
EUROGRAPHICS 2023 / K. Myszkowski and M. Nießner
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 42 (2023), Number 2

One Step Further Beyond Trilinear Interpolation and Central
Differences: Triquadratic Reconstruction and its Analytic
Derivatives at the Cost of One Additional Texture Fetch

Balázs Csébfalvi

Budapest University of Technology and Economics, Department of Control Engineering and Information Technology, Hungary

Abstract
Recently, it has been shown that the quality of GPU-based trilinear volume resampling can be significantly improved if the
six additional trilinear samples evaluated for the gradient estimation also contribute to the reconstruction of the underlying
function [Csé19]. Although this improvement increases the approximation order from two to three without any extra cost,
the continuity order remains C0. In this paper, we go one step further showing that a C1 continuous triquadratic B-spline
reconstruction and its analytic partial derivatives can be evaluated by taking only one more trilinear sample into account.
Thus, our method is the first volume-resampling technique that is nearly as fast as trilinear interpolation combined with on-the-
fly central differencing, but provides a higher-quality reconstruction together with a consistent analytic gradient calculation.
Furthermore, we show that our fast evaluation scheme can also be adapted to the Mitchell-Netravali [MN88] notch filter, for
which a fast GPU implementation has not been known so far.

CCS Concepts
• Computing methodologies → Volumetric models; Image processing; Texturing;

1. Introduction

For several decades, trilinear interpolation has been used as a de
facto standard resampling technique for direct volume rendering.
Although tensor-product extensions of higher-order interpolation
filters are well-known to produce higher image quality, they are
rarely used in practice. This is mainly because of their additional
computational cost, which increases exponentially in higher di-
mensions. For example, applying a Catmull-Rom spline interpola-
tion [CR74, Key81] instead of a linear interpolation, the number of
original samples to count with is 4, 16, and 64 in one, two, and three
dimensions, respectively. In the practice of direct volume render-
ing [CCF94,WE98,KW03,EHK∗06], one can remedy this problem
by using fast GPU implementations [SH05, RMtHRS08, Csé18]
that evaluate the result of the convolution filtering as a linear com-
bination of trilinear samples, which are provided by the texture-
sampling hardware. Following this approach, a tricubic Catmull-
Rom spline interpolation can be evaluated from eight trilinear tex-
ture samples [Csé18], rather than from 64 nearest-neighbor texture
samples. As in current GPUs the cost of a trilinear texture fetch
is nearly the same as that of a nearest-neighbor texture fetch, this
simplification already leads to a reasonable trade-off between ren-
dering speed and image quality, but only for isosurface rendering.
Using, for example, first-hit ray casting for rendering isosurfaces,
the cost of the gradient estimation is negligible as gradients need to
be evaluated at most once for each ray to calculate the shaded colors

of the potentially hit surface points [WE98, HLRSR09]. Neverthe-
less, in semitransparent direct volume rendering [Lev88, KW03],
gradients are necessary to evaluate for each sample position along
the rays, which still makes the tricubic Catmull-Rom spline inter-
polation a very expensive solution. Its combination with on-the-
fly central differencing would require 48 additional trilinear texture
fetches, which can hardly be considered as a reasonable extra cost
for the quality improvement. Currently, a fast GPU-based solution
for calculating the analytic derivatives of a Catmull-Rom spline re-
construction is not known. To the best of our knowledge, such a
fast analytic derivative-filtering technique has been published only
for a tricubic B-spline reconstruction so far [SH05]. However, the
estimation of each partial derivative requires eight additional trilin-
ear texture fetches. Therefore, the total number of texture fetches
needed for gradient estimation is 24, which is not a reasonable
trade-off either.

Recently, it has been shown that, instead of treating the tasks of
function reconstruction and gradient estimation completely sepa-
rately, it is worthwhile to improve the function reconstruction by
reusing the same trilinear texture samples that have already been
used for gradient estimation [Csé19]. More concretely, the approx-
imation order of the standard linear interpolation was proposed to
be increased from two to three by reusing the six additional tri-
linear samples that need to be evaluated for gradient estimation
anyway. Consequently, the quality of the function reconstruction
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is improved for free, as new texture fetches are not required and the
additional arithmetic operations are performed in the shadow of the
texture fetches. Moreover, the function reconstruction and the gra-
dient estimation are more consistent in an approximation-theoretic
sense, as they both provide the exact solutions for quadratic polyno-
mials, unlike in case of trilinear interpolation combined with cen-
tral differencing. Nevertheless, in a strict theoretical sense, the re-
constructed gradients are still inconsistent as they are not the ana-
lytic gradients of the reconstructed function. Furthermore, in spite
of the increased approximation order, the reconstructed function is
still only C0 continuous just as the pure trilinear reconstruction. C1

continuity is guaranteed only along the grid lines, where the recon-
struction is equivalent to a 1D Catmull-Rom spline interpolation.
As the impulse response can be considered to be a nonseparable
extension of the 1D Catmull-Rom spline, throughout this paper,
we will refer to this technique [Csé19] as a Nonseparable Catmull-
Rom Spline Interpolation (NCRSI).

In this paper, we propose two triquadratic volume-resampling
techniques that use exactly the same set of trilinear samples for
function reconstruction and for gradient estimation as well, which
ensures the optimal utilization of resources. Compared to NCRSI,
the improvements are the following:

• Consistent gradient estimation: Unlike NCRSI, which is based
on a central-differencing gradient estimation, our techniques
provide a fully consistent gradient field, which is the analytic
gradient of the reconstructed function.

• Higher order of continuity: NCRSI guarantees an approxima-
tion order of three, but its order of continuity is just C0. Our
techniques also maintain an approximation order of three, but re-
sult in C1 continuous reconstructed functions. The C1 continuity
stems from the fact that we evaluate separable tensor-product ex-
tensions of C1 continuous quadratic filters, such as the quadratic
B-spline or the Mitchell-Netravali notch filter [MN88].

• Reduced postaliasing: Mitchell and Netravali proposed a notch
filter as a special case of BC-splines [MN88], which has very
good antialiasing properties. We show that this filter can be de-
composed to a convolution of a discrete filter and a quadratic B-
spline filter, where the discrete filter does not increase the num-
ber of voxels. Based on this decomposition, we can efficiently
evaluate this filter and its analytic derivatives from the same eight
trilinear texture samples, in the same way as for a quadratic B-
spline reconstruction. We show that the Mitchell-Netravali notch
filter significantly reduces the annoying staircase aliasing com-
pared to NCRSI.

Due to these advantageous properties, we think that the fast
volume-resampling techniques proposed in this paper are even bet-
ter candidates for replacing the standard trilinear interpolation than
the recently published NCRSI [Csé19].

2. Related Work

Several researchers demonstrated the superiority of higher-order
filters over the standard linear interpolation in terms of numeri-
cal accuracy and visual quality as well [MN88, ML94, THG00,
LME04, MMMY97, MMK∗98, BU99b, BTU99, BU99a, CBU05,
Csé08]. However, in GPU-accelerated direct volume rendering

[CCF94, WE98, KW03, EHK∗06], it is relatively difficult to com-
pete with trilinear interpolation. Although it produces lower quality,
it is very efficient to evaluate due to its hardwired implementation.
Therefore, in many practical applications, it is still considered to be
a better trade-off between image quality and rendering speed than
any higher-order filtering technique mentioned above.

The first higher-order volume resampling technique optimized
especially for the GPU was published in 2005 by Sigg and Had-
wiger [SH05]. They recommended a fast evaluation of a cubic B-
spline filtering as a linear combination of eight trilinear texture
samples. Meanwhile, this classical method was also proposed to
be further optimized [RMtHRS08] and adapted to a fast Catmull-
Rom spline filtering [Csé18]. However, combined with derivative
estimation schemes evaluating either central differences or the ana-
lytic derivative filters, these techniques become too expensive com-
putationally. Therefore, they are more suitable for isosurface ren-
dering rather than for semitransparent direct volume rendering. To
overcome these difficulties, NCRSI [Csé19] was proposed as an
efficient two-in-one solution for both function reconstruction and
gradient estimation. NCRSI is able to exactly reconstruct quadratic
surfaces and their normals from their discrete volumetric represen-
tations at the cost of a lower-quality trilinear interpolation com-
bined with on-the-fly central differencing. In fact, using NCRSI,
a Catmull-Rom spline interpolation is applied along the edges of
the cubic cells, and inside the cells the underlying function is re-
constructed as a polynomial that fits onto the edge profiles. This
approach guarantees a C1 continuous reconstruction along the grid
lines, but provides only C0 continuity at the faces of the cubic cells.
Therefore, in this paper, we propose a slightly slower volume re-
sampling that results in a C1 continuous triquadratic B-spline re-
construction. Compared to the seven texture fetches required by
NCRSI, we take eight texture samples, which are used for both
reconstructing the underlying function and for calculating the an-
alytic derivatives of the reconstruction. Thus, at the cost of only
one more texture fetch, a higher-quality volume resampling can be
achieved.

Our method is similar to the technique published by Sigg and
Hadwiger [SH05] (see a brief summary in Section 2.1), but instead
of a tricubic filtering we use a triquadratic filtering. Although, in
this way, we reduce both the order of continuity and the approx-
imation order by one, in Section 3.1, we show that a triquadratic
filtering is still more appropriate for semitransparent volume ren-
dering as the analytic gradients of the triquadratic reconstruction
can be evaluated for free without taking any extra trilinear texture
samples.

2.1. Fast Tricubic B-Spline Filtering

In 1D, a cubic B-spline reconstruction at position x is calculated as
a normalized weighted sum of four neighboring samples fi−1, fi,
fi+1, fi+2:

fcub(x) = fi−1w0(α)+ fiw1(α)+ fi+1w2(α)+ fi+2w3(α), (1)

where x = i+α for i ∈ Z and α ∈ [0,1) being the integer and frac-
tional parts of x, respectively. The weights corresponding to the
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cubic B-spline are defined as follows:

w0(α) =
1
6

(
−α

3 +3α
2 −3α+1

)
,

w1(α) =
1
6

(
3α

3 −6α
2 +4

)
,

w2(α) =
1
6

(
−3α

3 +3α
2 +3α+1

)
,

w3(α) =
1
6 α

3.

(2)

The hardwired linear interpolation can be exploited if fcub(x) is
evaluated as a linear combination of the following two terms
[SH05]:

fcub(x) =

g0(α) ·
(

fi−1
w0(α)

g0(α)
+ fi

w1(α)

g0(α)

)
︸ ︷︷ ︸

linear interpolation at i−1+ w1(α)
g0(α)

+

g1(α) ·
(

fi+1
w2(α)

g1(α)
+ fi+2

w3(α)

g1(α)

)
︸ ︷︷ ︸

linear interpolation at i+1+ w3(α)
g1(α)

= g0(α) · flin

(
i−1+ w1(α)

g0(α)

)
+g1(α) · flin

(
i+1+ w3(α)

g1(α)

)
,

(3)
where g0(α) =w0(α)+w1(α), g1(α) =w2(α)+w3(α), and flin(x)
is a linear interpolation at position x. The first term is evaluated as
a linear interpolation between fi−1 and fi at position i−1+ w1(α)

g0(α)
,

while the second term is evaluated as a linear interpolation between
fi+1 and fi+2 at position i+ 1+ w3(α)

g1(α)
. Applying the same evalu-

ation scheme, Sigg and Hadwiger [SH05] proposed to use the an-
alytic derivative of the cubic B-spline for derivative filtering. This
also requires two linearly interpolated samples, but at different po-
sitions determined by the weights corresponding to the analytic
derivative of the cubic B-spline. Thus, in 1D, the total number
of linear samples necessary for function and derivative reconstruc-
tion is four. Consequently, the 3D tensor-product extension requires
eight trilinear samples for the trivariate function reconstruction,
while the reconstruction of each partial derivative requires eight ad-
ditional trilinear samples. Therefore, in 3D, the total number of tri-
linear samples required for function and gradient reconstruction is
32, which can hardly be competitive to the seven trilinear samples
necessary for either NCRSI [Csé19] or the trilinear interpolation
combined with on-the-fly central differencing.

3. Fast Evaluation of Triquadratic Reconstructions and their
Analytic Derivatives

In this section our major contribution is presented, namely, we pro-
pose efficient implementations for two well-known reconstruction
filters: the triquadratic B-spline, and the Mitchell-Netravali notch
filter [MN88]. Both filters guarantee C1 continuity and an approxi-
mation order of three. In both cases, the reconstruction is evaluated
from eight trilinear texture samples, which are reused for calculat-

Figure 1: Illustration of a quadratic B-spline reconstruction us-
ing our fast evaluation scheme. The red dots depict the two linear
samples that are used for both function reconstruction and for an-
alytic derivative calculation. The blue dots represent the original
samples, while the purple dots depict the samples of the quadratic
B-spline, which are used for weighting the original samples.

ing the analytic derivatives of the reconstructed function as well.
Thus, the derivatives are provided for free. Consequently, our im-
plementations are especially suitable for semitransparent volume
rendering, where the gradients for the shading computation need to
be estimated for each sample along the rays.

3.1. Triquadratic B-Spline Filtering

In order to optimize also for the gradient estimation, we propose
to reconstruct the underlying function by using a triquadratic B-
spline filter rather than a tricubic B-spline filter. In 1D, a quadratic
B-spline reconstruction at position x is calculated as a normalized
weighted sum of three neighboring samples f j−1, f j, f j+1 (see Fig-
ure 1):

fquad(x) = f j−1w0(β)+ f jw1(β)+ f j+1w2(β), (4)

where x = j+β for j ∈ Z and β ∈
[
− 1

2 ,
1
2

)
. Note that j = ⌊x+ 1

2⌋
is now the closest integer to x, unlike in Equation 1, where i = ⌊x⌋
is the integer part of x. The weights corresponding to the quadratic
B-spline are defined as follows:

w0(β) =
1
2

(
β− 1

2

)2
, w1(β) =

3
4 −β

2,

w2(β) =
1
2

(
β+ 1

2

)2
.

(5)

Similarly to the fast cubic B-spline filtering [SH05], we evaluate
fquad(x) as a linear combination of two terms obtained by two sep-
arate linear interpolations:

fquad(x) = g0(β) · flin(x−δ0(β))+g1(β) · flin(x+δ1(β)), (6)

where the first and the second linear samples are evaluated at posi-
tions x− δ0(β) and x+ δ1(β), respectively. It is important to note
that these two positions are not unique, unlike in case of cubic B-
spline filtering discussed in Section 2.1, where the positions for the
two separate linear interpolations are completely determined by the
weights of the cubic B-spline. In contrast, the result of the quadratic
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B-spline reconstruction can be equivalently expressed by different
definitions of δ0, δ1, g0, and g1. For example, a symmetric defi-
nition is g0(β) = g1(β) =

1
2 and δ0(β) = δ1(β) =

1
4 + β

2, which
is easy to check to be a valid solution for Equation 6 being equal
to Equation 4. These two equations form an under-determined lin-
ear equation system that gives an additional degree of freedom for
optimizing offsets δ0 and δ1 for an efficient derivative estimation.
More precisely, we can determine these offsets such that the cor-
responding linear samples flin(x − δ0(β)) and flin(x + δ1(β)) can
be used not just for the quadratic B-spline reconstruction, but for
calculating the analytic derivative of the reconstructed function as
well. This optimization leads to the following solution:

δ0(β) =
1
4 +

1
2 β, δ1(β) =

1
4 −

1
2 β,

g0(β) =
1
2 −β, g1(β) =

1
2 +β,

(7)

Substituting these definitions into Equation 6, we obtain

g0(β) · flin(x−δ0(β))+g1(β) · flin(x+δ1(β)) =(
1
2 −β

)
flin
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x− 1

4 −
1
2 β

)
+
(

1
2 +β

)
flin

(
x+ 1
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1
2 β

)
=

(
1
2 −β

)
flin

(
j+β− 1

4 −
1
2 β

)
+

(
1
2 +β

)
flin

(
j+β+ 1

4 −
1
2 β

)
=

(
1
2 −β

)
flin

(
j−1+ 3

4 +
1
2 β

)
+
(

1
2 +β

)
flin

(
j+ 1

4 +
1
2 β

)
=

(
1
2 −β

)[
f j−1

(
1
4 −

1
2 β

)
+ f j

(
3
4 +

1
2 β

)]
+

(
1
2 +β

)[
f j

(
3
4 −

1
2 β

)
+ f j+1

(
1
4 +

1
2 β

)]
=

f j−1w0(β)+ f jw1(β)+ f j+1w2(β) = fquad(x).
(8)

Thus, setting the offsets δ0 and δ1 and the weights g0 and g1 ac-
cording to Equation 7, a quadratic B-spline reconstruction can be
evaluated from two linear samples indeed based on Equation 6.
Now we show that exactly the same linear samples can also be
used for analytic derivative filtering. We propose the following
derivative-estimation scheme:

f ′quad(x) = 2[ flin(x+δ1(β))− flin(x−δ0(β))]. (9)

Substituting Equation 7 into Equation 9, we obtain

2[ flin(x+δ1(β))− flin(x−δ0(β))] =

2 flin

(
j+ 1

4 +
1
2 β

)
−2 flin

(
j−1+ 3

4 +
1
2 β

)
=

2
[

f j

(
3
4 −

1
2 β

)
+ f j+1

(
1
4 +

1
2 β

)]
−

2
[

f j−1

(
1
4 −

1
2 β

)
+ f j

(
3
4 +

1
2 β

)]
=

f j−1w′
0(β)+ f jw′

1(β)+ f j+1w′
2(β) = f ′quad(x).

(10)

Thus, using the same linear samples flin(x − δ0(β)) and flin(x +
δ1(β)) as for the quadratic B-spline reconstruction, the analytic
derivative of the reconstructed function can also be efficiently de-
termined. Analogously, the 3D tensor-product extension of this re-
construction scheme requires the same eight trilinear samples for
the trivariate function reconstruction and for the analytic gradient
computation as well. As a consequence, compared to trilinear in-
terpolation combined with central differencing, only one additional
trilinear texture fetch is necessary, while compared to tricubic B-
spline reconstruction combined with analytic gradient filtering (see
Section 2.1), the number of necessary texture fetches is reduced by
a factor of four. Therefore, our triquadratic B-spline reconstruction
scheme represents a very good trade-off between quality improve-
ment and computational cost.

3.2. Mitchell-Netravali Notch Filtering

Mitchell and Netravali introduced a family of BC-spline filters
[MN88], which are defined by parameters B and C:

ϕBC(x) =
1
6



(12−9B−6C)|x|3 +(−18+12B+6C)|x|2

+(6−2B) if |x| ≤ 1,
(−B−6C)|x|3 +(6B+30C)|x|2

+(−12B−48C)|x|+(8B+24C) if 1 < |x| ≤ 2,
0 if |x|> 2.

(11)
In order to minimize the postaliasing effect, Mitchell and Netravali
proposed parameters B = 3

2 and C = − 1
4 resulting in a piecewise

quadratic filter:

ϕnotch(x) =
1
4


−|x|2 +2 if |x| ≤ 1,
|x|2 −4|x|+4 if 1 < |x| ≤ 2,
0 if |x|> 2.

(12)

This is a notch filter as its frequency response equals to zero at the
Nyquist frequency, which has been shown to be an advantageous
property in terms of antialiasing [MN88].

Our key idea for efficiently evaluating the Mitchell-Netravali
notch filter is a decomposition of the filter kernel to a convolution
of a discrete filter and a quadratic B-spline:

ϕnotch(x) = (p∗ϕquad)(x) =
∫ −∞

−∞
p(y)ϕquad(x− y)dy = (13)

1
2

ϕquad

(
x− 1

2

)
+

1
2

ϕquad

(
x+

1
2

)
,

where p(x) = 1
2

[
δ

(
x− 1

2

)
+δ

(
x+ 1

2

)]
and the quadratic B-

spline is defined as

ϕquad(x) =
1
8


−8|x|2 +6 if |x| ≤ 1

2 ,

4|x|2 −12|x|+9 if 1
2 < |x| ≤ 3

2 ,

0 if |x|> 3
2 .

(14)

Note that the discrete filtering by p can be performed in a pre-
processing, creating new discrete samples ak by taking the av-
erage of each pair of the neighboring original discrete samples:
ak = ( fk + fk+1)/2. Assuming a periodic extension, the number of

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

194



Balázs Csébfalvi / One Step Further Beyond Trilinear Interpolation and Central Differences

the discrete samples remains the same, but the new samples are as-
sociated to sample positions shifted by 1

2 . Exploiting Equation 13,
the result of the Mitchell-Netravali notch filtering can be evaluated
by simply convolving the new discrete samples ak by the quadratic
B-spline:

fnotch(x) = ∑
k

akϕquad

(
x− 1

2
− k

)
. (15)

As we have simplified the Mitchell-Netravali notch filtering to a
quadratic B-spline filtering of precalculated samples, we can now
use exactly the same fast evaluation scheme to calculate fnotch(x)
and its analytic derivatives as for the quadratic B-spline recon-
struction (see Section 3.1). Note that, using a 3D tensor product-
extension, the Mitchell-Netravali notch filtering is evaluated also
from eight trilinear texture samples similarly to the triquadratic
B-spline reconstruction, but these trilinear samples are now taken
from a precalculated volume, where each voxel is obtained by aver-
aging eight neighboring voxels from the original volume using the
3D extension of the discrete filter p. To the best of our knowledge,
the fact that the Mitchell-Netravali notch filtering can be decom-
posed to a discrete filtering and a consecutive quadratic B-spline
filtering has not been recognized so far. Consequently, such a de-
composition has not been exploited for a fast implementation yet.

3.3. Prefiltering

It is well known that the quadratic B-spline filter is not interpolating
but based on the concept of generalized interpolation [BTU99] the
original samples can be prefiltered such that the reconstructed func-
tion still exactly reproduces the original samples. To do so, instead
of the original samples fk, the prefiltered samples ck are convolved
with the reconstruction filter ϕ:

f̃ (x) = ∑
k

ckϕ(x− k), (16)

where ck are determined such that the interpolation condition is
satisfied:

f̃ ( j) = ∑
k

ckϕ( j− k) = f j. (17)

Note that, generalized interpolation does not lead to a loss of infor-
mation, as it exactly reproduces the original samples at the discrete
sample positions just as an interpolating filter applied on the origi-
nal data. As shown by Blu at al. [BTU99], the prefiltered samples
ck are obtained from the original samples fk by using the sampled
reconstruction filter for a deconvolution prefiltering.

Thus, to make our quadratic B-spline reconstruction interpolat-
ing, we have to use the sampled quadratic B-spline as a deconvolu-
tion prefilter:

qquad(x) = ϕquad(x)∑
k

δ(x− k) =
1
8

δ(x−1)+
3
4

δ(x)+
1
8

δ(x+1).

(18)
The deconvolution is easy to implement in the frequency domain
as a division by the DTFT of qquad(x), which is defined as

q̂quad(ω) =
3+ cos(ω)

4
. (19)

π 2π 3π 4π

1

ω

Ideal low-pass filter.

Quadratic B-spline filtering.

Prefiltered quadratic B-spline interpolation.

Figure 2: Magnitudes of the frequency responses
ϕ̂quad(ω)/q̂quad(ω) and ϕ̂quad(ω), which correspond to the
quadratic B-spline reconstruction with and without prefiltering,
respectively.

π 2π 3π 4π

1

ω

Ideal low-pass filter.

Mitchell-Netravali notch filtering.

Prefiltered Mitchell-Netravali notch filtering.

Figure 3: Magnitudes of the frequency responses
ϕ̂notch(ω)/q̂notch(ω) and ϕ̂notch(ω), which correspond to the
Mitchell-Netravali notch filtering with and without prefiltering,
respectively.

Using prefiltering, the resultant frequency response is
ϕ̂quad(ω)/q̂quad(ω), where the frequency response of the quadratic

B-spline filter ϕquad is ϕ̂quad(ω) = sinc3(ω) =
sin3(ω/2)
(ω/2)3 . Figure 2

shows the frequency responses with and without prefiltering. Note
that the prefiltering for generalized interpolation improves the
passband behavior, significantly decreasing the oversmoothing
effect.

Generalized interpolation cannot be adapted to the Mitchell-
Netravali notch filter ϕnotch, as the DTFT of the sampled filter re-
sults in zero-crossings, which would lead to a division by zero.
Therefore, we propose a discrete prefilter that optimally exploits
the approximation power of ϕnotch and leads to a quasi-interpolation
of order three. The frequency response of ϕnotch is

ϕ̂notch(ω) = cos(ω/2)sinc3(ω) = cos(ω/2)
sin3(ω/2)
(ω/2)3 . (20)

Note that ϕ̂notch fulfills the necessary Strang-Fix conditions [SF71]
for a quasi-interpolation of order three, as it guarantees zero-
crossings of order three at nonzero integer multiples of 2π. We
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π 2π 3π 4π

1

ω

Ideal low-pass filtering.

Linear B-spline interpolation.

Catmull-Rom spline interpolation.

Prefiltered quadratic B-spline interpolation.

Prefiltered Mitchell-Netravali notch filtering.

Figure 4: Frequency responses of the proposed quadratic filters
compared to that of the linear B-spline and the Catmull-Rom spline.

derive a deconvolution prefilter qnotch such that a satisfactory con-
dition [CBU05] for a quasi-interpolation of order three is also sat-
isfied:

q̂notch(ω) = ϕ̂notch(ω)+O(ω3). (21)

We propose to use the deconvolution prefilter previously applied for
the interpolating quadratic B-spline reconstruction twice, that is,
qnotch = qquad ∗qquad and q̂notch(ω) = q̂quad(ω) · q̂quad(ω). The Taylor
series expansions of q̂notch(ω) and ϕ̂notch(ω) around ω = 0 are

q̂notch(ω) = 1− 1
4

ω
2 +O(ω4), (22)

and

ϕ̂notch(ω) = 1− 1
4

ω
2 +O(ω3), (23)

respectively. Thus, q̂notch(ω) indeed satisfies Equation 21. There-
fore, applying the deconvolution filter qquad twice, the Mitchell-
Netravali notch filtering can be made quasi-interpolating of order
three being equivalent to the interpolating prefiltered quadratic B-
spline reconstruction in terms of approximation order. Figure 3
shows the frequency responses corresponding to the Mitchell-
Netravali notch filtering with and without prefiltering. Note that
the proposed prefilter drastically decreases the oversmoothing ef-
fect similarly to the prefilter applied for the quadratic B-spline re-
construction.

Figure 4 shows the frequency responses of the proposed
quadratic filters compared to that of the linear B-spline and the
Catmull-Rom spline. The standard linear interpolation is the worst
in detail-preservation as its frequency response drastically devi-
ates from the ideal passband behavior leading to the highest over-
smoothing [ML94]. The prefiltered quadratic B-spline interpola-
tion performs better than the Catmull-Rom spline interpolation, de-
creasing not just the oversmoothing effect, but also the postalias-
ing effect [ML94], which stems from the deviation from the ideal
stopband behavior. Note that the proposed prefiltered Mitchell-
Netravali notch filtering performs the best in terms of antialiasing,
though its oversmoothing is slightly higher than that of the pre-
filtered quadratic B-spline interpolation or the Catmull-Rom spline
interpolation.

3.4. 3D Extension

Our techniques can be easily extended to 3D using a separable
tensor-product extension. Accordingly, the triquadratic B-spline re-
construction is evaluated as a linear combination of eight trilinear
samples as follows:

fquad(x,y,z) =

g0(βx)g0(βy)g0(βz) · ftrilin(x−δ0(βx),y−δ0(βy),z−δ0(βz))+

g1(βx)g0(βy)g0(βz) · ftrilin(x+δ1(βx),y−δ0(βy),z−δ0(βz))+

g0(βx)g1(βy)g0(βz) · ftrilin(x−δ0(βx),y+δ1(βy),z−δ0(βz))+

g1(βx)g1(βy)g0(βz) · ftrilin(x+δ1(βx),y+δ1(βy),z−δ0(βz))+

g0(βx)g0(βy)g1(βz) · ftrilin(x−δ0(βx),y−δ0(βy),z+δ1(βz))+

g1(βx)g0(βy)g1(βz) · ftrilin(x+δ1(βx),y−δ0(βy),z+δ1(βz))+

g0(βx)g1(βy)g1(βz) · ftrilin(x−δ0(βx),y+δ1(βy),z+δ1(βz))+

g1(βx)g1(βy)g1(βz) · ftrilin(x+δ1(βx),y+δ1(βy),z+δ1(βz)),
(24)

where ftrilin(x,y,z) is the result of a trilinear interpolation at position
[x,y,z], while βx = x−⌊x+ 1

2⌋, βy = y−⌊y+ 1
2⌋, and βz = z−⌊z+

1
2⌋.

For the evaluation of the partial derivatives of the reconstruction,
exactly the same eight trilinear samples can be used. For example,
the partial derivative along the x-axis is evaluated by applying our
quadratic B-spline filtering (see Equation 6) along the y-axis as well
as along the z-axis, while along the x-axis our analytic derivative
filtering (see Equation 9) is applied:

∂

∂x fquad(x,y,z) =

2[g1(βx)g0(βy)g0(βz) · ftrilin(x+δ1(βx),y−δ0(βy),z−δ0(βz))−

g0(βx)g0(βy)g0(βz) · ftrilin(x−δ0(βx),y−δ0(βy),z−δ0(βz))]+

2[g1(βx)g1(βy)g0(βz) · ftrilin(x+δ1(βx),y+δ1(βy),z−δ0(βz))−

g0(βx)g1(βy)g0(βz) · ftrilin(x−δ0(βx),y+δ1(βy),z−δ0(βz))]+

2[g1(βx)g0(βy)g1(βz) · ftrilin(x+δ1(βx),y−δ0(βy),z+δ1(βz))−

g0(βx)g0(βy)g1(βz) · ftrilin(x−δ0(βx),y−δ0(βy),z+δ1(βz))]+

2[g1(βx)g1(βy)g1(βz) · ftrilin(x+δ1(βx),y+δ1(βy),z+δ1(βz))−

g0(βx)g1(βy)g1(βz) · ftrilin(x−δ0(βx),y+δ1(βy),z+δ1(βz))].

(25)
The partial derivatives along the y-axis or along the z-axis can be
calculated analogously using also the same trilinear samples that
are evaluated anyway for the triquadratic B-spline reconstruction.
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4. GPU Implementation

Based on our fast evaluation scheme introduced in Section 3.1 and
extended to 3D in Section 3.4, a triquadratic B-spline filtering can
be implemented using the following GLSL code:
vec4 resampleGradientAndDensity(vec3 position)
{

vec3 scaled_position = position * size - 0.5;
vec3 beta = scaled_position - round(scaled_position);

vec3 g0 = 0.5 - beta;
vec3 delta0 = (0.5 + beta) * 0.5;

vec3 position0 = position - delta0 / size;
vec3 position1 = position0 + 0.5 / size;

vec4 s0 = vec4(
texture(samplerUnit,

vec3(position0.x, position0.y, position0.z)).r,
texture(samplerUnit,

vec3(position0.x, position1.y, position0.z)).r,
texture(samplerUnit,

vec3(position0.x, position0.y, position1.z)).r,
texture(samplerUnit,

vec3(position0.x, position1.y, position1.z)).r);

vec4 s1 = vec4(
texture(samplerUnit,

vec3(position1.x, position0.y, position0.z)).r,
texture(samplerUnit,

vec3(position1.x, position1.y, position0.z)).r,
texture(samplerUnit,

vec3(position1.x, position0.y, position1.z)).r,
texture(samplerUnit,

vec3(position1.x, position1.y, position1.z)).r);

vec4 s_xy0z0_xy1z0_xy0z1_xy1z1 = mix(s1, s0, g0.x);
vec4 s_dxy0z0_dxy1z0_dxy0z1_dxy1z1 = s1 - s0;
vec4 s_xyz0_xyz1_dxyz0_dxyz1 = mix(

vec4(s_xy0z0_xy1z0_xy0z1_xy1z1.yw,
s_dxy0z0_dxy1z0_dxy0z1_dxy1z1.yw),

vec4(s_xy0z0_xy1z0_xy0z1_xy1z1.xz,
s_dxy0z0_dxy1z0_dxy0z1_dxy1z1.xz), g0.y);

vec2 s_xdyz0_xdyz1 =
s_xy0z0_xy1z0_xy0z1_xy1z1.yw -
s_xy0z0_xy1z0_xy0z1_xy1z1.xz;

vec3 s_xyz_dxyz_xdyz = mix(
vec3(s_xyz0_xyz1_dxyz0_dxyz1.yw, s_xdyz0_xdyz1.y),
vec3(s_xyz0_xyz1_dxyz0_dxyz1.xz, s_xdyz0_xdyz1.x), g0.z);

float s_xydz =
s_xyz0_xyz1_dxyz0_dxyz1.y -
s_xyz0_xyz1_dxyz0_dxyz1.x;

return vec4(
normalize(vec3(s_xyz_dxyz_xdyz.y, s_xyz_dxyz_xdyz.z, s_xydz)),
s_xyz_dxyz_xdyz.x);

}

The resolution of the volume is represented by the vec3 variable
size, which is passed to the fragment shader as a uniform input
parameter. Variable position1 is calculated from position0,
exploiting that δ0+δ1 =

1
2 (see Equation 7). The first three compo-

nents of the returned vec4 variable form the normalized gradient,
while the fourth component is the sample of the reconstructed den-
sity function. Note that the estimated gradient as well as the inter-
polated density are both calculated from exactly the same trilinear
texture samples. For the Mitchell-Netravali notch filtering, we use
the same source code as the discrete filtering by p (see Equation 13)
is performed in a preprocessing without increasing the number of
voxels.

5. Practical Evaluation

We tested our method on both synthetic and real-world data. Fig-
ure 5 shows the well-known Marschner-Lobb (ML) test signal
[ML94] rendered by semitransparent volume rendering using dif-
ferent reconstruction techniques combined with on-the-fly gradi-

60×60×60 voxels. 80×80×80 voxels.

13.73 fps. 13.88 fps.

Trilinear interpolation combined with central differences.

13.61 fps. 13.75 fps.

Nonseparable Catmull-Rom spline interpolation [Csé19].

11.87 fps. 12.03 fps.

Prefiltered triquadratic B-spline interpolation
using our fast evaluation scheme.

11.89 fps. 12.01 fps.

Prefiltered Mitchell-Netravali notch filtering
using our fast evaluation scheme.

Figure 5: Semitransparent volume rendering of the Marschner-
Lobb test signal [ML94] using different reconstruction techniques
combined with on-the-fly gradient estimation.

ent estimation. Note that a prefiltered triquadratic B-spline inter-
polation provides significantly higher image quality than a trilin-
ear interpolation combined with central differencing, and shows
less apparent postaliasing artifacts than NCRSI [Csé19], while
the rendering performance is just slightly decreased due to our
fast implementation. The frame rates were measured on an nVidia
GeForce GT 720M graphics card. As shown in Figure 6, the pre-
filtered triquadratic B-spline interpolation performs the best in
terms of asymptotic error behavior. On the other hand, the Mitchell-
Netravali notch filter combined with our discrete deconvolution
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Figure 6: RMS error of the ML reconstructions depending on the
sampling resolution, which is set to be the same along the three
major axis.

Figure 7: CT scan of a carp visualized by semitransparent vol-
ume rendering using trilinear interpolation combined with on-the-
fly central differencing.

prefilter shows the least postaliasing artifacts (see Figure 5), while
the rendering performance is the same as for the triquadratic B-
spline interpolation.

We also rendered a CT scan of a carp to see how the different re-
construction techniques perform in terms of antialiasing and detail-
preservation. We applied a transfer function that consists of two
triangle-shaped peaks. The first peak is placed at the representa-
tive value of the soft tissue, while the second peak is located at
the representative value of the bone. To appropriately visualize the
skeleton, the height of the first peak is significantly lower than that
of the second one. Therefore, lower opacity values are assigned to
the soft tissue than to the bone. The full-screen rendering by using
trilinear interpolation is shown in Figure 7. The drawbacks of this
standard resampling technique become apparent if we zoom into
the details. Figure 8 shows that a trilinear interpolation introduces
severe staircase aliasing and cannot completely reproduce the ribs
because of its higher oversmoothing effect. NCRSI [Csé19] is able
to preserve more details but still shows aliasing artifacts.

Trilinear interpolation combined with central differences: 7.14 fps.

Nonseparable Catmull-Rom spline interpolation [Csé19]: 7.17 fps.

Prefiltered triquadratic B-spline interpolation
using our fast evaluation scheme: 6.69 fps.

Prefiltered Mitchell-Netravali notch filtering
using our fast evaluation scheme: 6.74 fps.

Figure 8: CT scan of a carp visualized by semitransparent volume
rendering using different reconstruction techniques combined with
on-the-fly gradient estimation. The region of interest is shown by a
red square if the details are removed, while the green square indi-
cates that the details are sufficiently preserved.
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Triquadratic B-spline interpolation without prefiltering.

Mitchell-Netravali notch filtering without prefiltering.

Figure 9: Without the proposed prefilters, both the triquadratic B-
spline reconstruction and the triquadratic Mitchell-Netravali notch
filtering shows severe oversmoothing removing the high-frequency
details. This is especially apparent in the region of interest shown
by the red squares.

The prefiltered triquadratic B-spline interpolation performs sim-
ilarly in terms of both postaliasing and detail preservation. How-
ever, using the Mitchell-Netravali notch filter combined with our
discrete deconvolution prefilter, the annoying staircase artifacts can
be removed almost completely, without compromising the recon-
struction of the high-frequency details. Here we also emphasize
that, due to our fast evaluation scheme, the rendering performance
is just slightly decreased compared to that of the trilinear interpo-
lation or NCRSI. To demonstrate the significance of the discrete
deconvolution prefilters proposed in Section 3.3, we also rendered
the carp data set using the triquadratic B-spline reconstruction and
the triquadratic Mitchell-Netravali notch filtering without prefilter-
ing. In this case, as shown in Figure 9, both techniques result in
significant oversmoothing, removing the fine details.

6. Conclusion

In this paper, we have shown that high-quality triquadratic recon-
structions together with the analytic partial derivatives of the re-
constructed functions can be efficiently evaluated on the GPU by
taking only eight trilinear texture samples around each sample po-
sition. This requires only one additional texture fetch compared to
the seven texture fetches necessary for the conventional, but lower-
quality trilinear interpolation combined with on-the-fly central dif-

ferencing. Our fast GPU implementations are especially suitable
for semitransparent volume rendering, where the gradients need to
be evaluated for the shading computations for each sample point
along the rays. To the best of our knowledge, the only known GPU-
accelerated volume-resampling technique that uses the same tex-
ture samples for both gradient estimation and a higher-order func-
tion reconstruction is a Nonseparable Catmull-Rom Spline Interpo-
lation (NCRSI) [Csé19], which was recently proposed as a candi-
date for being a new standard tool for volume resampling. Although
our method is slightly slower, it shows several attractive properties.
NCRSI results in a C0 continuous reconstruction and the gradients
proposed to be evaluated by central differencing are not the ana-
lytic gradients of the reconstructed function. In contrast, our tri-
quadratic reconstruction schemes are not just equivalent to NCRSI
in terms of approximation order, but also guarantee C1 continuous
function reconstructions and provide the analytic derivatives of the
reconstructed functions for free without requiring additional texture
fetches.

We proposed fast implementations for a prefiltered triquadratic
B-spline interpolation and also for a quasi-interpolating prefiltered
triquadratic Mitchell-Netravali notch filtering. According to our
frequency-domain analysis, the first technique is recommended for
reproducing the most high-frequency details, while the second one
is recommended for applications, where the most important aspect
is the suppression of the annoying staircase artifacts.

Theoretically, it has been recognized for the first time in this pa-
per, that the well-known Mitchell-Netravali notch filtering can be
decomposed to a discrete filtering and a consecutive quadratic B-
spline filtering, and this decomposition can be exploited for evalu-
ating the reconstruction and its analytic partial derivatives from ex-
actly the same eight trilinear samples. Furthermore, we also derived
a deconvolution prefilter that optimally exploits the approximation
power of the Mitchell-Netravali notch filter, and makes the recon-
struction quasi-interpolating of order three. Using the proposed pre-
filter, the oversmoothing effect can be drastically reduced, while
the advantageous antialiasing properties that stem from the notch
filtering can still be maintained.
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