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Figure 1: We use Urban Rhapsody to assess after-hour construction in New York City, first selecting audio recordings captured by sensors
deployed around Broadway. Urban Rhapsody allows users to query using an audio sample, and drill down to days containing similar
audios (a). Using the interactions provided by the tool, we are able to create classification models according to a user’s perception of the
soundscape (b,c), and then use these models to classify the entire data set and look for unusual events (d,e).

Abstract
Noise is one of the primary quality-of-life issues in urban environments. In addition to annoyance, noise negatively impacts
public health and educational performance. While low-cost sensors can be deployed to monitor ambient noise levels at high
temporal resolutions, the amount of data they produce and the complexity of these data pose significant analytical challenges.
One way to address these challenges is through machine listening techniques, which are used to extract features in attempts to
classify the source of noise and understand temporal patterns of a city’s noise situation. However, the overwhelming number
of noise sources in the urban environment and the scarcity of labeled data makes it nearly impossible to create classification
models with large enough vocabularies that capture the true dynamism of urban soundscapes. In this paper, we first identify a
set of requirements in the yet unexplored domain of urban soundscape exploration. To satisfy the requirements and tackle the
identified challenges, we propose Urban Rhapsody, a framework that combines state-of-the-art audio representation, machine
learning and visual analytics to allow users to interactively create classification models, understand noise patterns of a city,
and quickly retrieve and label audio excerpts in order to create a large high-precision annotated database of urban sound
recordings. We demonstrate the tool’s utility through case studies performed by domain experts using data generated over the
five-year deployment of a one-of-a-kind sensor network in New York City.

CCS Concepts
• Human-centered computing → Visualization systems and tools; Visual analytics;

1. Introduction

City soundscapes represent a rich source of information about ur-
ban systems, such as transportation, civil construction, and social
activity. Low-cost sensors can be used to capture aspects of this
acoustic environment, and computational methods for large-scale

data analysis offer new approaches to characterizing the different
contributing sources. Such understanding offers insight into how
a city behaves through space and time (e.g., "what are the typi-
cal sounds in a neighborhood during the night?"), and can help
in tackling various urban problems such as noise pollution. The re-
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search reported here was undertaken in partnership with researchers
from one such sensing initiative, the Sounds of New York City
(SONYC) project [BSN∗19], who have developed and deployed
low-cost sensors to measure and stream real-time sound pressure
level (SPL) and audio data. To date, more than fifty sensors have
been deployed throughout New York City (NYC), collecting data
for over five years (in total, more than 60 TB). To meaningfully
understand this data, the project’s researchers are developing new
machine listening models that 1) extract audio embeddings and
2) classify these sounds based on a set of predefined labels. How-
ever, these tasks pose several challenges that impede even state-of-
the-art models’ effectiveness in capturing the urban soundscape’s
dynamism. First, audio is complex, a recording typically captures
different sound sources (e.g., dogs barking and people talking) si-
multaneously. Second, sound events are transient (e.g., a honking
car horn) but in aggregation can last for hours (e.g., car engines on
a busy highway). Third, audio has a temporal aspect, and so unlike
images or words, sounds do not have a straightforward pictorial
representation, limiting our ability to quickly review a large collec-
tion of recordings in parallel. Hundreds of images can be reviewed
at the same time, with objects identified in minutes. However, look-
ing for patterns or events in a large collection of audio data often
requires listening to hours of individual recordings one after an-
other. Analyzing audio data is time-consuming and hard to scale.
This calls for novel techniques and visualization interfaces to facil-
itate the process, leveraging human expertise.

Motivated by these challenges and the need to gain new insights
into the soundscape of the city, we introduce Urban Rhapsody, a
framework for the interactive visual analysis of large collections
of urban acoustic data. Using recent advances in machine listen-
ing to generate audio representations, Urban Rhapsody allows ana-
lysts to create a visual representation of the soundscape across dif-
ferent ranges of temporal and geographical granularity. We adopt
a human-in-the-loop approach that enables users to interactively
label data points, create new classification models based on their
expertise of the soundscape, and assess the performance of audio
classification tasks. Finally, because noise patterns might happen
at different scales (minutes, days, months, etc.) in the urban en-
vironment, we employ a multilevel visualization scheme. Using
case studies that demonstrate the utility of Urban Rhapsody, we
showcase support for fast exploration of similar sounds or con-
cepts, assessment of classification model outputs in different sce-
narios, geographical and temporal understanding of the embedding
space, and summarization of soundscapes by key representative au-
dio frames. Previous approaches to these challenges were either
applied in a different context [DBC∗17], or constrained to the
analysis of sound pressure level (SPL) data [MLD∗18], painting
an incomplete picture regarding urban noise problems [ZLW∗14].
Urban Rhapsody is the first visual analytics framework that en-
ables a comprehensive analysis of urban acoustic environments,
going beyond time series to leverage a unique audio data set that
enables a more comprehensive analysis. Our contributions can be
summarized as follows: (1) A set of requirements, elicited in col-
laboration with SONYC’s audio researchers, for visual exploration
of large urban audio sets. (2) A set of visual interactions that en-
able users to iteratively construct audio machine learning mod-
els; (3) An interactive visual analysis framework, Urban Rhap-

sody, that supports concept-based exploration of large collections
of audio recordings (such as the ones generated over the five-
year deployment of the SONYC sensor network). We illustrate
this with two case studies set in NYC, highlighting how our ap-
proach can be useful in tackling issues that have generated in-
tense public debate. Our framework is also available on GitHub
(https://github.com/VIDA-NYU/Urban-Rhapsody).

2. Background

According to the World Health Organization, in Western Europe
alone, more than 1 million healthy life-years are lost annually to
environmental noise pollution [Org11], and in NYC, an estimated
9 out of 10 adults are exposed to excessive noise levels [NGM∗12].
This impacts public health [HSN14], social well-being [GCA06]
and quality of life [DZD∗10], as noise increases stress, sleep
disruption, annoyance and distraction [Bro07, Org11, HDVT∗08,
Muz02]. To mitigate this, governments devise noise codes that
typically consider SPL measurements in relation to time of the
day/week and location and impose regulations that aim at mitigat-
ing the noise at the source (e.g., by erecting sound barriers around
major roads or modifying building designs) [tab07,BH10,HSN14].
However, enforcing these codes is time-consuming and costly, re-
quiring trained inspectors to be present at sites to make assessments
and capture sound carefully using calibrated equipment [BSN∗19].

Beyond this, noise pollution can be highly subjec-
tive [dPVCR15], and so quantitative SPL metrics may be
insufficient [RLB03, Gua03]. Because of this, there is a shift
towards understanding the source of the noise, and to consider
context in people’s perception of sounds [RD05, VKDSVK14].
Such a “soundscape approach” [PDA09, Bro10, DAB∗13] views
the acoustic environment as composed of both positive and nega-
tive sources [Bro12]. Data gathered using SONYC sensors offers
a unique opportunity to measure noise pollution quantitatively
and additionally gain insights into the acoustic environment’s
qualitative characteristics. We can therefore conduct structured
assessments at scale, accounting for both SPL and sound source.
This raises important challenges (outlined in Section 4.2) that
we seek to address in this research. Urban Rhapsody is the first
step towards allowing domain experts to better understand the
soundscape of complex cities such as NYC.

3. Related Work

3.1. Urban visual analytics

Urban areas are a major source of data that have tremendous
potentials to improve policy making, enhance the lives of cit-
izens, and pursue sustainable development. Visualization sys-
tems have for long been an important tool for the analysis
of urban data [ZWC∗16, DFL∗18]. Several approaches use ur-
ban data to study different properties of a city, such as air
pollution [ZLH13], public utility service problems [ZYM∗14],
sunlight access [MDL∗19], land use [QS14], human movement
patterns [NSL∗12, LGTR15, MDL∗17], transportation [AA08,
WLY∗13, FPV∗13, IYT∗14, ZFA∗14], and also the relationship
between these data sets [MME∗12, CDDF16, DWX∗21]. More
general tools, such as ArcGIS [JVHKL01], Urbane [FLD∗15,
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DTZM∗18], and Vis-A-Ware [OSS∗16] have facilitated the use of
multiple urban data sets to help inform urban planning and decision
making process.

In our previous work, Time Lattice [MLD∗18], we have tack-
led the problem of noise pollution by proposing a data structure
and visual interface that allowed experts to explore a large data
set composed of SPL dB measurements from SONYC sensors. We
only used SPL measurements without considering that the sound-
scape of a city is composed of different sources and can be per-
ceived differently by different people. With Urban Rhapsody, our
goal is to account for the user’s knowledge and perception in the
exploratory process of large collections of urban sound recordings
in a vocabulary-free approach, meaning that users are free to ex-
plore the soundscape according to any concept they create. To the
best of our knowledge, Urban Rhapsody is the first visual analytics
system specifically designed to allow domain experts to explore a
large collection of sound recordings of an urban environment.

3.2. Environmental sound representation

In recent years, several large audio data sets have been released
that have moved the field of environmental machine listening for-
ward [GEF∗17,FFP∗20]. However, many audio classification tasks
do not map onto the class vocabulary of these data sets and thus re-
quire additional labeling, which is time-consuming and costly. To
address this problem, machine listening practitioners have turned
to transfer learning [YCBL14] in recent years, which has been
shown to be effective for many audio classification tasks [AVT16,
AZ17,JPP∗18,KKF18,CCSB19,CWSB19,TGdCQR20,GCKT21].
In transfer learning, models are typically pre-trained on large data
sets using supervised [AVT16, HCE∗17] or self-supervised learn-
ing [AZ17,JPP∗18,KKF18,CCSB19,TGdCQR20], and the knowl-
edge acquired during pre-training is re-used for tasks where data is
limited. A common method of re-using this knowledge is to treat
the pre-trained models as feature extractors, utilizing learned la-
tent representations (i.e., embeddings) from within the pre-trained
models as the inputs to models with little or no labeled data. Look,
Listen, and Learn [AZ17] is one such pre-trained model whose em-
beddings were shown to be discriminative in several environmen-
tal audio classification tasks [AZ17, CWSB19, CCSB19, Wil21].
This model is pre-trained using self-supervision on an auxiliary
task of audio-visual correspondence. In this work, we use OpenL3
[CWSB19], an open-source code of Look, Listen, and Learn, as
an audio feature extractor to transform each audio recording into a
series of embedding representations.

3.3. Machine-learning-aided multimedia exploration

Machine learning has opened a new horizon in data exploration
across various fields, with numerous systems making use of
the powerful capabilities it provides. For instance, Urban Mo-
saic [MHL∗20] uses deep learning representations to search for pat-
terns in a large collection of street-level images. II-20 [ZWVW20]
allows users to generate image classifiers using novel interactions.
Previous works tried to explore the semantic meaning of the fea-
tures extracted by deep learning models, as they do not always map
into human-understandable semantic features: Embedding Projec-
tor [STN∗16] and Latent Space Cartography [LJLH19] enable the
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Figure 2: Spatial distribution of SONYC sensors (left) showing the
coverage of the city. Right image illustrates the data from a sensor
located near a park in Manhattan. Sensors record both the sound
pressure level at each second (SPL dB), as well as the environmen-
tal sounds (stored as 10-second clips). For each 1-second frame
in the clip (highlighted in red), we compute the classification con-
sidering user-crated prototypes. The figure shows classes following
standard urban audio taxonomies.

analysis of embedding spaces for multimedia data through multidi-
mensional projections [JCC∗11,MHM18] to enable users to under-
stand features that might be encoded in the latent representations.

To create classification models that can recognize human-
understandable features in multimedia data sets, previous ap-
proaches employ active learning frameworks leveraging the users
as oracle annotators to annotate new samples the system identified
as the most informative. For example, previous studies investigated
the usefulness of active learning for labeling tasks [BHZ∗17] and
its application in other fields such as anomaly detection [LYC10,
LGG∗17], commuting flow estimation [YWL∗15], and image cat-
egorization [ZWVW20]. These approaches often guide the user on
choosing the next subsets of the data to label next to improve the
performance of the model, which, in our case, can limit the user
in applying their previous understanding of the soundscape to la-
bel the concepts [NKLM20]. Our proposal leverages a set of tech-
niques presented in previous works to enable users to better under-
stand the spatiotemporal distribution of events in acoustic record-
ings while accounting for their knowledge of the soundscape to
build concept-based classification models to gain insights into the
dynamics of the urban environment.

4. Sounds of New York City

The research reported in this paper was undertaken in conjunc-
tion with audio and machine listening experts from the SONYC
project [BSN∗19], and utilizes data generated by the project’s sen-
sors. Our collaborators have background in urban science and ma-
chine listening [DTZM∗18,CCSB19,MHL∗20,WBS∗21]. In addi-
tion, the project communicates their findings to the media [BB20]
and works closely with the NYC Dept. of Environmental Protection
to understand their needs and investigate new ways of monitoring
and mitigating noise pollution.
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4.1. A data set of urban sounds

The SONYC acoustic sensor network consists of more than 50 sen-
sors deployed around three boroughs of NYC: Manhattan, Brook-
lyn, and Queens. Figure 2 shows the spatial distribution of the sen-
sors. These sensors are positioned 15 to 25 feet above the ground.
To maintain the privacy of bystanders and prevent the recording
of intelligible conversations, the sensors do not record continu-
ously, but rather record 3 10-second recordings at random inter-
vals within each minute of a day (i.e., for a single day, each sen-
sor will record 720 minutes worth of 10-second audio recordings
uniformly distributed throughout the 1440 minutes of the day). As
of 2021, SONYC has collected approximately 1,700,000 hours of
SPL data (stored as second or millisecond resolution timeseries),
and 877,000 hours of recorded audio. To extract a discrimina-
tive, lower-dimensional representation of each 10-second record-
ing, we employ OpenL3 trained on an environmental sound sub-
set of AudioSet [CWSB19]. OpenL3 is an open-source library for
computing deep audio embeddings, developed by researchers from
SONYC, and its design choices were informed by the need to clas-
sify sounds from urban environments. For each 10-second record-
ing, we use a hop size and window size of 1.0 second (with cen-
tered windows) to compute 10 512-dimensional feature vectors.
This produces a feature vector that coarsely captures the general
acoustic aspects of the environment.

4.2. Challenges

The complexity of the urban environment brings several challenges
when it comes to analyzing and extracting insights from urban
sound data, especially considering such a large data set as the one
captured by SONYC.

Sound representation. In complex environments such as cities,
many sound classes seem quite similar, such as car alarms and
sirens, but are distinct in the noise code and should be treated as
such. On top of that, when handling sounds from cities, the acous-
tic environment changes by location and by time within seasonal
cycles. As a self-supervised method, OpenL3 does not need human-
generated labels to be trained, while still providing good sensitivity
to different urban sounds. However, it falls short of properly ac-
counting for all of the complexity of the soundscape of a city.

Mixture of sounds. Unlike images, where visual objects are
opaque, sound objects are conceptually transparent, meaning that
multiple objects (sound sources) can have energy at the same fre-
quency [Wys17]. This is especially true in an environment as com-
plex as cities, where sounds are emitted from multiple sources, cre-
ating a soundscape that, albeit quite characteristic, is very difficult
to parse and understand. In other words, in a city, at any given
instant in time, a sound recording might have a mixture of back-
ground (e.g., bird songs, dog barks) and foreground sounds (e.g.,
engine, party, sirens).

Sound exploration. Again unlike images, there is no clear picto-
rial representation of audio data. This gap between audio data and
visual representation is challenging when building visual analytics
systems. Visual objects are opaque (a given pixel in a visual image
corresponds to only one object), whereas sound objects are trans-
parent (multiple objects can have energy at the same frequency).

Sounds are therefore serial objects: when assessing an image, we
can visually scan it to identify each visual object in the scene, creat-
ing a visual map of the objects that can help us fully understand the
scene. Sounds only exist at one moment in time; once the moment
is gone, the sound is also gone. In other words, a user can only ob-
serve a sound one moment at a time, unlike images where we can
observe multiple objects at a time. In spectrograms representation,
similar neighboring pixels cannot be assumed to belong to the same
object (i.e., frequencies are non-locally distributed on the spectro-
gram [Wys17]). As we can notice, creating visual representations
of sounds is a challenge, specifically considering a scenario with
multiple sound sources, such as urban soundscapes.

Sound labeling and classification. Although previously proposed
classifiers provide a reasonable link between embeddings and
human-understandable vocabulary, their class vocabularies are lim-
ited, providing a narrow view of the rich and varied soundscape
of the city, which is comprised of numerous types of sound
events. Furthermore, manually labeling sound data to be used as
groundtruth for model training is a laborious process. As previ-
ously mentioned, sounds are serial objects where the user needs to
listen to one at a time, limiting the number of audio files that can be
labelled in a short period of time. Purely automated mechanisms,
however, are prone to misclassifications given the complexity of
soundscapes.

Data size. Over the past five years, SONYC has generated more
than 60 TB of data, including high-resolution SPL timeseries and
audio recordings. If we consider the embeddings computed with
OpenL3, we have 86,400 feature vectors with size 512 (177 MB in
total) per sensor per day. Any visualization system must properly
handle such data size to be interactive [LH14], either by sampling,
filtering or aggregating the data.

5. System Requirements

In our collaboration with machine listening researchers, over the
course of two years in the context of the SONYC project, we estab-
lished a set of requirements for a visual analytics tool to facilitate
their analysis workflows. We then validated the working system
through interactive demo sessions exploring a number of poten-
tial use cases. Underlying our work is the necessity to account for
user knowledge when exploring the urban soundscape for different
concepts. During these meetings, we identified the following main
tasks that the experts desire to perform with the tool: 1) Select and
listen to sound recordings from a set of sensors, considering dif-
ferent days of the week and time ranges; 2) Considering a query
audio, quickly identify a set of possible similar sounds through-
out a long period; 3) Create and refine classification models that
allow for searching of complex sound scenes; 4) Assess classifica-
tion performance interactively. To accomplish the listed tasks, we
identified the following system requirements:

[R1] Interactive identification and labeling of similar sounds.
Given the highly complex acoustic environment we observe in
cities, audio representations cannot encode specific audio events
that users might be interested in. Moreover, the high-dimensional
nature of audio representations makes it hard to visually analyze
such data, making multidimensional projection techniques a stan-
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dard in this process. However, in many cases, user-perceived simi-
larities between sets of audio frames (i.e., a one-second slice of the
ten-second audio snippet) might not be represented in the selected
projection technique, e.g., similar frames are far apart in the pro-
jected space (low-dimensional space), making it harder for users
to find similar audio frames. Hence, finding similar audio frames
based on user’s perception is one of the requirements of the Ur-
ban Rhapsody framework.

[R2] Projection steering based on user perception. When ex-
ploring audio embeddings extracted from urban recordings through
multidimensional projections, we often recognize clusters that do
not represent the user’s perception of the soundscape. Based on
the user’s understanding of the data set expressed through labeled
points, the system should provide the capability of producing new
projections that better encode the user’s perception.

[R3] Iterative creation of classification models. Considering that
current machine listening models present certain limitations, the
system should provide the capability to iteratively create new clas-
sification models based on the data points labeled by the user (and,
therefore, the user’s perception of the soundscape). The system
should also support assessing the evolution of the model’s conver-
gence through successive iterations.

[R4] Local and global sound perspectives. Audio embeddings
might possess certain characteristics that only become clear when
analyzed locally or globally. Then, it is important for the user to
assess their local characteristics and to relate one sound to its im-
mediate neighborhood or distant clusters.

[R5] Match between audio and visual representations. Visual-
izing audio files in the frequency domain is important for the user
when assessing the accuracy of both the embeddings and classifi-
cations. For instance, two sounds might have very similar spectro-
temporal patterns and classifications but completely different em-
beddings; it is important, therefore, to further assess and create hy-
potheses on what led to these different outputs.

[R6] Support interactive query times. The system should support
interactive queries to enable the easy and quick labeling of data
points and the creation of classification models.

6. Urban Rhapsody

To satisfy the previous requirements, we introduce Urban Rhap-
sody. A visual analytics tool able to provide a human-centered ex-
ploration of the urban soundscape using prototypes created on the
fly through different interaction mechanisms. Our description of the
framework is broadly divided into three parts. First, we describe
our approach to generate classification models (or prototypes) of
different concepts denoting complex urban sound scenes. Second,
we describe the different components of Urban Rhapsody’s visual
interface (also see accompanying video), followed by a discussion
of its architecture and implementation.

6.1. Prototype-based interaction

In Urban Rhapsody, we would like to support the search for au-
dio events based on concepts and not only based on a single audio

event. Here, we use the term concept to refer to an abstract idea or
a general representation of a category in mind, such as “crowded
street”, which can be perceived differently by people. In one of our
case studies, we describe a case where the user keeps refining their
concept of construction while annotating new sounds that together
compose the full picture of a construction. To allow for this kind of
search, we define prototypes, a structure composed of a classifica-
tion model and a set of representative audio frames that defines a
user’s understanding of a concept.

The classification model learns how to distinguish between the
audio frames that are part of a given concept according to the user’s
perception represented by annotations made during the interaction
process with the system. Once the user starts labeling a specific
concept in Urban Rhapsody, they can generate a new classifica-
tion model that will be trained using annotated frames as input.
Since our goal is to find occurrences of specific concepts in our
data set, we should train this model with a diverse enough sample
of the data so it can generalize well to different scenarios. Given
this constraint, we train our model to distinguish between two la-
bels: positive (frame is part of the concept) and negative (not part
of the concept). For positive labels, we use all the frames anno-
tated as the concept we are interested in. For negative labels, we
use frames explicitly annotated as not being part of a concept and a
random sample of all frames in our data set twice as big as our set of
positive-labeled frames. The classifier we train in Urban Rhapsody
is based on the classic random forest algorithm using a standard pa-
rameter setting for audio classification [WMCB19]. However, any
classification model capable of outputting a likelihood score of a
data point belonging to a class can be used in Urban Rhapsody. In
this version, the likelihood function is calculated as the average pre-
diction score across the trees in the forest. This interaction supports
requirement R3.

Following R6, Urban Rhapsody must be capable of providing in-
teractive query times during the exploration process. However, the
size of the data set handled by our framework blocks us from fil-
tering interesting audio frames by scanning the entire data set and
computing the prediction probability of a given model to generate
our visualizations. For this reason, after every model refinement
made by the user, we also calculate a set of representative audio
frames that will help us sample the data set to a smaller size before
filtering interesting points using the aforementioned classification
model. We calculate representative points of a concept by select-
ing all the points annotated as being part of a concept by the user
and running a density-based clustering algorithm on the positive-
annotated frames for a concept. For each cluster, we calculate the
frame closest to its centroid and add it to the set of representa-
tive frames of that concept. The representative audio frames also
help the users keep track of the concept they are creating through
their interaction with the system. We enable the user to use these
representative points as query input for a concept search using an
approximated nearest neighbors (ANN) query.

6.2. Visual interface

The visual interface was designed to provide the user with the abil-
ity to browse through the entire data set, identify and annotate con-
cepts present in audio samples, and, finally, iteratively and interac-

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

213



Rulff et al. / Urban Rhapsody: Large-scale exploration of urban soundscapes

(a)
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Figure 3: The Urban Rhapsody system visual interface: (a) Calendar View; (b) Sensor Map and Distribution View; (c) Day View (projec-
tions); (d) Focused View (spectrograms); (e) Frame Classification View; (f) Model Summary; (g) Mixture Explorer.

tively build prototype models that generalize these concepts over
the entire data set. Figure 3 shows the different components of the
visual interface. Next, we discuss the design of each visualization
based on its functionality: provide easy navigation through the au-
dio collection, enable the annotation of audio concepts, allow for
the detailed inspection of individual audio samples and facilitate
the evaluation of prototype models.

Audio collection navigation. The interface implements several
strategies to enable navigating through our data set. The first is
the Calendar View (Figure 3(a)). This component presents a cal-
endar of the year with each cell representing a single day. Within
each cell, we can visualize a bar chart representing the distribu-
tion of frames of a specific concept during the four time slices of
a day, allowing for the fast identification of the daily distribution
of sounds. The bars of each cell are also colored according to the
density of a specific concept in a day (more examples in a day will
lead to darker blue bars). If a Calendar View cell is clicked, all
the data corresponding to that specific day is loaded and in the day
view (Figure 3(c)). Using the Day View, we can visualize the audio
frames through the analysis of scatterplots generated by projecting
high-dimensional feature vectors (audio embeddings) into a two-
dimensional space using UMAP [MHM18]. Although UMAP was
the projection technique used for this version of Urban Rhapsody,
given its dimensionality reduction capabilities, it is important to no-
tice that Urban Rhapsody is agnostic of projection technique. The
adaptation of the system to better accommodate experts’ needs in
terms of projection techniques is trivial. Here, the users can hor-
izontally stack projections in three ways: reprojecting a subset of
the data available for a day (i.e., reproject specific clusters to cap-

ture local structures of the data), removing a subset of the data,
and reprojecting the remaining points (useful for removing clus-
ters representing sensor failure, for example), and, lastly, steer the
projections based on frames annotated by the user using a semi-
supervised dimensionality reduction algorithm [SCMD19] that can
learn a new low-dimensional space that better encodes the user’s
perception of the data (i.e., bringing frames with the same labels
closer while keeping the different ones distant from each other),
therefore supporting R2.

The projections in the Day View are linked and allow for select-
ing points through a bounding box or periods of the day. Selections
update the Distribution View as well as the components designed
for the individual inspection of audio samples, the Focused and the
Frame Classification Views, shown in Figure 3(d, e) are described
later in this section. At last, the projected points, each represent-
ing an audio frame, can be colored according to a likelihood of
belonging to a concept or user annotation. When a day is loaded,
Urban Rhapsody automatically calculates a hierarchical clustering
of the points and updates the Mixture Explorer, represented in Fig-
ure 3(g) by a tree. Each node of the tree represents a cluster found
by the algorithm. Each node is subdivided into subnodes, each be-
ing one concept that the user previously created. In the example
presented in Figure 3(g) each subnode is representing a concept
(people talking, birds, and siren from left to right) and is colored
based on the average likelihood of the correspondent cluster con-
tain the specific concept (darker green for higher likelihoods). If a
node is clicked, the corresponding cluster is selected in the scatter-
plots and all the components of the interface are updated accord-
ingly. For example, the node where all subnodes are darker green
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is where the user is more likely to find frames that contain all cre-
ated concepts. It is important to notice that hierarchical clustering
is a powerful visual strategy that enables the user to explore clus-
ters of different sizes, both locally and globally (R4), and gain new
insights into sound mixtures by focusing its inspection on cluster
where previously created concepts are more likely to be found.

Annotation of audio concepts. One of the requirements elicited
with domain experts is regarding the ability to annotate specific
audio frames (R1). To satisfy this requirement, Urban Rhapsody
provides a mechanism to annotate specific audio frames that works
as follows: users can select specific frames by using the selection
mechanisms provided by the scatterplots or select a cluster using
the hierarchical tree. Once a selection is made, the users can click
on the labeling icon on top of the scatterplot to open a dialog that
will allow for the annotation of these frames with as many labels as
they want (positive labels). Also, users are able to annotate frames
with negative labels, to explicitly say that a selection of frames is
not part of a specific concept. This will help refine the prototype
models when we find false positives during the exploration process.

Inspection of audio samples. To inspect details of an audio record-
ing selected by the user during the exploration of the projec-
tions, Urban Rhapsody contains two widgets with visualization
metaphors commonly used by audio experts: the Focused View
(Figure 3(d)) and the Frame Classification View (Figure 3(e)). The
Focused View shows a spectrogram of the audio samples selected
in the projection. A spectrogram is a visual representation of the
magnitude of the short-time Fourier transform, which describes the
signal’s energy by frequency as it varies with time. It can be visu-
ally encoded in a heatmatrix where each cell represents the inten-
sity of a frequency in a given time. For example, the spectrogram
of an audio file containing the sound of a siren contains wave pat-
terns. Previous work investigated the usefulness of spectrograms in
representing audio classes for humans and its performance in com-
parison to others standard audio visualizations [CSS∗17]. We use
this representation to allow the user to compare different sounds
without having to listen to multiple audio files. The Frame Classi-
fication View displays the likelihood of observing a concept in the
audio sample. In this way, the color of each cell of the matrix rep-
resents the probability of observing different sound classes in the
associated audio frame. Finally, Urban Rhapsody allows the user to
click on the spectrogram to listen to the recording. This interaction
is important to bridge the gap between the visual representation and
the actual audio (R5).

Evaluation of prototypes. As users keep creating and refining pro-
totypes, they can evaluate its performance by making use of several
components of our interface. First, for any given selection on the
scatterplots, they can check a histogram showing the distribution of
a concept’s likelihood across the selected points. If the histogram
is shifted to the right, it means the selection has a higher chance
of belonging to a concept. Besides that, the users can assess the
robustness of models in the Model Summary View (Figure 3(f))
where we present the evolution of the prototypes over the course
of several refinements. Once we create a new version of a labeled
subset for a specific concept, we train a new classification model
to be part of the prototype and evaluate old versions of the proto-
type’s classification model to assess the change in prediction over

time. At some point, the user can come to a conclusion that la-
beling more points has no significant impact on the classification
model and then stop the process.

6.3. Analysis flow

The exploration process starts with the user querying the data set
using any of the three approaches we propose: select a frame from
the examples we provide in a Query View as input for the similar-
ity query, upload their own audio snippet and select a frame from
this audio snippet, or query using one of the created prototypes.
For all three query approaches, the user is able to select the number
of frames the query will retrieve. Once the query is processed, the
Calendar View is updated, showing the density of a given class, or
concept, on each cell throughout the year (color), and its distribu-
tion within the day (bar chart). Next, the user can select a specific
day and load all the available data for that day to further inspect the
day’s soundscape using the scatterplots in the Day View. At this
point, the user can select specific regions of the scatterplot and lis-
ten to the correspondent audio frames, reproject specific regions of
the day scatterplot to focus on local structures, remove undesired
clusters or steer the scatterplot based on the annotation of frames.
Also, color the points by prototype probability or created annota-
tions. These operations will help users in two tasks: assess the per-
formance of the prototypes they are creating and find data points
that should be labeled as any concept of interest. Following that,
it’s possible to create different prototypes and refine existing ones
based on new annotations the users are creating, either positive an-
notations or negative. Meanwhile, when prototypes are created and
refined, the Model Summary gets updated, showing the change in
prediction probability of the models and the set of representative
frames of a given concept. When the user is confident about the
prototype they are creating, they can reuse this prototype to query
the entire data set and look for specific temporal patterns that a
specific concept is happening. This analysis flow denotes the im-
portance of having a user in the loop to evaluate the performance
of the prototype models as Urban Rhapsody allows for the creation
of concepts that match the user perception of the city’s soundscape,
which can not be evaluated quantitatively.

6.4. System implementation

We decided to develop Urban Rhapsody following a client-server
architecture. We structured our application following microservices
guidelines to ensure that we could effortlessly add new features
to the tool and scale its deployment to make it available for the
general public. The storage component keeps audio recordings and
their embeddings located in different folders following the same
naming convention for faster localization. Each audio file is also
associated with a set of metadata attributes with temporal and spa-
tial information (time of the recording and location of the sensor)
that is kept in a separate database. The core of our application is
composed of several microservices. The data server is responsi-
ble to serve audio files and spectrogram images. The web server
provides users with a bundle of our Angular web application. The
user server stores annotations on RocksDB [DTZM∗18]. The most
complex services of our system are the ML server and the ANN
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Figure 4: Interactive monitoring of the training process and refining the model. (a) We run a query using our sample birds’ sound and
analyze the clusters; (b) Investigating the clusters on different days to detect and re-label false positive and false negative instances, and
refine the model; (c) The model evaluation indicates that our prototype models are converging as we do further iterations of refinement.

server. The first is responsible for all machine-learning-related op-
erations, such as multidimensional projections, hierarchical cluster-
ing, and model training. Following R6, the operations are processed
using GPUs through RAPIDS libraries [Rapa]. CPU-based libraries
would not be able to handle such data-intensive operations required
by Urban Rhapsody. The ANN server is responsible for computing
similarity queries based on the euclidean distance between frames.

7. Case Studies

In this section, we demonstrate the application of Urban Rhapsody
through two case studies using data from the SONYC sensors. In
doing so, we highlight how the requirements listed in Section 5
are met in different tasks. The first case study explores how Ur-
ban Rhapsody can facilitate the interactive labeling and exploration
of data for investigating out-of-hours construction noise, a pressing
issue facing many large cities. The second one highlights another
capability of Urban Rhapsody to facilitate searching for mixture
of sounds to explore the impact of anthropogenic noises such as
siren on bird songs. These case studies can be of interest to various
stakeholders, from the general public and advocacy groups to gov-
ernment agencies, such as the Dept. of Environmental Protection.

7.1. After-hour construction noise

Construction noise is one of the primary sources of noise-related
complaints in NYC. As the city grows, new structures are built,
old ones get renovated, and economic pressures and deadlines lead
developers to request the city for permits allowing them to per-
form construction outside the regular workday hours (i.e., 8 AM to
5 PM). In the past few years, this has been a major source of dispute
between NYC residents and developers [May19], and this problem
is increasingly getting worse. In 2018, NYC’s Department of Build-
ings issued around 67,000 after-hour permits, more than double the
number of permits issued in 2012. Although developers must fol-
low strict noise guidelines during after-hour constructions, the in-
crease in the number of complaints related to these types of distur-
bances indicates otherwise. Even though the city constantly issues
noise construction fines through manual inspections, the after-hour
nature of these noises makes it especially hard to monitor them.
This is a significant problem that needs to be addressed by cities

and their different departments, with severe political, social, and
economic ramifications.

In this study, we use the SONYC network to understand the im-
pact of construction-related noises on the soundscape of NYC. Our
first goal is to assess if these noises were captured by our sensors,
to facilitate noise code enforcement activities. Secondly, we would
like to use examples that we found during our initial exploration to
build a prototype capable of pointing us to specific days and times
where after-hour construction work might have happened. We start
by querying our data set for similar audio snippets using one of
the examples provided in the system containing the recording of a
powered saw (R1). Using the Calendar View, we can quickly ob-
serve a day containing most of the similar audio excerpts according
to our ANN model (Figure 1(a, top)). We select that day, and Ur-
ban Rhapsody generates a UMAP projection of all the audio frames
within that day (Figure 1(a, bottom)). After a quick inspection of
the projection scatterplot, we can notice a set of distinctive clusters
(highlighted in red). Using the tool’s interactions, we start by se-
lecting the one cluster containing most of the points retrieved by
the initial similarity query. By listening to a few recordings, we can
notice that the points belonging to this cluster are perceptually sim-
ilar to a powered saw, very common on construction sites (R2). We
also notice that most of these audio snippets were recorded around
8 AM, as the hour distribution chart shows us. Figure 1(b,c) high-
lights the recordings that happened around 8 AM, and it’s possible
to again see different clusters. After listening to recordings from
each cluster, we noticed that each one of them represents differ-
ent sounds (powered saw, drilling machine, engine). At this point,
we can leverage Urban Rhapsody’s feature that allows us to create
models on the fly and decide whether to include certain sounds in
our prototype (R3). Once we label recordings from that specific
day, we generate two construction prototypes (with and without
large engine noise). We can now use them to guide the exploration
through different days of the year. This step allows us to speed up
the search for similar sounds, without the need to listen to hours
and hours of soundscape audio files. Also, during this guided ex-
ploration, we can adjust the prototype by labeling more points, ei-
ther as negative or positive labels, as we assess the model’s per-
formance by listening to the recordings. This interactive process is
highlighted in Figure 1(b,c), for two different models.
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Figure 5: Looking for bird songs in two different Manhattan locations: (a) Edge of Washington Square Park with high concentration of bird
songs and (b) a street corner on Broadway with very few instances of bird songs since we do not have trees for birds to nest.

After refining our models once, we listened to the representa-
tive snippets of our prototypes and used them to look for unusual
events. The calendar heatmaps show the results of the prototype
queries (Figure 1(d,e)) where we can spot two interesting events.
In February, we noticed that during two days, construction work
happened during the night (Figure 1(d)). And that, during many
days in October, the same engine noise started at 11 PM and lasted
for approximately 30 minutes (Figure 1(e)).

To further validate this finding, we used citizen complaints filled
through NYC’s 311 non-emergency service phone number. Inter-
estingly, there were actually a series of complaints reported on
those two specific days of February. The ability to intuitively create
prototypes based on audio files listened in the exploratory process
sets Urban Rhapsody apart. Findings such as these not only high-
light the usefulness of a passive network of sensors (as opposed to
active sensors deployed in inspection visits), but also the usefulness
of distinguishing different noises emitted from construction sites.
Previous approaches, like Noise Profiler [MLD∗18], focus on the
SPL characteristics, a useful but crude measurement of noise. By
enabling the exploration of specific types of noise, Urban Rhapsody
can 1) provide a clearer picture of the soundscape near a construc-
tion site, 2) facilitate monitoring tasks carried out by enforcement
agencies, and 3) validate the accuracy of 311 complaints.

7.2. Birds in New York City

The impacts of urban noise, air pollution, and the built environ-
ment on residents and migrating birds have been extensively stud-
ied [SL15]. There is a strand of research that specifically analyze
birdsong to discover if exposure to loud urban noise can lead to sig-
nificant changes in their song traits and the time and frequency of
their chorus, specifically since birds use different sounds to com-
municate, mate, and defend breeding territories and rely on the vo-
cal communication to sustain their lives [MCRP11, Sla13]. One of
the main challenges in the majority of bioacoustics and avian be-
havior studies is the costly and time-consuming nature of working
with audio data, which limits the duration and geographical extent
of the research. The application of machine learning in bird song
classification is not new [MC97], but most of the developed mod-
els are trained using specific sets of data, limiting the user to a pre-
defined set of labels, with no control over what the model perceives

as bird songs. This is specifically important in bird song studies
since the model can classify some sounds, such as whistling, as
bird sounds and discard some bird songs which are very different
from what it was trained on [XZ19].

In this case study, we demonstrate how Urban Rhapsody can
facilitate such studies by providing a robust and easy to use so-
lution where the user can search for specific sounds among hun-
dreds of hours of recordings, refine the results if needed to reach the
confidence level of interest, monitor the frequency and changes in
the song traits, and investigate the impact of anthropogenic noises
on birds. Sitting on the Atlantic Flyway, NYC offers great resting
grounds for birds traveling along the north-south migratory route in
the Americas [DR15]. We choose Washington Square Park, a pop-
ular local park situated in a dense and busy neighborhood of the
Manhattan borough, with the natural environment for birds to nest
as well as the attributes representing a crowded and noisy urban
environment [Was21].

The first step is to build our bird representation model. We start
our exploration by using one of the bird song examples provided in
the query view. Next, we select a day with high density of similar
bird sounds. As shown in Figure 4(a), we generate a UMAP pro-
jection of our selected day on the Day View and see that majority
of the bird songs are clustered on the bottom region of the projec-
tion (blue points). Next, we create our first representation model
of bird songs to speed up our search across different days (R1).
We can find false positives and false negative examples through-
out this process, fix those and refine our prototype. For instance,
we found out that on April 18th, the model assigned a high likeli-
hood to a small cluster of points (Figure 4(b)). We investigate this

Summer dayWinter day

Birds Siren

Mixture

Figure 6: Spectrogram showing a winter day with no bird song,
a summer day with birds’ singing and the selected day in summer
when birds dawn chorus continued despite loud siren.
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cluster closely and realize they are not bird songs, so we re-label
these points, refine our model, make a new prediction with updated
weights, and run this process iteratively until the model reaches a
robust state (R2). In the Model Summary View (Figure 4(c)), we
can see that our new prototypes are converging: Our first model
had the worst performance, and as we continued refining, the dif-
ference between the prediction probabilities of the labeled birds’
data set get smaller after each iteration (R3).

Using our refined model, we run a new query to explore the dis-
tribution and patterns of bird songs near Washington Square Park
over the course of one year. The retrieved results clearly show two
levels of seasonal patterns: a daily pattern with peaks in the morn-
ings and afternoons corresponding to the dawn and dusk chorus
times, and another pattern with peaks during spring to early sum-
mer, when songbirds usually migrate, as illustrated in Figure 5(a).
This signifies the robust performance of the model in classifying
birds. We also look at the corner of Broadway and Waverly Pl.,
where we have no trees on both sides of the street, to see if we can
find similar patterns there. As Figure 5(b) shows, we have very few
instances of bird songs in that location throughout 2017.

One useful aspect of Urban Rhapsody is the ability to analyze
sound mixtures. To investigate how the siren sound can impact or
even halt the birds’ chorus, we use Urban Rhapsody to query for
dawn chorus times (6-11 AM) where siren was also present. This
allows us to discover whether loud sirens can halt birds’ dawn cho-
rus or whether birds in noisy urban areas like Manhattan local parks
are adapted to the level of noise [NB10, NPZ∗13]. We can use the
Mixture Explorer to differentiate between these two sounds, as il-
lustrated by Figure 5(a, bottom right). Notice that nodes contain-
ing bird songs, siren, or mixture of both are clearly distinguishable
with our visual encodings (R4). Drilling down to this specific ex-
ample (Figure 6), we can see that the birds continue singing despite
the loud siren (R5). This analysis can create a ground for further
research by bioacousticians and researchers in this field to inves-
tigate whether this pattern is more prevalent in birds of specific
species or whether we can find incidents of ambient noise halting
birds singing. Urban Rhapsody helped us to iteratively refine our
model, track the sounds of interest and search for a combination of
sounds across a large data set, detect the pattern and drill down to
the exact moments to listen and investigate more.

8. Discussion and Conclusion

We have presented Urban Rhapsody, a novel interactive system for
seamlessly exploring large audio data sets, based on user-generated
concepts. Leveraging machine learning techniques, Urban Rhap-
sody supports labeling and analysis at scale, while our multilevel
visualization approach enables the inspection of temporal patterns
at varying levels of granularity. By enabling users to interactively
label data based on their knowledge, Urban Rhapsody can be used
to augment self-supervised methods that might not account for au-
dio complexity. We illustrate its potential through data collected
by the SONYC project. However, Urban Rhapsody can be applied
to other longitudinal spatiotemporal acoustic data (e.g., bioacus-
tics [MMW, FKL∗21]), and to support this we made the tool avail-
able on GitHub. We hope this will encourage researchers to use it
in many different contexts and further develop the code base.

Limitations. While we define interactivity based on benchmarks
for querying large data [BEA∗20], we also identify three potential
bottlenecks: similarity search, model training, and projection gen-
eration. Urban Rhapsody responds to similarity queries by return-
ing up to 10,000 points in less than one second (for the examples
provided as initial query seeds [Fai]). However, a one-time pre-
processing computation is required to generate indices. This takes
on average one hour per sensor/year and needs 9 GB of memory
space (for sensors with low rates of missing data). GPU implemen-
tations [Rapa, Rapb] achieve response times of under one second
when loading Day View selections and for inference of created con-
cept models. Deploying Urban Rhapsody to handle data from alter-
nate sensor networks requires sufficient memory space to handle
query indices, GPU capabilities to train models, and connectivity
to support client-server architectures.

Expert feedback. Analyzing large collections of audio data is a
challenging task, in which views into the data can be limited. The
number of classes classifiers detect may be small, not matched to
the task at hand, or too coarse-grained. Deep audio embeddings
help to distill the semantics of audio to a smaller number of dimen-
sions, but they are still very opaque and not easily interpretable.
In addition, translation between modalities (e.g., using visual tools
to explore audio data) is also highly challenging, and yet we know
that it can be very effective. Our collaborators highlighted that Ur-
ban Rhapsody helps overcome these challenges by enabling inter-
active exploration, labeling, clustering, and reprojection of collec-
tions of audio data; and supports insights into models, labeled data,
and previously unseen patterns within unlabeled data.

Future work. We plan to investigate whether Urban Rhapsody can
accurately and efficiently represent concepts matching the user’s
mental model of their data. To investigate this we plan to conduct a
large-scale user study with machine learning and audio researchers.
While previous research [CSS∗17] shows that spectrogram visu-
alizations lead to high annotation accuracy at low time and labor
costs, further investigation is also needed to explore additional vi-
sualization metaphors (e.g., to summarize longer periods of audio
recordings). We will also explore how the analyses supported by
systems such as Urban Rhapsody can useful to public officials and
community representatives.

Conclusion. Urban Rhapsody is an interactive visual analytics tool
for gaining insight into large collections of audio data, which we
have demonstrated through use cases that characterize the acoustic
environment of NYC. We believe that Urban Rhapsody offers an
important step in moving beyond simple metrics, such as SPL, and
will be of value to researchers in human-centered machine learning,
acoustics, and urban science.
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