from the field of human aesthetics, corresponds to the hy-

pothesis that humans respond negatively and with repulsion to the view of
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robots or virtual characters with human features looking and moving almost,

but not exactly, like natural human beings. There is a graph of the comfort

level that human viewers have, as a function of the familiarity or acceptability

we have versus the human likeness of the virtual character. The “valley” refers

to a region of this function close to the maximum human likeness [Mori et al.,

2012] (see Figure 2.17).

still
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zombie

prosthetic handcorpse
human likeness

industrial robot

stuffed animal

healthy
person

uncanny valley

bunraku puppet

humanoid robot

moving
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Figure 2.17: Hypothesized emotional response of human subjects is plotted
against anthropomorphism of a robot, following Mori’s statements. The un-
canny valley is the region of negative emotional response towards robots that
seem ”almost human”. Movement amplifies the emotional response. [Mori

et al., 2012]

This phenomenon is well known in robotics, and moreover in computer ani-

mation. Important computer animation movies with high realistic characters,

such as Final Fantasy: The Spirits Within from Square Pictures, or Beowulf from

Warner Bros Pictures (see left of Figure 2.18 had a bad response from public.

Recent films try to avoid this by keeping a more cartoonist style, which has

been proven to have a more pleasant response from the audience, like in The

Adventures of Tintin from Amblin Entertainment (see right of Figure 2.18).

Addressing the problem of crowds in real-time we are still quite far from the

uncanny valley problem. These high level of realism are by now only reached
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Figure 2.18: Left:Beowulf from Warner Bros Pictures, had a bad response from
public falling into the uncanny valley. Right: The Adventures of Tintin from
Amblin Entertaintment, adopts a more cartoonist style which had a better re-

sponse from the audience.

by the movie industry, whereas the real-time virtual characters used in video-

games are not as detailed, since it would greatly affect performance. Models,

shading and rendering techniques are improved every year, getting us closer to

the quality of the computer animation pictures of some years ago. Eventually it

will be possible that our simulations, due to the rendering quality, or maybe the

animation and simulation, start falling into the uncanny valley of unpleasant

response.

2.10.2 . Variety

Another important aspect of crowds is the individuality of each agent. Whereas

it is the behavior agent, the animation or the appearance of the character, each

individual should be different and have particular characteristics. Ideally, in

our crowd simulations, there should be no clones, or a minimum amount of

them, as they are easily detectable for the viewer. This introduces a new axis for

our problem, which is the axis of variety (see Figure 2.19). The main problem

with variety is that adding more variety usually comes with a higher consump-

tion of memory resources.

One character
type (all clones)

Multiple
character types No clones at all

Figure 2.19: Variety axis
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2.11 . Real-Time Crowds

All the concepts we have seen until now cover simulation, animation and ren-

dering of one or more agents, but we have not talked about their integration and

the new dimensions that are added to the problem when dealing with real-time

crowds.

2.11.1 . Scale

The first new dimension we have to add is the scale of our problem. Our sim-

ulation, rendering animated characters, must be performed for a crowd, so we

introduce a new axis going from one to many agents, taking into account that

normally more agents implies more computation time.

In this thesis we will consider a crowd a multi-agent system going from several

tens of agents to an order of magnitude of thousands of agents. Although a

crowd could also imply several thousands of millions of agents, these would

fall in the category of macroscopic simulations, and here we are focused on

microscopic simulations.

One Few Many

Figure 2.20: Scale axis

2.11.2 . Performance

Directly related to this we have a second dimension which is the performance.

Our whole system can go from running offline, which usually means achieving

less than 12 frames per second (fps), to running in real-time (25 fps) and even

in stereo for a virtual reality device (50 fps, meaning we need to perform two

renders per frame).
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Offline Real-Time Real-Time Stereo

Figure 2.21: Performance axis

2.11.3 . Integration, Global Coherence and Consistency

Finally, in our crowds problem, the system needs to integrate all of these ele-

ments, simulation, animation and rendering, in such a way that we visualize

animated characters representing the output of a real-time simulation. As the

reader might have sensed, this is not straight forward as there are many ele-

ments that have to be taken into consideration. Moreover, these tree areas can

interact and collaborate but at the end of the day we want the final result to be

coherent and consistent with the final simulation (see Figure 2.22).

For example, a simulation module can output a state to the animation module,

which can synthesize animations, but in the process it might be necessary to

perform some adjustments to the positions of the agents. In such case the an-

imation module should feed back the modifications to the simulation module

in order to maintain consistency between both modules. Another example is a

simulation system that works using as actions the animations clips. In this case

both the simulation and animation could be performed by the same module.

Figure 2.22: Simulation, animation and rendering of crowds are three over-
lapping research areas dependent on each other which are continuously inter-

acting.
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In any case, the important thing to note here is that in performance, the scala-

bility of the problem affects all the areas as the crowds increases its size. There-

fore bottlenecks can appear in any of them, requiring optimizations and the

development of novel techniques that are able to outperform current ones. We

must keep in mind that the final goal is to have a more realistic simulation, an-

imation and rendering, with the highest number of agents, and running as fast

as possible.

2.12 . Problem Statement

Throughout this chapter we have presented different dimensions or axis of

complexity that our crowd problem presents. Here is a summary of all the

dimensions of the problem to show its magnitude and why it is necessary to

work on so many different aspects.

• + Agent Complexity

• + Control Granularity

• + Environment Complexity

• + Animation Quality

• + Visual Quality

• + Variety

• + Scale

• + Performance

• + Global coherence and consistency

The ideal outcome would be to have the maximum possible values in all these

dimensions at the same time. Unfortunately, pushing the boundaries of one

axis might compromise the others, specially the performance one. Therefore,
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as we will see in the state of the art sections, as well as in our contributions,

thresholds will appear to regulate all of these aspects.
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Now that most of the concepts of this thesis have been introduced, we present

in this chapter the state of the art in the different areas of crowd research. We

start with an overview of crowd simulation models, data-driven techniques and

planning solutions. Then we introduce most of the character animation tech-

niques to synthesize crowd motion, using root velocity or footstep driven. We

follow with a complete study on real-time crowd rendering, including skin-

ning, point-based, image-based, culling, and LOD techniques, and hardware

improvements. Finally we present some of the existing tools for research on

crowds.
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3.1 . State of the Art on Crowd Simulation

In this section we review the state of the art on crowd simulation. First, we

give a small overview on macroscopic models. Secondly, we focus then on the

local motion in microscopic models. Third, we talk about data-driven methods.

Fourth, we talk about computing high-level paths and planning global move-

ment. And finally we present some previous work using multiple resolutions

for the planning problem.

3.1.1 . Macroscopic Models

Macroscopic models consider crowd behaviors as flows and do not take into

account individual behaviors. These models are more to be applied to com-

pute traffic simulations [Sewall et al., 2010] or the capacity of large building

structures such as stadiums, conference centers, etc. (see Figure 3.1) [Narain

et al., 2009]. Also, they are not usually in real-time as they need to do a lot of

computations.

Figure 3.1: 80,000 people on a trade show floor. [Narain et al., 2009]
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Regression models are based on statistic relations between flow variables. This

way they predict under specific circumstances pedestrian flow operations, which

also depends on the infrastructure (stairs, corridors, etc.) [Milazzo et al., 1998].

In Route choice models, agents find their path based on the concept of utility.

The best way is defined by trying to maximize the utility of their destinations

[Hoogendoorn, 2003].

Using Markov chain models, Queuing models describe the movement of the

agents from one node of the network to another [Løvås, 1994]. This nodes are

usually rooms and links are portals or doors. Markov chains work with a set of

states and transition probabilities.

We can also find Gas-kinetics models where they compare crowds with fluid or

gas dynamics, so they use their theories to determine how crowd density and

velocity must change over time using partial differential equations [Henderson,

1971].

3.1.2 . Microscopic Models and Local Movement

Microscopic models work on an individual scale, thus computing for each agent

at each time where he is. We divide them in different approaches, the difference

between them being in their agent representations, their local movement func-

tions, and the discretization of space and time.

3.1.2 . Rule-Based Models

One of the earliest methods proposed for local movement with collision avoid-

ance is the Boids algorithm [Reynolds, 1987, 1999], where movement is achie-

ved for low-and-medium density crowds in a flocking or swarming style, us-

ing three simple rules represented by three forces affecting each agent: a force

pushing it away from the location of its closest neighbors (see Figure 3.2 (a));

a force aligning it’s velocity to that of it’s neighbors (see Figure 3.2 (b)); and a

force drawing it towards the average position of its local neighbors (see Figure

3.2 (c)). At each time, the sum of the forces from all three rules determines the

next velocity for each agent.
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(a) (b) (c)

Figure 3.2: The three rules of the Boids algorithm. (a) Separation: steer to
avoid crowding local flockmates. (b) Alignment: steer towards the average
heading of local flockmates. (c) Cohesion: steer to move toward the average

position of local flockmates. [Reynolds, 1987, 1999]

A problem of Rule-based models is that they lack the contact between agents

and therefore do not present any “pushing” behavior. So they are conservative

and avoid contact as long as they can, and when necessary (with high densities)

they apply “wait” rules for agents. Rule-based models can also be combined

with cognitive models [Shao and Terzopoulos, 2005]; or different rules can be

applied to the crowds, groups or individuals to achieve more realistic global

behaviors [Thalmann et al., 1999].

3.1.2 . Social Forces Models

In Social force Models [Helbing et al., 2000], real forces such as repulsive inter-

action, friction forces, dissipation, and fluctuations are modeled as “virtual”

social forces. For each agent Newton’s equations of motion are solved, and the

model is fast enough to be successfully applied in real-time.

Although social force models are designed to be as simple as possible, compared

to other models, its pedestrian behavior can be more realistic. Each agent is

represented by a circle (with its own diameter) in the locomotion plane, and

the model gives coordinates and velocities in continuous space, as well as in-

teractions with other objects. Human crowd behavior is modeled mixing so-

ciopsychological and physical factors.

Helbing’s model [Helbing et al., 2000] is the most known social forces model.

Applying repulsion and tangential forces to simulate the interaction between

people and obstacles, it allows for realistic “pushing” behavior and variable

flow rates (see Figure 3.3).
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Figure 3.3: Simulation of pedestrians moving with identical desired velocity
towards the 1m-wide exit of a room of size 15m X 15m. [Helbing et al., 2000]

For low density crowds some work was done using particle simulation ap-

proaches. The motion of groups with significant physics can be modeled using

a particles system and dynamics [Brogan and Hodgins, 1997]. Finally, the social

forces model can be extended to include individualism [Braun et al., 2003].

Extensions have been done by combining psychological and geometrical rules

with a social and physical forces model, being able to handle high density

crowds. HiDAC [Pelechano et al., 2007] exhibits a wide variety of emergent be-

haviors from agent line formation to pushing behavior. It also handles different

situations and personalities, like impatient individuals avoiding bottlenecks, or

a panic situation with agents pushing they way through the crowd (see Figure

3.4).

3.1.2 . Velocity-Based Models

Velocity-based models take ideas from robotics and work with velocity obstacles,

commonly abbreviated VO, which is the set of all velocities of an agent that will

result in a collision with another agent, assuming that this last one maintains

its current velocity. If a velocity inside the velocity obstacle is chosen, then the

two agents will eventually collide; otherwise such a collision is guaranteed not

to occur [Fiorini and Shillert, 1998]. Therefore agents are not passively mov-

ing, but reacting to each other, which results in oscillations. Reciprocal Velocity

Obstacles (RVO) Models [van den Berg et al., 2008] avoid these oscillations by

implicitly assuming that the other agents make a similar collision-avoidance

reasoning. Then, instead of choosing a new velocity outside the VO, they take
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Figure 3.4: Red-headed people exhibit panic behavior and push others to open
their way through the crowd. [Pelechano et al., 2007]

γ(p, v) = {p + tv | t > 0} 
VOA

B(vB) = {vA | γ(pA, vA – vB) ∩ B ⊕ –A ≠ ∅} 

Figure 3.5: Reciprocal Velocity Obstacle (RVO) avoid collisions between agents
by assuming they all reach to each other in the same way, and taking the av-
erage between the current velocity and the one of the Velocity Obstacle (VO).

[van den Berg et al., 2008]

the average of a VO and the current velocity (see Figure 3.5). A difference be-

tween velocity-based models and social forces models is that, while the first are

simple to implement but difficult to tune, the second are complex to implement

but are collision-free guaranteed.
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3.1.2 . Continuum Dynamics Models

In Continuum Crowds [Treuille et al., 2006], a model based on continuum dy-

namics is presented. Instead of working on a per-agent basis, they view motion

as a per-particle energy minimization, and adopt a continuum perspective on

the system. Using a dynamic potential field, they can simultaneously integrate

global navigation with moving obstacles, such as the other agents. This allows

them to efficiently solve the motion of large crowds without explicitly avoiding

collisions. This model exhibits important emergent phenomena observed such

as people forming lanes, or crossing groups of people forming vortices (see

Figure 3.6). The problem of continuum crowds is that they trade-off the indi-

viduality for performance. The variability between agents is lost at the expense

of having a real-time planning of optimal behavior, with minimal computation

per agent.

Figure 3.6: A vortex forms as four groups cross. [Treuille et al., 2006]

3.1.2 . Cellular Automata Models

In cellular automata models [Chenney, 2004] space and time are discrete and

physical quantities take a finite set of discrete values. A cellular automaton is

formed by a regular uniform lattice or grid with one or more discrete variables

at each cell (see Figure 3.7). The values of these variables define the state of

each cell, and are affected in discrete time steps by the previous values of the

adjacent cells. Also, these updates are made simultaneously according to a set
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of local rules [Wolfram, 1983], which define the decision-making behavior of

the automata. The global group behavior emerges then as the result of the

interactions of the local rules that each agent applies in its neighboring cells.

Although there are a lot of cellular automata models fast and simple to imple-

ment [Chenney, 2004, Tecchia et al., 2001, Torrens, 2007], they do not allow

for contact between agents. Since space is discretized, individual agents can

only move to cells that are adjacent and free. Realistic results are then obtained

for low density crowds, but not for high-density crowds where pushing behav-

ior is necessary and therefore discrete cells are not a valid approach. We can

achieve more realistic paths in the grid using precomputed paths toward goals

and storing them [Loscos et al., 2003].

Figure 3.7: A frame showing people moving through a city, driven by a flow
tiling of the streets. Internal boundary conditions prevent people from walk-

ing through building walls. [Chenney, 2004]

3.1.2 . Footstep-Driven Approaches

Some approaches have tried to change the simulation paradigm by using more

complex agent representations, such as footsteps. They can be physically based

but generated off-line [Felis and Mombaur, 2012]. Or they can be generated

online from an input path computed by a path planner [Egges and van Basten,

2010]. Footsteps can also be planned using a 2D approximation of an inverted

spherical pendulum model of bipedal locomotion [Singh et al., 2011]. Figure

3.8 illustrates this.
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Figure 3.8: A footstep navigation model. (a) Depiction of state and action
parameters. (b) A sagittal view of the pendulum model used to estimate energy
costs. (c) The collision model uses five circles that track the torso and feet over
time, allowing tighter configurations than a single coarse radius. [Singh et al.,

2011]

The footsteps approach allows for better collision bounds, having characters

getting closer to each other, in contrast to a simple collision radius model. It

also allows for a better fitting and cooperation between characters at doorways

or narrow corridors.

3.1.2 . Animation-Dependent Planners

Microscopic models can also be classified into two main sets based on whether

they only focus on calculating the position of the root ignoring the animations,

or whether they plan respecting the underlying animations. The first set fo-

cuses on simulating realistic behaviors regarding overall character navigation

and do not worry about animations. In fact sometimes their goal is to simply

model agents as cylinders that move around a virtual environment avoiding

collisions. The second set, which carries out planning while being aware of the

animation clips available, need to perform some pre-process to analyze the set

of animation clips available to plan paths respecting constraints between the

feet and the floor. In some cases, if the animation set is handmade, then the

analysis is not necessary because the animations have already been built with

specific parameters (such as speed, angle of movement and distance between

feet) which are taken into consideration when planning.

We have already talked about the first group. The second group works directly

with the set of available animations to construct motion graphs [Kovar et al.,
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2008, Min and Chai, 2012, Ren et al., 2010, Zhao and Safonova, 2009], or pre-

computed search trees [Lau and Kuffner, 2006]. Figure 3.9 shows one of these

trees. These approaches try to reach the goal by connecting motions to each

other [Witkin and Popovic, 1995], sometimes limiting the movements of the

agents. Other methods try to use motion graphs in the first group combining it

with path planners [van Basten et al., 2011]. Having a large animation database

reduces the limitations in terms of freedom of movement, but also makes the

planning more time consuming. The ideal solution would be one that could

find a good trade-off between these two goals: freedom of movement and fast

planning.

Our work [Beacco et al., 2013b], presented in 4.2 is an animation-dependent

planner that uses the footstep paradigm. We plan local motion using the a

database of motion clips consisting of individual footsteps.

Figure 3.9: Precomputed search trees are used to plan interactive goal-driven
animation, but limit the number of possible movements. [Lau and Kuffner,

2006]
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3.1.3 . Data-Driven Techniques

Data-driven algorithms have been used in computer animation, for motion cap-

ture of single characters, facial motion capture, or even trees. In crowds the em-

phasis is on multi-character interactions, being able to capture subtle actions.

We can divide data-driven techniques in two categories of approaches: the ones

analyzing data in order to extract parameters for a model, such as social forces

models or rule-based models; and the example-based techniques, which syn-

thesize motion directly from teh input data.

3.1.3 . Parameter Extraction

A prediction based approach to crowd steering from motion capture data was

proposed in [Paris et al., 2007] and [Pettré et al., 2009]. They had a controlled

environment, where goals are known and the data acquisition is easier and

more accurate. The extracted data is used to estimate the time of collision be-

tween entities.

Data from videos can also be used to modify the social forces model of Helbing

[Helbing et al., 2000]: the new forces try to keep social groups together using

the vision of the agent, attraction and repulsion forces [Moussaı̈d et al., 2009,

2010].

The information from videos, plus a stochastic crowd model can be used to pre-

dict future individual motion [Pellegrini et al., 2010]. The position and move-

ments of players in a game can also be tracked with multiple cameras, in order

to generate a motion field from all the players and predict their future points

of interest [Kim et al., 2010].

User can also define the crowd motion. A sketch-based interface was proposed

where the user draws example paths [Oshita and Ogiwara, 2009]. The sim-

ulation parameters are then extracted from it, such as guiding paths, speed,

distances, crowd regularity, etc.
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3.1.3 . Example-Based Simulation

If an agent in the simulation can find a person in a video facing a similar situa-

tion or state, we can copy part of its trajectory or actions to mimic its behavior

[Lee et al., 2007, Lerner et al., 2007, Musse et al., 2007]. Behavior is influenced

by different factors. Potentially influencing factors include personality, emo-

tions, terrain, obstacles, surrounding people, etc. But not all factors have the

same amount of influence. In a preprocess videos are tracked, examples are

defined using the surroundings of each person, and a database is build. During

the simulation of an agent, a query is defined and the database is explored to

find a matching example. If so, the trajectory is copied and followed by the

agent until a new one is needed (see Figure 3.10).

The crowds by example method has several issues: they are not as fast as other

methods, they do not give a high-level control of the characters and have oc-

casional errors. Some of these problems are addressed in [Charalambous and

Chrysanthou, 2014].

Figure 3.10: Crowds by example overview. The top row depicts the construc-
tion of a database, which takes place during preprocessing: the input video is
manually tracked generating a set of trajectories. These are encoded as exam-
ples and stored in the database. At run-time, bottom row, the trajectories of the
agents are synthesized individually by encoding their surroundings (forming
a query) and searching the database for a similar example. The trajectory from

the example is copied over to the simulated agent. [Lerner et al., 2007]
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3.1.4 . Global Planning

By global planning we refer to all the pathfinding algorithms that can be ap-

plied to the navigation problem in crowd simulation. Navigation meshes can

be automatically computed from the environment [Mononen, 2009, Oliva and

Pelechano, 2013], and the resulting graph is used to perform the search from

one start node to a goal node.

3.1.4 . A* and Weighted A*

One of the classic algorithms on navigation planning is the A* algorithm [Hart

et al., 1972], which derives from another classic algorithm by Dijkstra. Basically

it tries to reduce a cost function f = g + h, where g is the cost to reach the current

state and h is an heuristic determining the remain cost to get to the goal (for

example the Euclidian distance, or the Manhattan distance). So A* gives always

the optimal path if it exists.

A modified version of A*, but faster is the Weighted A*, where the cost function

is now f = g + w*h. Here w represents a weight by which we increase the im-

portance of the heuristic term, so that we are able to reach the goal faster. Then

Weighted A* is going to give us a sub-optimal path (rather than an optimal

one), but with an important performance improvement.

3.1.4 . Incremental Planners

Incremental planners speed up searches bu reusing information from previous

searches to speed up the current search. This might be important in unknown

or dynamically changing domains, since problems can be now solved much

faster than solving them repeatedly from scratch.

D* Lite [Koenig and Likhachev, 2002] is able to repair plans when changes in

transition costs are detected, and guarantees optimality. To do so it maintains a

least cost path from start to goal. The algorithm stores the cost g(s) from start

to state s, and a one-step look-ahead rhs(s). rhs(s) is 0 if s is the goal state;

otherwise it is defined as the minimum sum of the cost from s to s’, from all

successors states s’ of s, plus the cost g(s’). D* Lite ensures that a least cost path
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will have been found by the time the algorithm terminates. Lifelong Planning A*

[Koenig et al., 2004] can handle changes in transition costs and in addition or

deletion of nodes (basically a changing environment) and reuses previous plan.

3.1.4 . Anytime Algorithms

An anytime algorithm is an algorithm bounded by time. Anytime planning is

well suited for real-world planning problems where time for deliberation is

limited. They find a feasible solution quickly and continually work on improv-

ing it until time runs out.

ARA* [Likhachev et al., 2003] starts by finding a sub-optimal solution. This is

fastly done using a Weighted A* search with an initial loose bound. Then it pro-

gressively relaxes the bound while it reuses previous efforts (reuses previously

computed costs). This makes it significantly more efficient than other anytime

methods, since it only expands a state at most once in a given search, and only

inconsistent states from the previous search are considered for the next search.

It also provides theoretical guarantees on bounds of sub-optimality, and it is

able to find an optimal solution if time permits.

3.1.4 . Anytime Dynamic A*

The Anytime Dynamic A* planner [Likhachev et al., 2005] combines the proper-

ties of incremental planners such as D* Lite [Koenig and Likhachev, 2002] and

anytime algorithms such as ARA* [Likhachev et al., 2003] to provide an algo-

rithm which efficiently repairs its solutions to accommodate world changes and

agent movement, while providing solution guarantees under strict time con-

straints. It performs repeated backward searches (from goal to start), reusing

previous search efforts to iteratively produce solutions with improved bounds

on optimality, like ARA*. This is done using an inflation factor ε which effec-

tively weighs the contribution of the heuristic value in estimation of node costs,

thus focusing the search towards the goal, expanding fewer nodes to produce ε

sub-optimal solutions [Pearl, 1984].
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3.1.5 . Multi-Domain and Hierarchical Planning

Planning based control of autonomous agents has demonstrated control of sin-

gle agents with large action spaces [Choi et al., 2003, Fraichard, 1999, Shapiro

et al., 2007]. In an effort to scale to a large number of agents, meet real-

time constraints, and handle dynamic environments, a large variety of meth-

ods [Pettré et al., 2008] have been proposed. The complexity of the domain is

made simpler [Lau and Kuffner, 2005] to reduce the branching factor of the

search, or the horizon of the search is limited to a fixed depth [Choi et al.,

2011, Singh et al., 2011]. Anytime planners [Likhachev et al., 2003, van den

Berg et al., 2006] tradeoff optimality to satisfy strict time constraints, and have

been successfully demonstrated for motion planning for a single character [Sa-

fonova and Hodgins, 2007]. Randomized planners [Hsu et al., 2002, Shapiro

et al., 2007] expand nodes in the search graph using sampling methods, greatly

reducing search efforts to make it a feasible solution in high-dimensional, con-

tinuous domains. The work in [Hoff et al., 2000] exploits the use of graphics

hardware to enable interactive motion planning in dynamic environments.

Hierarchical planners [Botea et al., 2004, Bulitko et al., 2007, Holte et al., 1996]

reduce the problem complexity by precomputing abstractions in the state space,

which can be used to speed up plan efforts. Given a discrete environment rep-

resentation, neighboring states are first clustered together to precompute ab-

stractions for high-level graphs. Different algorithms are proposed [Kring et al.,

2010] which plan paths hierarchically by planning at the top level first, then

recursively planning more detailed paths in the lower levels, using different

methods [Lacaze, 2002, Sturtevant and Geisberger, 2010] to communicate infor-

mation across hierarchies. These include using the plans in high-level graphs

to compute heuristics for accelerating searches in low-level graphs [Holte et al.,

2005], using the waypoints as intermediate goals, or using the high-level path to

define a tunnel [Gochev et al., 2011] to focus the search in the low-level graph.

The work in [Arikan and Forsyth, 2002] demonstrates the use of randomized

search in a hierarchy of motion graphs for interactive motion synthesis.

In 4.1 we present a work that builds on top of excellent recent contributions

[Levine et al., 2011], showcasing the use of space-time planning for global nav-

igation in dynamic environments, for a single agent. Levine et al. [Levine

et al., 2011] uses parametrized locomotion controllers to efficiently reduce the
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branching factor of the search and assumes that object motion have known tra-

jectories, thus mitigating the need for replanning. Lopez et al. [Lopez et al.,

2012] introduces a dynamic environment representation which is computed by

deducing the evolution of the environment topology over time, thus enabling

space-time collision avoidance with no prior knowledge of how the world changes.

In contrast, we use multiple heterogeneous domains of control, and present

a planning-based control scheme that reuses plan efforts across domains to

demonstrate real-time, multi-character navigation, in constantly changing dy-

namic environments. Instead of automatically computing abstractions from a

given representation, we develop a set of heterogeneous domains with different

state and action representations that provide trade-offs in control fidelity and

computational performance, and investigate different methods of communicat-

ing between domains to meet our application needs.

3.1.6 . Crowd Simulation Conclusions

One of the goals of interactive applications such as videogames is to have high

fidelity navigation of interacting autonomous agents in non-deterministic, dy-

namic virtual worlds. The environment and agents are constantly affected by

unpredictable forces (for example a human input or a player action), making it

impossible to accurately extrapolate the future world state to make optimal de-

cisions. These complex domains require robust navigation algorithms that can

handle partial and imperfect knowledge, while still making decisions which

satisfy space-time constraints.

Different situations require different granularity of control. An open environ-

ment with no agents and static obstacles requires only coarse-grained control

while cluttered dynamic environments require fine-grained character control

with careful planned decisions that have spatial and temporal precision. Some

situations, like potential deadlocks at narrow doorways, may require explicit

coordination between multiple agents.

The problem domain of interacting autonomous agents in dynamic environ-

ments is therefore extremely high-dimensional and continuous, with infinite

ways to interact with objects and other agents. Having a rich action set, and a
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system that makes intelligent action choices, facilitates robust, intelligent vir-

tual characters, at the expense of interactivity and scalability. Greatly simpli-

fying the problem domain yields interactive virtual worlds with hundreds and

thousands of agents that exhibit simple behavior. The ultimate, far-reaching

goal is still a considerable challenge: a real-time system for autonomous char-

acter control that can handle many characters, without compromising control

fidelity.

Previous work simulates crowds by decoupling global navigation [Kallmann,

2010, Sung et al., 2005] and local collision avoidance [Pelechano et al., 2008],

or demonstrates space-time planning for global navigation for a single charac-

ter [Levine et al., 2011], while meeting real-time constraints. These approaches

provide a tradeoff between number of agents, control fidelity, and environment

complexity. But to the best of our knowledge, none of the proposed techniques

efficiently accounts for the dynamic nature of the environment at all levels of

the decision-making process.
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3.2 . State of the Art on Crowd Animation

Although the literature on character animation is very large, this thesis is fo-

cused on real-time crowds. The animation problem we want to solve is to trans-

form the movements of the agents within a simulation into the motion of a 3D

animated character. Therefore this section presents a global overview of motion

synthesis, and then the related work on how to synthesize the crowd motions,

whether the input is a root trajectory or a footsteps trajectory.

3.2.1 . Motion Synthesis

There is a large work in the literature about synthesizing motion and particu-

larly walking locomotion. We can classify the different approaches in three cat-

egories: procedural techniques, physics-based techniques and example-based tech-

niques.

3.2.1 . Procedural Techniques

Procedural techniques are those creating motion from scratch, using empirical

and biomechanical concepts. They offer a high level of control but they are

usually not perceived as realistic. Boulic et. al. presented an model for human

walking based on biomechanical models [Boulic et al., 1990]. Although they

have a high control over the animation, the final result seems unnatural. Pro-

cedural techniques may only be useful for particular kinds of movement, like

running [Bruderlin and Calvert, 1989].

3.2.1 . Physics-Based Techniques

Physics-based techniques use dynamics and physical properties to generate real-

istic animations, with realistic torques on joints [Faloutsos et al., 2001, Popović

and Witkin, 1999]. The main issues are that you have less control over the

animation, and that they are computationally expensive. This makes them un-

suitable for our real-time purposes.
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3.2.1 . Example-Based Techniques

Example-based techniques are those reusing existing motions to generate a clip

of locomotion. The motions used are mostly motion capture clips, in order to

make the results more natural. The clips can be concatenated to generate new

sequences, or they can be blended or merged by parametrization to synthesize

completely new clips.

Motion Concatenation

Clips of motion can be stitch together using some transition between them. The

resulting motion concatenation can result in a very natural motion, as no part of

it is invented or completely new. For example, motion patches is another tech-

nique used to synthesize interactive motions between different characters [Kim

et al., 2012]. They tile, spatially and temporally, deformable motion patches.

Each motion patch is a collection of motion fragments encapsulating interac-

tions among characters (see Figure 3.11). But the resulting motions generate a

seamless simulation of virtual characters interacting with each other in a non-

trivial manner, which means they cannot correspond to any crowd simulation

module.

Figure 3.11: Stitching deformable patches as their matching entries and ex-
its. Each patch is depicted as a convex polygon that encloses its motion paths

projected on the ground. [Kim et al., 2012]

Simulation, Animation and Rendering of Crowds in Real-Time by Alejandro Beacco 59



3. State of the Art

Motion Parametrization

By motion parametrization or motion blending we refer to those techniques that

interpolate between different existing motions. They generate new motions cor-

responding to a specific parameter, such as an end effector position. In that

spirit, Heck et. al. presented their parametric motion graphs [Heck and Gle-

icher, 2007], which offered a higher level of control than other paradigms (see

Figure 3.12). A good survey on motion blending and interpolation techniques

can be found in [Feng et al., 2012].

Figure 3.12: An interactively controllable boxing character that uses paramet-
ric motion graphs. The character is punching towards a user-requested target
in the top image. In the bottom image, the character is ducking below a user

specified height. [Heck and Gleicher, 2007]

Retrieving motions

All these approaches need to use existing motion clips. To obtain them we can

either have an artist creating them manually, with software such as 3D Studio

Max [Autodesk, 2014a] or Maya [Autodesk, 2014c], or we can use motion cap-

ture systems. The first can be more accessible and more flexible, but their cre-

ation is very time consuming and results are strongly dependent on the artists

abilities and experience. On the contrary, motion capture clips are usually more

realistic and natural than manually created ones.
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Figure 3.13: Andy Serkis starring as Caesar in 20th Fox movie ”The Dawn
of the Planet of the Apes”, 2014. The performance of the actor is capture by
complex motion capture systems used by Weta Digital, using multiple cameras

and markers (left), and then transferred to its digital character (right).

Figure 3.14: Microsoft Kinect 2.0 is a low cost depth camera. One of its appli-
cations can be to perform markless motion capture.

Motion capture systems can go from very expensive with high quality results,

like those used for movies (see Figure 3.13 ) or high budget videogames, to more

low cost solutions with not such good results, like those using the Microsoft

Kinect camera (see Figure 3.14). These systems can also be divided into those

needing markers to obtain positions of the actor, and into markless solutions

working with computer vision techniques or depth cameras. It is also important

to notice that motions directly obtained by a motion capture system tend to

have a lot of noise that needs to be cleaned up [Ikemoto et al., 2006, Kovar

et al., 2002b].

Fortunately, the web has some useful databases of motion capture clips which

are available for the community. That is the case for example of the Carnegie

Mellon University database [University, 2013], which offers thousands of mo-

tions properly classified by categories.
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3.2.2 . Synthesizing Crowd Motions From Root Trajectories

Addressing the problem of integrating animated 3D figures with a crowd simu-

lation, we can classify crowd simulation models into two approaches. The first

encompasses those models that calculate the movement of agents in a virtual

environment without taking into consideration the underlying animation. The

second is defined by those that have a core set of animation clips that they play

back, or blend between, to move from one point to another.

When the first group outputs root positions for the agents, it suffers from an

artifact known as foot sliding (see Figure 3.15), since the position of the charac-

ters is updated without considering the foot position. Notice this is not exactly

the same problem addressed by other works removing motion capture noise

[Ikemoto et al., 2006]. If a user controls the character with a 3rd person con-

troller, it is common to work on a root velocity basis, because the user wants

to move the character around in an agile way. In such cases, like video-games,

real-time response is critical and artifacts such as foot skating can be ignored.

But if the character is not controlled by the user, as it happens in a crowd sim-

ulation system, then this becomes a major artifact since it is repeated over all

the agents in the crowd, making it even more noticeable.

The second approach, reviewed in 3.1.2.7, puts effort into avoiding foot-sliding

Figure 3.15: Foot Sliding. Here three consecutive frames (blue, green and red)
of a walking animation show how the foot, instead of being planted, seems to

slide backwards on the floor while the character is moving forward.
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while limiting the number of possible movements for each agent. These are ba-

sically the example-based methods. Lau and Kuffner [Lau and Kuffner, 2006]

introduced precomputed search trees for planning interactive goal-driven ani-

mation (see Figure 3.9). These motion concatenation models are often limited

to a small graph of animations and play one animation clip after another, thus

moving the agent according to the root movement in each animation clip. As

such they do not usually perform well in interactive, dynamic environments,

especially with dense crowds where collision response forces have an impact.

Recent trends in character animation include driving physical simulations by

motion capture data or using machine learning to parametrize motion for sim-

plified interactive control. Examples are inverse kinematics and motion blend-

ing based on gaussian process statistics or geostatistics of motion capture data

[Grochow et al., 2004, Mukai and Kuriyama, 2005]. Some approaches create

a Delaunay triangulation with the root linear and angular velocities of all the

available clips, in order to parametrize and interpolate them [Pettré and Lau-

mond, 2006, Pettré et al., 2003] (see Figure 3.16). Such techniques avoid foot

sliding but are computationally more expensive.

Through interpolation and concatenation of motion clips, new natural looking

animations can be created [Witkin and Popovic, 1995]. Kovar et. al. introduced

motion graphs [Kovar et al., 2002a]. Zhao et. al. extended them to improve con-

nectivity and smooth transitions [Zhao and Safanova, 2007] (see Figure 3.17).

These techniques can avoid foot sliding by using the root velocity of the orig-

inal motion data, but they require a large database of motion capture data to

allow for interactive change of walking speed and orientation.

Menardais et al. were able to synchronize and adapt different clips without

motion graphs [Ménardais et al., 2004]. Proportional derivative controllers and

optimization techniques are used [Da Silva et al., 2008, Yin et al., 2007] to drive

physically simulated characters. Goal-directed steps can perform a controlled

navigation [Wu and Zordan, 2010]. While such techniques show very impres-

sive results for a single character in real time, the computational costs mean

they are not suitable for real time large crowd simulations. Kovar et. al. [Kovar

et al., 2002b] presented an online algorithm to clean up foot sliding artifacts

of motion capture data. But the technique is computationally not suitable for

large real time crowds.
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Figure 3.16: Motion capture selection and weighting process using a Delaunay
triangulation from the linear and angular velocities. [Pettré and Laumond,

2006]

Figure 3.17: Using a motion graph with good connectivity smooth transitions
between walks with different step length can be synthesized. Pose shown in
blue belong to the original data-set, poses in red are interpolated poses intro-
duced during the construction of the graph with good connectivity. [Zhao and

Safanova, 2007]
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Figure 3.18: A character spins while following a straight line. When fixed
obstacles suddenly appear in the path, the character automatically switches to
obstacle avoidance mode and navigates around the obstacles. [Treuille et al.,

2007]

Figure 3.19: Comparison of synthesized motion of human character with
semi-procedural adjustments (foreground) and without (background). [Jo-

hansen, 2009]

Treuille et. al. [Treuille et al., 2007] generated character animations with

near-optimal controllers using low-dimensional basis representation (see Fig-

ure 3.18). This approach also uses graphs but, unlike previous models, blend-

ing can occur between any two clips of motion. They also avoid foot sliding by

re-rooting the skeletons to the feet and specifying constraint frames, but their

method requires hundreds of animation clips which is very time consuming to

gather.

There are some semi-procedural animation systems, like the one by Johansen [Jo-

hansen, 2009], that work with a small set of animations and use inverse kine-

matics only over the legs to ensure ground contacts and adapt the feet to possi-

ble slopes of the terrain (see Figure 3.19).
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Recently, Gu and Deng [Gu and Deng, 2010] increased the variety realism cre-

ating new stylized motions from a small motion capture data-set. Maim et.

al. [Maim et al., 2009b] apply linear blending to animations selected based on

the agent’s velocity and morphology achieving nice animations for crowds but

without eliminating foot sliding.

In 5.1 we present a new example based approach, the Animation Planning Me-

diator (APM). We select the parameters to feed a motion synthesizer while it

feeds back to the crowd simulation module the required updates to guarantee

consistency. It works even with a small amount of clips, and allows a large and

continuous variety of movements. Our method can be used with any crowd

simulation software, since it is the crowd simulation module which drives the

movement of the virtual agents and our module limits its work to adjusting the

root displacement and skeletal state.

3.2.3 . Footstep-Driven Animation Systems

As reviewed in 3.1.2.6, a novel steering method was proposed in [Singh et al.,

2011], using footsteps to navigate characters in dynamic crowds. This generates

a timed sequence of footsteps, but they have just been followed by animation

techniques off-line, using software such as Autodesk 3D Studio Max [Autodesk,

2014a]. So, even if their simulation output is in real-time, it is not straight

forward to integrate it with animations in real-time.

Footstep-driven animation systems [Girard and Maciejewski, 1985] produce

unnatural results using procedural methods. Often, the global pelvis motion is

determined first and then the leg motion is adapted using IK. The work in [Ko

and Badler, 1996] performed a global optimization over an extracted center of

mass trajectory to maximize the physical plausibility and perceived comfort of

the motion, in order to satisfy the footprint constraints. Similarly, a procedu-

ral space-time based approach was presented in [van de Panne, 1997], where

a physics-based optimizer determines the root trajectory, and then IK is used

to determine the leg motion. This was extended for quadruped locomotion in

[Torkos and van de Panne, 1998]. In [Chung and Hahn, 1999] a procedural hi-

erarchical system generates locomotion over footprints laid over uneven terrain

using biomechanical principles.
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Some physics controllers are aware of footsteps and try to follow them [Coros

et al., 2008, Wu and Zordan, 2010]. These methods can even automatically

generate reactive steps in response to external forces (see Figure 3.20). Their

main problem is still the performance, which is good for one or a small set of

characters, but no for large groups nor crowds.

The work in [Chai and Hodgins, 2007] uses a statistical dynamic model learned

from motion capture data in addition to user-defined space-time constraints

(such as footsteps) to solve a trajectory optimization problem. The more con-

straints defined the better the motion results (see Figure 3.21), but this means

that it is not enough to define foot constraints in order to obtain a realistic and

natural motion. They also admit to have foot sliding when only root and one

foot are used as constraints. In [Choi et al., 2003] random samples of footsteps

make a roadmap going from one point to another, used to find a minimum-cost

sequence of motions matching it which are then retargeted to the exact foot

placements. But using roadmaps requires a preprocess, meaning it only works

for fix environments.

Large semi-parametric motion graphs can be created by discretely blending all

pairs of motions from a standard motion graph [Safonova and Hodgins, 2007].

These graphs can then be pruned and searched using a global algorithm. This

offers a greater accuracy than standard motion graphs, because it allows the

interpolation of two motion. With this approach motion can be generated over

a set of constraints like footsteps, but it becomes computationally expensive

(order of minutes).

Figure 3.20: A reactive step generated automatically in response to a distur-
bance. [Wu and Zordan, 2010]
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Figure 3.21: A user can fine tune an animation by incrementally adding con-
straints: (top) jumping generated by the user using five key trajectories (both
hands, both feet, and root); (bottom) a slightly different jumping motion gen-
erated after adjusting the positions of the hands at the top of the jump. [Chai

and Hodgins, 2007]

There are other interpolation schemes working with constraints: radial basis

functions are used in [Rose et al., 2001], geostatical motion interpolation in

[Mukai and Kuriyama, 2005], and a k-nearest neighbor interpolation scheme in

[Kovar and Gleicher, 2004]. They all need to have motion clips semantically

identical, and annotated with key events, like foot stance. The main problem of

all the motion parametrized approaches is the non-linearity of the orientation

domain, and the constraints defined by an articulated skeleton, which consists

of joints and bones. Because of that, blending motions does not yield a linear

parametrization of the space, and the resulting motion does not exactly corre-

spond to the desired ending parameter. The error of these methods depends on

the number of examples in the parameter space.

This problem can be solved by modifying the resulting motion. The trajectory

of the root can be forced to follow the desired curvature, and retargeting ap-

plied to solve foot sliding [Park et al., 2002]. Or the motion can be transformed

using IK [Grassia, 2000]. The desired position can also be iteratively adjusted

in the direction of the error vector [Rose et al., 2001]. In any case, the exact

parameterization cannot be guaranteed.

Other techniques perform resampling to reduce the error. Nearly convex weights

can be randomly generated, and pseudo-examples created by blending nearby

examples with these weights [Kovar and Gleicher, 2004] (see Figure 3.22). This

is also used in parametric motion graphs [Heck and Gleicher, 2007].

A parametric space called the step-space is introduced and used in [Egges and

van Basten, 2010, van Basten et al., 2010, 2011]. In a pre-process individual
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Figure 3.22: Left: Six example reaching motions create a sparse sampling of
parameter space that leads to an innacurate parameterization. ( The dots in-
dicate parameter samples and the yellow sphere shows the desired location of
the wrist. Rigth: A denser sampling can be automatically generated, providing

greater accuracy. [Kovar and Gleicher, 2004]

steps are extracted from recorded motions. They consider a step the displace-

ment of one foot, and they define the step-space with 10 parameters (see Figure

3.23). These include the swing foot start and end position and orientation,

the supporting foot position and orientation, and 4 temporal parameters cor-

responding to different phases of the step. To synthesize motion they adopt

a greedy nearest-neighbor approach over larger motion databases. To ensure

spatial constraints, the character is properly aligned with the footsteps and re-

inforced with inverse kinematics, while temporal constraints are satisfied using

time warping (see Figure 3.24). These techniques guarantee exact foot position-

ing, and no end-effector trajectory is modified. But their computational cost

makes them unsuitable for real-time animation of large groups of agents.

In chapter 5, section 5.2 we present a method that produces visually appealing

results with foot placement constraints, using only a handful of motion clips

and can seamlessly follow footstep-based control trajectories, while preserving

the global appearance of the motion. Compared to [Johansen, 2009], we exploit

the combination of multiple parameter spaces for footstep-precision control.

This reduces the dimensionality of the problem, compared to [van Basten et al.,

2011]. Unlike previous work in the literature, our method can synthesize ani-

mations for a large number of characters in real-time, following footstep trajec-

tories for different walking styles and even running motions with a small flying

phase.
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Figure 3.23: The step space: a step is represented by 10 parameters: the swing
foot f1 moving to f2, the supporting foot and 4 temporal parameters.[Egges

and van Basten, 2010, van Basten et al., 2010, 2011]

Figure 3.24: A character walks over a planned footsteps trajectory avoiding
the red obstacles. [van Basten et al., 2011]
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Footstep Extraction

When using example based methods for footstep driven motion, an important

problem to address is how to analyze the available motion clips, and moreover

how to detect and extract individual footsteps. Determining foot stances from

motion capture data is not always trivial, due to noise and possible retarget-

ing errors. But it is possible to determine foot downs in locomotion. In [van

Basten and Egges, 2009] they use a height and velocity based footstep detector.

By detecting significant changes in height matching to significant changes in

velocities they identify foot downs.

Assumptions can also be done, such as that when we walk there is always one

foot on the floor, or that both feet are in contact with the floor during a brief

phase between swings. In [Johansen, 2009] in place animations are used, so foot

downs are detected when feet velocities invert their sign. An advantage of this

is that jumps or walks with a flying phase are supported.

3.2.4 . Crowd Animation Conclusions

Motion synthesis methods are divided in procedural techniques, physic based

techniques and example-based techniques. Procedural techniques have a high

level of control but have unnatural results. Physically based techniques are

either computationally expensive or do not offer enough control over the an-

imation. The more suitable techniques for our purposes are example-based

techniques, which can offer natural motions with high control with acceptable

computational costs. This applies whether we try to follow root or footstep

trajectories.

To achieve natural looking crowds, most of the current work in crowd simu-

lation uses avatars with a limited number of animation clips. In most cases,

problems arise when the crowd simulator module updates the position of the

root for each agent without taking into account movement of the feet. This

yields unnatural simulations with foot sliding artifacts. Other problems can

emerge from the lack of coherence between the orientation of the geometric

representation of the agents and direction of movement. As we increase model

sophistication through enhanced path selection, avoidance, rendering, and in-

clusion of more behaviors, these artifacts become more noticeable. In order
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to avoid these problems, most approaches either perform inverse kinematics,

which might imply a high computational cost that does not allow large crowd

simulations in real time, or adopt approaches where the animation clip being

used drives the root position which limits movements and speeds.

To accurately follow a footsteps trajectory, footstep driven animation systems

are mostly locomotion systems with space-time constraints. Moreover, the out-

put trajectory can be modified by external perturbations such as uneven ter-

rain. Motion parametrization techniques offer natural and accurate results. The

problem then is to retrieve large enough databases of motion capture clips. But

a threshold also appears between the accuracy of these approaches and their

computational cost, which is critical in the case of multiple agents or crowds.

Ideally, in order to animate crowds of hundreds of agents in real-time, we would

want a method using an animation database with as less clips as possible. This

is because retrieving natural motion capture clips is expensive and difficult,

specially if we want variety of characters, with properly rigged skeletons and

retargeted motions. Having more clips also implies to use more memory. It is

also desirable to minimize the number of animations to blend between, since

the cost of blending increases with the number of animations blended. There-

fore it is necessary to find a good small set of animations to achieve accurate

results. Even though accuracy is desirable, in many cases it is not as important

as keeping real-time computation or a natural motion with no distracting arti-

facts. We therefore have a tradeoff between the number of animations in our

library and the computational cost of the technique.
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3.3 . State of the Art on Crowd Rendering

This section aims to study, classify and compare existing approaches for real-

time crowd rendering. We first overview character animation techniques, as

they are highly tied to crowd rendering performance. Then we analyze the

state of the art in crowd rendering including point-based rendering, image-

based rendering, culling techniques, level-of-detail, and hardware-related tech-

niques. We also discuss other factors affecting performance and realism of

crowds such as lighting, shadowing, clothing and variability. Finally we make

an exhaustive comparison of the most relevant approaches in the field.

3.3.1 . Character Animation and Skinning

In this subsection we give an overview of general aspects of character anima-

tion that influence rendering performance. These aspects range from how the

character is represented to how this representation is modified to handle ani-

mations.

Some character animation methods focus on achieving highly-realistic, physically-

accurate mesh deformations for applications without real time requirements.

Physically-based methods simulate the internal structures of the body (bones,

tendons, muscles and fat tissues [Aubel and Thalmann, 2000, Jimenez et al.,

2011, McLaughlin et al., 2011, Sueda et al., 2008]), achieve a high level of re-

alism, and might even support dynamic effects such as muscle bulges, but at

a high computational cost. Despite the high visual quality achieved by these

methods, they are too expensive for rendering a large number of characters

under real-time constraints. In these cases it is necessary to have more effi-

cient methods capable of animating multiple models interactively. This survey

focuses on crowd rendering, and thus we will start by reviewing character ani-

mation methods that can be handled in real time for large groups of characters.

For more details on the skinning subject we refer the reader to a recent com-

plete course [Jacobson et al., 2014].
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3.3.1 . Skeletal Animation

The most extended approach for animating 3D characters is skeletal anima-

tion [Magnenat-Thalmann et al., 1988]. In this technique, the character is repre-

sented by a mesh or ’skin’, and an underlying skeleton. The skin is an arbitrary

polygonal mesh and the skeleton is a hierarchy of bones carefully placed so that

they fit inside the skin. Initially both of them are designed in a reference pose,

and during run time the mesh representing the skin will be deformed following

the bones’ movement (see Figure 2.14).

To determine how the vertices of the mesh will be deformed, each bone is asso-

ciated with a portion of the mesh. For example, all the vertices forming the left

hand will be linked to the left hand bone. In some places, a portion of the mesh

is associated to more than one bone, by defining a weight (influence) associated

to each one. These vertices will then be deformed based on the weights of all

its linked bones that are being moved. Therefore, an animation can be defined

by the movement of the bones, and the associated vertices will move along with

the skeleton. The process of defining these weights, as well as the skeleton

fitting, is called rigging and it is typically done manually. However, there are

some automatic procedures [Baran and Popović, 2007, Pantuwong and Sugi-

moto, 2012, Ramirez et al., 2008], that can simplify the rigging process consid-

erably. Recently developed online tools allow users to rig any biped character

within minutes [Mixamo, 2014]. There is also recent work to transfer the rig-

ging between different characters that share the same skeleton hierarchy[Bharaj

et al., 2012], a process known as retargeting.

3.3.1 . Animation Blending

An animation is defined by a series of keyframes, each one defining a different

pose for an instant of time t. Poses consist of a geometric transformation for

each bone of the skeleton. These geometric transformations are usually rotations

encoded as matrices, resulting in one matrix per bone and per keyframe. Dur-

ing the animation, new poses can be computed at arbitrary times by spherically

interpolating the rotations of the bones between the two closest keyframes.

Linear blend skinning is the standard algorithm for low-cost skinning. Transfor-

mations are represented by the skeleton matrices, which are blended linearly
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Figure 3.25: Linear blend skinning produces several artifacts such as the
”candy-wrapper” effect, because the resulting matrix no longer represents a

rigid transformation. [Kavan et al., 2007]

according to the applied rigging. Besides skin deformations, linear blend skin-

ning can be used to animate other deformable elements such as cloth, since

it is considerably faster than physically based cloth simulation [Cordier and

Magnenat-Thalmann, 2005].

The direct linear combination of matrices is known to suffer from blending

artifacts in the deformed skin. A typical artifact is the “candy wrapper” ef-

fect, where the skin collapses into itself (see Figure 3.25). This occurs because

the weighted sum of matrices representing rigid transformations (with neither

scale nor shear) is not necessarily another rigid transformation, but a general

affine transformation. Rigid transformation matrices can be decomposed into

quaternion plus translation pairs, which can be independently blended linearly

to always get rigid transformations [Hejl, 2004, Kavan and Žára, 2005]. The

problem of doing it separately is that transformations become dependent with

the body-space coordinate system, meaning that vertices are going to rotate

around the origin of the body-space instead of the actual pivot point of the

closer joint. Dual quaternions approaches [Kavan et al., 2007, 2008a, McCarthy,

1990] reduce these artifacts in an elegant way, by blending quaternions whose

elements are dual numbers.

In recent years cage-based deformations have been applied to character ani-

mation. The main advantages of cage-based deformation techniques are their

simplicity, relative flexibility and speed. The idea is to use one or more cages

Simulation, Animation and Rendering of Crowds in Real-Time by Alejandro Beacco 75



3. State of the Art

enclosing the model to facilitate the animation while preserving the smooth-

ness of the deformed meshes. Chen et al. [Chen et al., 2011] presented an effi-

cient approach that can generate both low and high-frequency surface motions

such as muscle deformation and vibrations with little user intervention. Given

a surface mesh, they construct a lattice of cubic cells embracing the mesh and

apply lattice-based smooth skinning to drive the surface primary deformation

with volume preservation. Secondary deformations are handled through lat-

tice shape matching with dynamic particles. Gonzalez et al. [González Garcı́a

et al., 2013] recently proposed a versatile deformation scheme, allowing the

usage of heterogeneous sets of coordinates and different levels of deformation,

ranging from a whole-model deformation to a very localized one. This locality

allows for faster evaluation and a reduced memory footprint, and thus outper-

forms single-cage approaches in flexibility, speed, and memory requirements

for complex editing operations.

Implicit skinning [Vaillant et al., 2013] is the first purely geometric method

handling skin contact effects and muscular bulges in real-time. The typical arti-

facts of geometric skinning techniques are avoided through an implicit surface

representation. Every frame they approximate the mesh by a set of implicit

surfaces, which are combined in real-time and used to adjust the position of

mesh vertices starting from their smooth skinning position. This process is per-

formed without any loss of detail and can seamlessly handle contacts between

skin parts. Since it is a post-process, the method can be added to any stan-

dard animation pipeline. The method requires no intensive computation step

such as collision detection and can achieve real-time performance for simple

animations, although it is not fast enough for crowd rendering.

3.3.1 . Non-Skeletal Animation

An alternative approach to skeletal animation is morph target animation, also

known as per-vertex animation, shape interpolation or blend shapes, where vertex

positions are stored not only for the reference pose, but also for each keyframe [Lo-

rach, 2007, Winkler et al., 2010]. Vertex positions are then interpolated within

keyframes to obtain new frame deformations. An advantage of morph target

animation over skeletal animation is that it provides artists with more control

over the movement because they can define arbitrarily the individual positions
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of the vertices within a keyframe, without being constrained by skeletons. This

can be useful for animating cloth, skin, and facial expressions because it can be

difficult to conform those things to the bones that are required for skeletal ani-

mation. In the field of crowd rendering, Ulicny et al. [Ulicny et al., 2004] avoid

computing the deformation of a character mesh by storing pre-computed de-

formed meshes for each keyframe of the animation, and then carefully sorting

these static meshes to take cache coherency into account. Switching consecutive

meshes creates the illusion of an animation. Unfortunately, these techniques

require a large amount of memory to store the animations and they are seldom

used for crowd rendering.

3.3.1 . Individuality

Individuality in crowd animation refers to the possibility of having as many dif-

ferent animations as possible so that individuals within the crowd can be ani-

mated with multiple speeds, styles and gaits. In many situations crowds are just

animated with a handful of animations that are run with a certain time offset

to avoid synchronized animations. Although animations have a small memory

footprint, the computation of all the blended poses can become a major perfor-

mance bottleneck. Moreover, the final pose is represented by a set of matrices

that must be used to transform all the avatar vertices. This transformation is

usually performed in the vertex shader. Matrices can be computed in the CPU

and then sent to the GPU, but this approach consumes a significant amount of

CPU-GPU bandwidth. Alternatively, keyframe matrices can be preloaded onto

the GPU, at the expense of GPU memory space. Both approaches thus benefit

from matrix compression techniques.

3.3.2 . Point-Based Techniques

Levoy and Witted’s report [Levoy and Whitted, 1985] early suggested the use

of points as a new primitive to render geometry. The idea is to render a surface

using a vast amount of points. A Gaussian filter or surface splatting [Zwicker

et al., 2001] can be performed to fill in the possible gaps. Kobelt and Botsch

presented a survey on point-based techniques [Kobbelt and Botsch, 2004]. But

it was Bærentzen [Bærentzen, 2005] who proposed to use point-based models
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to replace objects that are far away from the camera. Point-based rendering is

more useful and faster when the triangles of a model cover a pixel or less (as

there is neither triangle setup nor interpolation).

Point-sampled objects do not need to store and maintain globally-consistent

topological information. Therefore they are more flexible when compared to

triangle meshes. Nevertheless this technique has some limitations. For in-

stance, if the point samples are the result of decimating the mesh for level of

detail, they become independent from the original mesh and loading anima-

tions becomes difficult.

An alternative multi-resolution representation for animated geometry is pro-

posed by Wand and Strasser [Wand and Straßer, 2002] who combine pre-filtered

point samples and triangles arranged into an octree. Their randomized sam-

pling scheme guarantees that sample points are distributed sufficiently uni-

formly on the animated geometry at any time during the animation (see Figure

3.26), at the expense of requiring a separate multi-resolution hierarchy for each

pair of consecutive keyframes. Larkin et al. designed a time-critical system

where point samples are distributed for every agent depending on its selected

level of detail [Larkin and O’Sullivan, 2011].

Figure 3.26: While close-up characters use triangle meshes, background char-
acters can be rendered with point splats [Wand and Straßer, 2002].

Toledo et al. presented a system where an additional skeleton contains an oc-

tree per limb [Toledo et al., 2014]. Each level of the octree represents a different

level-of-detail, and animations can be automatically transferred to each node,

thus reducing the memory consumption (see Figure 3.27).
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Figure 3.27: Some approaches allow animations to be applied to both point-
based and polygon-based representations [Toledo et al., 2014].

3.3.3 . Image-Based Techniques

An impostor is in essence a simple primitive that has the capacity to fool the

viewer. As opposed to LODs, impostors are not just a simplified version of

the original geometry, but a different primitive conceived to replace it under

appropriate viewing conditions. Impostor representations range from simple

billboards (3D sprites) textured with an image of the rendered object, to a small

set of textured polygons allowing the recovery of surface details and parallax

effects. Although early impostors were designed for static objects, they can be

also used to render animated objects and crowds of agents.

Millan and Rudomin performed an strict comparison between point-based tech-

niques and image-based techniques [Millan and Rudomin, 2006a]. Their point-

based characters required a variable number of points between 3 and 280, thus

resulting in a more inefficient render than an impostor image-based approach

using only a quad or two triangles per agent.

Since impostors are essentially images, there are two main approaches: to gen-

erate dynamically these images at runtime, or to pre-compute and store them

into a texture atlas and access them when necessary.
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3.3.3 . Dynamic Impostors

The virtual human impostor used by Aubel et al [Aubel et al., 1998] is a simple

textured quad which rotates to continuously face the viewer. A snapshot of the

virtual human is mapped onto it and re-used over several frames (see figure

3.28).

Figure 3.28: A football player and its (somewhat oversized) impostor. [Aubel
et al., 1998]

As the humanoid moves or the camera moves, the mapped texture might need

to be refreshed. To take updated snapshots an off-screen buffer is set up and

a multiresolution virtual human is placed in front of the camera in the right

posture. The virtual human is then rendered and copied into texture memory

and so ready to be mapped onto the billboard.

To decide whether or not to refresh the texture they proposed two fast algo-

rithms. The first one tests distance variations between some pre-selected points

in the skeleton, so they can decide if the pose has changed significantly. This

obviously sub-samples the animation.

The second algorithm does not test independently the camera motion and the

character’s orientation because it is not important to know what factor caused

the visual variation. Instead, they test the variations of the modelview ma-

trix corresponding to the transformation under which the viewer sees the vir-

tual human. These impostors are dynamic in the sense that they are not pre-

computed, but they change dynamically depending on the results of the two

algorithms above at every frame.

The off-screen buffer can be set up in a pre-process, adjusting the frustum to the

character. The stored impostor can also be re-used for other human meshes, and

since posing up the character would have been done with the whole geometry,
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(a) (b)

Figure 3.29: Discretising the view direction between the object and the view-
point (a) allows to generate a texture with all the captured directions for one
frame of one animation (b). The process must be repeated for every animation

frame. [Tecchia and Chrysanthou, 2000]

the approach is not slower than rendering the 3D geometry. But even if the

impostor is re-used, after a few frames it will finally be discarded.

The main limitation of these kind of approaches is that replacing the whole ge-

ometry by a textured plane might introduce occlusion problems. For example,

imagine a character sitting on a chair as two independent meshes. If one, or

both are replaced by a textured quad, it is not clear how they can be arranged

spatially to avoid visibility problems. This is due to the depth values of the

impostor fragments which are unlikely to be the same as those of the actual

geometry.

3.3.3 . Pre-Generated Impostors

Pre-generated impostors were first used by Tecchia et al. [Tecchia and Chrysan-

thou, 2000] by rendering each character from several viewpoints and for every

animation frame of a simple animation cycle (see Figure 3.29). The images

were stored in a single texture atlas, and each crowd agent was rendered as a

single polygon with suitable texture coordinates according to the view angle

and frame.

Pre-generated impostors with improved shading have also been used by Tecchia

et al. in [Tecchia et al., 2002] by adding shadows to each agent. Since the

shadow is just the projection onto the ground of the character’s silhouette, they

can project the polygon of the impostor onto the ground, using the shadow
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coverage to darken the ground (see Figure 3.30). This fake shadow is valid only

on planar geometry with a parallel light source, but gives plausible results with

small overhead.

Figure 3.30: A scene with shadowing pre-generated impostors.[Tecchia et al.,
2002]

Pre-generated impostors can achieve rendering of crowds consisting of tens of

thousands of agents. Unfortunately, although image and texture compression

techniques can be applied to the resulting texture atlases, they still require large

amounts of memory due to the per-view, per-frame replication. Some memory

savings can be achieved by removing intermediate frame textures, and generat-

ing them online using morphing techniques [Yuksel et al., 2013]. An additional

limitation of pre-generated impostors is that, depending on the texture reso-

lution, close-up characters appear clearly pixelated. These impostors do not

allow interpolation or blending between two or more different animations.

3.3.4 . Geopostors

Dobbyn et al. [Dobbyn et al., 2005] introduced the Geopostors, a hybrid sys-

tem combining pre-generated impostors with a polygon-based representation.

Figure 3.31 shows how impostors are used for far agents while the ones close to

the camera are rendered with full geometry.
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Figure 3.31: Geopostors. Far agents are rendered with impostors while closer
ones are rendered with geometry. [Dobbyn et al., 2005]

The switching between the mesh and the impostor is based on the impostor

image pixel size to impostor texel size ratio. Ideally this ratio should be 1:1,

because aliasing starts when a texel is bigger than a pixel.

An extension of this approach was made by Pettre et al. [Pettré et al., 2006],

combining the animation quality of dynamic meshes with impostors and adding

a third LOD using the high performance offered by static meshes, i.e. meshes

where animated poses were already computed.

3.3.5 . Layered Impostors

In geopostors, the visual gap between flat impostor and geometry might, for

some view directions, be too large to completely avoid popping artifacts. Coic

et al., [Coic et al., 2007] described a similar hybrid system but with three LODs,

adding an intermediate layered impostors LOD between flat impostor and ge-

ometry to help achieving continuity during transitions. Instead of a single tex-

tured polygon, an adaptive number of layers of the color texture are drawn,

depending on the texel’s depth (see Figure 3.32). These layers fill a volume in

the 3D scene and can be shaded dynamically using color textures enriched with

depth and normal channels.

Layered impostors are rendered in layers parallel to the image plane. For each

of these layers, the pixels that correspond to a certain depth are selected. After

selecting the required number of layers, they divide the volume captured dur-

ing preprocessing into as many intervals as the number of layers, defining the

intervals of depth for selecting pixels in the color texture. The selection of the

right pixels for each depth interval is done in a fragment shader, where lighting

is also computed.
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Figure 3.32: Volumetric layered based impostors rendering scheme: between
geometry and the one-polygon impostor, an adaptive number of layers is used

for a layered impostor. [Coic et al., 2007]

To extend the validity of the layered impostors, overlapping depth intervals

can be used. Without overlapping, cracks appear on the layered impostor as

soon as the viewpoint slightly differs from the pre-computed one. By drawing

a small part of the previous and next layers, these gaps are avoided, extending

the lifetime of the layered impostor and decreasing the density of precomputed

views (see Figure 3.33).

Figure 3.33: A cow rendered with 5 layers and dynamic lighting, without (left)
and with overlapping (right). [Coic et al., 2007]

Although this approach improves visual quality and fills the gap between the

polygonal representation and the flat impostors, it adds additional channels

(normal, depth and several layers), which worsens the memory problem. Lay-

ered impostors are slower to render than one-polygon impostors.
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3.3.6 . Polypostors

Polypostors were introduced by Kavan et al. [Kavan et al., 2008b] to reduce the

memory requirements of pre-generated impostors whilst mantaining rendering

performance. Each polypostor consists of a collection of 2D (planar) primitives,

each one representing an individual body part for a given view direction (thus

avoiding a per-frame memory consumption).

The original 3D character is cut into several body parts in order to minimize oc-

clusion issues. The original skeletal animation is applied to the body parts. The

composition of these body parts gives the same animation as the one provided

originally. For the first frame of the animation, each body part is rendered and

enclosed within textured 2D polygons, using a standard contour tracing algo-

rithm. For all subsequent frames, an algorithm based on dynamic program-

ming shifts the vertices of the 2D polygons so that they approximate the actual

rendered image as closely as possible (see top of Figure 3.34). This algorithm

matches two textured polygons in an optimal way with respect to a chosen error

metric.

At run-time, the deformed polygons are composited in depth order, creating the

illusion of an animated 3D character. Since polypostors approximate the ani-

mation by deforming their texture, they are not as accurate as other impostors.

They can be applied only to animations that can be described as deformations

of the initial key-frame. They can produce artifacts with views where there is a

lack of texture information in the first key-frame, due e.g. to disoccusion effects

(see bottom of Figure 3.34).

3.3.7 . Per-Joint Impostors

We present in chapter 6 two approaches adopting the polypostor idea of having

impostors per body parts instead of per-character. We maximize performance

by using a collection of pre-computed impostors sampled from a discrete set

of view directions. The first method is based on relief impostors [Beacco et al.,

2011] and the second one on flat impostors [Beacco et al., 2012]. Characters

are animated by applying the joint rotations directly to the impostors, instead

of choosing a single impostor for the whole character from a set of predefined
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Figure 3.34: An example of a polypostor animation, overlaid with wireframe
(top). Note that the character animation is created simply by displacing poly-
gon vertices (stretching the texture accordingly). The Polypostor texture is
generated from the first key-frame (bottom left) and deformed for subsequents
key-frames, producing artifacts due to lack of data in areas that have become

visible (bottom right). [Kavan et al., 2008b]

poses. This representation supports any arbitrary pose and thus the agent be-

havior is not constrained to a small collection of predefined clips.

Previously, in the same spirit, Aubel et al. [Aubel et al., 2000] divided each

character into coherent parts by using the natural segmentation of joints. How-

ever, their subdivision was used exclusively for handling visibility issues rather

than for animating each part separately as in [Beacco et al., 2012]. Maim et al.

[Maim et al., 2009a] sampled individual parts from multiple view directions

too, but their animation-independent impostors are limited to rigid accessories

such as hats, wigs or backpacks.

3.3.8 . Culling Techniques

Culling techniques aim at discarding objects or parts of objects which are not

visible [Cohen-Or et al., 2003]. In this section we show how these algorithms

can be applied to crowd rendering and the problems that can be encountered.
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Frustum culling is a very common technique for discarding all of the objects that

are not inside the camera frustum, thus avoiding sending them to the graphics

card and speeding up the rendering [Assarsson and Möller, 2000, Bishop et al.,

1998, Clark, 1976]. The test to determine if a point or a bounding volume

(box, spheres and cylinders are typical shapes) is partially or totally inside the

frustum can be performed before the render instruction. In the case of crowd

rendering we can simply use the bounding sphere of the agents to approximate

their shape. Although this test is very fast, it has to be performed for every

agent in the crowd, which can be very large (tens or hundreds of thousands).

In the case of having most of the agents within the frustum, then this test will

consume a large amount of processing time that could have been used to render

more agents.

With the goal of applying frustum culling to crowd rendering there are some

strategies that can be applied. If the simulation and the rendering run in par-

allel, the frustum test can be performed in the simulation thread which sets a

visibility flag. Another possibility consists of keeping some data structure that

can speed up the process of determining which agents need to be rendered,

such as spatial hashing[Reynolds, 2006] or hierarchical representations[Toledo

et al., 2014].

Visibility or occlusion culling algorithms determine if an object is occluded by

some other geometry (mainly static geometry) before rendering it [Klosowski

and Silva, 2001]. The visibility test can be performed using preprocessed data

(requiring an organization of the whole geometry), using structures such as kd-

trees that encapsulate all the scene visibility information. In the case of crowds,

since agents are moving around a virtual environment, the visibility test needs

to be performed against the static geometry of the scene. However, due to the

dynamic nature of the agents, it is not enough to use specific methods that often

apply exclusively to static geometry. One efficient way to perform occlusion

culling is to first render the scene and then render the agents discarding the

occluded fragments with a simple depth test. Notice that this still requires

sending them to the graphics card to be rendered since culling is performed in

the GPU.

Another possibility to significantly increase performance is to use hardware-

based occlusion queries [Wimmer and Bittner, 2005] by sending simpler geom-

etry to the GPU such as bounding volumes. This allows for conservative culling,
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since discarding objects whose bounding volume is completely occluded is safe,

but we might fail to discard some invisible agents.

When having a very large crowd, and depending on the kind of camera mo-

tion we have (for example a first person camera), it is very common to have

agents occluding other agents. The early z-culling [Mitchell and Sander, 2004]

feature, implemented in most of the recent GPUs, allows for a fragment to be

discarded before it is processed by the fragment shader (although some prac-

tices, like modifying the fragment’s depth programmatically, disable this fea-

ture). One could think that depth test and early z-culling should be enough

to handle these situations and avoid rendering thousands of agents, but depth

algorithms depend highly on the order in which primitives are rendered. Clus-

tering techniques or spatial data structures allowing an efficient front-to-back

traversal of the crowd agents, such as KD-trees or BSP-trees, can benefit from

early z-culling. We must remember though, that crowd agents will be moving

around the environment, and therefore these structures should be dynamically

updated every frame according to the new positions of the agents. Hernández

et al. use the new transform feedback mechanism of modern GPUs to perform

view frustum culling efficiently [Hernández and Rudomin, 2011].

3.3.9 . Level-Of-Detail (LOD)

A well-known crowd acceleration technique is level-of-detail rendering [Clark,

1976, Luebke et al., 2002], where the appropriate representation of each char-

acter is chosen according to its image contribution [Pratt et al., 1997]. The

basic idea is that, as characters are placed farther away from the camera, less

details can be perceived on their screen projection and thus simpler, cheaper

representations can be used (see Figure 2.15). Ulicny et al. [Ulicny et al., 2004]

replaced full geometrical models with lower resolution ones, and were able to

create complex scenes with thousands of characters. Pettre et al. [Pettré et al.,

2006] significantly improved performance by using four discrete level-of-detail

meshes for the humans in their crowd.
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3.3.9 . Generation

In this section we discuss only mesh simplification techniques for character an-

imation, since alternative representations have been discussed above. The au-

tomatic generation of simplified models is a long-standing problem, and many

algorithms have been proposed in the literature for the general case of static

meshes.

Progressive meshes [Hoppe, 1996] use edge collapse operations to dynamically

and progressively reduce the geometric complexity of the mesh. The method

stores the edge collapses in order (which are invertible operations) in a data

structure, and allows a smooth choice of the level of detail desired. Vertex clus-

tering methods [Rossignac and Borrel, 1993] group vertices of the input mesh

according to a surrounding grid, and then discard the resulting degenerate tri-

angles. Although they can work with any input mesh, they poorly preserve its

details. Unfortunately, all these conventional mesh simplification techniques

typically focus on position-based meshes only, ignoring important animation

features such as blend weights and indices. Thus they perform poorly on ani-

mated characters as they introduce animation artifacts due to the loss of vertices

in important areas and discontinuities on their attributes. With less vertices,

even the best skinning techniques can produce inconsistent deformations and

artifacts. Larkin et al. [Larkin and O’Sullivan, 2011] explored the perception of

texture, silhouette and lighting artifacts of the different character’s LODs. Even

recent progressive encoding schemes like the POP buffer [Limper et al., 2013]

are not suitable for mesh animations.

Only a few works address the problem of simplifying animated characters.

Schmalstieg and Furhmann’s approach [Schmalstieg and Fuhrmann, 1999] break

the mesh surface into single bone regions (for vertices associated only to one

bone) and additional regions for multiple weighted bones. These surfaces were

simplified separately and then stitched together. Some methods try to minimize

simplification errors from not just the resting pose, but a set of example poses

[DeCoro and Rusinkiewicz, 2005, Mohr and Gleicher, 2003]. Other approaches

work with a model and a set of frames with the deformed vertex positions, to

build a multiresolution hierarchy, letting the surface change topology for each

frame, and therefore showing a simplified surface for each frame [Huang et al.,

2006, Kircher and Garland, 2005, Payan et al., 2007, Zhang and Wu, 2007].
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The main problem of all these methods is that they are limited to a predefined

animation set. Landreneau and Schaefer [Landreneau and Schaefer, 2009] pro-

posed an edge collapse method guided by an error metric that measures devia-

tion from the original deformed shape considering positions and weights. They

produce not only new vertices, but also skin weights, and therefore can cre-

ate keyframes for new animations with new poses from the original ones. This

underlies more memory consumption for each additional animation. Willmott

[Willmott, 2011] based his method on vertex clustering and was able to handle

attribute discontinuities and preserve animation features.

Applications using LOD techniques also need to decide the number of repre-

sentations to encode (with implications both in memory footprint and potential

popping artifacts when switching representations). The encoding of the differ-

ent LODs of an avatar is also critical to minimize the number of state changes.

For example, if the different LOD levels are just reduced versions of the same

geometry, and share attribute names, shaders and textures, it makes sense to

store the different meshes in the same data structure or to have access to all

of them from the same class instance in order to just change the draw call and

share the same state.

3.3.9 . Tessellation

Figure 3.35: Tessellation allows rendering large crowds of characters with ex-
treme details in close-up (left). The same character without using tessellation

looks significantly less detailed (right). [Tatarchuk et al., 2008]

Tessellation shaders, available in consumer graphics cards since 2011, are able

to subdivide faces and thus add detail to existing models without increasing

the memory footprint or requiring additional bandwidth. Tessellation shaders
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can be applied to crowd rendering to generate high-quality representations on-

the-fly from a coarse mesh, in a view-dependent manner. Multiple dynamic

levels of detail are possible by adjusting the tessellation levels used by the

tessellation primitive generator. An interesting fact about tessellation is that

when animating a tessellated character, only the base original vertices are trans-

formed, so the new ones are generated inside the transformed ones. This pro-

vides higher resolution for animated models with the same vertex shader per-

formance. Tatarchuk et al. [Tatarchuk et al., 2008] applied these concepts to

obtain highly detailed characters for close-up views (see Figure 3.35). Tessel-

lation can be used in combination with displacement maps to add geometry

detail rather than to smooth surfaces. In this case, texture seams can lead to

noticeable artifacts unless conveniently handled [Tatarchuk et al., 2008].

3.3.9 . LOD Selection

Assuming multiple LODs are available, the application has to decide the most

suitable LOD to render for each agent, when to switch from one LOD to an-

other, and how to do this switch as seamlessly as possible to avoid popping arti-

facts. Early LOD selection techniques relied on object-space distance thresholds

defining ranges for each LOD. A better approach is to select the LOD according

to (a conservative estimation of) the area of the screen projection of the char-

acter. Hardware occlusion queries report pixel counts and thus can be used

also to select a proper LOD considering not only screen-projected area, but also

partial visibility (if an object is hardly visible, a lower resolution model can be

used). However, naive occlusion queries often have a detrimental effect on per-

formance unless more sophisticated techniques exploiting temporal and spatial

coherence of visibility are used [Mattausch et al., 2008].

Zach and Karner presented an automatic and dynamic selection of LOD by

computing an estimation of the rendering cost and the perceptual benefits

[Zach et al., 2002]. Hernández et al. implemented a dynamic LOD selection

and view frustum culling on the GPU, by using the new transform feedback

mechanism [Hernández and Rudomin, 2011]. More recently Toledo et. al. im-

plemented a tiling of the environment, tagging each agent with the code of the

tile they are occupying, and making it easy and fast to dynamically update it
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[Toledo et al., 2014]. The tagged code allows for a fast distance computation to

the camera and LOD selection.

A related problem is when and how to switch from one LOD to another, as this

has a significant impact on visual quality [Southern and Gain, 2003]. If LODs

are selected based on a range of distances, all agents crossing a border line im-

mediately exhibit a LOD, and thus potential pop-up effects will be amplified

to one zone and therefore more likely to be noticeable. On the other hand, an

agent walking over such border lines will be constantly switching between two

LODs and might easily catch the eye. A solution is to add a minimum valida-

tion time, biased with a random offset, that the agent needs to be in the new

zone before further switches are allowed. The random offset allows more un-

predictable and asynchronous changes of LODs. Another possibility to reduce

pop-up artifacts is to blend the renders of two LODs in the vicinity of thresh-

old values. This solution has the potential to eliminate popping artifacts, at the

expense of rendering two representations instead of one (at least for a subset of

the characters), and thus reducing performance.

3.3.10 . Hardware Improvements

When having crowds with hundreds or thousands of agents, it is often desired

to have each agent to play different animations with different poses. Although

animations have a small memory footprint, the computation of all the blending

poses can become a major bottleneck and ruin performance. With the introduc-

tion of programmable pipelines, a number of costly CPU computations were

moved to the GPUs. Beeson and Bjorke highly accelerated the skinning process

by computing it directly in the GPU [Beeson and Bjorke, 2004]. Skinning in the

GPU requires transfer of both the original vertices of the avatar and the set of

matrices of each animation frame. The final pose is a set of matrices that must

be used to transform all the avatar vertices in the vertex shader, so the GPU

bandwidth is critical.
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3.3.10 . Instancing and Pseudo Instancing

Primitive instancing [Carucci, 2005] optimize rendering by drawing multiple

copies of an object using a single call. Through instancing, the graphics pro-

cessor deals with per-instance geometry transformations and appearance mod-

ifications, releasing the main processor from this task. A GPU acceleration

crowd rendering is presented by Millan and Rudomin in [Millan and Rudomin,

2006b], alternating the use of impostors with polygonal meshes drawn through

pseudo-instancing (see Figure 3.36).

Figure 3.36: One million characters rendered with pseudo-instancing. [Millan
and Rudomin, 2006b]

Even when instancing is originally designed for static objects, a similar tech-

nique may be used to render large crowds of animated characters. To achieve

this goal, a pseudo-instancing technique is used, where geometry is updated

on every animation frame and sent to the graphics memory to be used later

for rendering nearby characters. Pseudo-instancing takes advantage of the effi-

ciency of using persistent vertex attributes, such as color or transformations, to

provide information for an entire instance.

However, this model update implies copying information into graphics mem-

ory. Therefore, to maximize the outcome of this technique, several copies of the

same object must be rendered in every frame. This is a problem when using

animated models, since every different animation pose needs to be sent to the

graphics memory. As a workaround, a few poses can be selected, and nearby

characters are rendered using the closest pose to the ones selected.
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The main difference is that, in instancing, only one call is used to render all

primitives, while pseudo-instancing requires one call to a display list to render

each instance. However, these calls are very efficient in OpenGL, so similar

performance levels are achieved by both techniques.

3.3.10 . Palette Skinning

Matrix palette skinning, introduced by Dudash [Dudash, 2007b], avoids send-

ing to the GPU the transformation matrices for each bone and character in-

stance. In matrix palette skinning, bone matrices for each frame and for each

animation are stored in graphics memory. This allows each agent to have its

own distinct pose and animation [Dudash, 2007a]. Note however that palette

skinning only saves memory bandwidth; it does not affect the number of matrix

operations in the vertex shader.

3.3.10 . Dynamic Caching

Recently, Lister et al. [Lister et al., 2010] improved the efficiency of linear-blend

skinning by using the temporal and intra-crowd coherencies that are inherent

within populated scenes. They achieved it through the allocation of a small

geometry cache within which transformed key-poses can be stored. These key-

poses are then re-used by multi-pass rendering, between multiple agents and

across multiple frames.

The cache of skinned key-poses is a maintained fixed-sized cache, from which

crowd members can be reconstructed by interpolation. Generic poses may be

shared amongst crowd members to significantly reduce the number that must

be stored.

This cache size becomes also a trade off between the rendering performance

and the memory usage, because it is the number of characters that have the

key-poses stored in the cache that will have the greatest effect on the render-

ing performance. Clearly, the choice of which key-poses to store is critical to

maximize the potential of the approach. Since this is a NP-hard problem, they

present a greedy algorithm suitable for real-time applications.
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Figure 3.37: Dynamic caching accelerates the rendering of an animated crowd.
[Lister et al., 2010]

3.3.11 . Increasing Realism

Elements such as lighting, shadowing, clothing and variability increase realism

at the expense of some performance overhead. Again, we focus on techniques

suitable for real-time crowd rendering.

Lighting and shading improve the way we perceive the characters. Jarabo et al.

recently made a perception study on how important lighting is for the overall

perceived realism of dynamic scenes [Jarabo et al., 2012]. Self-shadowing and

self-inter-reflection can help the human eye to interpret the animation and ex-

pression of the avatars. Two main techniques are well-known for casting shad-

ows: shadow maps and shadow volumes. Williams introduced shadow maps

[Williams, 1978], using a depth map build from each light source to determine

whether a fragment is illuminated or not. Two main problems arise from this.

First, since textures are used, aliasing problems appear. Second, an additional

render of the scene is required for each light source, since animated characters

invalidate precomputed shadow maps. Shadow volumes, introduced by Crow

[Crow, 1977], are more expensive to calculate, but resolve the aliasing prob-

lems by using a semi-infinite frustum. This frustum is extended back from the

silhouette of the object away from the light. As mentioned in 3.3.3.2, shadows

for animated crowds can be rendered using impostors [Tecchia et al., 2002] (see

Figure 3.38), but this technique does not support characters casting shadows

onto each other. For more information about real-time shadow techniques see

[Eisemann et al., 2013].
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Figure 3.38: The shadow of each agent is the projection onto the ground of the
character’s silhouette. [Tecchia et al., 2002]

Traditionally 3D characters are modeled clothed, with their clothes being part

of the human mesh since having them modeled as separate elements and adding

clothing simulation is very expensive. Detecting collisions with the human

body [Chen et al., 2013] is prohibitively expensive for real-time crowds. Mc-

Donnell et al. [McDonnell et al., 2006] perceptually evaluated different LOD

representations of humans wearing physically simulated clothing. They show

that impostors can depict the deformation properties of clothing. Some recent

games include cloth simulation for the main character or a small amount of

them, but real-time cloth simulation for crowds is beyond the state-of-the-art.

A related problem is to give each agent of the crowd an individual aspect. Mc-

Donnell et al. [McDonnell et al., 2008] performed perceptual studies to de-

termine which aspects are more critical to identify clones. The ideal would

be to have unique instances of each avatar, but due to obvious memory and

modelling budgets, repetitions are inevitable. Some approaches attempt to add

variability and create new differentiated instances of the same base character.

Maim et al. [Maim et al., 2009a] proposed a method for attaching accessories

to individual agents, and a generic technique for adding detailed color vari-

ety and patterns, by using segmentation maps over the human and accessory

meshes. Their approach is scalable for all levels of detail, including impostors.

McDonell et al. [McDonnell et al., 2009] use selective color variation to gen-

erate the illusion of variety as full color variation (see Figure 3.39). Lister et

al. also [Lister et al., 2010] add geometric diversity using tangent space morph

targets.
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Figure 3.39: Crowd using two template models with colour, texture and acces-
sory variation. [McDonnell et al., 2009]

3.3.12 . Comparison

Table 3.1 summarizes the crowd rendering approaches discussed in previous

sections. We classify and compare techniques considering the underlying rep-

resentation and animation technique. We have also summarized the limitations

of each approach, highlighting the parameter or element that can be considered

as the one causing the trade-off between visual quality and performance. In the

latter columns we evaluate (as high, medium or low) the limitations of each

method in terms of memory cost, visual artifacts and computing cost.

The explanation of each column follows:

• Type: Geometry-based, Image-based or Hybrid.

• Representation: The geometric representation(s) used to render each agent.

• Animation: The animation technique used to animate each agent.

• Tradeoff: The main parameter of the approach that implies a tradeoff

between visual quality and performance.

• Limitations: The main limitations of the approach in terms of memory,

visual quality and rendering cost, and other aspects with a high impact

on the final results or the implementation.

– Memory: We give the required memory cost of each approach by

pointing which parameters it depends on:
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* Per agent type (A)

* Per geometry complexity (G)

* Per number of frames (F)

* Per number of views, if it has a discrete number of views, like

planar impostors (V )

* Per number of joints (J)

* Per texture resolution (R)

– Artifacts: We classify visual and animation artifacts in three cate-

gories:

* Image Quality: blocky aspect (Bl), pixelization (P ix), cracks or

gaps (Crk), and animation artifacts due to inconsistent geometry

deformation (AnimD).

* Temporal Discontinuity: popping when changing of LOD (P opL),

when changing of view point (P opV ), when changing of frame

(P opF).

* Spacial Consistency: visibility or occlusion problems with the

scene (OcclS), and with the agent itself (OcclA).

– Cost: The global computational cost of rendering a crowd is affected

by some of the following elements:

* Per agent type (A)

* Per total number of vertex operations (Vx)

* Per total number of fragments (Frag)

3.3.13 . Crowd Rendering Conclusions

We have reviewed and compared a large number of crowd rendering approaches.

Overall, each technique falls somewhere within the triangle representing the

quality/memory/performance trade-offs. Geometry-based approaches offer the

best visual quality, but their performance depends strongly on the number of

polygons per agent. Current GPU techniques such as instancing, palette skin-

ning and dynamic caching can help to speed up the rendering, but as the size

of the crowd increases, performance will be severely affected.
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Limitations

Approach Reference Type RepresentationAnimation Tradeoff Memory Artifacts Cost
Other

LOD
[Pratt
et al.,
1997]

Geometry Mesh Skeletal
Distance
or pixel

size
A×G

Bl,
AnimD ,
P opL

Vx
Simplification

problem

Dynamic
Impostors

[Aubel
et al.,
1998]

Image
Oriented
billboard

Skeletal
Refresh

cri-
terium

P ix,
OcclS ,
P opV ,
P opF

A
Limited

reusability

Pre-
generated
Impostors

[Tecchia
and

Chrysan-
thou,
2000]

Image
Oriented
billboard

Texture
cyclical

# of
views

A×F ×
V ×R

P ix,
P opV ,
P opF ,
OcclS

A

Point-
based

Impostors

[Wand
and

Straßer,
2002]

Hybrid
Triangle and
Point Mesh

Mesh
cyclical

Distance
or pixel

size
A×G Bl, P ix,

P opL
Vx Aliasing

Static
Geometry

[Ulicny
et al.,
2004]

Geometry
Oriented
billboard
and mesh

Mesh
cyclical

Distance
or pixel

size
A×G×F P opF Vx

Geopostors
[Dobbyn

et al.,
2005]

Hybrid
Oriented
billboard
and mesh

Texture
cyclical

and
skeletal

Distance
or pixel

size

A×F ×
V ×R

P opL,
P opV ,
P opF ,
OcclS

A

Pseudo-
Instancing

[Millan
and

Rudomin,
2006b]

Geometry Mesh Skeletal
#Meshes
in the
GPU

A×F ×
V ×R

P ix,
P opV ,
P opF

A
Too much
data in the

GPU

Volumetric
Layered

Impostors

[Coic
et al.,
2007]

Hybrid

Oriented
layered

billboards
and Mesh

Texture
cyclical

and
skeletal

Distance
or pixel

size

A×F ×
V ×R

P opV ,
P opF ,
OcclS

A

Polypostors
[Kavan
et al.,

2008b]
Hybrid

1 Oriented
billboard per

body part,
and mesh

Texture
deforma-
tion and
skeletal

Distance
or pixel

size

A×F ×
V ×R

Crk,
P opV ,
OcclA

A

Dynamic
Caching

[Lister
et al.,
2010]

Geometry Mesh
Closest

pose
(skeletal)

Caché
size

A×G P opL,
P opF

A

Relief
Per-Joint

Impostors

[Beacco
et al.,
2011]

Hybrid

6 relief
impostors
per body
part, and

mesh

Skeletal

Distance
or

number
of frag-
ments

A× J ×R Crk,
P opL

Frag
High per
fragment

cost

Flat
Per-Joint

Impostors

[Beacco
et al.,
2012]

Hybrid

One oriented
billboard per

body part,
and mesh

Skeletal

Distance
and #

of view
angles

A×V ×
J ×R

P opL,
P opV

A

Hierarchical
Point-
Based

[Toledo
et al.,
2014]

Hybrid
Octree per
limb, and

mesh
Skeletal

Distance
and hi-
erarchy

level

A× J Crk A

Table 3.1: Comparison of the limitations of the main approaches on crowd
rendering in the literature. Quick reference: MEMORY: A: agent type; G: ge-
ometry complexity; F: number of frames; V: number of views; J: number of
joints; R: texture resolution. IMAGE QUALITY: Bl: blocky aspect; Pix: pix-
elization; Crk: cracks; AnimD: animation deformation; PopL: popping chang-
ing of LOD; PopV: popping changing of view; PopF: popping changing of
frame; OcclS: occlusion problems with the scene; OcclA: occlusion problems
with the agent itself. COST: A: agent type; Vx: vertex operations; Frag: number

of fragments
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There is currently no standard solution for representing far away characters,

though most crowd rendering systems use at least a different representation for

these. LOD techniques are commonplace to improve performance as the num-

ber of agents increases. Some issues specific to character rendering are how to

generate simplified models of avatars that need to be deformed by animations,

and how to switch between LODs without popping artifacts.

Using only points as primitives reduces the rendering cost, but the animation

can suffer from visual artifacts when drastically reducing the number of primi-

tives. This problem can be alleviated by proper point sampling, at the expense

of having a different sampling for each keyframe.

Image-based representations offer the highest performance. We can trade off

memory for quality to provide a better sampling of view directions and anima-

tion frames to minimize popping artifacts, but in practice image-based repre-

sentations are suitable only for distant characters.

Hybrid approaches combine mesh-based and image-based or point-based rep-

resentations to display characters at different viewing distances. Special care

must be taken to prevent visual artifacts when switching from one representa-

tion to another. Hybrid approaches have now reached a finer granularity, from

using a single texture for the whole character, to using per-joint impostors at

different skeleton levels, but it is unclear how much further these techniques

can go in adding details while still being more efficient than the original geom-

etry.

From an implementation point of view, all the new hardware improvements

such as instancing need to take important considerations into account. Appro-

priate grouping data structures for avatars, textures and animations, and mini-

mizing 3D API state changes are critical to get all the benefits of these improve-

ments. The general trend is to move as many computations as possible to the

GPU, achieving higher parallelization of per-agent computations and releasing

the CPU for other tasks. Skinning and animation blending can be performed

efficiently in the GPU. As we free the CPU from rendering and animation tasks,

the CPU can spend more resources to the crowd simulation, although lately

there has been a tendency towards moving also some simulation tasks to the

GPU. We will probably reach a point where all crowd simulation, animation

and rendering will be performed in the GPU at different shader stages. In this
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scenario, GPU memory and CPU-GPU bandwidth could become major limiting

factors.

Adding shadows to the crowd scene increases realism, but at the high cost of

having to render the scene for each light. Impostors can be used to do so and

have approximate shadows, although they do not support self shadows. Cloth-

ing the characters also adds realism but there is still no physical clothing simu-

lation fast enough for crowd rendering. Repeating instances of the same avatars

is inevitable, specially to benefit from instancing and similar techniques, but

some variety can be added to the crowd by attaching different accessories or by

adding color variety and editable patterns to some base meshes.
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3.4 . Existing Tools for Crowds

During the course of this thesis, the author has make use of multiple tools,

engines and libraries. Due to the real-time nature of our problem, and the

willing of integrating simulation, animation and rendering, it has not always

been straight forward to deal with them. This section tries to make an overview

of the existing tools that can be used in order to perform a research on crowds,

or to add crowds to some existing system.

3.4.1 . Commercial Solutions

There are some well known commercial tools for modeling and simulation soft-

ware such as 3D Studio Max [Autodesk, 2014a], Maya [Autodesk, 2014c] or

Blender [Blender-Foundation, 2014] that allow us to add crowds to a virtual

scene. There exist also many plug-ins for these packages that can be used to

extend their basic features. For example Golaem Crowd [Goalem, 2014] is a

powerful plug-in for Maya [Autodesk, 2014c]. Golaem Crowd is a complete

commercial package for crowd authoring, including tools for placing crowds,

create behaviors, animate characters, create diversity of agents, and render the

resulting simulations. Although they offer some real-time previsualizations in

order to help the artists creating new crowds and defining behaviors, their tar-

get is mostly the movie industry producing high quality offline renders. It is

not as much a research platform as it is a commercial production tool. A similar

package is included with newer versions of 3D Studio Max [Autodesk, 2014a].

Also in the movie industry, a major competitor is Massive [Massive, 2014], an

expensive crowd simulation tool that has been used in many films.

3.4.2 . Libraries

In the crowd simulation literature there are some steering behavior libraries

such as RVO2 Library [van den Berg et al., 2014] or OpenSteer [Reynolds, 2014],

which also includes a demo software for simple visualizations of the imple-

mented steering behaviors through simple 2D representations. We can also
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find SteerSuite [Singh et al., 2009], a flexible but easy-to-use set of tools, li-

braries, and test cases for steering behaviors. The spirit of SteerSuite [Singh

et al., 2009] was to make it practical and easy-to-use, yet flexible and forward-

looking, to challenge researchers and developers to advance the state of the art

in steering. Although their simulation part is very complete, there is not such

thing as animated 3D characters for visualization of the simulated crowds.

For character animation, there is just a few libraries that we can easily include

in any C++ project. A commercial example would be Granny 3D [RAD-Game-

Tools, 2014], which includes a complete animation system including features

such as blend-graphs, character behavior, events synchronization or procedu-

ral IK. But again it is a solution for artist and for commercial products, not

for doing research. Some free solutions are Animadead [Butterfield, 2014], a

skeletal animation library with basic functionalities, or Cal3D [Cal3D, 2014]

another skeletal animation library which also includes an animation mixer and

integrates morph targets. The Hardware Accelerated Library for Character An-

imation, HALCA [Spanlang, 2009], extends the Cal3D library to include new

features such as GLSL shaders support, morph animations, hardware acceler-

ated morph targets (blend shapes), dual quaternion skin shaders, JPEG texture

files, direct joint manipulation and other additions. The FBX SDK [Autodesk,

2014b] is another library allowing to read FBX files, which is a widely used and

extended format for character modeling and animation. The API includes some

skinning examples, but you should still program your animation library to use

FBX models imported with it. Our framework currently offers HALCA [Span-

lang, 2009] as the animation library, but the user can create its own characters

based on any other library.

3.4.3 . Engines

In the case of applications that require real time crowd simulation, such as

video games, there are several tools commonly used both commercial (Unreal

[Epic, 2014], Unity [Unity, 2014] and GameBryo [Gamebase-USA, 2014]) and

open source (Ogre [Ogre, 2014] and Panda 3D [Carnegie-Mellon-University,

2014]). Unreal [Epic, 2014] is a widely licensed game engine in the professional

video game industry, with powerful and refined tools. Unity [Unity, 2014] is a

newer game engine that is also used for professional games, although it is more
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widely extended in the indy game development community. It offers a render

engine, a complete animation system called Mecanim, with a very user-friendly

interface for authoring state machines (such as blend trees) and retargeting ca-

pabilities. Mecanim also includes modules for steering behavior and navmesh

generation. It is relatively easy to start a project and learn how to work with it,

and a lot of researchers are starting to use it. But it still remains a commercial

game engine, and you have to develop your extensions using scripts. You can

use your own C++ code, which is faster, but you need to implement plug-ins

and wrappers for them. Gamebryo [Gamebase-USA, 2014] is a similar product,

modular and extendable, but still focused on game design. Ogre [Ogre, 2014]

and Panda 3D [Carnegie-Mellon-University, 2014] are open source graphic ren-

der engines that include some features like animation systems or simple AI

modules, which can be easily extended.

With most of the systems described above, you will find severe limitations

when trying to scale up your work. For instance you may have developed

a new rendering technique for thousands of deformable characters, but the

selected engine may only animate a few hundred in real time. Using Unity

[Unity, 2014] you might be restricted to a fixed renderer and to its animation

system, unless you implement your own using plug-ins. Implementing and in-

tegrating rendering plug-ins to Unity is possible although not straight forward,

and might require a pro-license. The rendering pipeline in Unity is not always

clear, and our experience says you can not completely control the OpenGL state.

Ogre [Ogre, 2014] has more potential, and has a basic animation system, which

should be improved in newer versions, but you still need to integrate it with

your AI libraries. The learning curve of the Unreal Engine [Epic, 2014] is hard,

and might not be worth if you are aiming for research and not for a professional

and commercial appealing result.

3.4.4 . Research Platforms

None of the previous solutions offers a flexible yet customizable framework for

the research community to work with when it comes to real time requirements,

giving them freedom to modify either simulation, animation, rendering or any

combination of these parts. In addition to that you might not be willing to

pay expensive licenses if you are only targeting research applications. There is
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though some research platform in the crowd simulation field that are worth to

mention.

CAROSA [Allbeck, 2010] is an architecture to author the behavior of agents,

and obtain heterogeneous populations inhabiting a virtual environment. Its

framework enables the specification and control of actions, and is able to link

human characteristics and high level behaviors to animated graphical depic-

tions. Although it does not include research tools for rendering, it is prepared

to be used on an external software. ADAPT [Shoulson et al., 2013] is an open-

source Unity library delivering a platform for designing and authoring func-

tional, purposeful human characters in a rich virtual environment. Its frame-

work incorporates character animation, navigation, and behavior with modular

interchangeable and extensible components. But since it is a library for Unity,

it does not allow you to control rendering. Project Metropolis [O’Sullivan and

Ennis, 2011] aims to create the sight and sounds of a convincing crowd of hu-

mans and traffic in a complex cityscape. They also focus on exploring the per-

ception of virtual humans and crowds, through psychophysical experiments

with human participants. But Metropolis is a large and complicated research

project, with tens of research goals, rather than a tool for researchers to get

started working in the crowd simulation field. Similar to what we aim to do,

SmartBody [Shapiro, 2014] is a character animation library that provides syn-

chronized locomotion, steering, object manipulation, lip syncing, gazing and

nonverbal behavior in real-time. It uses Behavior Markup Language (BML)

to transform behavior descriptions into real-time animations. SmartBody is

a good tool to develop and explore virtual human research and technologies,

but it is focused on one character, or a small number of characters, and not on

crowds as it is our desire.

3.4.5 . Conclusions on Existing Tools for Crowds

Achieving simulation, animation and rendering of crowds in real-time is a ma-

jor challenge. Although each of these areas has been studied separately and

improvements have been presented in the literature, the integration of these

three areas in one real-time system is not straight forward. There are some

commercial tools that provide aids to simulate crowds, but in most cases there
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are limitations that cannot be overcome, such as finding bottlenecks in a differ-

ent area than the one you are researching on, thus pushing you from meeting

real time constraints as we increase the size of the crowd.

Due to the high computational needs of each of these three areas individu-

ally, the process of integrating animation, simulation and rendering of real time

crowds, often presents trade-offs between accuracy and quality of results. But

these three areas cannot be treated in a completely separated way as most cur-

rent tools do, since there is a strong overlapping between them, and users need

to be aware of this when setting up a simulation. For example, we cannot in-

crease the number of animations easily if we are rendering exclusively with

impostors.

Currently it is not easy to find a real time framework that allows you to easily

work on one of these areas. If for example you want to focus your research on

a new steering behavior, you will start and do most of your experiments by vi-

sualizing a set of circles or cylinders representing your different agents. But in

the end you would like to see your results represented by 3D animated char-

acters. The switch from having 2D circles to fully articulated 3D characters in

real time can be very time consuming. Or for example, your research interest

may be focused on implementing a new representation for rendering thousands

of characters. Once you achieve real time visualization of such a huge amount

of characters, you do not want to end up displaying them in a grid formation

or giving the agents random positions where they stay in place. Instead, one

would want them to be animated and moving in a virtual environment, if pos-

sible with collision avoidance and natural animation. Again this is not straight

forward in current frameworks. And finally, the same applies for the anima-

tion field, if you are defining new animation controllers for 3D characters, you

would like to test them with hundreds of characters moving around a virtual

environment with realistic rendering.

We thus believe the graphics community lacks of a specific tool in order to be

able to quickly get started on a new research project related to crowd animation,

visualization or simulation. In chapter 7 we present an attempt to do that, with

a new prototyping testbed for crowds that lets the researcher focus on one of

these areas of research at a time without loosing sight of the others.
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Publications and More
A recent tutorial covers in more detail some of these and other as-

pects of the crowd research [Pelechano et al., 2014], including some of

the contributions of this thesis. Also, the contents of the state of the

art on crowd rendering have been submitted as a survey for a journal

publication, and are currently under revision.
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This chapter presents our two contributions to the crowd simulation area. The

first one is a real-time planning framework, that enables the use of multiple het-

erogeneous problem domains of differing complexities for navigation in large,

complex, dynamic virtual environments. The original navigation problem is

decomposed into a set of smaller problems that are distributed across planning

tasks working in these different domains. An anytime dynamic planner is used

to efficiently compute and repair plans for each of these tasks, while using plans

in one domain to focus and accelerate searches in more complex domains. We

demonstrate the benefits of our framework by solving many challenging multi-

agent scenarios in complex dynamic environments requiring space-time pre-

cision and explicit coordination between interacting agents, by accounting for

dynamic information at all stages of the decision-making process.

One of those domains could be defined by just 8 possible directions of root

movement, but another domain of higher resolution could include all the possi-

ble footsteps reachable by the character. In our second contribution we present

a planner that given any set of animation clips outputs a sequence of foot-

steps to follow from an initial position to a goal such that it guarantees obsta-

cle avoidance and correct spatio-temporal foot placement. We use a best-first

search technique that dynamically repairs the output footstep trajectory based

on changes in the environment. We show results of how the planner works in

different dynamic scenarios with trade-offs between accuracy of the resulting

paths and computational speed, which can be used to adjust the search param-

eters accordingly.
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4.1 . Planning in Multiple Domains

Figure 4.1: Two agents navigating with space-time precision through a com-
plex dynamic environment.

In this section we propose a real-time planning framework for multi-character

navigation that uses multiple heterogeneous problem domains of differing com-

plexities for navigation in large, complex, dynamic virtual environments. We

define a set of problem domains (spaces of decision-making) which differ in the

complexity of their state representations and the fidelity of agent control. These

range from a static navigation mesh domain which only accounts for static ob-

jects in the environment, to a space-time domain that factors in dynamic obsta-

cles and other agents at much finer resolution. These domains provide different

trade-offs in performance and fidelity of control, requiring a framework that ef-

ficiently works in multiple domains by using plans in one domain to focus and

accelerate searches in more complex domains.

A global planning problem (start and goal configuration) is dynamically de-

composed into a set of smaller problem instances across different domains,

where an anytime dynamic planner is used to efficiently compute and repair

plans for each of these problems. Planning tasks are connected by either using

the computed path from one domain to define a “tunnel” to focus searches, or

using successive waypoints along the path as start and goal for a planning task

in another domain to reduce the search depth, thereby accelerating searches

in more complex domains. Using our framework, we demonstrate real-time

character navigation for multiple agents in large-scale, complex, dynamic envi-

ronments, with precise control, and little computational overhead.
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Role in this work

This work has been done in collaboration with the University of Penn-

sylvania, as the result of a stay of 4 months. I was invited to the Center

for Human Modeling and Simulation [HMS, 2014] by Professor Norman

I. Badler, and supervised by Doctor Mubbasir Kapadia. It was during

my stay that we started discussing the idea and the fundamentals of this

project. I implemented the first prototypes of the different domains, the

first planner used and the fist tunnels used. I was also in charge of the

animation system. After my stay, the collaboration continued, through

several iterations until we finally obtained a publication [Kapadia et al.,

2013]. Although Doctor Mubbasir Kapadia was the first author of the

paper, since he did the writing and was directing the project, I still was

an important part part of it. In the final version of this work, the final

planners were implemented by Francisco Garcı́a. Motion capture ani-

mations were obtained by Vivek C. Reddy. Doctor Nuria Pelechano and

Professor Norman I. Badler were supervisors. Doctor Mubbasir Kapa-

dia also implemented the tasks planner. My particular role was again in

the integration of all elements, the animation system, obtaining figures

and screenshots from test scenarios, and video production.

4.1.1 . Overview

The problem domain of a planner determines its effectiveness in solving a par-

ticular problem instance. A complex domain that accounts for all environment

factors such as dynamic environments and other agents, and has a large branch-

ing factor in its action space can solve more difficult problems, but at a larger

cost overhead. A simpler domain definition provides the benefit of compu-

tational efficiency while compromising on control fidelity. Our framework en-

ables the use of multiple heterogeneous domains of control, providing a balance

between control fidelity and computational efficiency, without compromising

either.
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A global problem instance P0 is dynamically decomposed into a set of smaller

problem instances {P ′ } across different planning domains {Σi}. Subsection 4.1.2

describes the different domains, and subsection 4.1.3 describes the problem de-

composition across domains. Each problem instance P
′

is assigned a planning

task T (P
′
), and an anytime dynamic planner is used to efficiently compute and

repair plans for each of these tasks, while using plans in one domain to focus

and accelerate searches in more complex domains. Plan efforts across domains

are reused in two ways. The computed path from one domain can be used to de-

fine a tunnel which focuses the search, reducing its effective branching factor.

Each pair of successive waypoints along a path can also be used as start,goal

pairs for a planning task in another domain, thus reducing the search depth.

Both these methods are used to focus and accelerate searches in more complex

domains, providing real-time efficiency without compromising on control fi-

delity. Subsection 4.1.4 describes the relationships between domains.

4.1.2 . Planning Domains

A problem domain is defined as Σ = 〈S,A,c(s, s′),h(s, sgoal)〉 , where the state

space S = {Sself ×Senv ×Sagents} includes the internal state of the agent Sself , the

representation of the environment Senv , and other agents Sagents. Sself may be

modeled as a simple particle with a collision radius. Senv can be an environment

triangulation with only static information or a uniform grid representation with

dynamic obstacles. Sagents is defined by the vicinity within which neighboring

agents are considered. Imminent threats may be considered individually or just

represented as a density distribution at far-away distances. The action space A

defines the set of all possible successors succ(s) and predecessors pred(s) at

each state s, as shown in Equation 4.1. Here, δ(s, i) describes the ith transition,

and Φ(s, s′) is used to check if the transition from s to s′ is possible. The cost

function c(s, s′) defines the cost of transition from s to s′. The heuristic function

h(s, sgoal) defines the estimate cost of reaching a goal state.

succ(s) = {s+ δ(s, i)|Φ(s, s′) = TRUE ∀i} (4.1)
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A problem definition P = 〈Σ, sstart, sgoal〉 describes the initial configuration of

the agent, the environment and other agents, along with the desired goal con-

figuration in a particular domain. Given a problem definition P for domain Σ, a

planner searches for a sequence of transitions to generate a plan Π(Σ, sstart, sgoal) =

{si |si ∈ S(Σ)} that takes an agent from sstart to sgoal .

4.1.2 . Multiple Domains of Control

We define 4 domains which provide a nice balance between global static navi-

gation and fine-grained space-time control of agents in dynamic environments.

Figure 4.2 illustrates the different domain representations for a given environ-

ment.

Static Navigation Mesh Domain Σ1. This domain uses a triangulated repre-

sentation of free space and only considers static immovable geometry. Dynamic

obstacles and agents are not considered in this domain. The agent is modeled

as a point mass, and valid transitions are between connected free spaces, rep-

resented as polygons. The cost function is the straight line distance between

the center points of two free spaces. Additional connections are also precom-

puted (or manually annotated) to represent transitions such as jumping with

a higher cost definition. The heuristic function is the Euclidean distance be-

tween a state and the goal. Searching for an optimal solution in this domain is

very efficient and quickly provides a global path for the agent to navigate. We

use Recast [Mononen, 2009] to precompute the navigation mesh for the static

geometry in the environment.

Dynamic Navigation Mesh Domain Σ2. This also uses triangulations to rep-

resent free spaces and coarsely accounts for dynamic properties of the envi-

ronment to make a more informed decision at the global planning layer. The

work in [van Toll et al., 2012] embeds population density information in en-

vironment triangulations to account for the movement of agents at the global

planning layer. We adopt a similar method by defining a time-varying density

field φ(t) which stores the density of moveable objects (agents and obstacles)

for each polygon in the triangulation at some point of time t. φ(t0) represents

the density of agents and obstacles currently present in the polygon. The pres-

ence of objects and agents in polygons at future timesteps can be estimated

by querying their plans (if available). The space-time positions of deterministic
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(a) (b)

(c) (d)

(e)

Figure 4.2: (a) Problem definition with initial configuration of agent and en-
vironment. (b) Global plan in static navigation mesh domain Σ1 accounting
for only static geometry. (c) Global plan in dynamic navigation mesh domain
Σ2 accounting for cumulative effect of dynamic objects. (d) Grid plan in Σ3.

(e) Space-time plan in Σ4 that avoids dynamic threats and other agents.
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objects can be accurately queried while the future positions of agents can be ap-

proximated based on their current computed paths, assuming that they travel

with constant speed along the path without deviation. φ(t) contributes to the

cost of selecting a waypoint in Σ2 during planning. The resolution of the tri-

angulation may be kept finer than Σ1 to increase the resolution of the dynamic

information in this domain. Hence, a set of global waypoints are chosen in this

domain which avoids crowded areas or other high cost regions.

Grid Domain Σ3. The grid domain discretizes the environment into grid cells

where a valid transition is considered between adjacent cells that are free (diag-

onal movement is allowed). An agent is modeled as a point with a radius (ori-

entation and agent speed is not considered in this domain). This domain only

accounts for the current position of dynamic obstacles and agents, and cannot

predict collisions in space-time. The cost and heuristic are distance functions

that measure the Euclidean distance between grid cells.

Figure 4.3: The Space-Time Domain Σ4.

Space-Time Domain Σ4. This domain models the current state of an agent

as a space-time position with a current velocity (x,v, t). Figure 4.3 shows the

schematic illustration of the state and action space in Σ4, showing a valid tran-

sition, and an invalid transition due to a space-time collision with a neighboring

agent. The transition function δ(s, i) for Σ4 is defined below:
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δ(s, i) = {∆vi ·∆t|∆vi = (∆vi · sin∆θi ,∆vi · cos∆θi)∀i}

where ∆v = {0,±a} is the possible speed changes and

∆θ = {0,±π8 ,±
π
4 ,±

π
2 } is the possible orientation changes the agent can make from

its current state. For example, ∆v = a,∆θ = π
8 produces a transition where the

agent accelerates by a for the duration of the timestep and rotates by π
8 . The

bounds of ∆θ are limited between {−π2 ,
π
2 } to limit the maximum rate of turn-

ing. Transitions are also bound so that the speed and acceleration of an agent

cannot exceed a given threshold. Jumps are additionally modeled as a high cost

transition between two space-time points such that the region between them

may be occupied or untraversable for that time interval. Inspite of the coarse

discretization of ∆θ, the branching factor of this domain is much higher, pro-

viding greater degree of control fidelity with added computational overhead.

Σ4 accounts for all obstacles (static and dynamic) and other agents. The traversabil-

ity of a grid cell is queried in space-time by checking to see if moveable obsta-

cles and agents occupy that cell at that particular point of time, by using their

published paths. For space-time collision checks, only agents and obstacles that

are within a certain region from the agent, defined using a foveal angle intersec-

tion, are considered. The cost and heuristic definitions have a great impact on

the performance in Σ4. We use an energy based cost formulation that penalizes

change in velocity with a non-zero cost for zero velocity. Jump transitions incur

a higher cost. The heuristic function penalizes states that are far away from

sgoal in both space and time. This is achieved using a weighted combination of

a distance metric and a penalty for a deviation of the current speed from the

speed estimate required to reach sgoal .

The domains described here are not a comprehensive set and only serve to

showcase the ability of our framework to use multiple heterogeneous domains

of control in order to solve difficult problem instances at a fraction of the com-

putation cost. Our framework can be easily extended to use other domain defi-

nitions (e.g., a footstep domain).
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Figure 4.4: Expanded illustration of domain relationship shown in Fig-
ure 4.5(b). A global problem instance (start and goal state) is decomposed into
a set of smaller problem instances across multiple planning domains. Plan-
ning tasks T (Σ) are assigned to each of these problems and scheduled using
a dynamic priority scheme based on events from the environment and other

tasks.
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4.1.3 . Problem Decomposition and Multi-Domain Planning

Figure 4.5(a) illustrates the use of tunnels to connect each of the 4 domains,

ensuring that a complete path from the agents initial position to its global target

is computed at all levels. Figure 4.5(b) shows how Σ2 and Σ3 are connected by

using successive waypoints in Π(Σ2) as start and goal for independent planning

tasks in Σ3. This relation between Σ2 and Σ3 allows finer-resolution plans being

computed between waypoints in an independent fashion. Limiting Σ3 (and Σ4)

to plan between waypoints instead of the global problem instance ensures that

the search horizon in these domains is never too large, and that fine-grained

space-time trajectories to the initial waypoints are computed quickly. However,

completeness and optimality guarantees are relaxed as Σ3, Σ4 never compute a

single path to the global target.

(a)

(b)

Figure 4.5: Relationship between domains. (a) Use of tunnels to connect each
of the 4 domains. (b) Use of successive waypoints in Π(Σ2) as start, goal pairs

to instantiate multiple planning tasks in Σ3 and Σ4.

Figure 4.4 illustrates the different events that are sent between planning tasks

to trigger plan refinement and updates for the domain relationship in Fig-

ure 4.5(b). Σ1 is first used to compute a path from sstart to sgoal , ignoring dy-

namic obstacles and other agents. Π(Σ1) is used to accelerate computations in

Σ2, which refines the global path to factor in the distribution of dynamic ob-

jects in the environment. Depending on the relationship between Σ2 and Σ3,

a single planning task or multiple independent planning tasks are used in Σ3.

Finally, the plan(s) of T (Σ3) are used to accelerate searches in Σ4.
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Changes in sstart and sgoal trigger plan updates in T (Σ1), which are propagated

through the task dependency chain. T (Σ2) monitors plan changes in T (Σ1) as

well as the cumulative effect of changes in the environment to refine its path.

Each T (Σ3) instance monitors changes in the waypoints along Π(Σ2) to repair

its solution, as well as nearby changes in obstacle and agent position. Finally,

T (Σ4) monitors plan changes in T (Σ3) (which it depends on) and repairs its

solution to compute a space-time trajectory that avoids collisions with static

and dynamic obstacles, as well as other agents.

Events are triggered (outgoing edges) and monitored (incoming edges) by tasks,

creating a cyclic dependency between tasks, with T0 (agent execution) monitor-

ing changes in the plan produced by the particular T (Σ4), which monitors the

agents most imminent global waypoint. Tasks that directly affect the agent’s

next decision, and tasks with currently invalid or sub-optimal solutions are

given higher priority. Given the maximum amount of time to deliberate tmax,

the agent pops one or more tasks that have highest priority and divides the

deliberation time across tasks (most imminent tasks are allocated more time).

Task priorities constantly change based on events triggered by the environment

and other tasks. For more details on planning tasks, we refer the reader to our

paper [Kapadia et al., 2013].

4.1.4 . Relationship Between Domains

The complexity of the planning problem increases exponentially with increase

in dimensionality of the search space – making the use of high-dimensional do-

mains nearly prohibitive for real-time applications. In order to make this prob-

lem tractable, planning tasks must efficiently use plans in one domain to focus

and accelerate searches in more complex domains. Section 4.1.4.1 describes a

method for mapping a state from a low-dimensional domain to one or more

states in a higher dimensional domain. Sections 4.1.4.2 and 4.1.4.3 describe

two ways in which plans in one domain can be used to focus and accelerate

searches in another domain.
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4.1.4 . Domain Mapping

We define a 1 : n function λ(s,Σ,Σ
′
) that allows us to maps states in S(Σ) to one

or more equivalent states in S(Σ
′
).

λ(s,Σ,Σ
′
) : s→ {s′ |s′ ∈ S(Σ

′
)∧ s ≡ s′} (4.2)

The mapping functions are defined specifically for each domain pair. For exam-

ple, λ(s,Σ1,Σ2) maps a polygon s ∈ S(Σ1) to one or more polygons {s′ |s′ ∈ S(Σ2)}
such that s′ is spatially contained in s. If the same triangulation is used for both

Σ1 and Σ2, then there exists a one-to-one mapping between states. Similarly,

λ(s,Σ2,Σ3) maps a polygon s ∈ S(Σ2) to multiple grid cells {s′ |s′ ∈ S(Σ3)} such

that s′ is spatially contained in s. λ(s,Σ3,Σ4) is defined as follows:

λ(s,Σ3,Σ4) : (x)→ {(x +W (∆x), t +W (∆t))} (4.3)

where W (∆) is a window function in the range [−∆,+∆]. The choice of t is

important in mapping Σ3 to Σ4. Since we use λ to effectively map a plan

Π(Σ3, sstart, sgoal) in Σ3 to a tunnel in Σ4, we can exploit the path and the tem-

poral constraints of sstart and sgoal to define t for all states along the path. We

do this by calculating the total path length and the time to reach sgoal . This

allows us to compute the approximate time of reaching a state along the path,

assuming the agent is traveling at a constant speed along the path.

4.1.4 . Mapping Successive Waypoints to Independent Planning Tasks.

Successive waypoints along the plan from one domain can be used as start and

goal for a planning task in another domain. This effectively decomposes a plan-

ning problem into multiple independent planning tasks, each with a signifi-

cantly smaller search depth.

Consider a path Π(Σ2) = {si |si ∈ S(Σ2),∀i ∈ (0,n)} of length n. For each succes-

sive waypoint pair (si , si+1), we define a planning problem Pi = 〈Σ3, sstart, sgoal〉
such that sstart = λ(si ,Σ2,Σ3) and sgoal = λ(si+1,Σ2,Σ3). Even though λ may re-

turn multiple equivalent states, we choose only one candidate state. For each
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problem definition Pi , we instantiate an independent planning task T (Pi)which

computes and maintains path from si to si+1 in Σ3. Figure 4.5 illustrates this

connection between Σ2 and Σ3.

4.1.4 . Tunnels

The work in [Gochev et al., 2011] observes that a plan in a low dimensional

problem domain can often be exploited to greatly accelerate high-dimensional

complex planning problems by focusing searches in the neighborhood of the

low dimensional plan. They introduce the concept of a tunnel τ(Σhd ,Π(Σld), tw)

as a sub graph in the high dimensional space Σhd such that the distance of

all states in the tunnel from the low dimensional plan Π(Σld) is less than the

tunnel width tw. Based on their work, we use plans from one domain in order to

accelerate searches in more complex domains with much larger action spaces.

A planner is input a low dimensional plan Π(Σld) which is used to focus state

transitions in the sub graph defined by the tunnel τ(Σhd ,Π(Σld), tw).

To check if a state s lies within a tunnel τ(Σhd ,Π(Σld), tw) without precomputing

the tunnel itself, the low dimensional plan Π(Σld) is first converted to a high

dimensional plan Π
′
(Σhd , sstart, sgoal) by mapping all states of Π to their cor-

responding states in Π
′
, using the mapping function λ(s,Σld ,Σhd) as defined in

Equation 4.2. Note that the resulting plan Π
′
may have multiple possible trajec-

tories from sstart to sgoal due to the 1 : nmapping of λ. Next, we define a distance

measure d(s,Π(Σ)) which computes the distance of s from the path Π(Σ). Dur-

ing a planning iteration, a state is generated if and only if d(s,Π(Σhd)) ≤ tw. This

is achieved by redefining the succ(s) and pred(s) to only consider states that lie

in the tunnel. Furthermore, node expansion can be prioritized to states that are

closer to the path by modifying the heuristic function as shown in below.

ht(s, sstart) = h(s, sstart) + |d(s,Π(Σ))| (4.4)

Note that the heuristic ht(s, sstart) is an estimate of the distance from s to sstart
since we use a backward search from sgoal to sstart to accomodate start move-

ment. For spatial domains Σ1, Σ2, and Σ3, d(s,Π(Σ)) is the perpendicular dis-

tance between s and the line segment connecting the two nearest states in Π(Σ).
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d(s,Π(Σ4)) will return a two-tuple value for spatial distance as well as temporal

distance.

TunnelChangeUpdate. When the tunnel changes, previously visited nodes

that are no longer within the new tunnel are assigned an infinite cost and the

changes are propagated to their successors. Also, their heuristic values are up-

dated to reflect the new tunnel distance using Equation 4.4, which re-prioritizes

node expansion to nodes that are closer to the new path. The tunnel width twis

inversely proportional to the inflation factor ε. Thus, a high ε focuses the search

within a narrow tunnel, which is iteratively expanded when ε is reduced to in-

crease the breadth of the search. Due to the extremely dynamic nature of the

planning tasks, we find that a reasonably narrow tunnel allows solutions to be

returned very quickly which can be improved, if time permits. If the tunnel

is too narrow, however, no plan maybe returned, requiring a replan in a wider

tunnel.

Completeness and Optimality Guarantees. The use of tunnels enables AD* to

leverage plans across domains in order to expedite searches in high-dimensional

domains. However; by modifying the definition of succ(s) and pred(s) to prune

nodes that lie outside the tunnel, we sacrifice the strict bounds on optimality

provided by AD*, as nodes that lie outside the tunnel may lead to a more opti-

mal solution. By iteratively expanding the tunnel width tw, when the search is

unsuccessful, we ensure that a solution will be found, if one exists. For practical

purposes, we find that a constantly dynamic world mitigates the need for strict

optimality bounds as solutions are constantly invalidated, before their use. In

our experiments (Section 4.1.5.1), we find that the computational benefit of us-

ing tunnels far outweighs its drawbacks, providing an exponential reduction in

the nodes expanded, while still producing reasonable quality solutions.
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4.1.5 . Results

4.1.5 . Comparative Evaluation of Domain Relationships

We randomly generate 1000 scenarios of size 100m × 100m, with random con-

figurations of obstacles (both static and dynamic), start state, and goal state

and record the effective branching factor, number of nodes expanded, time to

compute a plan, success rate, and quality of the plans obtained. The effective

branching factor is the average number of successors that were generated over

the course of one search. Success rate is the ratio of the number of scenarios

for which a collision-free solution was obtained. Plan quality is the ratio of the

length of the static optimal path and the path obtained. A plan quality of 1

indicates that the solution obtained was able to minimize distance without any

deviations. Similar metrics for analyzing multi-agent simulations have been

used in [Kapadia et al., 2011b]. The aggregate metrics for the different domains

and domain relationships are shown in Table 4.1. Rows 3 and 6 in Table 4.1

include the added time to compute plans in earlier domains for tunnel search,

to provide an absolute basis of comparison. All experiments were performed

on a single-threaded 2.80 GHz Intel(R) Core(TM) i7 CPU.

Σ1 and Σ2 can quickly generate solutions but is unable to solve most of the sce-

narios as they don’t resolve fine-grained collisions. The use of plans from Σ1

accelerates searches in Σ2 (Table 4.1, Row 3). However, the real benefit of using

both Σ1 and Σ2 is evident when performing repeated searches across domains

in large environments when an initial plan Π(Σ1) accelerates repeated refine-

ments in Σ2 (and other subsequent domains). Using Σ3 in a large environment

takes significantly longer to produce similar paths. Σ4 is unable to find a com-

plete solution for large-scale problem instances (we limit maximum number of

nodes expanded to 104), and the partial solutions often suffer from local min-

ima, resulting in a low success rate. The benefit of using tunnels is evident in

the dramatic reduction of the effective branching factor and nodes expanded

for Σ4.

When using the complete global path from Σ3 as a tunnel for Σ4 (Figure 4.5(a)

and Row 6 in Table 4.1), the effective branching factor reduces from 21.5 to 5.6,

producing an exponential drop in node expansion and computation time, and

enabling complete solutions to be generated in the space-time domain. This
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planning task is able to successfully solve nearly 92% of the scenarios that were

generated. However, since sstart and sgoal are far apart, the large depth of the

search prevents this from being used at interactive rates for many agents.

By using successive waypoints in Π(Σ2) as sstart and sgoal to create a series of

planning tasks in Σ3 and Σ4 (Figure 4.5(b) and Row 7 in Table 4.1), we reduce

the breadth and depth of the search, allowing solutions to be returned at a frac-

tion of the time (6 ms), without significantly affecting the success rate. The

tradeoff is that independent plans are generated between waypoints along the

global path, creating a two-level hierarchy between the domains.

Domain BF N T S Q

T (Σ1) 3.7 43 3 0.17 0.76

T (Σ2) 4.6 85 8 0.23 0.57

T (Σ2,Π(Σ1)) 2.1 17 5 0.32 0.65

T (Σ3) 7.4 187 18 0.68 0.73

T (Σ4) 21.5 104 2487 0.34 0.26

T (Σ4,Π(Σ3,Σ2,Σ1)) 5.6 765 136 0.92 0.64∑
Ti (Σ4,Π(Σ3,Σ2,Σ1)) 5.4 75 8 0.86 0.58

Table 4.1: Comparative evaluation of the domains, and the use of multiple
domains. BF = Effective branching factor. N = Average number of nodes ex-
panded. T = Average time to compute plan (ms). S = Success rate of planner
to produce collision-free trajectory. Q = Plan quality. Row 6,7 corresponds to

the domain relationships illustrated in Figures 4.5(a) and (b) respectively.

Conclusion. The comparative evaluations of domains shows that no single do-

main can efficiently solve the challenging problem instances that were sam-

pled. The use of tunnels significantly reduce the effective branching factor of

the search in Σ3 and Σ4, while mapping successive waypoints in Π(Σ2) to mul-

tiple independent planning tasks reduce the depth of the search in Σ3 and Σ4,

without significantly impacting success rate and quality. For the remaining re-

sults in this section, we adopt this domain relationship as it works well for our

application of simulating multiple goal-directed agents in dynamic environ-

ments at interactive rates. Users may choose a different relationship based on

their specific needs.
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4.1.5 . Performance

We measure the performance of the framework by monitoring the execution

time of each task type, with multiple instances of planning tasks for Σ3 and

Σ4. We limit the maximum deliberation time tmax = 10 ms, which means that

the total time executing any of the tasks at each frame cannot exceed 10ms.

For this experiment, we limit the total number of tasks that can be executed

in a single frame to 2 (including T0) to visualize the execution time of each

task over different frames. Figure 4.6 illustrates the task execution times of a

single agent over a 30 second simulation for the scenario shown in Figure 4.2(a).

The execution task T0 which is responsible for character animation and simple

steering takes approximately 0.4−0.5 ms of execution time every frame. Spikes

in the execution time correlate to events in the world. For example, a local

non-deterministic change in the environment (Frames 31,157) triggers a plan

update in T (Σ3), which in turn triggers an update in T (Σ4). A global change

such as a crowd blocking a passage or a change in goal (Frames 39, 237,281)

triggers an update in T (Σ2) or T (Σ1) which in turn propagates events down the

task dependency chain.

Note that there are often instances during the simulation when the start and

goal changes significantly or when plans are invalidated, requiring planning

from scratch. However, we ensure that our framework meets real-time con-

straints due to the following design decisions: (a) limiting the maximum amount

of time to deliberate for the planning tasks, (b) intelligently distributing the

available computational resources between tasks with highest priority, and (c)

increasing the inflation factor to quickly produce a sub-optimal solution when

a plan is invalidated, and refining the plan in successive frames.

Memory. T (Σ1) and T (Σ2) precomputes navigation meshes for the environment

whose size depend on environment complexity, but are shared by all agents in

the simulation. The runtime memory requirement of these tasks is negligible

since it expands very few nodes. The memory footprint of T (Σ3) and T (Σ4) is

defined by the number of nodes visited by the planning task during the course

of a simulation. Since each planning task in Σ3 and Σ4 searches between suc-

cessive waypoints in the global plan, the search horizon of the planners is never

too large. On average, the number of visited nodes is 75 and 350 for T (Σ3) and

T (Σ4) respectively with each node occupying 16 − 24 bytes in memory. For 5
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Figure 4.6: Task execution times of the different tasks in our framework over
the course of a 60 second simulation.

running instances of T (Σ3) and T (Σ4), this amounts to approximately 45KB of

memory per agent. Additional memory for storing other plan containers such

as OPEN and CLOSED are not considered in this calculation as they store only

node references and are cleared after every plan iteration.

Scalability. Our approach scales linearly with increase in number of agents.

The maximum deliberation time for all agents can be chosen based on the de-

sired frame rate which is then distributed among agents and their respective

planning tasks at each frame. The cost of planning is amortized over several

frames and all agents need not plan simultaneously. Once an agent computes

an initial plan, it can execute the plan with efficient update operations until it

is allocated more deliberation time. If its most imminent plan is invalidated,

it is prioritized over other agents and remains stationary till computational re-

sources are available. This ensures that the simulation meets the desired fram-

erate.

126 Simulation, Animation and Rendering of Crowds in Real-Time by Alejandro Beacco



4.1. PLANNING IN MULTIPLE DOMAINS

4.1.5 . Scenarios

We demonstrate the benefits of our framework by solving many challenging

scenarios (Figure 4.7) requiring space-time precision, explicit coordination be-

tween interacting agents, and the factoring of dynamic information (obstacles,

moving platforms, user-triggered changes, and other agents) at all stages of the

decision process. All results shown here were generated at 30 fps or higher,

which includes rendering and character animation. We use an extended ver-

sion of the ADAPT character animation system [Johansen, 2009] for the results.

(a) (b)

(c) (d)

Figure 4.7: Different scenarios. (a) Agents crossing a highway with fast mov-
ing vehicles in both directions. (b) 4 agents solving a deadlock situation at a
4-way intersection. (c) 20 agents distributing themselves evenly in a narrow
passage, to form lanes both in directions. (d) A complex environment requir-

ing careful foot placement to obtain a solution.
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Deadlocks. Multiple oncoming and crossing agents in narrow passageways

cooperate with each other with space-time precision to prevent potential dead-

locks. Agents observe the presence of dynamic entities at waypoints along their

global path and refine their plan if they notice potentially blocked passageways

or other high cost situations. Crowd simulators deadlock for these scenarios,

while a space-time planner does not scale well for many agents.

Our framework Unity navigation and steering

Figure 4.8: Trajectory comparison of our method with an off the shelf predic-
tive steering algorithm in the Unity game engine. Our framework minimizes

deviation and uses speed variations to avoid collisions in space-time.

Choke Points. This scenario shows our approach handling agents arriving at

a common meeting point at the same time, producing collision-free straight

trajectories. Figure 4.8 compares the trajectories produced using our method

with an off the shelf navigation and predictive collision avoidance algorithm

in the Unity game engine. Our framework produces considerably smoother

trajectories and minimizes deviation by using subtle speed variations to avoid

collisions in space-time.
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Unpredictable Environment Change. Our method efficiently repairs solutions

in the presence of unpredictable world events, such as the user-placement of

obstacles or other agents, which may invalidate current paths.

Road Crossing. The road crossing scenario demonstrates 40 agents using space-

time planning to avoid fast moving vehicles and other crossing agents.

Lane Selection for Bi-directional Traffic. This scenario requires agents to

make a navigation decision in choosing one of 4 lanes created by the dividers.

Agents distribute themselves among the lanes, while bi-directional traffic chooses

different lanes to avoid deadlocks. This scenario requires non-deterministic

dynamic information (other agents) to be accounted for while making global

navigation decisions. This is different from emergent lane formation in crowd

approaches, which bottlenecks at the lanes and cause deadlocks without a more

robust navigation technique.

Four-way Crossing We simulate 100 oncoming and crossing agents in a four-

way crossing. The initial global plans in Σ1 take the minimum distance path

through the center of the crossing. However, Σ2 predicts a space-time colli-

sion between groups at the center and performs plan refinement so that agents

deviate from their optimal trajectories to minimize group interactions. A pre-

dictive steering algorithm only accounts for imminent neighboring threats and

is unable to avoid mingling with the other groups (second row of Figure 4.8).

Space-Time Goals. We demonstrate a complex scenario where 4 agents in fo-

cus (additional agents are also simulated) have a temporal goal constraint, de-

fined as an interval (40+/−1second). Agents exhibit space-time precision while

jumping across moving planes to reach their target and the temporal goal sig-

nificantly impacts the decision making at all levels, where the space-time do-

main maybe unable to meet the temporal constraint and require plans to be

modified in earlier domains. No other approach can solve this with real-time

constraints.

Many of these scenarios cannot be solved by the current state of the art in multi-

agent motion planning, which is able to either handle a single agent with great

precision, or simulate many simple agents that exhibit reactive collision avoid-

ance.
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4.2 . Planning Using Footsteps

This work focuses on the computation of natural footsteps trajectories for groups

of agents. There are some approaches that do focus on correct foot placement,

but in most cases they are quite limited in the range of animations available or

else can only deal with a small number of agents. Our work enforces foot place-

ment constraints and uses motion capture data to produce natural animations,

while still meeting real-time constraints for many interacting characters.

Figure 4.9 illustrates an example of four agents planning their footstep tra-

jectory towards their goal while avoiding collision with other agents, and re-

planning when necessary. The resulting trajectories not only respect ground

contact constraints, but also create more natural paths than traditional multi

agent simulation methods.

This section is organized as follows. We first give an overview of our framework

and then we explain in detail our pre-process step, planning algorithm and

animation system. Finally we show some of our results and present a discussion

about the strength of our method and its limitations along with conclusions and

future work.

4.2.1 . Overview

Figure 4.10 illustrates the process of dynamic footstep planning for each char-

acter in real-time. The framework iterates over all characters in the simulation

Figure 4.9: Footstep trajectories planning for four agents reaching goals in
opposite directions
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Figure 4.10: Diagram showing the process required for the dynamic footstep
planning algorithm

to calculate each individual foot step trajectory considering obstacles in the en-

vironment as well as other agents’ calculated trajectories.

The Preprocess phase is responsible for extracting annotated animation clips

from a motion capture database. The real-time Planner uses the annotated ani-

mations as transitions between state nodes in order to perform a path planning

task to go from an input Start State to a Goal State. The output of the planner is

a Plan consisting of a sequence of actions A0,A1, ...,An, which are clips that the

Animation Engine must play in order to move the Character along the computed

path. Both state and plan of the Character are then input to the World State and

thus exposed to other agents’ planners, together with the nearby static or dy-

namic obstacles. The World State is used to prune and accelerate the search in

order to predict and avoid potential collisions. The Time Manager is responsible

for checking the elapsed time between frames to keep track of the expiration

time of the current plan. Finally the Events Monitor is in charge of detecting

events that will force the planner to recompute a new path. The Events Monitor
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receives information from the World State, the Time Manager, Goal State and the

character’s current Plan. Events include: a possible invalid plan or the detection

of a new dynamic obstacle or the goal position changing.

4.2.1 . Events Monitor

The events monitor is the module of the system in charge of deciding when a

new path needs to be recomputed. Elements that will trigger an event are:

• Goal state changed: when the goal changes its position or a new goal is

assigned for the current character.

• New agent or deterministic dynamic obstacle nearby: other agents or dy-

namic obstacles enter the surrounding area of our character. A new path

needs to be calculated to take into account the potential collision.

• Collision against non-deterministic obstacle: sometimes an unpredictable

dynamic obstacle could lead to a collision (for example: a dynamic obsta-

cle moved by the user), so when the events monitor detects such situation

it triggers an event in order to react to it.

• Plan expiration: a way to ensure that each agent is taking into account the

latest plans of every other agent is to give every plan an expiration time

and force re-planning if this is reached. A time manager helps monitoring

this task, but instead of a time parameter this event can also be measured

and launched by a maximum number of actions that we want to perform

(play) before re-planning.

4.2.2 . Preprocess

During an offline stage, we analyze a set or a database of animation clips in or-

der to extract the actions that our planner will then use as transitions between

states. Each action consists of a sequence of skeleton configurations that per-

form a single animation step at a time, i.e., starting with one foot on the floor,

until the other foot (swing foot) is completely resting on the floor. Our pre-

process should work with any animation clip, since we tried both handmade

and motion capture clips (from the CMU database [University, 2013]). After
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analyzing each animation clip, we calculate mirrored animations. Mirroring

animations is done in order to have each analyzed animation clip with either

feet starting on the floor. The output of this stage is a set of annotated ani-

mations that can be used by the planner and the animation engine. This set

can be easily serialized and stored to be reused for all instances of the same

character type (same skeleton and the same scale, otherwise even if they share

animations these could produce displacements of different magnitudes), reduc-

ing both preprocess time and the global memory consumption.

4.2.2 . Locomotion Modes

In order to give our characters a wider variety and agility of movements we de-

fine different locomotion modes that need to be treated differently. Each anima-

tion clip will be tagged with its locomotion mode. We thus have the following

set of locomotion modes:

• Walking: these are the main actions that will be used by the planner and

the agents since they represent the most common way to move. We there-

fore have a wide variety of walks going from very slow to fast and in dif-

ferent angles (not just forward and backwards).

• Running: these are going to be treated in the same way as the walking

actions with an additional cost penalty (since running consumes more

energy than walking). We have also noticed empirically that for running

actions it is not necessary to have as many different displacement angles

as for walking actions.

• Turns: turns are going to be clips of animation where the agent turns in

place or with a very small root displacement. They are going to be defined

by their turning angle and velocity.

• Platform Actions: in this group we will find actions like jumping or crouch-

ing in order to avoid some obstacles. Such actions should have a high

energy cost and should only be used in case of an imminent danger of

collision.

While turns and platform actions need to be performed completely from start

to end, and they do not have any intrinsic pattern we can easily detect, walking
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and running animations can be segmented by clips containing a single step. So

animations of both walking and running locomotion modes will have a special

treatment as we will need to extract the footsteps and keep only the frames of

the animation covering a single step.

4.2.2 . Footsteps Extraction

As previously mentioned in this section, an action starts with one foot on the

floor and ends when the other foot is planted on the floor. But animation clips,

especially motion capture animations, do not always start and end in this very

specific way. Therefore we need a foot plant extraction process to determine the

beginning and end ending of each animation clip that will be used as an action.

Simply checking for the height of the feet in the motion capture data is not

enough, since it usually contains noise and artifacts due to targeting. In most

cases, when swinging the foot forwards while walking, the foot can come very

close to the ground, or even traverse it.

Other techniques also incorporate the velocity of the foot during foot plant,

which should be small. However this solution can also fail, since foot skating

can introduce a large velocity. We detect foot plants using a height and velocity

based detector similar to the method described in [van Basten and Egges, 2009],

where foot plant detection is based on both height and time. First, the height-

based test provides a set of foot plants, but only those where the foot plant

occurs in a group of adjacent frames, are kept.

Our method combines this idea with changes on velocity for more accurate re-

sults, so we detect a foot plant when for a discretisized set of frames the foot

is close to the ground for a few adjacent frames and with a change in velocity

(deceleration, followed by being still for a few frames, and finishing with an ac-

celeration). Notice that this method works for any kind of locomotion ranging

from slow walking to running including turns in any direction.

4.2.2 . Clip Annotation

An analysis is performed by computing some variables over the whole duration

of the animation. Each analyzed animation clip is annotated with the following
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information:

Lmod Locomotion mode

Fsp Supporting Foot

Fsw Swing Foot

~vr Root velocity vector
~f Foot displacement

t Time duration

t0 Initial time

tend End time

α Movement angle

θ Rotation angle

P Set of Sampled positions

Table 4.2: Information stored in each annotated animation clip.

Locomotion mode, indicates the type of animation (walk short step, walk long

step, run, walk jump, climb, turn, etc). Supporting foot is the foot that is ini-

tially in contact with the floor, and the swing foot corresponds to the foot that

is moving in the air towards the next footstep. The supporting foot is calculated

automatically based on its height and velocity vector from frame to frame.

The root velocity vector indicates, taking the starting frame of the extracted clip

as reference, the total local displacement vector of the root during the whole

step. We therefore know the magnitude, the speed in m/s and the angle of its

movement. Similarly, foot displacement tracks the movement of the swing foot.

Movement angle in degrees indicates the angle between the swing foot displace-

ment vector and the initial root orientation. Therefore an angle equal to 0

means an action moving forward and 180 means it is a backward action. An

Angle equal to 90 means an action moving to the left if the swing foot is the left

one, or the right if the swing foot is the right one. Finally the rotation angle is

the angle between the root orientation vector in the first and last frame of the

clip.

t indicates the total time duration of the extracted clip, with t0 and tend storing

the start and end point of the original animation that the extracted clip covers.

These values will be used by the animation engine to play the extracted clip.
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P corresponds to a set of sampled positions for certain joints of the charac-

ter within an animation clip, and it is used for collision detection (see sec-

tion 4.2.3.5)

4.2.3 . Planning Footstep Trajectories

In this section, we first present the high level path planning on the navigation

mesh. Then we define the problem domain we are dealing with when planning

footsteps trajectories. Next we give details of the real-time search algorithm

that we use as well as the pruning carried out to accelerate the search. Finally

we explain how the collision detection and prediction is performed.

Figure 4.11: High level path with local footstep trajectory between consecu-
tive visible waypoints.

4.2.3 . High Level Path Planning

Footstep trajectories are calculated between waypoints of the high level path

(see Figure 4.11). This path is calculated over the navigation mesh using Recast

[Mononen, 2009]. An A* algorithm is used to compute the high level path, and

then footstep trajectories are calculated between consecutive visible waypoints.

So given a sequence of waypoints {wi ,wi+1,wi+2, ...,wi+n}), if there is a collision-

free straight line between wi and wi+n, then the footstep trajectory is calculated

between those two waypoints, and any other intermediate point is ignored. This
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provides more natural trajectories as it avoids zig-zagging over unnecessary

waypoints. Waypoints are considered by the planner as goal states, and each

time that we change a waypoint the change of goal is detected by the events

monitor, thus forcing a new path to be computed.

4.2.3 . Problem Definition

The algorithm for planning footstep trajectories needs to calculate the sequence

of actions that each agent needs to follow in order to go from their start position

to their goal position. This means solving the problem of moving in a footstep

domain between two given positions in a specific amount of time. Therefore,

characters calculate the best trajectory based on their current state, the cost of

moving to their destination and a given heuristic. The cost associated with each

action is given by the bio-mechanical effort required to move (i.e: walking has

a smaller cost than running, stopping for a few seconds may have a lower cost

than wandering around a moving obstacle). The problem domain that we are

dealing with is thus defined as:

Ω =
(
S,A, c (s, s′) ,h(s, sgoal)

)
Where S is the state space and is defined as the set of states composed of the

character’s own state self, the world composition environment, and the other

agents state. The action space A indicates the set of possible transitions in

the state space and thus will have an impact on the branching factor of the

planner. Each transition is an action, so we will have as many transitions as

extracted clips times the possible speed variations we allow to introduce (we

can for example reproduce a clip at half speed to obtain its displacement two

times slower). Actions are then going to be defined by their corresponding an-

notated animation. c (s, s′) is the cost associated with moving from state s to

state s′. Finally h(s, sgoal) is the heuristic function estimating the cost to go from

s to sgoal .
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4.2.3 . Real-Time Planning Algorithm

Planning footsteps trajectories in real time requires finding a solution in the

problem domain Ω described earlier. The planner solution consists of a se-

quence A0,A1, ...,An of actions. Our planner interleaves planning with execu-

tion, because we want to be able to replan while consuming (playing) the action.

For this purpose, we use a best-first search technique (e.g., A*) in the footstep

problem domain, defined as follows:

• S: the state space will be composed of the character’s own state (defined

by position, velocity, and the collision model chosen), the state of the other

agents plus their plan, and the state and trajectory of the deterministic

dynamic obstacles. For more details about collision models and obstacles

avoidance see the following section Collision Prediction.

• A: the action space will consist of every possible action that can be con-

catenated with the current one without leading to a collision, so before

adding an action we will perform all necessary collision checks.

• c (s, s′): the cost of going from one state to another will be given by the

energy effort necessary to perform the animation:

c (s, s′) =M
∫ t=T

t=0
es + ew |v|2dt

where M is the agent mass, T is the total time of the animation or action

being calculated, v the speed of the agent in the animation, and es and

ew are per agent constants (for an average human, es = 2.23 J
Kg.s and ew =

1.26 J.s
Kg.m2 ) [Kapadia et al., 2011a].

• h(s, sgoal): the heuristic to reach the goal comes from the optimal effort

formulation:

h(s, sgoal) = 2Mcopt(s, sgoal)
√
esew

where copt(s, sgoal) is the cost of the optimal path to go from s to sgoal ,

in our case we chose the euclidian distance between s and sgoal[Kapadia

et al., 2011a]. The optimal effort for an agent in a scenario is defined as the

energy consumed in taking the optimal route to the target while traveling

at the average walking speed: vav =
√

es
ew

= 1.33m/s
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Taking all these components into consideration the planner can search for the

path with least cost and output the footstep position with their time marks that

the animation engine will follow by playing the sequence of actions planned

(see figure 4.12).

Figure 4.12: Footsteps trajectory with time constraints that need to be fol-
lowed by the animation controller.

4.2.3 . Pruning Rules

In order to accelerate the search we can add simple rules to help prune the tree

and reduce the branching factor. A straight forward way to halve the size of the

tree consists of considering only consecutive actions starting with the opposite

foot. So given a current node with a supporting foot, expand the node only

for transitions that have that same foot as the swing foot. Actions which are

not possible due to locomotion constraints on speed or rate of turning are also

pruned to ensure natural character motion (so after a staying still animation,

we will not allow a fast running animation). The next pruning applied is based

on collision prediction as we will see in the following section. The idea is that

when a node is expanded and a collision is detected, the whole graph that could

be expanded from it gets automatically pruned. The pruning process reduces

the branching factor of the search, and also ensures natural footstep selection
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Figure 4.13: Collision model of 5 cylinders around the head, the left and right
hands, and the left and right foot.

4.2.3 . Collision Prediction

While expanding nodes the planning algorithm must check for each expanded

node whether the future state is collision free or not. If it is collision free,

then it maintains that node and continues expanding it. Otherwise, it will be

discarded. In order to have large simulations in complex environments we need

to perform this pruning process in a very fast manner.

In order to predict collisions against other agents or obstacles (both dynamic or

static), we introduce a multi-resolution collision detection scheme which per-

forms collision checks for two resolution levels. Our lowest resolution collision

detection model is a simple cylinder centered at the root of the agent with a

fixed radius. The higher resolution model consists of five cylinders around the

end joints (head, hands and feet) that are used to make finer collision tests Fig-

ure 4.13.

We could introduce more collision models, where high resolution ones will be

executed only in case of detecting collisions using the coarser ones. At the

highest complexity mode we could have the full mesh collision check, but for

the purpose of our simulation the 5 cylinders model gives us enough precision

to avoid agents walking with their arms intersecting against other agents as

they swing back and forth. Compared against simpler approaches that only

consider obstacle detection against a cylinder, our method gives better results

since it allows us to have closer interactions between agents. All obstacles have

140 Simulation, Animation and Rendering of Crowds in Real-Time by Alejandro Beacco



4.2. PLANNING USING FOOTSTEPS

simple colliders (boxes, spheres, capsules) to accelerate the collision checks by

using a fast physics ray casting test.

It is also important to mention that collision tests are not only performed using

the initial and end positions of the expanded node, but also with sub-sampled

positions inside the animation (for the 5 cylinder positions). For example, an

agent facing a thin wall as a start position and the other side of the wall as

end position of its current walk forward step. If we only check for possible

collisions with those start and end positions we would not detect that the agent

is actually going through the wall.

The sub-sample for each animation is performed off-line and stored in the an-

notated animation. To save memory, this sampling is performed at low frequen-

cies and then in real time intermediate positions can be estimated by linear

interpolation.

Finally, we provide the characters with a surrounding view area to maintain

a list of obstacles and agents that are potential threats to our path (see figure

4.14). For each agent, we are only interested in those obstacles/agents that fall

within the view area in order to avoid running unnecessary collision tests.

Figure 4.14: When planning we only consider obstacles and agents that are
inside the view area. Obstacles A, B and agent a are inside it and the agent will

try to avoid them, while it will ignore obstacles C, D and agents b and c .
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Static World

Static obstacles are part of the same static world that is used to compute the

navigation mesh with Recast [Mononen, 2009]. They do not need to have a

special treatment since the high-level path produces waypoints that avoid col-

lisions with static obstacles..

Deterministic Dynamic Obstacles and Other Agents

Deterministic obstacles move with a predefined trajectory. Other agents have

precomputed paths which can be queried to predict their future state. To avoid

interfering with those paths we allow access to their temporal trajectories. So,

for each expanded node with state time t we check for collisions with every

obstacle and agent that falls inside his view area at their trajectory positions

at time t. Figure 4.15 shows an example of an agent avoiding two dynamic

obstacles.

Figure 4.15: An agent planning with two dynamic obstacles in front of him
(top). After executing some steps the path is re-planned. The blue obstacle
indicates that it is not in his nearby area anymore, so that obstacle is not con-

sidered in the collision check of this new plan. (bottom)

Unpredictable Dynamic Obstacles

Unlike deterministic dynamic obstacles and other agents, unpredictable dy-

namic obstacles are impossible to be accounted for while planning. Therefore

they can be ignored when expanding nodes, but we need a fast way to react to

them. This is the reason why we need the events monitor to detect immediate

collisions and force re-planning. Figure 4.16 shows an example where a wall is

arbitrarily moved by the user and the agent needs to continuously re-plan its

trajectory.
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Figure 4.16: An agent reacting to a non-deterministic obstacle by re-planning
his path.

4.2.4 . Animation Engine

The animation engine is in charge of playing the output sequence of actions

given by the planner. These actions contain all the data in the annotated ani-

mation. When a new action is played it sets t0 as the initial time of the anima-

tion. When the current animation reaches tend the animation engine blends the

current animation with the next one in the queue.

The Animation Engine also tracks the global root position and orientation, and

applied rotation corrections by rotating the whole character using the rotation

values of the annotated animation (rotation angle θ). The blending time be-

tween actions can be user defined within a short time (for example 0.5s).

4.2.5 . Results

The presented framework has been implemented using the ADAPT simulation

platform [Shoulson et al., 2013] which works with Unity Game Engine [Unity,

2014] and C# scripts. Our current framework can simulate around 20 agents at

approximately 59-164 frames per second (depends on the maximum planning

time allowed), and 40 agents at 22-61 frames per second (Intel Core i7-2600k

CPU @ 3.40GHz and 16GB RAM). Figure 4.17 shows the frame rates achieved

on average for an increasing number of agents. The black line corresponds to

a maximum planning time of 0.01s, and the red line corresponds to 0.05s. Ad-

ditionally, by setting planner parameters such as the horizon of the search, we

can achieve significant speedup at the expense of solution fidelity. For example,
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we can produce purely reactive simulations where the character only plans one

footstep ahead by reducing the search horizon to 1.

Figure 4.17: This graph shows the frames per second on average for different
simulations with increasing number of agents. We have used two values for
the maximum planning time: 0.01 resulting in higher frame rates, and 0.05

resulting in lower frame rates but better quality paths

The results showed have been made with a database of 28 motion captured

animations. This is a small number compared to approaches based on motion

graphs (generally having around 400 animation clips), but a large number com-

pared with techniques based on handmade animation (such as pre-computed

search trees). This decision allows us to achieve results that look natural and

yet can be used for real time applications.

Our approach solves different scenarios where several agents are simulated in

real-time achieving natural looking paths while avoiding other obstacles and

characters. The quality of the results in terms of natural paths and collision

avoidance depends on the planner. The planner will be given a specific amount

of time to find a solution (which translates in how many nodes of the graph

are expanded). Obviously when we allow larger search times (larger number

of nodes to expand) the resulting trajectory looks more natural and is collision

free, but at the expense of being more computationally expensive. Alterna-

tively, if we drastically reduce the search time (smaller number of nodes to

expand) we may end up having collisions as we can see in Figure 4.18.
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Figure 4.18: Example with four agents crossing paths with a drastically re-
duced search time resulting in agents a and c not being able to avoid intersec-
tion as seen in the last two images of this secuence. Also notice how agent b,
walks straight towards c, steps back and then continues, instead of following a

smooth curve around c.

Interleaving planning with execution provides smooth animations, since not all

the characters plan their paths simulateneously. At any time, the new plan is

calculated with the start position being the end position of the current action.

We have also shown how the Events Monitor can successfully plan routes when

deterministic obstacle invalidate a character’s plan, as well as efficiently react

to non deterministic obstacles (see Figures 4.15 and 4.16)
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4.3 . Conclusions on Crowd Simulation

Our first contribution is a framework for real-time, multi-agent navigation in

large-scale, complex, dynamic environments, with space-time precision. We

use multiple problem domains to provide a balance between control fidelity

and computational complexity by accounting for dynamic aspects of the en-

vironment at all stages of decision-making. The original navigation problem

is decomposed into a set of smaller problems that are distributed across plan-

ning tasks working in these different domains. An anytime dynamic planner is

used to efficiently compute and repair plans for each of these tasks, and the use

of tunnel based search is particularly useful for working in complex domains

such as Σ4 where the plan from Σ3 is used to focus its search, thereby greatly

reducing the number of nodes expanded.

The domains described in this work represent popular solutions that are used

in both academia and industry. Navigation meshes (Σ1) are a standard solu-

tion [Mononen, 2009] for representing free spaces in arbitrarily large, complex,

static environments with recent proposed extensions [van Toll et al., 2012] that

account for dynamic information (Σ2). A grid-based representation (Σ3) pro-

vides a uniform discretization of the environment, and is widely used in robot

motion planning [Koenig and Likhachev, 2002, Likhachev et al., 2005]. The

introduction of time as a third dimension (Σ4) enables collision checks in the

future, facilitating more robust collision resolution.

These domains provide a nice balance between global navigation and space-

time planning, enabling us to showcase the strength of our framework: the abil-

ity to use multiple domains of control, and leverage solutions across domains to

accelerate computations while still providing a high degree of control fidelity.

Additional domains can be easily integrated (e.g., the footstep domain we have

presented in our second contribution) to meet application-specific needs, or

solve more challenging motion planning problems.

Domains can be connected by using the plan from one domain as a tunnel for

the other, or by using successive waypoints along the plan as start and goal pair

for multiple planning tasks in a more complex domain. We evaluated both do-

main relationships based on computational efficiency and coverage, as shown
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in Table 4.1. Using waypoints from the navigation mesh domain as start, goal

pairs for planning tasks in the grid and space-time domain keeps the search

depth for Σ3 and Σ4 within reasonable bounds. The tradeoff is that a space-

time plan is never generated at a global level from an agent’s start position to

its target, thus sacrificing completeness guarantees. This design choice worked

well for our experiments where the reduction in success rate of our framework

when using this scheme was within reasonable bounds, while providing a con-

siderable performance boost, making it suitable for practical game-like appli-

cations. Users may wish to opt for different domain relationships depending on

the application.

Our second contribution is a multi-agent simulation approach where planning

is done in the action space of available animations. Animation clips are ana-

lyzed and actions are extracted and annotated, in order to be used in real time

to expand a search tree. Nodes are only expanded if they are collision free. To

predict collisions we sample animations and use a new collision model with

colliders for each end joint (head, hands and feet). This way we are able to

simulate agents avoiding more detailed collisions. The presented framework

handles both deterministic and non-deterministic obstacles, since the former

can be taken into consideration when planning, while the later needs a com-

pletely reactive behavior.

Unlike pre-computed search trees our set of transitions is composed of actions,

and mainly footsteps, which allows us to build online the search tree and to

dynamically prune it, considering not only start and goal positions, but also

departure and arrival times. An events monitor can help us to decide when to

re-plan the path, based on the environment situation such as obstacle proximity

or velocity.

As Illustrated in 4.17, the computational complexity of our framework scales

linearly with the number of agents. By reducing the search depth and maxi-

mum planning time, we can simulate a larger crowd of characters at interactive

rates. Notice that memory is required per animation ( to store sub-sampled ani-

mations) and not per agent in the simulation, therefore increasing the size of the

simulated group of agents would not have an impact on the memory require-

ments of our system. If we wanted to simulate crowds of characters we would

need more CPU power, but not memory as long as we had more instances of

characters sharing the same skeleton and animations.

Simulation, Animation and Rendering of Crowds in Real-Time by Alejandro Beacco 147



4. Contributions to Crowd Simulation

Publications
Our work on simulation has yielded the following two publications

([Beacco et al., 2013b, Kapadia et al., 2013]):

• M. Kapadia, A. Beacco, F. Garcia, V. Reddy, N. Pelechano and

N.I. Badler. Multi-Domain Real-time Planning in Dynamic Environ-

ments. ACM SIGGRAPH/EUROGRAPHICS Symposium on Com-

puter Animation 2013 (SCA 2013), Anaheim, CA, U.S.A., 2013

• A. Beacco, N. Pelechano and M. Kapadia. Dynamic Footsteps Plan-

ning for Multiple Characters. EUROGRAPHICS Spanish Confer-

ence of Computer Graphics 2013 (EGse CEIG 2013), Madrid,

Spain., 2013

Both publications were done in collaboration with the Human Modeling

and Simulation Lab, at the University of Pennsylvania, in Philadelphia,

where I did a 4 months stay as part of my PhD. Special thanks to Profes-

sor Norman I. Badler, and to Doctor Mubbasir Kapadia, who oriented

this work during that period and afterward.

Furthermore, we plan for a journal submission extending our work on

multi-domain planning and including the footstep domain of our sec-

ond contribution.
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Synthesizing accurate human motion whilst keeping within constraints is not

an easy task, and although many techniques have been developed for synthe-

sizing the motion of one agent, they cannot be easily extended to large numbers

of agents simulated in real time. In this chapter we first introduce a method to

synthesize animations using only the root motion as input, while avoiding ar-

tifacts such as the foot-sliding effect. Then we present a method that allows to

synthesize animations to accurately follow a path composed of footsteps, just

like the one obtained by our footsteps planner in our previous contribution.
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5.1 . Reflecting the Root Motion

In this section we present an Animation Planning Mediator (APM); a highly

efficient animation synthesizer that can be seamlessly integrated with a crowd

simulation system. The APM selects the parameters to feed a motion synthe-

sizer while it feeds back to the crowd simulation module the required updates

to guarantee consistency. Even when we only have a small set of animation

clips, our technique allows a large and continuous variety of movement. It can

be used with any crowd simulation software, since it is the crowd simulation

module which drives the movement of the virtual agents and our module limits

its work to adjusting the root displacement and skeletal state.

5.1.1 . Framework

The framework employed for this work performs a feedback loop where the

APM acts as the communication channel between a crowd simulation module

and a character animation and rendering module. The outline of this frame-

work is shown in Figure 5.1.

For each frame, the crowd simulation module, CS, calculates the position p,

velocity v, and desired orientation of the torso Θ. This information is then

passed to the APM in order to select the parameters to be sent to the character

animation module, CA, which will provide the next pose of the character, P .

Each pose is a vector specifying all joint positions in a kinematic skeleton.

The APM calculates the next synthesized animation Si which is described by

the tuple Ai , dt , b, P , v, Θ (see Table 5.1).

The APM may need to slightly adjust the position and velocity direction of the

agent in order to guarantee that the animations rendered are smooth and con-

tinuous. It is thus essential that the crowd simulation model employed works

in continuous space and allows for updates of the position and velocity of each

agent at any given time in order to guarantee consistency with the require-

ments dictated by the animation module. We have used the crowd simulation

(CS) model HiDAC [Pelechano et al., 2007].
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Figure 5.1: Framework

Table 5.1: Input/Output variables of the APM
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The torso orientation at time t, wt, is obtained from the velocity vector vt after

applying a filter so that it will not be unnaturally affected by abrupt changes.

wt =ωowt−1 + vt (5.1)

where ωo is the orientation weight introduced by the user and ωt−1 is the direc-

tion of the orientation vector at time t−1. The orientation angle Θ of the vector

w is measured relative to the positive x-axis (since either the angle or the vector

can be calculated from the other).

This orientation filter is applied as we want the position of the character to be

able to react quickly to changes in the environment such as moving agents and

obstacles, but we need the torso to exhibit only smooth changes, as without this

the result will be unnatural animations where the rendered characters appear

to twist constantly. Through filtering we can simulate an agent that moves

with a slight zigzag effect, while the torso of the rendered character moves in a

constant direction.

For the animation and visualization of avatars (CA) we are using a hardware

accelerated library for character animation (HALCA [Spanlang, 2009]). The

core consists of a motion mixer and an avatar visualization engine. Direct access

to properties such as the duration, frame rate, and the skeletal states of an

animation are provided to the hosting application. Such information can be

useful to compute, for example, the actual walking speed of a character when

animated. Among the functionalities provided are: blending, morphing, and

efficient access and manipulation of the whole skeletal state.

The CA contains a motion synthesizer which can provide a large variety of con-

tinuous motion from a small set of animations by allowing direct manipulation

of the skeleton configuration. To create the library of animations, we decided to

use hand created animations, although motion capture data could also be used

after some pre-processing.
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5.1.2 . Animation Planning Mediator

To achieve realistic animation for large crowds from a small set of animation

clips, we need to synthesize new motions.

The APM is used to find the best animation available while satisfying a set

of constraints. On the one hand it needs to guarantee that the next pose of

the animation will reflect as closely as possible the parameters given by the

crowd simulation module (p, v, Θ), and on the other hand, it needs to guarantee

smooth and continuous animations. Therefore, the selection of the best next

pose of the character needs to take into account the current skeletal state, the

available animations, the maximum rotation physically possible for the upper

body of a human, and whether there are any contact points to respect between

the limbs of the skeleton and the environment (such as contact between a foot

and the floor). Once the APM determines the best set of parameters for the

next pose and passes this information to the CA for animation and rendering,

it will also provide feedback to the CS in the cases where the parameters sent

needed to be slightly adjusted to guarantee natural looking animations with the

available set of animation clips and transitions.

During pre-processing the APM will calculate, for each animation clip average

velocity vanim in m/s by computing the total distance traveled by the character

through the animation clip divided by the total duration of the animation clip,

T , as well as the angle α between the torso orientation, Θanim, and the velocity

vector, vanim, in the animation clip. The ith animation clip Ai is defined by the

tuple {vanim, i,αi ,Ti}.

During the simulation the APM takes the input parameters from the CS and

proceeds through the five steps shown in Figure 5.2 to obtain the output tuple

{Ai ,dt,b,P ′,p′,Θ} that will be sent to the CA. We explain this in detail next.

5.1.2 . Animation Clip Selection

Instead of achieving different walking speeds by using hundreds of different

walk animations, the algorithm can be effective with a limited number of ani-

mation clips by blending within an animation. This is given by the parameter
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Figure 5.2: The Animation Planning Mediator steps

dt which defines the time elapsed between two consecutive frames. Each ani-

mation clip covers a subset of speeds going from the minimum speed of 0 m/s

(dt=0) to the original speed of the animation clip (dt=1).

An animation clip of walking forward can also be used to have the agent turn,

as we can reorient the foot on the floor, thus reorienting the entire figure. This

provides natural looking results for high walking velocities, but for slower ve-

locities, using several turning animation clips and blending between them re-

sults in more natural looking motion.

If we consider α being the angle between the direction of movement vanim and

the torso orientation Θanim, of an animation Ai , we can classify animations

based on α and the velocity. For example, for an animation of walking side-

ways α = 90 degrees and for walking forwards α = 0 degrees.

To determine when to use each animation we classify them in a circle defined

by tracks and sectors. A track is the area contained between two concentric

circles. Each concentric circle has as radius the velocity of an animation, vanim.

Once the tracks are defined we divide them into sectors, each of which maps to

a clip.

All the animations used must satisfy the following requirements:

• Must be time aligned

• v and α must be approximately the same throughout the animation clip

(within a small threshold defined by the user).

• Animation clips must be cyclical.
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Each animation clip could be used when the velocity of the agent v ≤ vanim,

therefore we decide on which animation to assign to each sector depending on

the α value. The decision points of when to switch from one animation sector to

the next as the angle increases is defined as being halfway between the α values

of two neighboring animations. Figure 5.3 graphically represents the decision

framework, where colors are used to represent the animation clips assigned per

sector. We have chosen some animation clips with similar velocities or angles

(v3 ≈ v4, v6 ≈ v7 ≈ v8, and α1 ≈ α2 ≈ α5) to graphically show the splitting of

tracks into sectors. Only half of the circle of animation clips is shown due

to symmetry. At any time during the simulation we can run any animation

backwards by using a negative dt and selecting the clip by flipping vertically

over the x axis and mirroring in the y axis.

Figure 5.3: The Animation Clip Decision Graph: an example with 8 anima-
tions.

Classifying Motion Clips

Initially the algorithm starts by dividing the circle into tracks T1,T2, ..., Tm,

where each track is defined by the velocity of an animation clip from the library

(vanim) and v1 > v2 > ... > vn . Note that m ≤ n as two animations Ai and Aj with

similar velocity (i.e.
∣∣∣vi − vj ∣∣∣ < εv) will be assigned to the same track. Each track

Ti is defined by its maximum and minimum velocity, Ti =
{
vmini ,vmaxi

}
. Starting
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from the outer track T1 (highest velocity), the algorithm proceeds by splitting

each track into sectors based on the γ values defined as being halfway between

the α values of two animations.

Each sector Si,k inside track Ti is defined by the tuple:{
vmini ,vmaxi ,γmini,k ,γ

max
i,k

}
which corresponds to the minimum and maximum ve-

locity, and minimum and maximum decision angles.

For each step of the algorithm, a track Ti+1 will be split into at least as many

sectors as contained within Ti . For each sector

Si,k =
{
vmini ,vmaxi ,γmini,k ,γ

max
i,k

}
there will be a new sector

Si+1,k =
{
vmini+1 ,v

max
i+1 ,γ

min
i,k ,γ

max
i,k

}
where vmaxi+1 = vmini , with the same animation

being assigned. Then further splitting of those sectors will occur for each of the

new animations with depending on the α values of the remaining animations. If

we let αp be the angle of a new animation Ap and αq be the angle of the previous

animation Aq that is assigned to a new sector Si+1,k, then if
∣∣∣αp −αq∣∣∣ < εα, the

new animation Ap replaces Aq for that sector. For any other case a new sector is

created and the angle limits γ between sectors are recalculated.

The variety of movements that can be synthesized with this method will depend

upon the number of animation clips. The more clips we have, the more sectors

we can define.

During run time the APM will select the best animation clip based on the cur-

rent velocity, v, of the agent, and the angle, ϕ, between the velocity and the

torso orientation, Θ, provided by the CS. If a change of animation is required,

then the APM will determine the weight, b, necessary for blending between

animations.

5.1.2 . Blending Factors

At every frame the CS calculates the new position for each agent based on the

desired path to move between an initial position to a destination, while inter-

acting with other agents, walls and obstacles. However, since the CS is not

aware of the type of animation being used for the rendering, if we take that

new position to translate the root of the skinned avatar and the angle Θ to re-

orient it, we will observe that the figures appear to “skate”, and also that there
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is no coherence between the orientation of the avatar and the actual animation

movement.

To avoid foot-sliding and guarantee that the animation satisfies the constraints

given by v and Θ, we need to ensure that the figure appears to move according

to v while the foot currently in contact with the floor stays in place, and the

torso faces the direction given by Θ. This could be done using inverse kine-

matics, but since we are simulating large crowds, we need a method that can

be quickly calculated and applied to hundreds of 3D animated figures in real-

time. Also, to avoid the time and cost of generating a large number of animation

clips, we are interested in a limited number of clips that can be combined to

achieve as many realistic animations as possible. We have a trade-off between

the accuracy of our animations and the simplicity, and therefore speed, of our

calculations. Knowing the velocity of the agent v and the animation velocity

vanim from the selected animation Ai , we can calculate the blending factor τ :

τ =
v

vanim
, τ ∈ [0,1] (5.2)

The dt needed by the CA module to blend between poses is:

dt = τ∆t (5.3)

where ∆t is the elapsed time between consecutive frames. At this point of our

algorithm we have the new pose of the agent and thus can obtain the local

coordinates of the root and the feet position.

Knowing that the root movement is driven by the foot that is on the floor during

two consecutive poses, we update the root position in the global coordinates of

the environment.

5.1.2 . Calculation of Root Displacement

For the current pose Pt, we calculate the vector ut that goes from the foot on the

floor to the root of the skeleton. Likewise for the pose Pt−1 in the previous frame

we calculate ut−1 (see Figure 5.4). The vector ut contains all the rotations that

happen at the ankle and knee level and thus provides sufficient information

about the leg movement.
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Figure 5.4: Root displacement

By subtraction of vectors we can calculate root displacement d between frames.

The vector of displacement d, shown in red is:

d = ut −ut−1

And the new position is thus:

pt = pt+1 + d

The method is efficient enough to allow for fast calculation and extension to 3D

is straight forward. From the results shown in Figure 5.5 we can observe that it

avoids foot sliding and preserves the vertical root movement that appears when

we walk fast. In the figure we have rendered the root path in black.

Figure 5.5: Path followed by one agent.
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5.1.2 . Updating the Skeletal State

Turns in the environment can be achieved by reorienting the figure according

to the velocity vector v and adjusting the torso orientation according to Θ by

modifying the skeletal configuration. This will also orient the displacement

vector to move the character in the direction indicated by the CS module.

The visual effect of this is that the foot on the floor will slightly rotate in place.

This is almost unnoticeable to the human eye, especially at high velocities, and

thus is a trade-off worth considering as we can achieve turns in any direction

without the requirement of having a large database of animation clips.

For slower velocities, we can achieve higher realism by having a number of

simulations where the torso orientation does not necessarily need to be aligned

with v. To calculate the rotations we use the following variables:

Table 5.2: Variables required for upper body rotation.

To achieve movement in the direction given by v, the avatar is rotated by (β−α)

so that the velocity vector of the animation vanim matches v. Then the torso is

oriented according to w: the angle ψ is calculated as the difference between ϕ

and α (Figure 5.6) and propagated across the spine of the character by modify-

ing the current skeletal state of the pose of the character. This allows the agent

to move the root in the direction indicated by v while the torso is facing the

direction indicated by w.

Simulation, Animation and Rendering of Crowds in Real-Time by Alejandro Beacco 159



5. Contributions to Crowd Animation

Figure 5.6: Torso Correction. Angles described in table 5.2.

5.1.2 . The Algorithm

Table 5.3 summarizes the APM algorithm with references to the sections where

each step was explained.

Section Algorithm: APM

5.1.2.1
ϕ := AngleBetween(w,v);

Ai := SelectAnimation(v,ϕ);

5.1.2.2
if (Ai , Ai−1) then

b := AgentBlendingFactor();

dt := CalculateDT(v,Ai);

5.1.2.3
Pt := getNextPose(Ai , Pt−1,dt);

d := CalculateDisplacement(Pt, Pt−1);

5.1.2.4

α := GetAngleAnim(Ai);

β := CalculateAngle(v);

ψ := α −ϕ;

AgentCA.PropagateAngleSpine(Pt,ϕ);

Table 5.3: The APM algorithm and the sections where each step is explained.

With the parameters calculated by the APM, we apply an absolute rotation of

(β − α) and add the displacement, d, to the previous position to render our

character satisfying the requirement given by the CS.
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5.1.3 . Results

The method presented only needs a small set of animation clips to obtain vi-

sually plausible results. By increasing the number of animations and/or the

quality of those animations (i.e. using motion capture data), we would obtain

improved results with no additional cost during simulation time.

The animation library in our examples consists of four walking forward ani-

mations, two side-step animations and four “walking on an angle” animations.

Per agent and per frame, on a Intel Dual Core 3GHz with 4GB of RAM, the

root displacement computation is less than 0.8µs. The whole APM algorithm

requires less than 0.021ms. Therefore, we could incorporate the APM into any

crowd simulation module, with an additional linear cost per frame of 0.021 ms

times the crowd size. Since typically not all the agents in a crowd are visible

simultaneously, we could apply the APM algorithm to only the few hundred

agents closest to the camera.

Figure 5.7: Path followed by an agent with close-ups of a turn.
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In order to satisfy the constraints given by the CA, our APM may need to

slightly modify the position of the root given by the CS. Figure 5.7 shows

the path followed by an agent, with a zoomed view of a sharp. Each blue/-

green segment corresponds to 75 frames of the animation (3 seconds). We

have represented the deviation introduced by the algorithm as a segment with

a green/blue ending indicating the position given by the CS and a black one

indicating the corrected position calculated by the APM.

Deviation is bigger where there are abrupt turns and blending simultaneously.

We have calculated the average deviation between the CS position and the APM

corrected position in order to determine the impact of our algorithm on the

final path. Running at 25 frames per second, on average we obtain a deviation

of less than 7.78mm per frame. Larger deviations correspond to segments 13

and 14 which are when the agent is turning sharply (Figure 5.8).

Figure 5.8: Deviations in mm for each segment of the path shown in Figure
5.7
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In Figure 5.9 we can see that deviations are larger at turns and reach maximum

values when there are repulsion forces between agents (e.g. at the doors where

agents congregate). In most of the frames the deviation stays under 1cm.

Figure 5.9: Paths for 20 agents showing the deviation with a color gradient
scale.
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5.2 . Synthesizing Motion Following Footsteps

Figure 5.10: An autonomous virtual human navigating a challenging obstacle
course (a), walking over a slope (b), exercising careful foot placement con-
straints including side-stepping (c), speed variations (d), and stepping back

(e). The system can handle multiple agents in real time (f).

In this section we present an online animation synthesis technique for fully

embodied virtual humans that satisfies foot placement constraints for a large

variety of locomotion speeds and styles (see Fig. 5.10). Given a database of

motion clips, we precompute multiple parametric spaces based on the motion

of the root and the feet. A root parametric space is used to compute a weight

for each available animation based on root velocity. Two foot parametric spaces

are based on a Delaunay triangulation of the graph of possible foot landing

positions. For each foot parametric space, blending weights are calculated as

the barycentric coordinates of the next footstep position for the triangle in the

graph that contains it. These weights are used for synthesizing animations that

accurately follow the footstep trajectory while respecting the singularities of

the different walking styles captured.

Blending weights calculated as barycentric coordinates are used to reach the

desired foot landing by interpolating between several proximal animations, and

IK is used to adjust the final position of the support foot to correct minor offsets,

foot step orientation and angle of the underlying floor.

Since foot parametric space only considers final landing positions of the feet

without taking into account root velocity, this may lead to the selection of an-

imations that satisfy position constraints but introduce discontinuities in root

velocity. To incorporate root velocity fidelity we present a method that can in-

tegrate both foot positioning and root velocity fidelity. Our method also allows

the system to recover nicely when the input foot trajectory contains steps that
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are not possible to perform with the given set on animations (for example, due

to extreme distance between steps).

The presented method is evaluated on a variety of test cases and error measure-

ments are calculated to offer a quantitative analysis of the results achieved. Our

framework can efficiently animate over sixty agents in real time (25 FPS) and

over a hundred characters at 13 FPS, without compromising motion fidelity or

character control, and can be easily integrated into existing crowd simulation

packages. We also provide the user with control over the trade-off between

footstep accuracy and root velocity.

5.2.1 . Framework Overview

Animating characters in real time animations has different requirements de-

pending on the application. In many applications, the user only wants to con-

trol the direction of movement and speed of the root, but there are other sit-

uation where a finer control of the foot positioning is required. For example

the user may want to respect different walking gaits depending on the terrain,

to make the character step over stones to cross a river, or walk through some

space full of holes whilst avoiding falling. For this purpose we have developed

a framework to animate virtual characters following footstep trajectories, while

still being able to follow trajectories based on the movement of the COM when

necessary. The main issue we address in this work is to provide an animation

system that is able to accurately follow footstep trajectories while meeting real-

time constraints, and that can be scaled up to handle large groups of animated

characters.

For this purpose, we introduce two parametric spaces based on position of each

foot: ΩfL and ΩfR , and switch between the two depending on the swing foot,

as well as a parametric space based on the root movement ΩfR . Our technique

takes into account both displacement (from ΩfL and ΩfR) and speed (from Ωr)

to ensure the satisfaction of both spatial and temporal constraints. Our system

provides the user with the flexibility to choose between different control gran-

ularities ranging from exact foot positioning to exact root velocity trajectories.

Fig. 5.11 shows our framework.
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Figure 5.11: Online selection of the blend weights to accurately follow a foot-
step trajectory. Ωr uses a gradient band polar based interpolator [Johansen,
2009] to give a set of weights wj , which are then used by the barycentric coor-

dinates interpolator to tradeoff between footstep and COM accuracy.

5.2.2 . Footstep-Based Locomotion

The main goal of the Footstep-based Locomotion Controller is to accurately

follow a footstep trajectory, i.e., to animate a fully articulated virtual human to

step over a series of footplants with space and velocity constraints. The system

must meet real-time constraints for a group of characters, should be robust to

sparse motion clips, and produce synthesized results that are void of artifacts

such as foot sliding and collisions.

5.2.2 . Motion Clip Analysis

From a collection of cyclic motion clips 1, we need to extract individual foot

steps. Each motion clip contains two steps, one starting with the left foot on

the floor, and one starting with the right one foot. A step, is defined as the ac-

tion where one foot of the character starts to lift-off the ground, moves in the

air and finishes when it is again planted on the floor. We say that a footstep cor-

responds to one foot when that foot is the one performing the action previously

described. The foot that stays in contact with the floor for most of the duration

of the footstep is called the supporting foot, since it supports the weight of the

1Although cyclic animations are not strictly required by our method, they help find
smoother transitions between consecutive footsteps and are preferred by most standard ani-
mation systems [Johansen, 2009].
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body. This applies even for running motions, where the support foot goes into

fly mode for a short phase of the footstep, but it is still the one supporting the

weight during most of the footstep.

During an offline analysis, each motion clip mi is annotated with the following

information: (1) vri : Root velocity vector. (2) dLi : Displacement vector of the left

foot. (3) dRi : Displacement vector of the right foot.

Similar to [Johansen, 2009], animations are analyzed in place, that is, we ignore

the original root forward displacement, but keep the vertical and lateral devia-

tions of the motion. This allows an automatic detection of foot events, such as

lifting, landing or planting, from which we can deduce the displacement vector

of each foot. For example, the displacement vector of the left foot dLi is obtained

by subtracting the right foot position at the instant of time when the left foot

lands, from the right foot position at the instant of time when the left foot is

lifting off. These displacements will be later used to move the whole character,

eliminating any foot sliding. By adding dLi to dRi and knowing the time duration

of the clip, we can calculate the average root velocity vector vri of the clip mi .

This average velocity is used to classify and identify animations, by providing

an example point which is the input for the polar gradient band interpolator (

where each example point represents a velocity in a 2D parametric space). Gra-

dient band interpolation specifies an influence function associated with each

example, which creates gradient bands between the example point and each of

the other example points. These influence functions are normalized to get the

weight functions associated with each example. However the standard gradi-

ent band interpolation is not well suited for interpolation of examples based on

velocities. The polar gradient band interpolation method is based on reasoning

that in order to get more desirable behavior for the weight functions of example

points that represent velocities, the space in which the interpolation takes place

should take on some of the properties of a polar coordinate system. It allows

for dealing with differences in direction and magnitude rather than differences

in the Cartesian vector coordinate components. For more details we refer the

reader to [Johansen, 2009].

Each motion clip is then split into two animation steps ALi for the left foot and

ARi for the right foot. For each foot, we need to calculate all the possible posi-

tions that can be reached based on the set of animation steps available. Since
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the same analysis is performed for both feet separately, from now on we will

not differentiate between left and right for the ease of exposition. For each in-

dividual animation step Ai and given an initial root position, we want to extract

the foot landing position pi , if the corresponding section of its original clip was

played. This is calculated by summing the root displacement during the section

of the animation with the distance vector between the root projection over the

floor and the foot position in the last frame.

The set {pi |∀i ∈ (1,n)} where n is the number of step animations, provides a

point cloud. Fig. 5.12 shows the Delaunay triangulation that is calculated for

the point cloud of landing positions. This triangulation is queried in real time

to determine the simplex that contains the next footstep in the input trajectory.

Once the triangle is selected, we will use its three vertices p1, p2 and p3 to

compute the blending weights for each of the corresponding animations A1, A2

and A3.

Figure 5.12: Delaunay triangulation for the vertices representing the landing
positions (pi , pi+1, pi+2,...) of the left foot when the root, R is kept in place.

5.2.2 . Footstep and Root Trajectories

Our system can work with both footstep trajectories and COM trajectories. A

footstep trajectory will be given as an ordered list of space-time positions with

orientations, whether it is precomputed or generated on-the-fly.
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The input footstep trajectory may be accompanied by its associated root trajec-

tory (a space-time curve, rather than a list of points, and an orientation curve),

or else we can automatically compute it from the input footsteps by interpola-

tion. This is achieved by computing the projection of the root on the ground

plane, as the midpoint of the line segment joining two consecutive footsteps.

The root orientation is then computed as the average between the orientation

vectors of each set of consecutive steps. This provides us with a sequence of

root positions and orientations which can be interpolated to approximate the

motion of the root over the course of the footstep trajectory.

5.2.2 . Online Selection

During run time, the system animates the character towards the current target

footstep. If the target is reached, the next footstep along the trajectory is chosen

as the next target. For each footstep qj in the input trajectory {q1,q2,q3, ...,qm}we

need to align the Delaunay triangulation graph with the current root position

and orientation. Then the triangle containing the next foot position is selected

as the best match to calculate the weights required to nicely blend between

the three animations in order to achieve a footstep that will land as close as

possible to the desired destination position qj (Fig. 5.13). Notice that these

weights are applied equally to all the joints in the skeleton, which means that

at this stage we cannot accurately adjust the specific foot orientation required

by each footstep in the input trajectory.

5.2.2 . Interpolation

Footstep parameters change between successive footplants, remaining constant

during the course of a single footstep (several frames of motion). Therefore

we need to compute the best interpolation for each footstep, blend smoothly

between consecutive steps, and apply the right transformation to the root in

order to avoid foot-sliding or intersections with the ground.

To meet these requirements, we use a barycentric coordinates based interpola-

tor in ΩfL and ΩfR , and constrain the solution based on the weights computed

in Ωr . This allows us to animate a character at the granularity of footsteps,

while simultaneously accounting for the global motion of the full body.
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Figure 5.13: By matching root position and orientation, we can determine the
triangle containing the destination position for the landing position qj .

If we only consider the footstep parametric space, then the vertices of the se-

lected triangle are the ones that can provide the best match for the desired foot

position. The barycentric coordinates of the desired footstep are calculated for

the selected triangle as the coordinates that satisfy:

qj = λ1 · p1 +λ2 · p2 +λ3 · p3, (5.4)

λ1 +λ2 +λ3 = 1

where p1, p2 and p3 are the positions of the foot landing if we run animation

steps A1, A2 and A3 respectively. The calculated barycentric coordinates are

then used as weights for the blending between animations. A nice property of

the barycentric coordinates is that the sum equals 1, which is a requirement for

our blending. Finally in order to move the character towards the next position,

we need to displace the root of the character adequately to avoid foot sliding.

The final root displacement vector, drj is calculated as the weighed sum of the

root’s displacement of the three selected animation steps (Eq. 5.5), and changes

in orientation of the input root trajectory are applied as rotations over the ball

of the supporting foot.
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Figure 5.14: Offsets for different landing positions in a triangle, between
barycentric coordinates interpolation (black dots) and blending the whole

skeleton using SLERP (blue dots).

drj = λ1 ·dr1 +λ2 ·dr2 +λ3 ·dr3 (5.5)

This provides a final root displacement that is the result of interpolating be-

tween the three root displacements in order to avoid any foot sliding. It is

important to notice that the barycentric coordinates provide the linear inter-

polation required between three points in 2D space to obtain the position qj

. This is an approximation of the real landing position that our character will

reach, as the result of blending the different poses of the three animation clips,

using spherical linear interpolation (SLERP) with a simple iterative approach

as described in [Shoulson et al., 2013]. Therefore there will be an offset be-

tween the desired position qj and the position reached after interpolating the

three animations. To illustrate this offset, Fig. 5.14 shows the points sampled

to compute barycentric coordinates in black, and in blue the real landing posi-

tions achieved after applying the barycentric weights to the animation engine

and performing blending using SLERP. In order to correct this small offset at

the same time that we adjust the feet to the elevation of the terrain and orient

the footstep correctly, we incorporate a fast and simple IK solver.

5.2.2 . Inverse Kinematics

An analytical IK solver modifies the leg joints in order to reach the desired

position at the right time with a pose as close as possible to the original motion
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capture data. For footstep-based control, the desired foot position is already

encoded in the footstep trajectory, and for COM trajectories the final position

is calculated by projecting the current position of the foot over the terrain. The

controller feeds the IK system with the end position and orientation for each

footstep. This allows the system to handle footsteps on uneven terrain.

5.2.3 . Incorporating Root Movement Fidelity

In some scenarios the user may be more interested in following root velocities

than in placing the feet at exact footsteps or with specific walking styles. We

present a solution to include root movement based interpolation in our current

barycentric coordinates based interpolator through a user controlled parameter

λ4.

For this purpose, we incorporate the locomotion system presented by Johansen [Jo-

hansen, 2009] to produce synthesized motions that follow a COM trajectory

with correction for uneven terrain. During offline analysis, a parametric space

is defined using all the root velocity vectors extracted from the clips in the mo-

tion database. For example, a walk forward clip at 1.5 m/s, and a left step clip

at 0.5 m/s produces a parametric space using the root velocity vectors going

from the forward direction to the 90o direction, and with speeds from 0.5 m/s

to 1.5 m/s.

Given a desired root velocity we define a parametric space Ωr , and a gradi-

ent band interpolator in polar space [Johansen, 2009] is created to compute the

weights for each animation clip to produce the final blended result. The gra-

dient band interpolator does not ensure accuracy of the produced parameter

values but it does ensure smooth interpolation under dynamically and contin-

uously changing parameter values, as with a player-controlled character. Once

the different clips are blended with the computed weights, the system predicts

the support foot position at the end of the cycle and projects it on the ground

to find the exact position where it should land.

The root movement based interpolator will select a set of k animations Ar1 to Ark
with their corresponding weights: w1, ...,wk. Each of those animations provides

a landing position pr1, ...,p
r
k, and if we only interpolated these animations we

would obtain the landing point r.
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In order to incorporate the output of the polar gradient band interpolator in

the barycentric coordinates based interpolator we proceed as indicated in Al-

gorithm 1.

Algorithm 1 Incorporating root movement fidelity
Input:

- The target position qj ,
- The current triangle

〈
p1,p2,p3

〉
,

- Root landing positions
〈
pr1, ...,p

r
k

〉
,

- Animation weights 〈w1, ...,wk〉 |w1 ≥ ... ≥ wk,
- A user input threshold ε,
- A user input weight parameter λ4

Output: λ1, λ2, λ3
1: for i = 1to 3 do
2: u← (i + 1) mod 3
3: v← (i + 2) mod 3
4: j← 1
5: replaced← false
6: while j ≤ 3∧¬replaced do
7: if

∥∥∥∥pi − prj∥∥∥∥ ≤ ε ∧ IsInT riangle (qj ,〈prj ,pu ,pv〉) then
8: pi ← prj
9: replaced← true

10: end if
11: j← j + 1
12: end while
13: end for
14: r← CalculateRootLanding

(〈
pr1, ...,p

r
k

〉
,〈w1, ...,wk〉

)
15: 〈λ1,λ2,λ3〉 ← ComputeWeights (

〈
p1,p2,p3

〉
,λ4, r)

The algorithm first checks whether a vertex of the current triangle
〈
p1,p2,p3

〉
can be replaced by any of the three vertices with highest weights selected by

the polar band interpolator, prj , j ∈ [1, k] (lines 1-13 in the algorithm). This

replacement takes place if the distance between the two landing positions pi
and prj is within a user input threshold ε (line 7), and the resulting triangle still

contains the desired landing position qj (function IsInTriangle returns true is

qj is inside the new triangle). This means that there is another animation that

also provides a valid triangle and has a root velocity that is closer to the input

root velocity.

Next, function CalculateRootLanding computes the landing position reached af-

ter blending the animations given by the root movement interpolator (Eq. 5.6).
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r =
k∑
i=1

wi · pri (5.6)

Finally, ComputeWeights calculates the three λi for the next footstep qj by incor-

porating a user provided λ4 and the result of the polar band interpolator r (Eq.

5.7).

qj = λ1 · p1 +λ2 · p2 +λ3 · p3 +λ4 · r (5.7)

and λi are defined using the following relationship:

λ1 +λ2 +λ3 +λ4 ·
k∑
i=1

wi = 1 (5.8)

Since wi and pri are known ∀i ∈ {1, ..., k}, and λ4 is a user input, we have a linear

system, where λ4 determines the trade-off between following footsteps accu-

rately (if λ4 = 0), and simply following root movement (if λ4 = 1).

Given any set of animation clips, if we allow the user to increase λ4 until

it reaches 1, there will be a maximum value β ∈ [0,1], for which one of the

barycentric coordinates of the vertices of the triangle will give a negative value.

Since we do not want to obtain negative weights, we determine β as the maxi-

mum value for which our system can accurately follow footstep trajectories. If

we further increase λ4 beyond the value β then the algorithm will provide the

blending values that correspond to a new point q′ which slowly moves along

the line joining the desired landing position q and the point pr . Therefore when

λ4 = 1 the resulting blending will be exclusively the one provided by the root

movement trajectory since λ1 = λ2 = λ3 = 0. Fig. 5.15 illustrate this situation.

Time Warping. Incorporating root velocity in the interpolation, does not al-

ways guarantee that the time constraints assigned per footstep will be satisfied.

Therefore once we have the final set of animations to interpolate between, with

their corresponding weights λi , i ∈ {1,2,3} and wj , j ∈ [1, k], we need to apply

time warping. Each input footstep fm has a time stamp τm indicating the time

at which position qm should be reached (where m ∈ [1,M] and M is the number

of footsteps in the input trajectory). The total time of the current motion, T
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Figure 5.15: The barycentric coordinates of q for λ4 ≥ β will make λ1, λ2 or λ3
negative. Therefore we need to move the landing location q′ from q to r as the

user increases the value of λ4 between β and 1.

can be calculated as the weighted sum of the time of the animation steps being

interpolated: T =
∑3
i=1(λi · t(Ai)) +

∑k
j=1(wj · t(Aj)). Therefore the time warping

factor that needs to be applied can be calculated as: warpm = (τm − τm−1)/T .

Outside the Convex-Hull. The foot step parametric space defines a convex-

hull delimiting the area where our character can land its feet. When our target

footstep position falls inside this area, clips can be interpolated to reach that de-

sired position. But if it falls outside this convex-hull, and we want the system to

still consider it and try to reach it. Our solution to handle this problem, consists

on projecting orthogonally the input landing position q over the convex-hull to

a new position qproj . Our system gives then the blending weights for qproj and

applies IK to adjust the final position. We include a parameter to define a max-

imum distance for the IK to set an upper limit on the correction on the landing

position. It is important to notice that even if the input trajectory has some

footsteps that are unreachable with the current data base of animation clips,

our system will provide a synthesized animation that will follow the input tra-

jectory as closely as possible, until it recovers and catches up with future steps

in the input trajectory. This situation is similar to the scenarios where the user

increases λ4 and then reduces it again.
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5.2.4 . Results

The animation system described in this section is implemented in C# using the

Unity 3D Engine [Unity, 2014]. The footstep trajectories used to animate the

characters are generated using the method described in [Singh et al., 2011] or

are created by the user. Some difficult scenarios, exercising careful footstep

selection are shown in Fig. 5.10 and Fig. 5.16. Agents carefully plant their

feet over pillars (Fig. 5.16-a), use stepping stones to avoid falling into the water

(Fig. 5.16-b), and even scale to handle over a hundred agents at 13 FPS (Fig.

5.16-c and Fig. 5.18).

Obstacle Course. We exercise the locomotion dexterity of a single animated

character in an obstacle course. The character follows a footstep trajectory with

different walking gaits , alternating running and walking phases (Fig. 5.10-a,b),

and including sidesteps (Fig. 5.10-c) and backward motion (Fig. 5.10-e).

Stepping Stone Problem. Stepping stone problems (Fig. 5.16-b) require care-

ful footstep level precision where the environment constraints require the char-

acter to place their feet exactly on top of the stones in order to successfully

navigate the environment. Our framework can be coupled with footstep-based

controllers to solve these challenging benchmarks.

Integration with Crowd Simulator. We integrate our animation system with

footstep-based simulators [Singh et al., 2011]; our character follow the sim-

ulated trajectories without compromising its motion fidelity while scaling to

handle large crowds of characters (Fig. 5.16-c).

It is important to mention that the quality of the results depends strongly on

the quality of the clips available from the motion capture library. As can be seen

in the video, the least precise movements in our results are side steps and back

steps. This is due to two reasons: (1) we had a small number of animations com-

pared to other walking gaits, and thus triangles covering that space have larger

areas, and (2) interpolation artifacts appear when blending between animations

that move in opposite directions (for example a backwards step with a forward

step). We believe that having a better and denser sampling in these areas will

improve the results. For steps falling in triangles of smaller areas, and with all

the vertices in the same quartile we have obtained results of high quality even

for difficult animations such as running or performing small jumps.
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(a)

(b)

(c)

Figure 5.16: (a) Agents accurately following a footstep trajectory and avoid-
ing falls by carefully stepping over pillars. (b) The stepping stone problem is
solved with characters avoiding falls into the water. (c) A crowd of over 100

agents simulated at interactive rates.
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5.2.4 . Foot Placement Accuracy

The presented barycentric coordinates interpolator assumes a small offset be-

tween the results of linearly interpolating landing positions from the set of ani-

mations being blended, and the actual landing position when calculating spher-

ical linear interpolation over the set of quaternions. This small offset depends

on the area of the triangle, so as we incorporate more animations into our data

base, we obtain a denser sampling of landing positions and thus reduce both

the area of the triangles and the offset. We believe this is a convenient trade off

since such a small offset can be eliminated with a simple analytical solver but

the efficiency of computing barycentric coordinates offers great performance.

It is also important to notice, that if exact foot location is not necessary, and the

user only needs to indicate small areas for stepping as in the watter scenario,

then it is not necessary to apply the IK correction. Fig. 5.17 shows the offset

between the landing position and the footstep. The magnitude of the error is il-

lustrated as the height of the red cylinders that are located at the exact location

where the foot first strikes.

Figure 5.17: The red columns show the small offset between landing position
and the footstep when the IK corrections are not being applied.

5.2.4 . Performance

Fig. 5.18 shows the frame rate we obtain as we double the number of agents.

It is important to notice that increasing the number of animations would en-

hance the quality and accuracy of the results, with just a small overhead on the

performance.

The average time of the locomotion controller is 0.43ms, this process includes

blending animations, IK, the polar band interpolator and our barycentric co-

ordinates based interpolator. The computational cost of our footstep interpo-

lator is 0.2 ms, which is amortized over several frames as the interpolation in
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Figure 5.18: Performance of the Footstep Locomotion System in frames per
second as the number of agents increases.

ΩfL or ΩfR only need to be performed once per footstep. This time is divided

between computing the root movement polar band interpolator which takes

0.155ms and our barycentric coordinates interpolator which takes 0.045ms.

Performance results were measured on an Intel Core i7-2600k CPU at 3.40GHz

with 16GB RAM.
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5.3 . Conclusions on Crowd Animation

Our first contribution in crowd animation has been a realistic, yet computa-

tionally inexpensive, method to achieve natural animation without foot-sliding

for crowds. Our goal was to free the crowd simulation module from the com-

putational work of achieving natural looking animations and focus instead on

developing crowd behavior that looks realistic. We proved that natural looking

results can be obtained with a minimal library of animation clips and that this

method can be integrated with any crowd simulation software, at the expense

of slightly modifying the positions of the agents.

We can classify the APM as a motion parametrization approach within the ex-

ample based methods of locomotion synthesis. Using only root velocities and

positions of the agents it synthesizes locomotion in a natural way. The advan-

tage is that it is a robust and efficient method that does not require a large

amount of motions in our database. These were manually created in our exper-

iments, although we believe results would be much better with motion capture

animations. The low computational cost of this approach also guarantees that

it can easily been scaled up to crowds of hundreds or thousands of agents.

With the APM we also have a presented a simple yet effective method to remove

foot sliding. By using the real displacement of the root within the current syn-

thesized motion, we avoid any possible skating. The major drawbacks are the

need of slightly modifying the end position of the agent in the simulation, and

the need to detect which foot is on the floor.

We have also presented a system that uses multiple parameter spaces to ani-

mate fully embodied virtual humans to accurately follow a footstep trajectory

respecting root velocities, using a relatively small number of animation clips

(24 in our examples). Our method is fast enough to be used with tens of charac-

ters in real time (25 FPS) and over a hundred characters at 13 FPS. The method

can handle uneven terrain, and can be easily extended to introduce additional

locomotion behaviors by grouping new sets of animation clips and generating

different parametric spaces. For example, walking and running motions can

be blended together, but if we wanted to add crawling motions or jumping mo-

tions, it would be better to separate them in different parametric spaces for each
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style. This will avoid unnatural interpolations that can appear when blending

between very different styles. Having different parametric spaces requires some

sort of classification, which could initially be done manually but it could also

be based on the characteristics of the motion, such as changes in acceleration,

maximum heights of the root, length of fly phase, etc.

We do not run physical or biomechanical simulations, and use interpolation

and blending between motion capture animations. Our method accuracy de-

pends on the variety of animation clips, while its quality and efficiency depends

on the number of clips. A trade-off between efficiency and accuracy is therefore

necessary, for which we have found a good equilibrium.

One limitations is that in order to reduce the dimensionality of the problem,

we have not included in our parametric space the orientation of the previous

footstep. Ignoring the final orientation of the character at the end of the previ-

ous step can induce some discontinuities between footsteps. We mitigate this

effect by blending between footsteps automatically for a small amount of time

(about 0.2 seconds) at the advantage of reducing the computational time and

thus making our method suitable for large groups of agents in real time.

Regarding the selection of animation at the end of each foot step, notice that

in our database, left and right animation steps are extracted from complete

animation cycles that are usually consistent in parameters such as velocity, ac-

celeration and walking gait. Therefore for a given sequence of steps, the most

likely animation steps to be chosen will be those extracted from the same set

of animation cycles, thus resulting in smooth and natural transitions between

very similar steps. When the characteristics of the steps change drastically,

then our method needs to blend between steps from very different animation

cycles. So in general, alternating left/right steps results in natural transitions

with smooth continuity when blending animations, and only when the input

step trajectory changes drastically between each pair of steps, we may observe

transitions between animations that feel unnatural. This can happen if the step

trajectory is done manually with artifacts due to the user lack of experience cre-

ating footstep trajectories, or for example when the input trajectory forces the

character to walk over artificially located steps, like crossing a river by step-

ping over stones. We would like to empathize that this situation would also

look awkward in the real world and thus the result of our synthesize animation

may be the desired one.
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These two approaches have a common goal which is generating natural ani-

mations for crowds from a small library of motion clips, but they work with

different input, root trajectories for the former, and foot-step trajectories for

the later. Recalling our contributions in crowd simulation, these two kind of

outputs could correspond to different granularities of control, that could for

example be applied for different levels of detail. For example closer agents

could be simulated using footsteps while agents in the background could just

use root trajectories. Another possibility could be to replace the polar gradient

band interpolation of our second approach, used to switch to root control, by

our APM approach.
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Rendering detailed animated characters is a major limiting factor in crowd sim-

ulation. In this chapter we present two methods for rendering thousands of

animated characters in real-time. We maximize rendering performance by us-

ing a collection of pre-computed impostors sampled from a discrete set of view

directions. The first method is based on relief impostors and the second one in

flat impostors. Our work differs from previous approaches on view-dependent

impostors in that we use per-joint rather than per-character impostors. Char-

acters are animated by applying the joint rotations directly to the impostors,

instead of choosing a single impostor for the whole character from a set of pre-

defined poses. This representation supports any arbitrary pose and thus the

agent behavior is not constrained to a small collection of predefined clips. To

the best of our knowledge, this was the first time a crowd rendering algorithm

encompassing image-based performance, small GPU footprint and animation-

independence was proposed.
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6.1 . Relief Per-Joint Impostors

Relief mapping [Oliveira et al., 2000] has been proven to be a powerful tool

to encode detailed geometry and appearance information. Most importantly,

since relief maps support efficient random-access, impostors based on relief

mapping are output sensitive, i.e. their rendering cost is roughly proportional

to the area of their screen projection. This feature makes relief impostors espe-

cially suitable for accelerating the rendering of scenes involving a huge number

of objects.

(a) (b) (c) (d)

(e)

Figure 6.1: Overview of our approach: A bounding box is created for each
articulated part of an animated character (a). Color (b), normal (c) and depth
information is projected onto the box faces, which are rendered through relief
mapping (d). Image (e) shows a crowd with about 5,000 agents, all of them

rendered with our relief impostors.
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In this section, we present a new representation for animated characters (Fig-

ure 6.1) which uses relief impostors to represent the different body parts of the

character delimited by the bones of the skeleton. Each character is encoded

through a collection of oriented bounding boxes, where each box represents

the geometry influenced by a particular bone. Textures are projected orthog-

onally onto the six faces of each box. For each face we store two textures en-

coding color, normal and depth values. During animation the bounding boxes

are transformed rigidly by a vertex shader according to the transformation of

the associated bone in the animated skeleton. A fragment shader efficiently re-

covers the details of the avatar’s skin and clothing using an adapted version of

relief mapping.

Unlike competing output-sensitive approaches, our compact representation has

no preprocessing requirements (construction can be performed at load time)

and does not require us to predefine the animation sequences nor to select a

subset of discrete views. Our performance experiments show a significant im-

provement with respect to geometry rendering. We have also conducted user

perception tests validating our technique for rendering agents at middle and

far distances from the observer.
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Relief Mapping

Among image-based techniques, relief mapping [Policarpo et al., 2005]

has proven to be useful for recovering high-frequency geometric and

appearance details. Relief maps store surface details in the form of a

height field. Typically the RGB channels encode a normal or a color

map, while the alpha channel stores quantized depth values. The

programmability of modern GPUs allows us to recover the original

geometry by a simple ray-heightfield intersection algorithm executed

in the fragment shader [Policarpo et al., 2005]. Acceleration tech-

niques for computing the ray-heightfield intersection include, among

others, linear search plus binary search refinement [Policarpo et al.,

2005], varying sampling rates [Tatarchuk, 2006], precomputed distance

maps [Baboud and Décoret, 2006], cone maps [Policarpo and Oliveira,

2007] and quadtree relief-mapping [Schroders and Gulik, 2006].

Other recent techniques adopt a relief mapping approach to encode

details in arbitrary 3D models with minimal supporting geometry [An-

dujar et al., 2007, Baboud and Décoret, 2006]. Unfortunately, these

output-sensitive approaches are limited to static geometry.

Only a few works attempt to animate geometry encoded as relief im-

postors. In [Pamplona et al., 2008] the animator is requested to create

an animation by manually defining and moving a few control points

in texture space. Radial basis functions are used to warp the original

image by texture coordinate modification. The above method suffers

from two major limitations: control points defining the animation are

just moved in 2D, providing only image-warp animation, and it does

not support standard skeletal animation.
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6.1.1 . Our Approach

6.1.1 . Overview

We aim at increasing the number of simulated agents in real-time crowd simu-

lations by reducing the rendering cost of individual agents. This involves using

a simple representation for animated characters supporting output-sensitive

rendering, so that rendering times are roughly proportional to the number of

rendered fragments, instead of depending on the complexity of the underlying

surface. Therefore only characters that are very close to the observer are ren-

dered as polygonal meshes, while the rest of the agents are rendered using our

new relief impostor method. We assume the input character conforms to the

de facto standard in character animation and thus consists of a textured polyg-

onal mesh (skin), a hierarchical set of bones (skeleton) and vertex weights. We

assume that both the skin and the skeleton have been designed in a reference

pose. The nodes of the skeleton represent joints and the edges represent the

bones. Since each bone can be easily identified by its origin, we can use the term

joint interchangeably. The transformations affecting joints in the hierarchy are

assumed to be rigid. The vertex weights describe the amount of influence of

each joint on each vertex.

Since we want to keep preprocessing and memory costs at a minimum while

still supporting real-time mixing of animation sequences, we use a separate

relief impostor for each animated part of the articulated character. Our rep-

resentation for distant characters consists of a collection of oriented bounding

boxes (OBB), one for each bone in the skeleton, along with a collection of tex-

tures projected into the OBB faces, encoding color, normal and depth values

(Figure 6.1). The OBB will be transformed in the same way as the bones of the

skeleton, giving the impression that our impostor character is animated.

Our approach differs from previous work in several aspects. First, we do not at-

tempt to animate a single relief impostor representing a whole character [Pam-

plona et al., 2008], but to provide relief impostors representing an already ani-

mated character. Second, we require much less memory than competing image-

based approaches which require prerendering the character for every possible

animation frame for a large set of view angles.
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Third, compared to previous image-based techniques, the cost of adding new

characters is drastically lower as new animations can be added at no cost at

all. Furthermore, our technique allows blending animations and also running

animations at arbitrary speeds (including slow-motion) since we are not limited

to a discrete set of animation frames.

Finally, our method provides a detailed rendering for any character, viewpoint,

and animation sequence.

Our implementation relies on the Halca animation library [Spanlang, 2009] to

draw the animated characters from which we create our impostors. Halca is

a hardware-accelerated library for character animation which is based on the

Cal3D XML file format [Cal3D, 2014] to describe skeleton weighted meshes,

animations, and materials. Our current implementation works with any ani-

mated avatar and any animation that can be exported to the Cal3D format.

6.1.1 . Construction

The construction of our relief impostors from a given 3D character proceeds

through the following steps, described in detail below:

1. Associate mesh triangles with impostors.

2. Select a suitable pose for capturing the impostors.

3. Compute the bounding boxes with the chosen pose.

4. Capture the textures of each bounding box.

Step 1. We start by assigning mesh triangles with impostors, where each im-

postor corresponds to a joint of the articulated character. We assume that each

input vertex vi is attached to joints J1, . . . Jn with weights w = (w1, . . .wn). Now

the problem is, given a triangle with vertices v1,v2,v3, to decide which impos-

tors the triangle will be attached to. This determines which triangles will be

captured by the impostor. Since we want to keep preprocessing tasks at a min-

imum, we only tested simple, automatic solutions.

One extreme option is to allocate mesh triangles to joints, attaching each tri-

angle to a single joint. More specifically, each triangle is attached to the joint
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having the largest influence over the triangle (the influence of a joint over a tri-

angle is computed as the sum of the joint weights over the triangle’s vertices).

It turns out that this partition tends to produce visible gaps in the joint bound-

aries during animation; the higher the deviation with respect to the reference

pose, the larger the resulting gaps.

The opposite approach would consist of attaching each triangle to a bone if at

least one of its vertices is influenced by the bone, regardless of the correspond-

ing weight. Therefore some triangles (those around joints) would be attached

to a variable number of impostors, resulting in overlapping parts among joints.

These overlapping parts produce protruding geometry when the character is

rendered in a pose other than the capture pose.

Therefore we propose an optimized strategy where triangles are assigned to

joints based on a given user-defined threshold ε. In this approach a triangle is

attached to a joint if any of its vertices has a weight above ε. This approach

assigns triangles to one or more joints, except for triangles where none of the

weights are above the threshold. In this particular case we fall back to the first

approach, i.e. the triangle is assigned to the joint with the highest influence.

On the one hand high values for ε result in less protruding artifacts, but on

the other hand low values for ε result in less cracks. Experimentally, we found

that a threshold ε = 0.5 worked well on all our test characters, minimizing both

cracks and protruding artifacts (Figure 6.5).

Notice that all the strategies above only use vertex weights and thus are pose-

independent.

Step 2. The second step is to choose a suitable pose for capturing the im-

postors. Triangles are captured according to the chosen pose, i.e. after mesh

vertices have been blended according to the pose (using linear blend skinning).

This choice of pose affects the captured geometry. Ideally, we should select a

pose representing a somewhat average pose of the animation sequence.

For example, if the animation sequence shows a character walking with the

arms in a rest position, it is better to capture the triangles around the shoul-

der with the arms in such a position rather than when stretching arms out

sideways. Since impostors will undergo only a rigid transformation, choos-

ing a pose corresponding to a walking animation keyframe tends to minimize

Simulation, Animation and Rendering of Crowds in Real-Time by Alejandro Beacco 189



6. Contributions to Crowd Rendering

artifacts around joints. Our current implementation uses a pose from a walk-

ing animation sequence, rather than the reference pose. Notice that the above

choice only affects triangles influenced by multiple joints; triangles influenced

by a single joint will be reconstructed in their exact position regardless of the

selected pose.

Step 3. Once a suitable pose has been chosen, we deform the mesh accordingly

by applying linear blend skinning to the mesh vertices, i.e. the transformed

vertex v′ is computed as v′ =
∑
wiMJiv, where MJi is the rigid transformation

matrix from the reference-pose of joint Ji to its actual position in the chosen

posture. The bounding box of each impostor is then computed as the oriented

bounding box (OBB) of the (transformed) triangles attached to the impostor.

Step 4. The last step is to render the deformed mesh to capture the relief

maps corresponding to each one of the six faces of its bounding box. For each

bounding box face, we set up an orthographic camera with its viewing direction

aligned with the face’s normal vector, and then render the triangles attached to

the corresponding impostor. We capture the following RGBA textures (Figure

6.2):

• Color map: the RGB channels encode the color, and the alpha channel

encodes the minimum (front) depth value zf .

• Normal map: the RGB channels encode the normal vector, and the alpha

channel encodes the maximum (back) depth value zb.

Front depth values are captured by rendering the attached triangles with the

default GL LESS depth comparison function. Likewise, back depth values are

captured by clearing the depth buffer with a zero value (instead of the default

unit value) and switching depth comparison to GL GREATER. Although stor-

ing both depth values is redundant (front depth values of a face equal one mi-

nus back depth values of the opposing face), we have chosen this option to

improve the locality of texture fetches during rendering.

In order to speed up rendering we reorganized the textures to have both depth

values in the same texture. We still keep only two textures, but now the four
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(a) (b) (c) (d)

Figure 6.2: Color (a), normal (b), front depth (c) and back depth (d) values are
encoded as two RGBA textures.

channels of the first texture encode (R,G,zf ,zb) and the second texture encodes

(B, nx, ny , nz). This reduces to one half the number of texture fetches during the

ray-heightfield intersection step of relief mapping.

The vertices of all bounding boxes of a character are stored in a single Vertex

Buffer Object (VBO), which is shared by all the instances of the same character.

Color and normal maps of each character are stored in texture arrays to avoid

texture switching while rendering the instances of the same articulated charac-

ter.

Since a typical animated character for crowd simulation consists of about 21

bones, this accounts for storing 21 × 6 × 2 = 252 RGBA textures per charac-

ter. This is quite reasonable, considering that competing output-sensitive ap-

proaches need to capture the character for each view angle (typically 136 dis-

crete view directions are sampled) and for each animation frame (typically sam-

pled at 10Hz). So for one second of animation, 64×64 textures (which provides

a resolution of about 1cm/texel for geometry, colors and normals) and 4 bytes

per pixel, it would require about 136× 64× 64× 10× 4 = 22 MB approximately.

With our technique each character requires only about 4 MB of storage.

6.1.1 . LOD for Relief Impostors

As the characters move away from the camera, we can further speed up ren-

dering by having a hierarchical representation of our relief impostors. We con-

struct a new representation with fewer boxes by merging boxes, i.e. a father

node absorbs its child nodes. The OBB associated with the father node is recom-

puted to include the geometry of the child nodes. New textures are captured for
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the new OBBs and for this representation all the geometry included in an OBB

will undergo the rigid transformation applied to the father. For instance, if we

enclose the hand, fore-arm and upper-arm inside a single OBB, then the hand

will not move other than following the upper-arm transformations. Notice that

once the user selects the target number of boxes for each LOD and the bones

associated with each of them, the task of creating OBBs and capturing textures

is fully automatic. For the experiments we used relief impostors with 21, 7,

and 1 boxes (see Figure 6.4). The 1-bone LOD has obviously no deformations,

which is appropriate only for characters very far away from the camera.

6.1.1 . Real-Time Rendering

Our current prototype uses multiple level-of-detail representations for each

character type; a textured polygonal mesh which is used for agents close to the

viewpoint, and the multiresolution impostor set described above for the rest of

agents. We first render nearby polygonal agents (grouped by character type to

minimize rendering state changes) and then the rest of the agents as impostors

(again grouped by character type and LOD).

Each character is rendered through an adapted version of relief mapping over

the fragments produced by the rasterization of the transformed bounding boxes.

The CPU-based part of the rendering algorithm proceeds through the following

steps:

1. Bind the corresponding texture arrays (color and normal maps) into dif-

ferent texture units, and bind also the vertex buffer object with the ge-

ometry of the bounding boxes in the pose used to capture the impostors.

These steps are performed only once per character type.

2. Draw the bounding box associated with each bone, to ensure that a frag-

ment will be created for any viewing ray intersecting the underlying ge-

ometry.

The vertex shader multiplies the incoming vertices of the bounding boxes by

the corresponding rigid transformation matrix so that they follow the original

skeleton animation. The vertex shader also transforms the variables encoding
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the location and orientation of each relief map, as these will be used in the

fragment shader.

The most relevant part of the rendering relies on the fragment shader, which

uses the depth values stored in the color and normal maps to find the inter-

section P of the fragment’s viewing ray with the underlying geometry. For

this particular task any ray-heightfield intersection algorithm can be adopted.

Pyramidal displacement mapping [Oh et al., 2006] is particularly suitable as it

guarantees finding the correct intersection on any heightfield and viewing con-

dition. Our current prototype though is based on the simpler relief mapping

algorithm described in [Policarpo et al., 2005].

The fragment shader receives as input the following information:

• World space viewpoint coordinates E.

• World space fragment coordinates C.

• The origin o of the face, i.e. the vertex whose texture coordinates are (0,0).

• An orthonormal basis of the bounding box face, consisting of a normal

vector n and two vectors (u,v) aligned along the horizontal and vertical

sides of the transformed face.

The fragment shader computes the intersection of the fragment’s viewing ray

r = (C − E) with the height field encoded by the displacement values stored

in the relief map. If no intersection is found, the fragment is discarded. As

in [Policarpo et al., 2005], we use first a linear search by sampling the ray r

at regular intervals to find a ray sample inside the object, and then a binary

search to find the intersection point. This allows us to retrieve the diffuse color

of the fragment being processed, along with a normal vector to compute per-

fragment lighting. Unlike classic relief mapping, we use two depth values zf
and zb per texel. During the search process, a sample along the ray with depth

z is classified as interior to the object iff zf ≤ z ≤ zb.
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6.1.2 . Results

We have implemented the construction and rendering algorithms described

above in C++ and OpenGL 3.2.

The algorithms have been tested on a collection of detailed human characters

from the aXYZ Design’s Metropoly 2 data set (Figure 6.3). When converted

to Cal3D format, the triangle meshes had 4K to 6K triangles, and used 2048 ×
2048 texture atlases for diffuse color and normal data. All models were initially

rigged to 67-bone skeletons. Reported results have been measured on an Intel

Core2 Quad Q6600 PC equipped with a GeForce 8800 GT.

Figure 6.3: Test data set. Each mesh contains between 4K and 6K polygons.

6.1.2 . Impostor Creation

The conversion of the input character meshes into a multiresolution collection

of relief impostors took on average 859 ms on the test hardware, including all

steps detailed in Section 6.1.1. We created three LOD representations with 21,

7 and 1 boxes, respectively (Figure 6.4).

All relief textures (diffuse, normal and depth maps) were captured at 64 × 64

pixels and stored in a single texture array shared by all the instances of the

same character. This resulted in 21 × 6 × 642 × 8 = 3.95 MB for the finest LOD,

1.31 MB for the intermediate LOD, and 192 KB for the coarsest LOD, i.e. about

5.25 MB per character type.

Although our image-based representation is a bit redundant, both within a LOD

level (a single surface point is often captured by 1-3 box faces) and across levels

(each LOD has its own collection of relief maps), it is still several orders of mag-

nitude more efficient, in terms of memory space, than competing image-based

approaches requiring a separate image for each view direction and animation

frame.
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Figure 6.4: Relief impostors consisting of 21, 7 and 1 boxes.

(a) (b) (c) (d)

Figure 6.5: Artifacts due to lack of geometric skinning: (a) original mesh, (b)
impostors created by assigning each triangle to a single joint, (c) impostors
created by assigning to each joint all the triangles influenced by the joint, and

(d) impostors created by our threshold-based strategy.
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Figure 6.6: An animated character rendered using our 21-box relief impostor
representation.

6.1.2 . Image Quality

Our relief impostor representation aims at accelerating the rendering of ani-

mated characters at the expense of some image quality loss. Image artifacts in

the resulting images may fall into the following categories (the surface associ-

ated to a particular bone will be referred to as a surface patch):

Surface undersampling due to non-height field patches. We represent each sur-

face patch with six orthogonal relief maps, where each relief map stores

a single depth value per texel. Therefore we assume that surface patches

look like a height-field when seen from any of these six directions. More

formally, we assume that for any axis-aligned ray there is at most one

frontface and at most one backface intersection with the surface patch. If
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this assumption fails for some axis-aligned direction, the extra intersec-

tions between the nearest one at zn and furthest one at zf will be ignored,

causing the relief mapping algorithm to reconstruct the surface as if the

whole segment from zn and zf were interior to the object. This could be

dealt with by storing multiple depth values per texel, as in [Policarpo and

Oliveira, 2006]. Fortunately, our surface patches for the 21-bone skeleton

correspond to simple body parts such as upper and lower leg, upper and

lower arm, chest, and head, for which the height-field condition above

typically holds. Therefore the assumption above produces no artifacts

without requiring the storage of additional depth values.

Texel-to-pixel ratio. Since our impostors are image-based, the accuracy of the

geometric and appearance details is obviously limited by the texel-to-

pixel ratio [Dobbyn et al., 2005]. Therefore we must ensure that textures

are large enough to keep the texel-to-pixel ratio above 1:1 for all the view-

ing distances associated to the textures. Since our 64x64 textures guaran-

tee the above ratio, no image undersampling artifacts appear in the final

images.

Depth quantization. The relief mapping algorithm relies on depth values to

find the intersection of per-fragment viewing rays with the underlying

height-field. We quantize such depth values (which are relative to the box

dimensions) using 8-bit integers. Since our boxes have moderate sizes

(with the longest edge typically below 50 cm), 8-bit quantization results

in (at least) 0.2mm accuracy, which is sufficient to prevent any visible

quantization artifact.

Missing ray-surface intersections. Some relief mapping implementations do

guarantee that correct ray-surface intersections are always found [Oh et al.,

2006, Schroders and Gulik, 2006] whereas others do not [Policarpo et al.,

2005]. This issue has been extensively discussed in the literature and can

be dealt with in multiple ways (see e.g. [Schroders and Gulik, 2006]).

Lack of geometric skinning. This issue is by far the major limiting factor when

considering the valid distance range for our relief impostors. Recall that

we animate each relief impostor using the rigid animation of the associ-

ated bone. This contrasts with geometric skinning techniques (such as lin-

ear blending and dual-quaternion blending) typically applied when ani-

mating geometry-based characters, where some vertices are influenced by
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more than one bone. In our case, each surface patch is fully influenced by

its corresponding bone. This obviously results in some artifacts around

joints (triangles influenced by a single bone are reconstructed correctly

though). These artifacts might include cracks (e.g. if mesh triangles are

assigned to a single bone) or overlapping parts (e.g. if each mesh trian-

gle is assigned to all the bones influencing the triangle, regardless of the

weights). Fortunately, our optimized construction results in much less

artifacts around joints (Figure 6.5).

Figure 6.6 shows multiple views of one character rendered with our 21-bone

impostors. Note that these artifacts are hardly noticeable for moderate viewing

distances. Figure 6.7 shows several animation frames of the characters in the

test dataset rendered with our 21-bone impostors. Although the images show

that artifacts may appear around the joints, these are very hard to perceive in

the context of a crowd simulation. Figure 6.8 compares renders using 21-bone

and 7-bone representations, respectively. The 1-bone LOD obviously supports

no deformations and thus it is reserved for characters very far away from the

camera.

One of the features of our approach is the joint handling of geometric and ap-

pearance details, encoded through displacement, diffuse and normal maps. The

effects of reducing the size of the texture maps is illustrated in Figure 6.9. A

side benefit of this approach is that we can use a mipmap pyramid for better

minification filtering with no color bleeding artifacts. This is a feature often

lacking in polygonal characters, which typically use texture atlases with multi-

ple disconnected patches, thus hindering mipmapping rendering.

6.1.2 . Mesh vs Impostor Rendering

Comparing the performance of our impostors with that of the full-resolution

mesh is clearly unfair, as in a real-world application, each character instance

would be rendered using an appropriate LOD chosen according to, among other

factors, its distance to the viewpoint. We thus compare our approach with a

discrete collection of LOD meshes. We use the following notation. LOD rep-

resentations using relief impostors will be denoted as Rj , j being the number

of bones/boxes. As stated above, we constructed three representations R21, R7
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Figure 6.7: Relief impostors corresponding to the test dataset.
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and R1 with 21, 7 and 1 bones, respectively. LOD representations using tex-

tured polygonal meshes will be denoted as Mi , i being the percentage of origi-

nal polygons, M100 denoting the full-resolution mesh. We simplified the input

mesh to generate LODs M90, M85, . . .M5 and M2.5 (Figure 6.10). Mesh sim-

plification was accomplished using the Optimize filter of Autodesk 3DS MAX

2010.

Figure 6.8: Rendering relief impostors with 21 bones (top) and 7 bones (bot-
tom). Note that in the 7-bone representation the head bone has been collapsed

with the trunk and thus both undergo the same transformation.

Figure 6.9: Relief impostors with decreasing texture sizes.
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Figure 6.10: From left to right we show the original mesh M100 and some
examples of the simplified meshes M75, M55, M35, M20 and M2.5

We are now interested in a criterion to measure the quality of each representa-

tion, which will be used both to compare mesh-based and impostor-based rep-

resentations, and to select the appropriate LOD according to the distance to the

viewer. Note that a measure of the geometric approximation error only makes

sense for static polygonal meshes, and that it would ignore visual errors due

to distortions of the diffuse and normal maps. We thus adopt an image-space

error metric, computed using multiple animation frames and view directions.

Let L be a particular LOD representation of an animated character, using ei-

ther mesh geometry or relief impostors (i.e. L ∈ {M100 . . .M2.5,R21,R7,R1}). Let

φ(L,d) be the average image difference resulting from rendering a character at

distance d using the representation L instead of the full-resolution mesh M100.

screen-projected area or subtended solid angle, provided that we fix some view-

ing conditions. For all the discussion below, we used a 21’ LCD monitor with

a 1024×1024 viewport. The field of view of the camera was set to 60 degrees,

and the viewing distance from the LCD monitor was set to 60 cm. Note that

these typical viewing conditions for a desktop user can be used to determine

both the viewing angle subtended by an animated character at some particular
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distance from the camera, as well as its screen-projected area. Thus from now

on we will refer only to character-to-camera distances.

Since the image difference obviously depends on both the animation frame and

the viewing angle, we can compute φ(L,d) by selecting a representative set of

animation frames and a sufficiently dense discretization of the view directions

in the Gauss sphere, and averaging the resulting image differences. We chose

the root mean square (RMS) error as an objective measure to compare the image

differences. We could have adopted perceptual-based image metrics [Yee and

Newman, 2004], which integrate factors of the human visual system that reduce

the sensitivity to errors, but these metrics are more appropriate for comparing

two final, complete images rather than renders of individual agents. This is

because high-level HVS models go beyond simple models of brightness and

contrast and consider for example masking effects, i.e. decreased visibility of

a signal due to background contrast. These effects can be measured only on

complete images, where each pixel has a well-defined context. In our case we

aim at comparing the rendering of individual characters (thus only a part of the

final image) without prior knowledge on the context/background. This is why

we discarded HVS-based metrics for comparing the renderings of single, iso-

lated characters, and we chose the broadly-adopted RMS error for this purpose.

We thus computed φ(L,d) by averaging (in the L2 norm sense) the RMS image

differences along 4 equally spaced frames and 10 view directions uniformly

distributed on the upper half-sphere surrounding the character. This amounts

to 40 samples for computing φ(L,d), which gives quite reliable results.

Given a certain distance d, we are interested in the simplest mesh level Mi and

the simplest relief level Rj the rendering of which produces an image error be-

low some threshold ε. In other words, we want to compute mini{φ(Mi ,d) < ε}
and minj{φ(Rj ,d) < ε}. We call the resulting pair Mi , Rj the optimal representa-

tion for distance d.

We conducted an informal user study to decide a proper error threshold, con-

sidering the viewing conditions detailed above. Nine users (aged 23-35) partic-

ipated in the experiment. Users were presented a video showing an animated

character side-by-side, one side rendered using detailed polygonal meshes, and

the other side using impostors. Every 10 seconds we doubled the distance from

the character to the camera, thus decreasing its screen-projected area. Users
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were requested to stop the movie as soon as they perceived no difference be-

tween both sides of the image. We recorded the resulting RMS error. We

observed that the average RMS error was 0.004, and that none of the users

were able to find any difference for a RMS error below 0.003. Therefore we

set ε=0.003 to prevent users from perceiving any visual difference between the

original and the simplified representation.

The resulting number of primitives for this error threshold are shown in Fig-

ure 6.11. Note that triangle mesh rendering requires drawing about one order

of magnitude more primitives than impostor rendering, under matching qual-

ity conditions. For example, for a character at 15 m, a 4k triangle mesh (8k

vertices) is needed to keep the RMS error below ε=0.003, whereas the match-

ing impostor has 126 quads (168 vertices). In terms of per-vertex processing,

the polygonal mesh requires about 33k matrix operations for skinning, whereas

our impostors requires just 168 operations. For a character at 40 m, the mesh

requires 916 matrix operations whereas the impostors only 48. For close-up

characters (d < 15 m), the relief-based representation leads to an error above

the threshold and thus we fall back to polygonal rendering.
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Figure 6.11: Minimum number of primitives (triangles/quads) to be drawn
(per character instance) to keep the RMS error below 0.003 for one of the test
characters. Triangle mesh rendering requires one order of magnitude more

primitives (notice the log-scale).
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6.1.2 . Choosing the Fastest Representation

Beyond a given distance (15 m for the chosen threshold), we can choose to ren-

der the characters using either the optimal mesh-based or the optimal relief-

based representation. Since both provide images with similar quality, it makes

sense to choose the appropriate representation according to its performance.

For each distance value d, we measured render times for the optimal mesh-

based and the optimal relief-based representations computed above. Render

times were measured using OpenGL’s timer queries, which provide accurate

timings. Each query block enclosed the OpenGL drawing commands that need

to be executed for each character instance.

For mesh rendering, we used the hardware-accelerated Halca animation li-

brary [Spanlang, 2009]. Render times are shown in Figure 6.12. As with image

differences, times were averaged for multiple animation frames and view direc-

tions, taking 40 samples per distance value.

When rendering polygonal meshes, the bottleneck is likely to be in the vertex

processing stage due to the large amount of matrix operations needed to im-

plement skinning. This makes rendering times quite insensitive to the number

of fragments produced. However, since for increasing distances we use a more

simplified mesh (see Figure 6.11), the rendering times decrease accordingly.

Relief impostors achieve a drastic reduction in the number of primitives to be

drawn, and each vertex is influenced by a single bone. This results in a very

small number of per-vertex computations when compared to the equivalent

level using mesh geometry. On the downside, fragment processing is more in-

volved due to relief mapping computations. As a consequence, rendering times

for impostors also decrease with increasing distances, but this time the shape of

the resulting curve can be attributed more to the smaller number of fragments

rather than to the reduced number of primitives. Note that for characters be-

yond 15 m, using the relief-based representation results in a performance gain.

6.1.2 . Crowd Rendering Performance

The results above provide optimal switch distances for individual agents, but

do not show actual frame rates when rendering a complete crowd. Therefore
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Figure 6.12: Render times for the polygonal-based and relief-based LODs that
keep the RMS error below 0.003.

we also measured the frame rate using two different strategies for selecting the

appropriate LOD: (a) using only mesh-based levels M100, M95, . . .M2.5 , cho-

sen according to Figure 6.11, and (b) using the full-resolution mesh M100 or

the optimal relief-based level, whichever is fastest. According to the results

discussed above, we used the following criteria in option (b) to choose the ap-

propriate representation for each agent: full-resolution mesh for d < 15, R21 for

15 ≤ d < 34, R7 for 34 ≤ d < 56 and R1 for d > 56.

Besides the hardware and the number of simulated agents, the actual framerate

depends on many factors, including population density (the higher the den-

sity, the higher the number of instances requiring fine LOD levels and thus the

lower the framerate), camera field of view (the higher the fov, the higher the

perspective distortion, thus allowing coarser LOD levels), screen resolution,

and number of agents actually visible.

For the following comparison we used a crowd with a varying number of agents

rendered into a 1024×600 viewport (see accompanying movies). Table 6.1 shows

the resulting frame rates for the different crowd scenarios shown in Figure 6.13.

Note that our approach provides a speed up between 2× and 4×.
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Figure 6.13: Camera settings for the performance test.
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Setting Agents Polygonal mesh Our approach Speed up

Camera 1 2,000 21 fps 50 fps 2.4×
Camera 2 2,000 23 fps 47 fps 2.0×
Camera 3 2,000 25 fps 49 fps 2.0×
Camera 1 4,000 10 fps 38 fps 3.8×
Camera 2 4,000 10 fps 36 fps 3.6×
Camera 3 4,000 12 fps 34 fps 2.8×
Camera 1 10,000 4 fps 16 fps 4.0×
Camera 2 10,000 4 fps 15 fps 3.7×
Camera 3 10,000 4 fps 14 fps 3.5×

Table 6.1: Frame rates for different crowds and camera settings.

6.1.2 . User Study

We conducted a user study to validate our impostor-based approach in terms of

image quality. The main goal of the experiment was to evaluate whether users

perceive any image quality loss when using our impostors instead of polygonal

meshes. For this purpose, we rendered an animated crowd with two different

strategies: (a) using the full-resolution mesh for all characters, and (b) using for

each character the optimal representation (mesh or relief impostors), chosen ac-

cording to the criteria discussed in Section 6.1.2. We produced a 25 s movie for

different crowd settings (Figure 6.13). We used exactly the viewing conditions

detailed in Section 6.1.2. In order to assess image quality with respect to the

reference image, we grouped these movies in pairs, stacking horizontally the

movie using impostors with the one using full-resolution meshes. The movie

using impostors was stacked on the left/right randomly.

Nine subjects (aged 23-35) participated in the experiment. Users were requested

to watch five pairs of videos (which were presented in a random order) and to

decide which of the two sides (left/right) had better image quality than the

other, if any. This yield a total of N = 45 trials. Let fi be the (relative) frequency

of users choosing the side with impostors as the best movie. Likewise, let fg be

the frequency of users choosing the side with geometry, and fu the frequency

of users unable to decide which side is better. The absolute frequencies we

observed from the 45 samples of our user study where ni = 15, ng = 14, and

nu = 16. We consider the null hypothesis to be ’giving the answers by chance’

which implies that all conditions should be chosen with equal probability, i.e.

H0 : fi = fg = fu = 1/3. The corresponding significance levels for a two-sided

test against the null hypothesis that each proportion is 1/3 are 0.5, 0.7, 0.8,
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therefore the null hypothesis cannot be rejected. This means that the choices of

the subjects were equivalent to random choices, and thus our impostor-based

technique can be used for rendering acceleration with negligible visual artifacts

(see Figure 6.14).

Figure 6.14: Image rendered with full-resolution polygonal meshes (left) and
our approach (right).
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6.2 . Flat Per-Joint Impostors

Our previous approach creates separate impostors for each body part. Each

character is encoded as a collection of bounding boxes where each box repre-

sents the geometry influenced by each joint through six orthogonal displace-

ment maps. At runtime, an adapted version of relief mapping is used to render

the displaced geometry. Although this method provides a high-quality repre-

sentation for distant meshes, its applicability is limited to relatively far-away

characters due to the high per-fragment cost of the relief mapping shader.

We aim at encompassing the performance benefits of view-dependent impos-

tors with the flexibility of animation-independent approaches. On the one

hand, view-dependent impostors minimize the geometry to be transformed

as well as per-fragment computations, and thus achieve the maximum perfor-

mance while minimizing the use of programmable hardware. On the other

hand, animation-independent approaches are more flexible in terms of anima-

tion clips and animation blending.

Figure 6.15: We combine per-joint impostors to render animated characters.
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Our approach thus relies on view-dependent impostors but instead of having

each impostor represent the whole character at a given pose from a given view

direction, we use a different view-dependent impostor for each joint (see Fig-

ure 6.15). During rendering, each impostor undergoes the same rigid trans-

formation as its corresponding joint. This way we do not need to generate nor

store impostors for every animation frame, and thus our approach offers the

flexibility of being able to add on the fly new animation clips.

We provide algorithms for creating automatically the most appropriate impos-

tors during preprocessing as well as algorithms for their efficient rendering.

Since our impostors are intended to be valid for any pose, a key issue is to prop-

erly define which part of the geometry influenced by each joint must be repre-

sented as opaque pixels in the corresponding impostor. The opaque portion of

the impostor will be referred to as mask. We provide an efficient algorithm for

computing optimized masks which considers how the geometry of each bone is

affected by the transformation of neighboring joints. Our approach clearly out-

performs competing animation-independent approaches for crowd rendering.

6.2.1 . Overview

We aim at increasing the number of simulated agents in real-time crowd sim-

ulations by reducing the rendering cost of individual agents. Therefore only

characters that are very close to the observer are rendered as polygonal meshes,

while the rest of the agents are rendered using our new per-joint impostor

method.

Figure 6.16 outlines the main stages of our impostor construction algorithm.

We assume the input character conforms to the de facto standard in character

animation and thus consists of a textured polygonal mesh (skin), a hierarchical

set of bones (skeleton) and vertex weights. The nodes of the skeleton represent

joints and the edges represent the bones. Since each bone can be easily iden-

tified by its origin, we can use the terms bone and joint interchangeably. The

transformations affecting joints in the hierarchy are assumed to be rotations.

The vertex weights describe the amount of influence that each joint has over

each vertex.
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Mesh Bone hierarchy

For each joint Select view directions

For each view

...

For each view

Animate neighboring joints Animate neighboring joints Compute Voronoi map

Find optimal mask Find optimal mask

Capture impostor image Capture impostor image Build cube map of IDs

Pack images into texture arrays

Simplify hierarchy

...

...

...

...

Figure 6.16: Overview of our algorithm for generating per-joint impostors

Since we want to support real-time blending of animation sequences, we create

a separate impostor for each animated part of the articulated character (Fig-

ure 6.15). In this respect, our approach is similar to our previous one. However,

instead of using six orthogonal relief maps for each joint, which requires mul-

tiple dependent texture accesses per fragment, we use flat impostors created

by sampling each joint from multiple view directions. This results in a single

texture lookup per fragment, which is one order of magnitude faster than relief

mapping.

Our representation for distant characters consists of a collection of impostors

(alpha-matted textured quads), per joint and view direction. At runtime, the

impostors are transformed in the same way as the bones of the skeleton, giving

the impression that our impostor character is animated.

The quality of our representation depends on four major factors, namely (a) the
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resolution of the impostor images, (b) the number of view samples (i.e. impos-

tors) per joint, (c) the distribution of the view samples on the Gauss sphere S2,

and (d) the portion of the polygonal mesh influenced by the joint represented

by each impostor.

Factors (a) and (b) clearly control the trade-off between memory and quality

of the representation, and thus we consider texture resolution and number of

view samples as user-defined parameters. Concerning the distribution of view

samples on S2, both uniform and adaptive sampling schemes can be adopted.

The pros and cons of both approaches will be discussed below.

According to our experiments though, the portion of the polygonal mesh rep-

resented by each impostor is by far the most crucial factor for minimizing ani-

mation artifacts. Since our per-joint impostors are intended to be valid for any

arbitrary pose, they must be defined so as to blend with neighboring impos-

tors as seamlessly as possible. Failing to define a proper mask (the mask is the

opaque portion of the impostor, see examples in Figure 6.16)

would result in animations showing visible cracks around joints or duplicated

geometry appearing as protruding parts. We provide a formal statement for

this problem, and present an efficient algorithm for computing the impostor

masks.

6.2.2 . Preprocessing

The construction of per-joint impostors from a given 3D character proceeds

through the following steps, described in detail below (see Figure 6.16):

1. Simplify the bone hierarchy, creating multiple level-of-detail skeletons.

2. Choose a suitable set of samples from S2, compute the spherical Voronoi

map of these samples, and build a cube map by projecting the Voronoi

cells onto the cube faces.

3. For each joint and for each view, compute a proper mask and capture the

impostor.

4. Pack all textures in a texture array of texture atlases.
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6.2.2 . Bone Hierarchy Simplification

Since we use per-joint rather than per-character impostors, we simplify the in-

put bone hierarchy by grouping joints, letting some parent nodes absorb small

child nodes.

The resulting impostors will obviously undergo the rigid transformation ap-

plied to the parent node. For instance, if we group the hand, fore-arm and

upper-arm into a single joint, the hand will not move other than following the

upper-arm rotations. For the experiments we created the same bone hierarchies

as in the previous approach, with 21, 7, and 1 joint (see Figure 6.4). The 1-bone

LOD supports no deformations and thus cannot be animated, which makes it

appropriate only for characters very far away from the camera.

6.2.2 . Choosing View Samples From S2

Our approach supports any strategy for sampling views from the unit sphere

S2. We considered both uniform and non-uniform (i.e. adaptive) sampling

schemes. The main advantage of the latter, in the context of crowd rendering,

is that we can sample S2 more densely around views more likely to occur when

animating the character, and around views capturing the more salient parts of

the character. For example, views around the south pole of S2 are unlikely to be

needed when rendering a crowd, and thus can be sampled more sparsely. Like-

wise, we might want to sample front and side views of the head more densely

than top and back views [McDonnell et al., 2009].

Since memory requirements is not an important concern for our approach (as

we do not need to capture impostors for each pose), our current implementa-

tion samples S2 using a uniform sampling strategy. For the sake of simplicity,

we subdivide once an icosahedron and take its face normals as the view sam-

ples. The subdivided triangles are taken as the Voronoi regions defined by these

samples, see Figure 6.17.

At runtime, we need to solve a nearest-neighbor problem for associating each

element in S2 with one of the discrete samples. Since this computation has

to be performed for each joint of each agent in the crowd, we build a cube

map by projecting the color-coded subdivided triangles onto the faces of a unit
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(a) (b) (c)

Figure 6.17: Choosing samples from S2: (a) subdivided icosahedron; triangle
normals correspond to view directions for capturing the impostors, (b) spher-
ical Voronoi regions defined by the triangle normals, and (c) cube map build
by casting the triangles onto a cube. The cube map is used to find the nearest

precomputed view for an arbitrary direction in S2.

cube, Figure 6.17(c). Since the texel of the cube map representing a direction

ω stores the ID of its nearest discrete sample, the nearest-neighbor problem is

solved using a single texture lookup. As we use a uniform sampling scheme for

all joints, a single cube map suffices for all joints.

6.2.2 . Impostor Generation

Problem statement

Let B be a given joint from the bone hierarchy, and let N1, . . .Nj be its neighbor-

ing joints. Each joint is controlled by a rotation matrix which changes during

animation according to the character’s pose. Suppose that we need to gener-

ate an impostor for the part of the mesh influenced by joint B. Since rotations

are invertible, we can fix joint B (as if it were the root node) and represent the

rotation matrices of its neighboring joints as relative to B.

Let T be the set of triangles influenced by B, i.e. triangles with at least one

vertex being influenced by B, see Figure 6.18a. Since mesh triangles can be

influenced by multiple joints, the final geometry of the triangles in T is deter-

mined by the rotation matrices attached to its neighboring joints (along with

the procedure for implementing mesh skinning). Given a joint B and a collec-

tion of rotation matrices, the result of deforming the triangles in T according

to these matrices is called a realization of B, and it will be denoted as R.

Let ω be some view sample from S2. We can orthogonally project all the pos-

sible realizations of B onto an image plane Π perpendicular to ω. The portion
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(a) (b)

(c) (d)

(e)

Figure 6.18: Defining impostor extents for multiple view directions: (a) trian-
gles T influenced by the head bone, shown in a reference pose; (b) area swept
by T when neighboring joints are rotated; the gray level indicates the num-
ber of realizations projecting onto each pixel; (c) and (d) two possible mask
boundaries defining the extents of the impostors; (e) impostor captured using

our optimized mask.
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of the image plane Π filled by these projections will be referred to as the swept

area S, see Figure 6.18b. Now the key problem is to decide which portion of S

must be captured by the impostor representing B from ω.

For the sake of simplicity, let us assume that the geometry attached to a given

joint forms a single connected component, and that the portion to be included

in the impostor image (i.e. the impostor mask M) is simply connected and

thus has a single outer boundary (the discrete heuristic algorithm proposed be-

low handles the general case of multiple connected components with arbitrary

genus).

Let u : [0,1]→ IR2 be the parameterization of a closed loop on the image plane

Π, defining the boundary of the impostor mask. Some sample mask boundaries

are shown in Figures 6.18c and 6.18d.

For each bone B and for a collection of S2 samples, we could generate the

corresponding impostor using some collection of mask boundaries u, see Fig-

ure 6.18e. The animated characters can be rendered as a collection of rigidly-

transformed impostors, choosing for each bone B the precomputed impostor

whose view better matches its final orientation. The resulting image might ex-

hibit some error E when compared to that produced by rendering the original

polygonal mesh. The image error depends on multiple factors, including the

actual camera position and orientation with respect to the character, the actual

pose, and the criterion adopted to generate the mask boundaries. We pay spe-

cial attention to the latter, as mask boundaries play a key role on the final image

quality and it is a factor subject to optimization during preprocessing.

In order to better illustrate the effect of the criterion for generating the mask

boundary, let us consider first two extreme cases. The undercoverage criterion

would define the mask as the region containing just the triangles uniquely in-

fluenced by B (i.e. triangles with vertices having unit weight for this joint, and

null weight for the rest of joints). It turns out that this criterion would tend

to produce visible gaps during animation, in particular around joint bound-

aries, as the corresponding blending triangles wound not be represented in any

impostor. See Figures 6.21a and 6.21b.

The opposite overcoverage criterion would define the mask as the swept area

S. This obviously would result in overly large, overlapping impostors, causing

protruding geometry artifacts around joint boundaries.
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Therefore the problem can be stated as the following optimization problem

over the set U of all mask boundaries:

min
u∈U

f (u) =
∫
S2

∫
P
E2(ω,p,u)dωdp

where u here is the collection of mask boundaries,ω represents view directions,

p ∈ P represents poses in a space of poses, and E is a measure of the error

produced by rendering, instead of the polygonal mesh, the impostors masked

with u at pose p from a camera aligned with ω.

In other words, we aim at choosing the mask boundaries minimizing the image

error across all possible views and animations frames. Note that, even if a basic

error metric is used for computing E, the variational problem above cannot

be solved analytically. In the next section we provide an efficient GPU-based

algorithm for computing an approximate solution to this problem.

Mask generation and impostor capture

For each joint B and view v, we need to generate a mask defining the portion

of the swept area S that must be captured by the corresponding impostor. We

can restrict ourselves to mask boundaries within the swept area S (which can

be seen as the union of the orthogonally-projected realizations) because points

outside S do not belong to the projection of the joint’s geometry, no matter the

character pose, and thus should never belong to the mask. Another key obser-

vation is that mask boundaries should enclose at least the triangles influenced

exclusively by the joint. These triangles belong to all possible projections of the

joint’s geometry, and thus their inclusion causes no protruding geometry and

excluding them would result in visible gaps.

A key contribution of our approach is to define the mask as the intersection of

the orthogonally-projected realizations of the joint. Since points within such

a mask belong to all possible projections of the geometry influenced by the

joint, this is likely to be the largest mask we can generate while guaranteeing no

protruding parts, regardless of the character pose. The resulting masks exhibit

rounded boundaries near joints due to the blending effect of neighboring joint

rotations on the deformed geometry. These shapes are somewhat similar to the

rounded joints used in traditional art mannequins and articulated figures, see

Figure 6.18e.
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In order to obtain rounded endings for each mask, we obtain the realization

of a joint by rotating each DoF within the range [−π/4,π/4] with respect to a

standing reference pose. We could obtain masks closer to the range of move-

ments of each joint, if we had in advance the skeleton information regarding

the DoFs available per joint, and their real limits. However, since we aim at

producing animation-independent impostors, our implementation uses a fixed

set of angle limits.

We did not attempt to compute the exact intersection of the projected real-

izations analytically, although for linear blend skinning this should not be a

difficult task. Instead, we use an approximate but simpler algorithm based on

rendering a discrete subset of realizations by sampling rotation angles within

the per-joint limits at equally-spaced intervals.

Each realization is rendered onto a frame buffer object (FBO) which plays the

role of an accumulation buffer (Figure 6.18b). For a given joint B and view ω,

the realizations are generated by applying linear blend skinning to the set of

triangles influenced by B (see Algorithm 1 below).

Algorithm 2 Generate impostors
1: for each joint B do
2: for each view ω do
3: compute the set T of triangles influenced by B
4: clear FBO
5: for each neighboring joint Nj of B do
6: for each free axis ~ajk of Nj do
7: for each discrete angle αjk in [−π/4,π/4] do
8: deform T using the rotation angles αjk
9: render T using an orthographic camera and accumulate into FBO

10: end for
11: end for
12: end for
13: mask M = set of pixels in the FBO with maximum accumulated value
14: capture impostor using mask M
15: end for
16: end for

The algorithm above clearly runs in O(bvna) time, where b is the number of

joints in the skeleton (21+7 in our experiments), v is the number of views (80

in our implementation), n is the number of neighboring joints (typically less

than 4), and a is the number of samples in the [−π/4,π/4] range (we use 10

samples). Since the number of joint DoFs is at most three, in the worst case

scenario we need to render about 28 · 80 · 4 · 3 · 10 = 268 K joints. Assuming
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each joint can be rendered in 1ms, the full impostor set for a character can be

generated in about 5 minutes.

Since our algorithm only considers a discrete set of rotation angles, the result-

ing masks are slightly smaller than the true intersection. We thus create a

slightly enlarged mask that encloses all the pixels in the swept area that be-

long to a large percentage r of realizations. We have found empirically that

using r = 80% produces appropriate results. Therefore we modify Line 13 in

the algorithm above to compute the mask M as the set of pixels in the FBO

whose normalized accumulated value is greater than 0.8. Although most body

parts and views result in masks with a single genus-0 component, the algorithm

handles equally well masks with arbitrary topology.

6.2.3 . Real-Time Rendering

Our current prototype uses multiple level-of-detail representations for each

character type; a textured polygonal mesh which is used for agents close to the

viewpoint, and the multiresolution impostor set described above for the rest of

agents. We first render nearby polygonal agents (grouped by character type to

minimize rendering state changes) and then the rest of the agents as impostors

(again grouped by character type and LOD). Impostor characters are rendered

through the following algorithm.

6.2.3 . CPU Stage

The CPU-based part of the algorithm proceeds through the following two steps:

1. Bind the corresponding texture arrays (color and optionally normal maps)

and the cube map texture that maps directions in S2 to precomputed view

samples. This step is performed only once per character type, not per

instance.

2. Draw a vertex buffer object (VBO) encoding each character type (all in-

stances of a character type share the same VBO).
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The VBO contains one vertex for each per-joint impostor, corresponding to the

center of its bounding cube. The rest of the impostor information is encoded as

vertex attributes. These attributes include the joint ID, the orthonormal basis

of the impostor quad (in the capture pose), and the layer of the texture array

containing the images for the joint. In our implementation the VBO is rendered

as GL POINTS primitives that will be later converted into a pair of triangles.

The rationale of this approach is to avoid duplicating per-joint computations.

6.2.3 . Vertex Shader

The vertex shader transforms the vertex itself and its local orthonormal basis

according to the character’s pose, so that the joint follows the original skeleton

animation, and computes the discrete view that best matches the joint orienta-

tion. This last step is completed with a single look-up at the cube map. Since

the vertex shader is executed only once per-joint, we avoid duplicating these

computations.

6.2.3 . Geometry Shader

The geometry shader is executed for each GL POINT primitive encoding a

(transformed) per-joint impostor. It simply creates a couple of triangles defin-

ing the impostor quad, using the transformed orthonormal basis encoded as

vertex attributes. It also computes the (s,t,p) texture coordinates for accessing

the texture array.

6.2.3 . Fragment Shader

The fragment shader performs traditional texture mapping (and per-fragment

lighting, if normal maps are available) to compute the final fragment’s color.

Traditional approaches based on flat impostors handle visibility among inter-

secting characters using per-texel depth values [Aubel et al., 2000, Maim et al.,

2009a]. However, since we use separate impostors for each joint, each impostor

has a different depth value (see Figure 6.19), which makes this problem less

important than when using a single impostor for the whole character. We only

need to handle self-intersections due to overlapping parts around joints. We
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take care of this by using a similar technique, with a fragment shader that adds

an offset to the quad’s depth values, but the offset is computed using a per-texel

weight representing the (interpolated) weight of the joint over the texel. This

causes fragments from the most influencing joint to have visibility priority over

other overlapping joints.

Figure 6.19: The impostors on the left were used to render the character from
the upper-right camera. The whole scene is shown from an exocentric view to
better illustrate the impostors being drawn. When projected according to the

upper-right camera, the impostors blend into the framed image.
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6.2.4 . Results

6.2.4 . Implementation details

We have implemented the construction and rendering algorithms described

above in C++ and OpenGL 3.2. Our implementation relies on the Halca an-

imation library [Spanlang, 2009] to draw the animated characters from which

we create our impostors. Halca is a hardware-accelerated library for character

animation which is based on the Cal3D format [Cal3D, 2014].

The algorithms have been tested on a collection of detailed human characters

from the aXYZ Design’s Metropoly 2 data set (Figure 6.20). When converted

to Cal3D format, the triangle meshes had 4K to 6K triangles, and used 2048 ×
2048 texture atlases for diffuse color and normal data. All models were initially

rigged to 67-bone skeletons. Reported results have been measured on an Intel

Core2 Quad Q6600 PC equipped with a GeForce GTX 280.

Figure 6.20: Test data set. Each mesh contains between 4K and 6K polygons.

The conversion of the input character meshes into a multiresolution collection

of per-joint impostors took on average 30 minutes on the test hardware. We

created three LOD representations with 21, 7 and 1 boxes, respectively (Fig-

ure 6.4).

All textures were captured at 32×32 pixels and stored in a single texture array

shared by all the instances of the same character. This resulted in 21×80×322×3

bytes = 4.9 MB for the finest LOD, 1.31 MB for the intermediate LOD, and 192

KB for the coarsest LOD, i.e. about 5.25 MB per character type.

Although our image-based representation is a clearly redundant, both within

a LOD level (a single surface point is often captured from multiple views)

and across levels (each LOD has its own collection of per-joint impostors), it

is still more efficient, in terms of memory space, than competing image-based
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approaches requiring a separate image for each view direction and animation

frame.

6.2.4 . Illustrative Results

Our impostor representation aims at accelerating the rendering of animated

characters at the expense of some image quality loss. Image artifacts in the

resulting images may fall into the following categories:

Texel-to-pixel ratio. Since our impostors are image-based, the accuracy of the

geometric and appearance details is obviously limited by the texel-to-

pixel ratio [Dobbyn et al., 2005]. Therefore we must ensure that textures

are large enough to keep the texel-to-pixel ratio above 1:1 for all the view-

ing distances associated to the textures. Since our 32x32 textures guaran-

tee the above ratio, no image undersampling artifacts appear in the final

images.

Lack of geometric skinning. Recall that we animate each impostor using the

rigid animation of the associated bone. This contrasts with geometric

skinning techniques (such as linear blending and dual-quaternion blend-

ing) typically applied when animating geometry-based characters, where

some vertices are influenced by more than one bone. This results in some

artifacts around joints. These artifacts might include cracks or overlap-

ping parts. Fortunately, our optimized construction results in less arti-

facts around joints than naive approaches (Figure 6.21) and can be ne-

glected at the distance range our impostors are used.

Figure 6.22 shows multiple views of one character rendered with our 21-bone

impostors. Note that these artifacts are hardly noticeable for moderate viewing

distances.

Figure 6.23 compares renders using 21-bone and 7-bone representations, re-

spectively. The 1-bone LOD obviously supports no deformations and thus it is

reserved for characters very far away from the camera.

Figure 6.24 shows several animation frames of the characters in the test dataset

rendered with our 21-bone impostors.
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(a) (b) (c) (d)

Figure 6.21: Importance of properly defined masks. The two characters on
the left were rendered using impostors created by an undercoverage criterion,
showing missing parts. The two characters on the right were created using our

algorithm.

Although the images show that artifacts may appear around the joints, these are

very hard to perceive in the context of a crowd simulation. Figure 6.25 shows a

crowd rendered using our approach.

Figure 6.26 compares polygonal mesh rendering against our approach, and Fig-

ure 6.27 compares polygonal rendering, relief maps and per-joint impostors.
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Figure 6.22: An animated character rendered using our 21-joint representa-
tion.
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Figure 6.23: Rendering per-joint impostors with 21 bones (top) and 7 bones
(bottom). Note that in the 7-bone representation the head bone has been col-

lapsed with the trunk and thus both undergo the same transformation.
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Figure 6.24: Characters rendered with our per-joint impostors.
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Figure 6.25: Crowd with about 8,000 agents rendered with our per-joint im-
postors.

Figure 6.26: Image rendered with polygonal meshes (left) and our approach
(right). The color in the inset image indicates the diferent LoD levels.
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Figure 6.27: Comparison of rendering with geometry (left), relief impostors
(middle) and our per-joint impostors (right).
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6.2.4 . Performance

Comparing the performance of impostors with full-resolution meshes is clearly

unfair, as in a real-world application each character instance would be rendered

using an appropriate LoD chosen according to, among other factors, its distance

to the camera. We thus compared the frame rate during crowd rendering using

three different primitives: polygonal meshes, relief impostors [Beacco et al.,

2011] and our per-joint impostors. Note that these three techniques support

arbitrary poses. For each of these techniques, we measured rendering times

both using a single LoD for all the agents (the highest resolution mesh, relief

impostor or per-joint impostors) or multiple LoDs according to the agent dis-

tance. When using multiple LoDs, close-up agents were always rendered as

fully-detailed polygonal meshes, whereas more distant agents were rendered

as simplified meshes, relief impostors or per-joint impostor, depending on the

technique. Mesh simplification was accomplished using the Optimize filter of

Autodesk 3DS MAX 2010, which created LoD meshes with 90%, 85%, . . . 5%

and 2.5% of the original triangles (Figure 6.28). Switch distances for the differ-

ent LoDs were set according to matching RMS error, following [Beacco et al.,

2011]. The distance for switching from polygonal meshes to relief impostors

was set to 15 meters (relief maps do not provide performance gains for nearby

agents due to the per-fragment overhead); for per-joint impostor, the distance

was set to 5 meters. We used viewing conditions similar to those in our previous

contribution [Beacco et al., 2011]. The bone hierarchies for relief and per-joint

impostors had 21, 7 and 1 bone, respectively. For polygonal meshes we used

the original bone hierarchy as their rendering cost was found to be dependent

mainly on the number of triangles.

Besides the hardware and the number of simulated agents, the actual fram-

erate depends on many factors, including population density (the higher the

density, the higher the number of instances requiring fine LoD levels and thus

the lower the framerate), camera field of view (the higher the fov, the higher

the perspective distortion, thus allowing coarser LoD levels), screen resolution,

and number of agents actually visible.

Table 6.2 shows the resulting frame rates for different animated crowd scenar-

ios from a fixed camera position (aerial or street-level view) on a 2048 × 1536

viewport, using geometric instancing [Dudash, 2007a]. Per-joint impostors are
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Figure 6.28: From left to right we show the original mesh and some examples
of the simplified meshes used for comparison with our approach. Simplified

meshes have 75%, 55%, 35%, 20% and 2.5% of the original triangles.

clearly the fastest representation. When using a single representation for all

the agents, per-joint impostors are between 5× and 6.3× faster than relief im-

postors, and between 5× and 8.3× faster than polygonal meshes. When using

multiple LoD representations, which better matches a real usage scenario, per-

joint impostors are 2.1× - 3.1× faster than relief impostors, and 4.5× - 8.2×
faster than LoD meshes, thus providing significant performance gains.

When rendering polygonal meshes, the main performance bottleneck is likely

to be in the vertex processing stage due to the large amount of matrix opera-

tions needed to implement skinning. Relief impostors are faster than polyg-

onal meshes as they achieve a drastic reduction in the number of primitives

to be drawn. This results in a very small number of per-vertex computations

when compared to the equivalent level using mesh geometry. Our per-joint

impostors also exhibit these advantages, but with a lower per-fragment load:

instead of relief mapping, which requires multiple dependent texture accesses

per fragment, our shader requires a single texture access.
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Polygonal mesh Relief maps [Beacco et al., 2011] Per-joint impostors

View Agents No LoD LoDs No LoD LoDs No LoD LoDs

Aerial 1000 29 40 37 116 190 293

Aerial 2000 14 21 18 56 90 152

Aerial 4000 7 12 9 29 45 79

Aerial 8000 3 6 4 15 25 43

Aerial 16000 2 4 2 7 12 22

Street 1000 31 45 40 167 200 349

Street 2000 16 22 19 81 96 181

Street 4000 8 21 9 42 48 93

Street 8000 5 7 4 22 25 51

Street 16000 2 5 2 10 12 27

Table 6.2: Frame rates using polygonal meshes, relief impostors, and our per-
joint impostors.

6.2.4 . Discussion

The distance threshold for switching between geometry and impostors is the

most important factor to render crowds with an acceptable visual appearance.

For the results presented in this section, we have empirically found that 5 me-

ters is a reasonably good distance to make this switch for typical viewing con-

ditions [Beacco et al., 2011]. It would be interesting though to run perceptual

studies to determine the optimal distance depending on field-of-view, camera

position and crowd density [McDonnell et al., 2005]. Compared to other view-

dependent approaches [Tecchia et al., 2002], our approach offers more flexi-

bility for crowd animation, and saves memory space as impostors are not cap-

tured for each animation frame. Compared to polygonal rendering, indepen-

dently of the distance threshold chosen, our per-joint impostors always provide

higher frame rates. Compared to relief impostors [Beacco et al., 2011], our

per-joint impostors also perform better since their cost is nearly independent

of the screen-projected area of the character, and thus can be used for shorter

distances without increasing the rendering cost. Therefore, as long as the vi-

sual quality remains acceptable, the threshold distance could be smaller than

the one used for relief impostors. Rendering our per-joint impostors instead of

relief impostors offers also other advantages such as eliminating the artifacts

due to missing ray-surface intersections, and supporting non-heightfield sur-

face details (e.g. complex hairstyles). Unlike some previous work [Kavan et al.,

2008b], our construction algorithm is fully automatic.
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6.3 . Conclusions on Crowd Rendering

In our first contribution each character is encoded through a small collection

of textured boxes storing color and depth values. At runtime, each box is ani-

mated according to the rigid transformation of its associated bone and a frag-

ment shader is used to recover the original geometry using a dual-depth version

of relief mapping [Oliveira et al., 2000], recovering surface details and repro-

ducing view-motion parallax effectively, at the expense of some per-fragment

overhead. Beyond a certain distance threshold, this compact representation is

much faster to render than traditional level-of-detail triangle meshes. Our user

study demonstrates that replacing polygonal geometry by our relief impostors

produces negligible visual artifacts. Although this method provides a high-

quality representation for distant meshes, its applicability is limited to rela-

tively far-away characters due to the per-fragment cost of the fragment shader.

So for close-up agents it is usually faster to render fully animated 3D skinned

characters.

Our second contribution results in a more efficient approach. Instead of using

six orthogonal relief maps for each joint, which requires multiple dependent

texture accesses per fragment, we use flat impostors created by sampling each

joint from multiple view directions. These view directions correspond to the

faces of a subdivided icosahedron. A spherical Voronoi map is computed from

it, and a cube map is built by projecting the Voronoi cells onto the cube faces,

thus encoding for each texel the ID of its nearest discrete sample. At runtime,

for each fragment, a single cube map texture look-up is enough to retrieve this

sample ID, and another one to retrieve the color of the fragment from that sam-

ple. Since these impostors are intended to be valid for any pose, a key issue is

to properly define which part of the geometry influenced by each joint must be

represented as opaque pixels in the corresponding impostor. These parts are

encoded through opacity masks, which are computed by considering how the

geometry of each bone is affected by the transformation of neighboring joints.

Both per-joint impostor approaches allow us to render tens of thousands of
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characters in real-time. Encoding per-joint geometry and appearance with re-

lief maps provides the highest image quality at the expense of a higher per-

fragment overhead, which in practice limits their applicability to distant char-

acters. View-dependent flat impostors are more demanding in terms of tex-

ture memory and construction time, but provide the highest runtime perfor-

mance even for close-up characters. With properly chosen switch distances,

both representations outperform polygonal meshes with negligible visual arti-

facts. Regardless of the particular encoding, per-joint impostors support arbi-

trary animation cycles and animation blending, a missing feature in competing

per-character impostors.
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Publications
Our work in rendering has yielded the following publications ([Beacco

et al., 2010a, 2011, 2012, 2013a]):

• A. Beacco, B. Spanlang, C. Andujar, and N. Pelechano. Output-

sensitive rendering of detailed animated characters for crowd simula-

tion. In CEIG Spanish Conference on Computer Graphic, 2010

• A. Beacco, B. Spanlang, C. Andujar, and N. Pelechano. A flexible

approach for output-sensitive rendering of animated characters. Com-

puter Graphics Forum, 30(8):2328 - 2340, 2011

• A. Beacco, C. Andujar, N. Pelechano, and B. Spanlang. Efficient

rendering of animated characters through optimized per-joint impos-

tors. Computer Animation and Virtual Worlds, 23(1): 33 - 47,

2012

• A. Beacco, C. Andujar, N. Pelechano and B. Spanlang. Crowd Ren-

dering with per joint impostors. Poster in the 24th EUROGRAPH-

ICS Symposium on Rendering (EGSR 2013), Zaragoza, Spain,

2013.

Furthermore, we have submitted a survey on real-time rendering of

crowds, including most of the related work presented in 3.3. Thanks

to Doctor Carlos Andujar for his collaboration in our rendering work,

and to Bernhard Spanlang for his help and support when using Halca

[Spanlang, 2009].
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As we have seen in all the other chapters, there has been a large amount of

research on simulation, animation and rendering of crowds, but in most cases

they seem to be treated separately as if the limitations in one area did not affect

the others. At the end of the day the goal is to populate environments with

as many characters as possible in real time, and it is of little use if one can for

instance render thousands of characters in real time, but you cannot move more

than a hundred due to a simulation bottleneck. The work presented in this

chapter aims at providing a framework that lets the researcher focus on each

of these topics at a time (simulation, animation, or rendering), and be able to

explore and push the boundaries on one topic without being strongly limited by

the other related issues. Therefore we introduce a new prototyping testbed for

crowds that lets the researcher focus on one of these areas of research at a time

without loosing sight of the others. We offer default representations, animation

and simulation controllers for real time crowd simulation, that can easily be

replaced or extended. Fully configurable level-of-detail for both rendering and

simulation is also available.
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7.1 . Introduction

In this chapter, we present a novel framework that embeds these three ele-

ments: Simulation, Animation and Rendering of crowds. Each of them pre-

sented in an independent-but-linked modular way. The final tool becomes then

a prototyping testbed for crowds that allows the researcher to focus on one of

these parts at a time without loosing sight of the other two. This tool could

also be very handy for introducing crowd simulation in the classroom. Our

bundle includes some basic resources such as character models, libraries and

implemented controllers interfaces, which allows the researcher to have a basic

crowd simulation engine to get started, and to be able to focus exclusively in a

particular area or research. Our module also lets the researcher to have com-

munication and interaction between these areas, if he desires to treat some of

them in a more dependent fashion. We offer default representations, animation

and simulation interfaces and controllers in a modular way, that can easily be

extended with your new research work. We also include a fully configurable

system of level-of-detail for animation, visualization and simulation.

Motivation and Current State
One of the main motivations for building this tool was the will to

integrate in one system all the previous contributions presented in this

thesis. As the reader may have noticed, these have been implemented

using different tools such as the Unity engine, XVR or simply C++. Af-

ter working and analyzing all these tools, as well as some others (in

chapter 3, section 3.4), we decided that the best approach was to de-

sign the present testbed. Unfortunately, to reimplement all the pre-

vious contributions, although possible, is not as straight forward as it

would be desirable. This is why not all the contributions presented in

this thesis have been integrated in the current platform yet. Currently,

we have been able to add our impostors generation and rendering to

this platform (Chapter 6). All the other contributions made previously

implemented using Unity and XVR will be attacked later.
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7.2 . Overview

We present CAVAST: the Crowd Animation, Visualization and Simulation Testbed,

a new prototyping and development framework, made for and by researchers

of the graphics community specialized in crowds. The goal of this work is to

provide a framework with state-of-the-art libraries and simple interfaces to ease

the work of starting a project regarding simulation, animation or rendering of

crowd. This framework provides a basis to start working in this field, focusing

on solving a specific problem in simulation, animation or rendering without

loosing sight of the other aspects, that is conserving the communication and

interaction possibilities between them.

Figure 7.1 shows a rough overview of the classes and interfaces present in

CAVAST. The scene render engine is going to need some basic information to

render an agent. This includes at least: visual representation (even if it is just a

2D point), position and orientation.

Figure 7.1: Diagram with a rough overview of the classes in CAVAST.

The Agent class is the core class of our framework and it is linked to:

• One or more Agent Controllers. These controllers deal with the kind of

simulation methodology used for pathfinding and local motion. It also
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needs an interface to assign and describe one or more Goals to the agents

(into a queue).

• One Avatar containing the Character Representation used by the Render-

ing module. Notice that one avatar can be shared by many agents.

• One or more Animation Controllers, an interface class in charge of the

Animation module to deal with skeletal animation.

Each one of these interfaces are described in more detail in the following sub-

sections.

7.2.1 . Simulation

The Simulation module needs to include at least an implementation for the

Agent Controller interface. This module will be responsible for moving the

Agent in the virtual environment. The Agent Controller consists of either an

implementation of a behavioral model based on for example steering, social

forces, rules, or any other model that includes the AI of the agent. Alterna-

tively, it could be directly controlled by the user input through a User Con-

troller. When the Agent is controlled autonomously, it is usually required to

have certain goals. The type of goals required vary from one system to another.

Our framework provides a Goal interface and a basic implementation consist-

ing of just a Position. The user can expand the kind of goals by implementing

new Goals such as a position with orientation, or a position with orientation

and time stamp. The Agent Controller has access to the Scene in order to query

information about fixed obstacles, dynamic obstacles and other members of the

Crowd. This information can be used for collision avoidance for example. No-

tice that the Agent Controller can also integrate physics libraries to accelerate

collision detection if needed.

7.2.1 . Pathfinding

As for pathfinding, we provide a Pathfinder interface class and a basic imple-

mentation of the A* algorithm [Dechter and Pearl, 1985]. This could be easily

expanded to new Pathfinder classes such as D* Lite [Koenig and Likhachev,
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2002], ARA* [Dechter and Pearl, 1985], etc. This class works over a Graph in-

terface class, which can be either a Grid or a Navigation Mesh representing the

scene. A Pathfinder also might need a Heuristic to work with, in our case we

have a simple Euclidean distance, but it could easily be any other function esti-

mating a cost to reach a node of the Graph. Our current version only provides

a Grid representation from a randomized generated scene (filling cells in a grid

with obstacles), although we plan to include a navigation mesh creation module

from any static 3D geometry loaded in the scene. So, if the Agent Controller has

a Pathfinder, it will be used to find a path and generate intermediate goals (way

points) to insert into the goals queue of the Agent. Figure 7.2 shows a diagram

of the simulation module in more detail, but for the sake of clarity not all the

classes have been included in it.

Figure 7.2: The simulation module

7.2.1 . Agent Controller

The main method an Agent Controller has to implement is exeSimulation(ref

Agent a, float elapsedTime). This method will be in charge of actually

moving the agent, and will modify attributes of the Agent instance a, such as

position, orientation, and velocity, as the result of executing forward the simu-

lation during an elapsed time equal to elapsedTime. The other method that an
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Agent Controller needs is getPathFinder(), returning the PathFinder of the

controller if there is any. A Pathfinder requires to implement a function find-

path(ref Graph graph, ref Node start, ref Node end, ref Heuristic h),

returning a sequence of Nodes from graph representing a path from start to

end. A Graph will be composed of Nodes, which can either be Cells in the case

of a Grid or Polygons in the case of a Navigation Mesh. A Goal must have a

function isReachedByAgent(ref Agent a) returning true when it is reached

by an Agent instance a.

7.2.1 . Crowd Simulation

Transparent to the user, the Crowd will be in charge of iterating over all its

agents. Currently, when an agent does not have a goal it will get one randomly

assigned, although an Agent has a function to set up its current Goal. If the

Agent Controller has a PathFinder, it uses it to find waypoints and insert them

into the queue as intermediate goals. Once a goal has been reached, the next

goal of the queue is the new goal to be used by the exeSimulation method.

Then the Agent Controller executes its simulation for the elapsed time.

Figure 7.3 shows an example crowd of 200 cylinders moving in a random gener-

ated grid, using A* for path planning and Reynolds [Reynolds, 1999] for steer-

ing, using CAVAST.

Figure 7.3: An example simulation of 200 agents using CAVAST.

242 Simulation, Animation and Rendering of Crowds in Real-Time by Alejandro Beacco



7.2. OVERVIEW

7.2.2 . Rendering

An Agent has to be associated with an Avatar. We call an Avatar a collection

of one or more Character Representations, along with the main dimensions we

want for it, that is the size we want for our representations for each 3D axis.

Having different representations allows us to use them for different levels of de-

tail (LODs), and the main size of the Avatar allows us to be consistent between

different representations. If for example we want to replace our character by

some 3D model of a cylinder for far away agents, we will be able to scale the

cylinder to the same dimensions as the original 3D mesh by scaling its bound-

ing box. An implementation of the Character Representation interface must

provide a Shader Program (with at least a Vertex and a Fragment shader) and

the methods render(), to render it individually, and instancedRender(int

n, ref VertexBufferObject instancesDataBuffer) in order to use instanc-

ing [Dudash, 2007b], efficiently rendering n instances using the corresponding

data in instancesDataBuffer for each one of them. We also request for meth-

ods to get the bounding box, the bounding sphere and the bounding cylinder

radius of the representation in order to help for collision detection and selec-

tion algorithms.

7.2.2 . Scene Render

CAVAST uses its own scene library to manage the crowd scene. Its main mod-

ules are a Scene Graph represented by a Scene Tree, and a Transform class

which is the nodes class of our Scene Tree. A Transform has a name and contains

one absolute transformation matrix and one relative to its parent. A Transform

can contain a Render Object, although it is not required and therefore a Trans-

form can be empty (to perform relative transformations). If so, it also needs a

Shader Program name to bind it before rendering. A Render Object is an inter-

face class for the scene library to know how to render things in the Scene Graph,

and one Avatar is a subclass of a Render Object. All of this is transparent to the

user who wants to implement its own Character Representations. CAVAST and

the Avatar class will be in charge of creating the proper transforms and add

them to the scene.
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When a Crowd i is added to the Scene, a Transform named “Crowd i” is added

to the scene root. When adding agents with the same Avatar, their correspond-

ing Transforms are grouped in a group Transform with the name of the Avatar.

Inside that transform, agents are also grouped by Character Representations in

a group transform for each one. When using level of detail, agents can change

between Character Representations, and thus need to change between groups.

This is dynamically and automatically carried out by the Crowd class. The main

reason for doing this is to be able to perform instancing, and to accelerate the

rendering of all the instances sharing the same Character Representation. Hav-

ing all the Transforms for all the instances of one representation in the same

group makes it fast to fill the instances data vertex buffer object with their in-

dividual data. Figure 7.4 shows an example view of a possible scene hierarchy.

Figure 7.4: An example view of a scene hierarchy.
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7.2.2 . Character Representations

Our current system provides two Character Representations: a basic one based

on just a cylinder 3D mesh (which could be easily extended by any 3D static

mesh) and an animated Character Mesh in the Cal3D format [Cal3D, 2014]

through HALCA [Spanlang, 2009]. The user could introduce any other Char-

acter Representations such as those based on impostors. We have also recently

incorporated an automatic impostor generation module, working with Cal3D

characters, and their corresponding implementations of the Character Repre-

sentation interface.

The constructor function should load the necessary geometry and resources

(textures). A Shader Program should be loaded using our Shader Manager,

and its name should be retrieved by the getShaderName() function (one of

the Character Representation interface functions). The render() function only

needs to send all the necessary information to the shader (via uniforms, at-

tributes, or whatever you want to use) and to render the geometry. In ad-

dition, the instancedRender(int n, ref VertexBufferObject instances-

DataBuffer) function needs to bind the vertex buffer object and enable any

vertex attribute pointers necessary to render the different instances.

Notice that the shader binding is done by the scene library when rendering

the corresponding transform of the agent. This allows the user to dynamically

change the shader through the interface (whenever the new shader is able to

handle the same data).

Figure 7.5 shows an example scene where 500 Avatars of the same type are rep-

resented using two Character Representations, a static 3D geometry for closer

agents, and cubes for farther away agents. And figure 7.6 shows 1000 agents

represented using 4 different Avatars with only one Character Mesh for each

one.
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Figure 7.5: Level of detail: 500 Avatars with a 3D static mesh and with a cube
for agents at 30 meters or more from the camera.

Figure 7.6: 1000 characters of 4 different types of Avatars using only one Char-
acter Mesh of around 5000 triangles for each one (without level of detail, nor

animation).
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7.2.3 . Animation

A Character Representation may be animated, that is, have a method of adapt-

ing the character representation to different poses. In order to be able to use the

best animations at each time, it is necessary to extract certain semantic infor-

mation from the original animation clips. An Animation Controller will then

be in charge of using that information to decide which animation to play or

synthesize.

7.2.3 . Preprocessing Animations

Independently of the Character Representation chosen, if we want to animate

it then we need to have an Animation Set. An Animation Set is an interface

class offered by our framework, which is composed of different Animations

(also called animation clips). The Agent can have an Animation Controller,

in charge of selecting or synthesizing the best animation, in order to properly

follow its current motion. The Animation Controller is thus dependent on the

current Character Representation and on its Animation Set.

When using skeletal animation through an animation library, the animation

controller will probably make an extended use of it. For example, we could

have an Avatar linked to an Agent, whose main Character Representation is a

character, rendered and animated with an accelerated animation library, such

as HALCA [Spanlang, 2009]. That Agent could have a Locomotion Controller

implementing an Animation Controller, which will be using that library to pre-

process the Animation Set, by analyzing and extracting information from each

Animation. Then at execution time, the Locomotion Controller could read the

velocity values of the Agent, decide which is the best Animation to play at that

moment, and use HALCA to do it.

7.2.3 . Animation Controller

The Animation Controller needs to implement a method animate(ref Agent

a, ref CharacterRepresentation cr). Although the same Animation Con-

troller could be used by different Agents and/or different Character Represen-

tations, it has sense to assume that the different Character Representations of
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the same Avatar could share the extracted information from the Animation Set

of the main Character Representation. An avatar should walk or run at the

same speed when it is represented by a 3D mesh as when it is by an animated

impostor. So even if the Agent Controller is linked to the Agents, we can think

that there should be at least one Animation Controller instance for each Avatar.

And therefore a method processAnimations(ref AnimationSet) should be

implemented too (although it can be empty if it is not required by your con-

troller implementation). With this interface the user should be able to imple-

ment his own animation controllers, to have different locomotion styles, idle

behaviors, etc.

7.2.3 . Instancing and Palette Skinning

At every frame agents are sorted in the Scene Tree, being grouped by Avatar

and by Character Representation. This way we can fill a Vertex Buffer Object

with the transform matrices of all the Agent instances, send it to the GPU, and

perform just one render call with instancing. If we want to animate all the in-

stances individually, that is, with each agent having its unique animation pose,

their animation information must be sent too. This could become a bottleneck

and therefore a problem, when the amount of agents is too high and that infor-

mation is too big.

For example, skeletal animation requires to send matrices or quaternions for

each joint of every agent. When talking about thousands of agents with char-

acter representations of around 50 bones or more, the amount of information

to update and send to the GPU can be very large, and thus the bandwidth be-

tween CPU and GPU can become a major bottleneck. A solution is to have all

the animations loaded in the GPU and perform there the matrix palette skin-

ning [Dudash, 2007a], having a different pose for every instance.

We therefore suggest that an Animation Set class of a Character Representa-

tion, in addition to have all the analyzed animations, implements a function

createBufferTexture() to create the buffer texture where all the animations

will be encoded. This way the buffer will be bound and the vertex shader will be

able to use it to perform instancing and palette skinning at the same time. The

advantage of this will be to have individual agents playing different animations.
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The counterpart of simply doing this would be that the vertex shader would be

in charge of computing the blended pose (given different animation instances

and weights), by blending within two key frames for each animation, and be-

tween the resulting poses of the different weighted animations. The number of

animations blended at the same time, as well as the geometry complexity of the

character would have a high impact over the performance.

To avoid this we use an additional vertex shader with transform feedback. This

allows to compute the blended poses of all the agents in the GPU, but with a

per joint cost rather than a per vertex cost. The computational cost depends

therefore on the number of joints to be deformed rather than on the number of

vertices of the character mesh.

7.2.4 . Integration

Agents within a Crowd are represented by Avatars and their Transforms, be-

ing part of the Scene Graph. At runtime the Scene is rendered by our render

engine using the Transform information of every Render Object. In order to

render each Avatar, it takes the position and orientation of the corresponding

agent and builds the transformation matrix, which is then used to render the se-

lected Character Representation. Depending on the distance to the camera, the

Avatar selects one Character Representation or another and its Shader Program

(implementing the Level of Detail selection). The user sets the LODs through

an interface. The simulation is carried out on another thread, executing it for

every instance of every agent. Since an Agent Controller has access to the Scene

and to the Crowd, it can also have access to the possible obstacles of the scene as

well as to the other agents. The Animation is performed right before rendering

the Avatar.
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7.3 . Features

Although this chapter presents an ongoing work to build a tool for crowd simu-

lation, animation and rendering, we offer in the current version a fully working

framework with the main functionalities and controllers already integrated.

This tool is built using OpenGL 4.3 for rendering and we offer different GUIs

using Qt5 (see figure 7.7). It is therefore straight forward for the user to cre-

ate a crowd, add agents with different Avatars, and assign controllers. A Shader

Manager and a Shader Editor are available allowing quick shader editing. Man-

agers and graphic editors to configure the Levels-Of-Detail for Simulation, An-

imation and Visualization are also available. The user can interactively edit an

Avatar by changing the different Character Representation switching distances

and its main dimensions, or you can add more than one Agent Controller and

more than one Animation Controller with different distance thresholds to one

or more Agents for each one (please see the accompanying video for a demo).

The current tool has implemented a Character Representation called Model

3DS Representation without animations which just uses a 3ds mesh file as a

character, and one HALCA Character which loads characters animated with

HALCA [Spanlang, 2009]. In future versions we want to add a representa-

tion for characters in the FBX format by using the FBX SDK [Autodesk, 2014b].

There are also two simple unoptimized Agent Controllers that perform a wan-

dering behavior, one with collision detection and avoidance, and the other

without it. To detect collisions each agent simply iterates over the other agents,

predicts future positions (according to the current velocity) and checks inter-

section between the two agent radius. We also provide a simple version of some

of Reynolds steering behaviors [Reynolds, 1999]. In addition to that we offer

a simple random grid generator and an A* Pathfinder that can work with the

Reynolds controller. As a proof of concept we have also integrated the RVO2

library [van den Berg et al., 2014], allowing us to have a controller using it to

simulate the agents. The integration was easy, requiring less than 2 hours.

Also integrated in the current systems, there is a basic Animation Controller

that works with our HALCA Characters and analyzes their animations. It ex-

tracts the root speeds of each animation and therefore is able to select the best
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Figure 7.7: GUIs for managing the crowd agents, avatars and controllers in
CAVAST.

one and adjust its speed to match the speed of the agent in the crowd simula-

tion. This way we reduce the foot-sliding effect.

Figure 7.8 shows a crowd of agents represented by HALCA Characters, moved

by our Reynolds Controller and animated with our basic Animation Controller.

Frustum culling using bounding spheres, and occlusion culling with bounding

boxes are implemented. As it has been previously mentioned, the system is also

prepared to support instancing [Dudash, 2007b]. Stereoscopic visualization is

also implemented, so the port to a virtual reality environment is also possible.
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7.4 . Results and Discussion

Even in its current preliminary stage, we believe that CAVAST can be a powerful

tool for researchers and students. To show the potential of CAVAST, we provide

some performance measurements such as frame rates for different scenes and

different conditions, but it is important to notice that CAVAST is designed to

be flexible and adapt to the needs and conditions of the work carried out by

the user. Therefore performance measurements will strongly vary depending

on the different controllers used or implemented, but having said this, we be-

lieve that the current framework provides higher performance benefits when

it comes to crowd simulation, than other tools mentioned in 3.4. For example,

using our test equipment (PC Intel Core i7-2600K CPU 3.40 GHz, 16 GB Ram,

and a GeForce GTX 560 Ti), we can render a thousand characters represented

with a non-animated 3d model of 3000 polygons each at 90 fps. If we add an

unoptimized Agent controller with collision detection, frame rate drops to 60

fps. But playing with the different LODs of the Agent controllers and of the

Character Representations, we can again reach frame rates over 100 fps. Using

animated characters with HALCA of 5000 polygons each, but without an Agent

Controller and all playing the same animation and the same pose (thus sharing

the animation data), you can have a thousand of them at 30 fps. But using an

Figure 7.8: A real time visualization of a crowd of agents represented by
HALCA Characters. using the Reynolds Agent Controller and the basic An-

imation Controller from CAVAST.
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Animation Controller and giving individuality to the animation of each agent,

can drop the frame rate to 23 fps. Adding an Agent Controller and thus forcing

to blend more than one animation for each agent can drop again the frame rate

to 14 fps.

These examples are just to illustrate that the performance of CAVAST is strongly

related to the Character Representations you use, the Controllers you imple-

ment and the LOD configurations you choose. One interesting feature we would

like to add is a profiling tool that could give you automatically information

about your controllers and representations. This should allow the user to iden-

tify potential bottlenecks easily. It could also compare the performance be-

tween all controllers, and automatically seek for the optimum LOD set-up in

order to keep a real-time frame rate. Figure 7.9 shows a screenshot of CAVAST

with a 350 agents scenario configured to have 60 fps.

Figure 7.9: Screenshot of CAVAST.
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7.5 . Conclusions on Crowd Framework

We have presented a new prototyping and development tool for crowds re-

search integrating animation, visualization and simulation: CAVAST. By imple-

menting some controller interfaces and/or using some default ones, the CAVAST

framework allows the user to start a new research project on crowds with all

these parts running in real-time, featuring configurable Level-of-Detail and

multi-thread. Although it may seem CAVAST do not outperforms other existing

systems, our performance is strongly dependent on what you do with it. Our

main contribution with CAVAST is therefore a flexible framework and a power-

ful tool with out-of-the-box crowd sandbox features. We believe that CAVAST

could be useful also as an education tool for crowd simulation courses, allow-

ing the students to quickly and easily visualize the results of their different

algorithms.

Publications
The contents of this chapter has yield the following publication

[Beacco and Pelechano, 2014]:

• A. Beacco and N. Pelechano. CAVAST: The Crowd Animation, Vi-

sualization, and Simulation Testbed.. EUROGRAPHICS Spanish

Conference of Computer Graphics (EGse CEIG 2014), Zaragoza,

Spain. 2-4 July 2014.

254 Simulation, Animation and Rendering of Crowds in Real-Time by Alejandro Beacco



8 . Future Work and Conclusions

This chapter includes all the future work we want to attack regarding all our

contributions. We also try to wrap up all our work and give a summary of

conclusions on real-time crowds.
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8.1 . Future Work

Our first addition to our simulation work would be to extended our multi-

domain system to use our footstep planner. Planning at a footstep level would

be a finer resolution domain that could be used in cases with high density of

obstacles or other agents, resulting in more natural and collaborative tasks be-

tween agents. An interesting part of this project would be to think of a way of

implementing the tunneling between the space-time domain and the footstep

domain. Another idea for our footstep planner would be to have a special class

of actions, constituting a reactive domain that would only be used in case of

an imminent threat. Having more characters and different sets of actions that

can be used depending on the situation would also accelerate the search and

give better results to our simulations in constantly changing dynamic virtual

environments.

Our work on removing the foot sliding effect with the APM, required a foot

on the floor at all times to calculate root displacement. This is a big limitation

since it does not allow for running animation where both feet can be in the

air during some frames. This problem should be addressed in the future. The

library employed for this first work was hand created, and thus our original

animations suffered from rigidity which affects the overall look of the crowd.

Since the quality of the final crowd animation depends strongly on the set of

animation clips available, having time aligned motion capture animation clips

will achieve more natural looking results. We plan to implement the APM into

our testbed tool, CAVAST, in order to use it with motion capture clips which we

have now been able to retrieve.

For our footsteps-driven animation system, we would like to extend our barycen-

tric coordinates interpolator to 3D space with the third coordinate being the

root velocity. This will free our system from the polar band interpolator which

not only takes longer to compute but also selects too many animations which

results in slower blending. One thing to explore could be to interleave the ex-

ecution of the Footstep-based Locomotion Controller from different characters

in different frames, ensuring we do not execute it for all the agents in the crowd

every frame.
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As for our rendering work, we would like to conduct perceptual studies sup-

porting the LOD selection instead of the metric based on RMS we used for our

relief impostors. This will evaluate not only the quality of static images but

also the impact of visualizing animated characters through our impostors. We

are currently about to perform more user studies to compare and better evalu-

ate our flat per-joint impostors, against relief impostors and classic impostors

[Tecchia and Chrysanthou, 2000].

Regarding our crowd framework, CAVAST, implementing and integrating all

the contributions of this thesis would be a huge step. We could provide call-

backs for potential simulation events (such as a fire alarm) to the Agent Con-

troller interface, and add the corresponding trigger button to the GUI, letting

the user to implement the behavior in its own controllers. We plan to separate

the path-finding simulation module and move it to another kind of controller

interface, that can easily be linked to a navigation mesh generator module. A

nice thing to add would be a generalized random generator of scenes (not just

working with a grid or axis aligned objects), as well as some challenging ex-

ample and benchmark scenarios. Finally, we would like to have evaluation and

profiling tools, such as an automatic output of statistics or automatic perception

tests. For example an automatic render of the same scene or simulation with

different controllers. This might imply to add the possibility of recording and

playing back simulations. Currently the code of CAVAST is not multi-platform

because we are using a Windows version of the HALCA library, although it

should be possible to port it to other platforms when using other animation

libraries. Another limitation of the current version is that the user needs to re-

build the entire application to add new controllers, so we plan for a plugin API

or a scripting interface using LUA or C#. Also, characters must be added into

the code before being imported, but it should be easy to add code in order to

automatically import resources in a specific folder. We would like to release a

free open source version of the code and make it available online soon.
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8.2 . Conclusions

In chapter 2 we introduced different axis of complexity for the problem of sim-

ulating, animating and rendering crowds in real-time. As we summarized in

section 2.12, the elements in this classification are:

• Agent Complexity

• Control Granularity

• Environment Complexity

• Animation Quality

• Visual Quality

• Variety

• Scale

• Performance

• Global coherence and consistency

We stated that the ideal outcome would be to improve each of these elements,

but that pushing the boundaries of one of them might compromise the others,

specially performance. Throughout this thesis and its contributions we have

seen some of the thresholds appearing when doing so.

Our work on simulation has shown how we can have different agent complexi-

ties, controlled with different granularities in complex environments with un-

deterministic dynamic events in an efficient way. Although we are still far from

reaching full mesh agent complexity and the highest level of control granular-

ity over the whole body of the agents in real-time, we have proposed an elegant

approximation to maintain efficiency.

Our work on animation proposes new techniques to represent with enough

quality the motion of the agents within a crowd. Due to memory and compu-

tation restrictions we have limited our approaches to using small databases of
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motion capture clips. We think that these allow us to synthesize natural enough

animations in order to achieve a crowd moving smoothly in the environment.

The most important factor here was to maintain coherence and consistency with

the reflected simulation.

Regarding variety we find that there are still many open problems, such as hav-

ing individuality at all levels (appearance, animation and even behavior). To

achieve variety of appearances, tessellation shaders could become a powerful

tool in order to add geometric variation to close-up characters, using stochastic

techniques. Hardware tessellation might also accelerate the skinning process

by rigging and animating a mid-resolution mesh that can be refined dynami-

cally into a high-resolution mesh.

Talking about our work on rendering, we must think that beyond some max-

imum viewing distance, a 3D character projects into a single pixel. At such

distances it does not make sense to spend effort deciding which representation

to use, since a single colored point would be valid. Moreover, at such distances

we may not be visualizing microscopic simulations anymore, but crowds may

be moving at a macroscopic level. In such a case, crowd rendering should be ap-

proached in a completely different way, representing massive groups of people

flowing, and not individual agents anymore. There are other questions about

what humans are able to perceive within their field of view, such as what is

the real maximum amount of agents that can be perceived simultaneously by a

single viewer, what is the minimum visual quality they need to have, or what

are the visual queues users are able to distinguish. This also applies to the an-

imation and simulation quality we are able to perceive. As we have seen, some

perceptual studies already attack the perception problem but focusing on agent

variability. Additional perception studies and psychophysical experiments are

definitely required to answer the questions above and to discover the bound-

aries of perception in the context of real-time crowds.

Finally, performance and scale are the two main limiting and bounding axis

in this research. As we desire real-time crowds we have a limited computa-

tion time, as well as a limited number of memory resources. On one hand, by

grouping far agents into macroscopic simulations and representing them with

a different entity than individual 3D characters, we could use these resources

in a different way and scale even more our crowds. But we would not be any-

more in the same explicit area of research we have been. In some way, defining
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at which point agents can be considered as part of a macroscopic crowd could

indicate the maximum target value in our scale factor. On the other hand, the

computational limitation could be reduced by using some of the modern GPU

capabilities. Most of the crowd simulation and animation processes could be

transferred and computed into the GPU, thus being able to parallelize the com-

putation of all the agents. One advantage of this will be to avoid the amount of

information to be transferred between the CPU and the GPU, as it will all be in

the GPU, but of course, this will still be restricted by the graphics memory.
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