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Figure 1: Bounding volume hierarchies (BVHs) are the ray tracing acceleration data structure of choice in many state of the art rendering
applications. The figure shows a ray-traced scene, with a visualization of the otherwise hidden structure of the BVH (left), and a visualization
of the success of the BVH in reducing ray intersection operations (right).

Abstract
Ray tracing is an inherent part of photorealistic image synthesis algorithms. The problem of ray tracing is to find the nearest
intersection with a given ray and scene. Although this geometric operation is relatively simple, in practice, we have to evaluate
billions of such operations as the scene consists of millions of primitives, and the image synthesis algorithms require a high
number of samples to provide a plausible result. Thus, scene primitives are commonly arranged in spatial data structures
to accelerate the search. In the last two decades, the bounding volume hierarchy (BVH) has become the de facto standard
acceleration data structure for ray tracing-based rendering algorithms in offline and recently also in real-time applications. In
this report, we review the basic principles of bounding volume hierarchies as well as advanced state of the art methods with
a focus on the construction and traversal. Furthermore, we discuss industrial frameworks, specialized hardware architectures,
other applications of bounding volume hierarchies, best practices, and related open problems.

CCS Concepts
• Computing methodologies → Ray tracing; Visibility; Massively parallel algorithms; • Theory of computation → Compu-
tational geometry; Massively parallel algorithms; Sorting and searching;

1. Introduction

Ray tracing is a well-known method used for solving various prob-
lems in computer graphics [App68,Whi80]. It plays its most promi-
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nent role in realistic image synthesis, which simulates light trans-
port based on laws of physics to achieve a high degree of real-
ism. In computer graphics, we usually use a model of geomet-
ric physics, assuming that light travels instantaneously through the
medium in straight lines [DBBS06]. Ray tracing serves as an under-
lying engine for finding the nearest intersections with scene prim-
itives, which correspond to light path vertices in global illumina-
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tion algorithms such as path tracing [Kaj86]. The problem is that a
large number of rays must be traced to get plausible results. Oth-
erwise, the resulting images suffer from high-frequency noise. The
light transport simulation can be accelerated by efficient sampling
techniques, by denoising algorithms, or by improving ray tracing
itself by arranging scene primitives into an efficient spatial data
structure. For the latter case, one of the most popular acceleration
data structures for ray tracing is the bounding volume hierarchy
(BVH) [Cla76].

In this report, we provide a coherent survey on bounding volume
hierarchies for ray tracing. In particular, we provide the following
contributions:

• To be self-contained, we start from basic principles, which might
be useful for a broader audience such as game developers that are
familiar with rasterization-based rendering but not completely
with ray tracing (Sections 2 and 3).
• We present a collection of state of the art algorithms with a focus

on construction and traversal (Sections 4, 5, and 6).
• We provide a comprehensive overview of specialized hardware

for both construction and traversal (Sections 4.8 and 6.7).
• We present an overview of industrial ray tracing frameworks and

renderers using bounding volume hierarchies (Section 7).
• We briefly discuss other applications of bounding volume hier-

archies beyond ray tracing (Section 8).
• We provide a condensed outline of the most common techniques

by way of best practice recommendations (Section 9).
• We conclude the paper by listing open problems related to

bounding volume hierarchies (Section 10).

2. Preliminaries

The basic geometric operation in ray tracing is finding the nearest
intersection with the scene for a given ray. Alternatively, we may
want to find all intersections of the ray with the scene, or any in-
tersection within a given distance along the ray. The ray is a semi-
infinite line defined by its origin and direction. Naïvely, we can
compute the ray/scene intersections by testing all scene primitives,
which is prohibitively expensive as contemporary scenes consist of
millions of primitives. In practice, we arrange scene primitives into
various spatial data structures, which exploit the geometric proxim-
ity of the ray and scene primitives to efficiently prune the search. In
the last decade, the bounding volume hierarchy (BVH) has become
the most popular acceleration data structure for ray tracing.

The BVH is a rooted tree with arbitrary branching factor (de-
noted by k throughout this report) with child pointers in the inte-
rior nodes and references to scene primitives in the leaves. Each
node contains a bounding volume tightly enclosing geometry in
the leaves. Traditionally, binary BVHs have been used, but recently
BVHs with a higher branching factor have become popular. In
the context of ray tracing, axis-aligned bounding boxes (AABBs)
are used almost exclusively as bounding volumes. Nonetheless, for
some specific cases, oriented bounding boxes (OBB) or bounding
spheres might also be an option. The BVH can theoretically be gen-
eralized into any number of dimensions. Nonetheless, in rendering,
scene primitives are 3D entities, and thus, unless stated otherwise,
we suppose that all BVHs throughout this report are in 3D.

BVHs have become popular for ray tracing thanks to the follow-
ing reasons:

Predictable memory footprint The memory complexity is
bounded by the number of scene primitives since each primitive
is typically referenced only once. In such a case, the BVH contains
at most 2n− 1 nodes (n is the number of scene primitives), which
corresponds to a binary BVH with one primitive per leaf. If spa-
tial splits are used, primitives can be referenced multiple times, but
we can still control the number of references to a certain extent (as
discussed in Section 5.1).

Robust and efficient query The BVH is robust to any scene
primitive distribution thanks to its hierarchical structure. For in-
stance, it can handle the teapot in the stadium problem. Using a
BVH, we can efficiently prune branches that do not intersect a given
ray, and thus reduce the time complexity from linear to logarithmic
on average. BVH traversal algorithms typically have a small mem-
ory footprint, compact traversal state, and yield themselves to ef-
ficient parallelization. As a result, the BVH provides excellent ray
tracing performance. In most cases, the performance of the BVH is
at least comparable to the KD-tree [VHB16], which was previously
considered the best data structure for ray tracing [Hav00].

Scalable construction There are various BVH construction al-
gorithms, ranging from very fast algorithms to complex algorithms
which provide highly optimized BVHs. We can thus balance the
trade-off between construction speed and BVH quality. BVH qual-
ity corresponds to ray tracing speed in millions of rays cast per
second (MRays/s). We typically aim to optimize the total time to
compute the image, which is the sum of the construction and ren-
dering times. In real-time applications, there is a very limited bud-
get for both of these phases, and thus only a medium quality BVH
is typically constructed, and only a very limited number of rays
can be cast (e.g., a few million rays) [WIK∗06]. In offline render-
ing, the budget is larger, and so it is prudent to invest more time
in construction to produce a higher quality BVH. The additional
time spent in the construction phase will be amortized by a larger
number of rays traced at higher speed, yielding a net performance
benefit. An overview of the time-to-image concept is shown in Fig-
ure 2.

Figure 2: An illustration of the trade-off between construction time
and BVH quality for different use cases. The y-axis corresponds to
time-to-image, the offset of the curves on the y-axis corresponds to
the BVH construction time, the slope of the curves corresponds to
the quality of the BVH, i.e., ray tracing speed. The length of the
curves corresponds to typical per-frame budgets for the depicted
use cases.
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Dynamic geometry Since fast BVH construction methods are
available, BVHs are suitable for use with dynamic geometry. Alter-
natively, we can simply reflect the geometric changes by refitting
the bounding volume(s) of each node, which is not possible with
spatial subdivisions such as the KD-tree.

A BVH can be constructed in a top-down manner by recursively
splitting the set of scene primitives into subsets. The pseudocode of
the construction is shown in Algorithm 1.

root contains all scene primitives
push root onto the stack
while stack is not empty do

pop node from the top of the stack
if termination criteria for node are met then

make node leaf
else

split primitives in node into children
assign children as child nodes of node
foreach child in node do

push child onto the stack

Algorithm 1: The basic top-down construction algorithm.

To find the nearest intersection, the BVH can be traversed in a
top-down manner starting from the root. Usually, the traversal uses
a stack to store interior nodes that may potentially contain the near-
est intersection. At the beginning, we push the root onto the stack.
In each iteration, we pop the node from the top of the stack and
compute the intersection with its bounding volume. If the ray hits
the bounding volume, then we either push the node’s children onto
the stack in the case of a interior node, or test scene primitives in
the case of a leaf node. We store the distance to the nearest inter-
section found so far. Using this distance, we can skip the nodes that
are further than the previously found intersection. We continue the
traversal until the stack is empty. For an occlusion test, when we
want to know only whether the point is visible or occluded, we can
thus use an early exit after finding the first intersection. The traver-
sal algorithm is illustrated in Figure 3 and its pseudocode is shown
in Algorithm 2.

push root onto the stack
while stack is not empty do

pop node from the top of the stack
if ray intersects node then

if node is not leaf then
foreach child in node do

push child onto the stack
else

foreach prim in node do
test whether ray intersects prim

Algorithm 2: The basic stack-based traversal algorithm.

3. Cost Function

The quality of a particular BVH can be estimated in terms of the
expected number of operations needed for finding the nearest inter-
section with a given ray. The cost of a BVH with root N is given by
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Figure 3: An example of a BVH built over four primitives. BVH
nodes contain bounding volumes (axis-aligned bounding boxes),
and primitives are referenced in leaves. While traversing the BVH
to find the ray/scene intersection, we cull the entire subtree of node
C since the ray does not intersect the associated bounding box.

the recurrence equation:

c(N) =

cT +∑
Nc

P(Nc|N)c(Nc) if N is interior node,

cI |N| otherwise,
(1)

where c(N) is the cost of a subtree with root N, Nc is a child of
node N, P(Nc|N) is the conditional probability of traversing node
Nc when node N is hit, and |N| is the number of scene primitives
in a subtree with root N. Constants cT and cI express the average
cost of a traversal step and ray-primitive intersection, respectively.
These constants are usually very roughly approximated rather than
expressing a precise number of assembly instructions. In practice,
the ratio of these two constants is important, not the absolute val-
ues, which has an impact on the leaf sizes. For instance, it is bene-
ficial to have larger leaves if the traversal step is significantly more
expensive than the intersection test.

Using the surface area heuristic (SAH) [GS87, MB90], we can
express the conditional probabilities as geometric probabilities, i.e.,
the ratio of the surface areas of a child node and the parent node:

P(Nc|N)SAH =
SA(Nc)

SA(N)
, (2)

where SA(N) is the surface area of the bounding box of node N.
By substituting Equation 2 into Equation 1, we get the following
expression:

c(N)SAH =

cT +∑
Nc

SA(Nc)
SA(N)

c(Nc) if N is interior node,

cI |N| otherwise.
(3)

By unrolling, we remove the recurrence:

c(N)SAH =
1

SA(N)

[
cT ∑

Ni

SA(Ni)+ cI ∑
Nl

SA(Nl)|Nl |

]
, (4)

where Ni and Nl denote interior and leaf nodes of a subtree with
root N, respectively. The problem of finding an optimal BVH is
believed to be NP-hard [KA13].
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The SAH assumes that ray origins are uniformly distributed out-
side the scene bounding box, ray directions are uniformly dis-
tributed, and rays are not occluded. These assumptions are quite
unrealistic, and thus several corrections have been proposed.

Bittner and Havran [BH09] proposed the ray distribution heuris-
tics (RDH), which is a method that takes into account a given ray
distribution. The authors proposed to sample the ray distribution,
and then use the ratio of the number of ray hits instead of surface
areas:

P(Nc|N)RDH =
R(Nc)

R(N)
, (5)

where R(N) is the number of rays hitting the bounding box of node
N. Note that RDH was originally proposed for KD-trees, and its
potential in the context of BVH construction has not been fully
investigated.

Vinkler et al. [VHS12] proposed the occlusion heuristic (OH)
using the ratio of the number of visible scene primitives:

P(Nc|N)OH =
O(Nc)

O(N)
, (6)

where O(N) is the number of visible scene primitives in a subtree
with root N. Using RDH or OH directly may lead to unstable results
due to either undersampling or oversampling of the ray distribution.
Thus, the authors proposed to blend these probabilities with the
geometric probabilities given by the SAH to make the results more
robust.

Fabianowski et al. [FFD09] proposed a modification for handling
rays with origins inside the scene bounding box:

P(Nc|N)Inside =
V (Nc)

V (N)
+

1
V (N)

∫
N\Nc

αx
4π

dx, (7)

where V (N) is the volume of the bounding box of node N, and αx
is a solid angle obtained by projecting the bounding box onto the
unit sphere around x. This expression is much harder to evaluate
than the simple ratio of surface areas. Since there is no closed-form
solution of the integral, the authors proposed a numerical approxi-
mation.

Aila et al. [AKL13] proposed the end-point overlap heuristic
(EPO) motivated by the fact that most rays originate on surfaces
of scene primitives, which is the case with secondary and shadow
rays in global illumination algorithms. If a ray origin (or hit point)
is inside multiple branches, we have to visit all of them. The idea
is to penalize overlapping surfaces inside a bounding box but not
necessarily in the corresponding subtree:

c(N)EPO =
1

SA(S)

[
cT ∑

Ni

SA(SNi)+ cI ∑
Nl

SA(SNl )|Nl |

]
, (8)

where SN = N ∩ S is a set of surfaces inside the bounding box of
node N, and S is a set of all surfaces of scene primitives. The au-
thors proposed to factorize the penalization of overlapping surfaces
that do not belong to the particular subtree:

c(N)EPO?

=
1

SA(S)

[
cT ∑

Ni

SA(SNi \S?Ni)+ cI ∑
Nl

SA(SNi \S?Nl )|Nl |

]
,

(9)

where SNi \S?Ni
is a set of surfaces that are inside the bounding box

but do not belong to the corresponding subtree, and S?Ni
is a set of

surfaces belonging to the subtree. The authors proposed to blend
this penalization with the standard geometric probabilities given
by the SAH in the same manner as RDH and OH, which results
in a very good correlation between this cost and the actual times.
However, it is unclear how to use it directly for BVH construction.
The authors also showed that the top-down construction (see Sec-
tion 4.1) minimizes EPO more than other construction approaches.

4. Construction

In this section, we present a taxonomy of construction algorithms
covering both basic principles and more advanced techniques.

4.1. Top-Down Construction

Top-down BVH construction was adapted from existing KD-tree
construction methods [Wal07]. We start with the root node con-
taining all scene primitives. In each step, we split scene primitives
into two disjoint subsets that correspond to the node’s two children,
which are further processed recursively. The recursion continues
until one of the termination criteria is met. The usual termination
criteria are the maximum number of scene primitives in the node,
maximum tree depth, or maximum memory used.

In general, there are exponentially many ways in which scene
primitives can be split into two disjoint subsets. Popov et
al. [PGDS09] showed that there are O(n6) partitionings for axis-
aligned bounding boxes (as each bounding box is defined by six
planes), which is still prohibitive for any practical use. Thus, the
authors proposed to use a grid approximation controlling the time
complexity by the grid resolution. Note that even if we perform an
optimal split in every node, it does not mean that the whole BVH
will be optimal, as it is very likely to be just a local optimum of the
cost function.

In practice, we split scene primitives by axis-aligned planes, sim-
ilar to KD-tree construction. In the case of BVHs, each scene prim-
itive is typically referenced only once. Note that we can relax this
condition allowing spatial splits in BVH (see Section 5.1 for more
details). Thus, we approximate scene primitives by a single point
(e.g., a centroid of the bounding box), which always lies only on
one side of the splitting plane. First, we select a splitting axis. We
can test all three splitting axes and choose the best one, or we can
use heuristics such as round-robin or the largest extent. Given the
splitting axis, we can sample the splitting planes. There are three
basic approaches for how we can split the node: spatial median
split, object median split, or a split based on a cost model. The spa-
tial median split cuts the bounding boxes in the middle. The object
median split sorts scene primitives along a splitting axis, and splits
them into two halves containing roughly the same number of scene
primitives, which might be useful if other splits are not possible
(e.g., all scenes primitives are on one side of the splitting plane or
all centroids fall onto the same point). The split based on the cost
model tries to minimize the cost function locally. During splitting,
we cannot use the cost model directly because we do not know the
cost of the children. Thus, we approximate the cost by treating the
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children as leaves:

c(N)≈ ĉ(N)SAH = cT + cI ∑
Nc

SA(Nc)

SA(N)
|Nc|. (10)

We can also use this approximation as a termination criterion when
the cost of the node being a leaf is less than or equal to this ap-
proximation (i.e., cI |N| ≤ ĉ(N)). Popov et al. [PGDS09] proposed
to penalize the overlap of child bounding boxes using an additional
term in the cost function:

ĉ(N)OL = cT +

(
cO

V (
⋂

Nc
Nc)

V (N)
+1
)

cI ∑
Nc

SA(Nc)

SA(N)
|Nc|, (11)

where cO is a constant that controls the overlap penalty and V (N)
is the volume of the bounding box of node N. If there is no over-
lap, the cost function is simply equal to the unmodified cost func-
tion (i.e., ĉ(N)OL = ĉ(N)SAH ). According to Aila et al. [AKL13],
this overlap penalization is less descriptive than EPO, i.e., provides
weaker correlation of the cost with the rendering times. On the
other hand, unlike EPO it can be easily evaluated during the BVH
construction itself.

To select the splitting plane, for the given axis, we can evalu-
ate all |N| − 1 splitting planes, i.e., planes between scene primi-
tives. Evaluating all splitting planes is known as sweeping, and it
may be costly, especially at the beginning, when nodes contain a
large number of scene primitives. To address this issue, Wald et
al. [Wal07] proposed an approach known as binning. The idea is to
divide the splitting extent into b equally-spaced bins. Scene primi-
tives are projected into these bins and then the cost function is eval-
uated only at the splitting planes between bins. Even for relatively
small b (e.g., 16 or 32), the binning provides almost as good results
as evaluating all splitting planes while accelerating the construc-
tion significantly. The number of bins can also be reduced during
construction, i.e., based on the current tree depth. The full binning
resolution is only required for the top of the tree, where picking
the best split position matters the most. Further down the tree, a re-
duced number of bins provides nearly identical quality as using all
bins.

Wald [Wal07] proposed horizontal and vertical parallelization of
the top-down construction method using the binning algorithm. The
horizontal parallelization is used for the upper levels, where only
a few interior nodes contain many scene primitives. Scene primi-
tives are equally divided between threads. Each thread projects its
scene primitives into its private set of bins. After binning, the bin
sets are merged, and the best splitting plane is selected. Once the
number of subtrees is large enough to be assigned to all threads,
the algorithm switches to vertical parallelization, where each sub-
tree is processed by a single thread. The algorithm is designed to
utilize both SIMD instructions and multithreading, and it was also
extended for the MIC architecture [Wal12]. Since the size of each
subtree, and therefore its construction time, can vary significantly,
a task-stealing approach is essential for distributing the work effi-
ciently across threads.

Ganestam et al. [GBDAM15] proposed a top-down construction
algorithm known as Bonsai. The construction starts by recursively
subdividing triangles into coherent clusters using spatial median
splits. For each cluster, a mini-tree is built by testing all possible

splitting planes to minimize the cost approximation in Equation 10.
Efficiently testing all possible split positions during the construc-
tion of each mini-tree requires a fully sorted list of all possible split
positions in each dimension. Ganestam et al. sort the split positions
once per mini-cluster in a preprocessing step and then maintain the
sorted lists during recursive construction. In the last step, the top
levels of the hierarchy are built, treating mini-trees as leaves.

Hendrich et al. [HMB17] proposed a technique known as pro-
gressive hierarchical refinement (PHR) inspired by the build-from-
hierarchy method originally proposed for KD-tree construction
[HMF07]. The idea is to build an initial BVH by some method
(the authors use LBVH, see Section 4.4), and then find a cut in this
BVH, which is a set of nodes separating the root and the leaves.
The cut is formed by nodes whose surface area is below an adaptive
threshold. The cut is split into two parts by the sweeping algorithm.
The threshold is refined taking into account the current depth and
some nodes of the cut are replaced by their children. This procedure
is applied recursively to build the whole BVH.

Wodniok and Goesele [WG16, WG17, Wod19] studied how to
better approximate the cost during top-down construction, moti-
vated by the fact that the top-down construction implicitly mini-
mizes EPO (see Section 3). The authors proposed to construct tem-
porary subtrees induced by a tested splitting plane to better ap-
proximate the cost. Vinkler et al. [VHBS16] introduced a paral-
lel on-demand construction on the GPU. The core idea is to build
only those parts that are visited during the traversal. Ng and Tri-
fonov [NT03] proposed stochastic sampling of splitting planes in-
stead of greedily taking the best one, which only minimizes the cost
function locally.

Lauterbach et al. [LGS∗09] proposed one of the earliest
GPU-based construction algorithms using binning. Garanzha et
al. [GPBG11] proposed to use uniform grids of various resolutions
to accelerate binning on GPUs. Sopin et al. [SBU11] proposed an-
other binning-based algorithm classifying nodes according to their
sizes while using a different strategy for each node type. Meister
and Bittner [MB16] proposed a GPU-based construction algorithm
using k-means clustering instead of splitting by axis-aligned planes.
Scene primitives are subdivided into k clusters using k-means clus-
tering. Applying this procedure recursively, a k-ary BVH is built,
which can be used directly, or it can be converted to a binary one
by constructing intermediate levels using agglomerative clustering.

4.2. Bottom-Up Construction

An opposite approach to top-down construction is bottom-up
construction by agglomerative clustering proposed by Walter et
al. [WBKP08]. At the beginning, all scene primitives are con-
sidered as clusters. In each iteration, the closest pair is merged,
where the distance function is the surface area of a bounding box
tightly enclosing both clusters. This process is repeated until only
one cluster remains. In general, agglomerative clustering produces
BVHs with a lower global cost, but the construction is more time-
consuming. A caveat is that the optimization is stressed in bottom
levels, and thus top levels may be poorly locally optimized (un-
like in top-down construction). This may be critical, as most of
the traversal time is spent in the upper levels. The major bottle-
neck is the nearest neighbor search that has to be performed for
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each cluster to determine the closest cluster pair in each iteration.
Walter et al. [WBKP08] proposed to use a heap and an auxiliary
KD-tree. The heap stores the nearest neighbor using the distance
as a priority. The KD-tree is used to accelerate the nearest neigh-
bor search. Nonetheless, this approach is difficult to be parallelized
since the topology of the KD-tree is modified by inserting and re-
moving clusters.

Gu et al. [GHFB13] proposed a CPU-based parallel construction
algorithm known as approximate agglomerative clustering (AAC).
The idea is to restrict the search space for the nearest neighbor
search by proximity given by the Morton curve (see Section 4.4).
At the beginning, the scene primitives are recursively subdivided
by spatial median splits based on Morton codes until each subtree
contains less than a predefined number of clusters. To reduce the
number of clusters in each subtree, the clusters are merged using
agglomerative clustering until only a small number of clusters re-
mains (not necessarily one). The algorithm continues to the par-
ent, where the clusters of both children are combined; again, the
clusters are merged using agglomerative clustering. This procedure
is repeated until the whole tree is built. To accelerate the nearest
neighbor search, the authors proposed to cache cluster distances in
a distance matrix using the fact that almost all distances remain the
same, and only a few are affected between iterations. Although the
distance matrix requires a quadratic number of entries with respect
to the number of clusters, it is feasible as each subtree contains only
a small number of clusters.

AAC uses a top-down partitioning phase with a relatively large
stack state (i.e., distance matrices), which is not GPU-friendly.
Meister and Bittner [MB18a, Mei18] proposed a GPU-based con-
struction algorithm known as parallel locally-ordered clustering
(PLOC). The key observation is that the distance function obeys
the non-decreasing property. In other words, it means that if two
nearest neighbors mutually correspond, they can be merged imme-
diately as there will not be any better neighbor. For parallel pro-
cessing, this means that all mutually corresponding cluster pairs
can be merged in parallel. Similarly to AAC, the algorithm uses the
Morton curve but in a different way. The clusters are kept sorted
along the Morton curve. To find the nearest neighbor, each clus-
ter searches on both sides in the sorted cluster array, testing only a
predefined number of clusters. This approach is GPU-friendly as it
does not require any additional data structures such as distance ma-
trices. The whole algorithm works in iterations consisting of three
steps. First, the nearest neighbors are found using the Morton curve.
Then, all mutually corresponding pairs are merged and placed into
the position of the first cluster. Finally, the holes are removed using
a parallel prefix scan. Usually, only a small number of iterations are
needed to build the whole tree.

4.3. Incremental Construction

Incremental construction by insertion, proposed by Goldsmith and
Salmon [GS87], was the first algorithmic approach for building
BVHs. The idea is to start with an empty BVH and insert scene
primitives one by one into that BVH. For each scene primitive,
we find an appropriate leaf node by traversing the BVH from the
root, and we insert the primitive into the leaf. If there are too many
primitives, we split the node into two children eventually. This ap-

proach is useful if we do not know the entire input at the beginning
of the construction, e.g., streaming the data through the network.
However, this approach produces BVHs of lower quality in gen-
eral. This issue was addressed by Bittner et al. [BHH15] proposing
an efficient incremental construction algorithm. This method uses
a priority queue-based approach to insert scene primitives into the
BVH while greedily minimizing the cost for each insertion. To pre-
vent reaching inefficient local minima of the BVH cost for degen-
erate primitive insertion orders, the method is combined with the
insertion-based optimization [BHH13].

4.4. LBVH

Due to the hierarchical nature of the BVH, the parallelization of
the construction is not straightforward. The BVH construction can
be reduced to sorting scene primitives along the Morton curve
[Mor66], where the order is given by Morton codes of fixed length
(usually 32 or 64 bits). This is very convenient as many efficient
parallel implementations of sorting algorithms are available, and
thanks to the fixed length, the sorting can be done in O(n) using
algorithms such as radix sort. The Morton curve is a well-known
space-filling curve subdividing space into a uniform grid. Each
cell of the grid is uniquely identified by a corresponding Morton
code, which can be easily computed by interleaving successive bits
of quantized cell coordinates. Similarly to top-down construction,
scene primitives are approximated by points and projected into grid
cells. The Morton curve implicitly encodes a BVH constructed by
spatial median splits (see Figure 4), where the most significant bit
corresponds to the topmost split and so on.

Figure 4: An example of Morton curve in 2D using 3 bits per di-
mension.

Lauterbach et al. [LGS∗09] proposed a GPU-based construction
algorithm known as linear BVH (LBVH) using the Morton curve.
The BVH is built level by level in a top-down fashion, where each
level requires one kernel launch. Each task splits the corresponding
interval according to a given bit, eventually spawning new tasks for
the next iteration. The authors proposed to use the SAH binning
algorithm for lower levels to improve the BVH quality.

Pantaleoni and Luebke [PL10] combined LBVH with SAH
sweeping for the upper levels, which is known as hierarchical
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LBVH (HLBVH), and later Garanzha et al. [GPM11] replaced
sweeping by binning using Morton code prefixes as bin indices.
The hierarchy is constructed level by level as in the original LBVH
algorithm. Nonetheless, this algorithm requires many synchroniza-
tions using atomic operations for binning.

0

0 1 2 3 4 5 6 7

1 2

3

4

5

6

00001 00010 00100 00101 10011 11000 11001 11110

Figure 5: An example of the compact prefix layout used in LBVH.

LBVH was later improved by Karras [Kar12], constructing the
whole tree in a single kernel launch. The idea is to use a very spe-
cial node layout where interior and leaf nodes are in separate ar-
rays. The position of each interior node coincides with one of the
endpoints of the interval covering the scene primitives belonging to
that node (see Figure 5). First, the second endpoint of the interval
must be found. The direction (left or right) is determined by check-
ing Morton codes of scene primitives around the first endpoint. The
one with a longer common prefix of Morton codes is selected. The
second endpoint is efficiently found by binary search. Given the
interval, the splitting plane can be easily found by performing an-
other binary search. The most expensive part of the construction is
bounding boxes computation, which requires an additional bottom-
up pass. This issue was addressed by Apetrei [Ape14], who pro-
posed to construct both topology and bounding boxes in one pass
requiring only a single kernel launch. Chitalu et al. [CDK20] com-
bine LBVH with an ostensibly-implicit layout. Using this layout,
missing parts of the complete binary tree can be efficiently deter-
mined, allowing the mapping of the implicit index representation
to compact memory locations. Thanks to this layout, and by us-
ing the node index, all other attributes can be easily determined,
and thus only bounding boxes must be stored explicitly (see also
Section 5.5). This algorithm is the fastest construction algorithm
to date. Vinkler et al. [VBH17] proposed extended Morton codes
which encode not only the position but also the size of scene prim-
itives, which may have a significant impact on the quality of result-
ing BVHs, especially for scenes with irregularly-sized primitives.

4.5. Topology Optimization

The problem of construction algorithms is that we cannot evaluate
the cost function as the tree has not been constructed yet, and thus
we only use local approximations. The idea of optimization is to
build an initial BVH, and then try to improve its quality. As the
BVH is already built, we can evaluate the cost function and sys-
tematically minimize it. Most of the optimization algorithms use
a simplified cost model, assuming that the leaves are fixed. In this
case, the cost function is reduced to the sum of surface areas of
bounding boxes in interior nodes.

Kensler [Ken08] proposed using tree rotations to improve the
tree quality inspired by well-known operations used for balancing
binary search trees. Generally, there are four possible rotations for
each interior node: swapping the left (or right) child with a grand-
child in the right (or left) subtree, respectively. The basic algorithm
iteratively performs the rotation providing the highest surface area
reduction. The author also proposed to use simulated annealing to
avoid getting stuck in local minima, i.e., the algorithm accepts ro-
tations stochastically based on the surface area reduction, also ad-
mitting those which may increase the surface area.

Bittner et al. [BHH13] proposed a similar approach with more
general operations: removing subtrees and inserting them to new
positions. In this case, the search space is much larger, as any sub-
tree can be removed and inserted into any node. Trying all possi-
ble combinations would be exhaustive. The authors proposed var-
ious strategies for choosing the order in which the subtrees are
processed. For example, one strategy is to prioritize nodes with
higher surface area as they might cause higher cost overhead. This
approach was later improved by using Metropolis-Hastings sam-
pling [BM15]. To search for a new position, the authors proposed
to use a priority queue with a branch-and-bound algorithm using
the best position found so far as a lower bound for pruning. This al-
gorithm produces BVHs of the highest possible quality at the cost
of higher build times.

Insertion-based optimization is inherently sequential. Meister
and Bittner [MB18b,Mei18] reformulated this algorithm to be par-
allel, utilizing the computational power of contemporary GPUs.
The key insight is that we do not need to remove the subtree to
compute the surface area reduction. Supposing that the position for
the insertion is already known, the surface area reduction can be
tracked by traversing a path (in the tree) between root nodes of
both subtrees. The surface area reduction is a sum of surface area
differences on this path. Tracking the surface area reduction with-
out actual removal, multiple subtrees can search for new positions
in parallel. The search procedure starts from the original position.
The algorithm proceeds up to the root node and visits every sib-
ling subtree along this way while incrementally tracking the sur-
face area reduction. A sibling subtree can be visited using a simple
pre-order traversal with parent links without any additional data
structure. The best position found so far is used as a lower bound
for pruning, which is initially set to the original position. The ac-
tual removal and insertion may lead to race conditions, and thus
synchronization is necessary. To resolve these conflicts, the authors
proposed to use atomic locks prioritizing nodes with higher surface
area reduction. The algorithm is about two orders of magnitude
faster while providing BVHs of similar quality as the original se-
quential algorithm.

Karras and Aila [KA13] proposed a very fast GPU-based opti-
mization algorithm known as treelet restructuring (TRBVH). The
idea is to restructure treelets (i.e., small subtrees of a fixed size)
in an optimal way using a dynamic programming approach. Since
the algorithm proceeds level by level up to the root, treelets over-
lap between iterations, which allows propagating changes from the
bottom up to the root leading to high-quality BVHs. This algo-
rithm was later improved by Domingues and Pedrini [DP15] by
employing agglomerative clustering instead of dynamic program-
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ming. This allows us to restructure larger treelets, and thus achiev-
ing higher quality at the same time. Note that in both cases, the au-
thors proposed a full build strategy using LBVH as an initial BVH.

Some of the BVH construction techniques previously men-
tioned also contain inherent optimization phases [GHFB13, GB-
DAM15, HMB17]. The main difference compared to the optimiza-
tion techniques discussed in this section is that they use only a sin-
gle or a few optimization steps inherently connected with the rest
of the algorithm.

4.6. Subtree Collapsing

Bottom-up construction and some optimization techniques produce
BVHs with one primitive per leaf, which may cause not only mem-
ory overhead but also a cost increase, as it may pay off to have
larger leaves (depending on cT and cI constants) [BHH13, KA13].
With subtree collapsing, we proceed from the leaves up to the root,
comparing the cost of the node being a leaf with the actual cost of
the node’s subtree. If the cost as a leaf is less than or equal to the ac-
tual cost, the subtree is collapsed into a larger leaf. This technique
is similar to the termination criterion based on the cost approxima-
tion. The difference is that the cost can be fully evaluated, which
leads to a guaranteed cost reduction. Meister and Bittner [MB18a]
proposed a GPU-based version of this postprocessing technique.

4.7. Data Layout

Contemporary processors have multi-level caches to reduce aver-
age memory access latency. The above-described metrics, such as
the SAH and EPO, do not explicitly incorporate factors such as
cache misses or the size of the working set. Therefore, in a real-
world application, changing the order of nodes can improve cache
locality and reduce traversal cost. Improving locality also helps
to reduce secondary effects, including translation lookaside buffer
misses and CPU-based hardware prefetching.

Yoon and Manocha [YM06] proposed a node layout algorithm
known as cache-oblivious BVH (COLBVH) that recursively de-
composes clusters of nodes and works without prior knowledge
of the cache, such as the block size. In initialization, each node
is assigned the probability that the node is accessed, given that the
cluster’s root is already accessed. The cluster with |N | nodes is
then decomposed into d

√
|N |+1 + 1e smaller ones by merging

the nodes with the highest probability into a root cluster. Next, the
decomposed clusters are ordered considering their spatial locality.
The root cluster is placed at the beginning, and the remaining child
clusters are ordered according to their original BVH positions, from
left to right, in a multi-level depth-first layout. The same process is
recursively applied to child clusters.

Wodniok et al. [WSWG13] proposed new layouts: swapped
subtrees (SWST) and treelet-based depth-first-search/breadth-first-
search (TDFS/TBFS). These layouts are determined based on the
node access statistics obtained by casting a small number of sample
rays in a preprocessing step. SWST aims to achieve better cache
locality by swapping subtrees of a node in a depth-first layout. If
the right child is more accessed than the left, the node’s subtrees
are exchanged. The latter, treelet-based layouts, divide a BVH into

treelets by merging the most frequently accessed nodes. The differ-
ence between TDFS and TBFS is whether the treelets are created
in depth-first or breadth-first order. The authors compared the pro-
posed layouts against DFS, BFS, van Emde Boas layout, and COL-
BVH, showing that TDFS achieves the highest speedup on average.
However, none of these layouts is always better.

Liktor and Vaidyanathan [LV16] proposed a two-level clustering
scheme, which decomposes a given BVH into clusters similar to
COLBVH. The key difference is the use of two different types of
clusters to further reduce bandwidth and cache misses. The BVH
is first recursively decomposed into a specified number of address
clusters (ACs), in which child pointers can be represented with re-
duced precision (i.e., child pointers are compressed). Next, cache
clusters (CCs) are recursively generated within each AC. CCs are
cache-aware, meaning that their size is determined to fit within
a cache line. They help reduce cache misses and facilitate cache
boundary alignment. The AC leaves must be replaced by nodes
called glue nodes with full-precision pointers to refer to other ACs.

4.8. Hardware Acceleration

As can be seen from the preceding sections, a great deal of progress
has been achieved in the area of BVH construction algorithms. This
progress has manifested as both improved construction speed, as
well as improvements in the quality of the hierarchies produced.
For real-time and highly dynamic content, BVH construction can
still easily represent a significant portion of the rendering work-
load, even for the state of the art builders on high-end platforms.
Motivated by this fact, a modest body of research has accumulated
on specialized hardware architectures for BVH construction, which
are designed to achieve superior performance and efficiency com-
pared to software solutions.

The first published specialized architecture for the construction
of acceleration structures was proposed by Doyle et al. [DFM12,
DFM13]. The design is entirely fixed-function, and implements a
high-quality binned SAH BVH construction algorithm. The design
features an efficient arrangement of specialized circuits designed
to maximize both construction throughput and efficiency. Another
notable feature of Doyle et al.’s design is that it introduces a mem-
ory optimization that allows for overlapping the partitioning of one
level of the BVH with the binning for the next level, leading to a
significant reduction in memory bandwidth. The design achieved
up to 10× the build performance of the fastest SW binned SAH
builders of the era, while using much lower hardware resources.
Doyle et al. also emphasized energy efficiency, and the minimiza-
tion of off-chip memory accesses which expend disproportionate
quantities of energy, as a key advantage that a hardware BVH build
solution could offer to future heterogeneous graphics processors.

Following their earlier work, Doyle et al. [DTM17] integrated
their BVH construction unit into a heterogeneous system-on-chip
comprising a multi-core CPU working in tandem with a compact
version of their BVH HW unit. This new design was prototyped
on an FPGA. In their prototype, the upper levels of the BVH are
built using the CPU, with the lower levels constructed with the ac-
celerator. The authors demonstrate that the flexibility offered by
the integrated CPU allowed the BVH build unit to be leveraged for
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empty space skipping in direct volume rendering, as well as in hy-
brid surface/volume visualization pipelines.

Following the work of Doyle et al., Viitanen et al. [VKJ∗15,
VKJ∗17a] proposed MergeTree, a fixed-function HW accelerator
implementing an HLBVH-style builder. This work introduces a
number of innovations designed to improve the efficiency of HW
builders. Similar to Doyle et al., Viitanen et al. particularly em-
phasize memory bandwidth and energy efficiency in their work.
Working towards this goal, one notable innovation of Viitanen et
al.’s design is the replacement of the radix sort of earlier HLBVH
builders with a bandwidth-efficient multi-merge sort. The builder is
capable of building BVHs in as little as two passes through the data.
The main stages of the design include pre-sorting units, which feed
sorted blocks of primitives to a heap-based merge sort unit, which
in turn feeds into a streaming hierarchy emission unit. In addition
to this, a binned SAH builder modeled after the work of Doyle et al.
is included for HLBVH+SAH hybrid hierarchies. The design is ca-
pable of building hierarchies substantially faster than Doyle et al.’s
design, but with the disadvantage that the hierarchies are of lower
quality.

Viitanen et al. [VKJ∗18] also proposed PLOCTree, a HW ar-
chitecture which implements the parallel locally-ordered cluster-
ing (PLOC) algorithm of Meister and Bittner [MB18a] (see Sec-
tion 4.2). The design also aims to minimize memory traffic, by in-
troducing a novel streaming formulation of the PLOC algorithm
which overlaps nearest neighbor calculation and merging of primi-
tive AABBs. The major units of the design are a sorting subsystem
that performs the initial sort of the input, and a number of PLOC
sweep pipelines. The PLOC sweep pipelines consist of a window
memory for storing the local windows for merging, distance metric
evaluators and a comparator tree for computing distances between
AABB merge candidates, and a post-processing stage which com-
pletes mutual nearest neighbor determination. Another innovation
of this work is the use of reduced-precision arithmetic for the dis-
tance metric, which saves hardware resources. The design leads to
fast builds that improve on the quality of the trees produced by
MergeTree, but requires more hardware real estate to achieve this.

Recognizing the fact that many high-performance ray trac-
ing solutions are migrating to compressed BVHs, Viitanen et
al. [VKJ∗17b] proposed a bottom-up update algorithm for com-
pressed BVHs, and furthermore proposed a HW architecture for
implementing this method. Viitanen et al. showed that such a HW
unit could lower memory bandwidth requirements and improve per-
formance of build and refitting algorithms which output the hierar-
chy in a bottom-up fashion.

The PowerVR Wizard GPU from Imagination Technologies re-
portedly features a HW-based BVH builder called the scene hierar-
chy generator [McC14]. Limited information found in public pre-
sentations reveals that it is based on a streaming voxelization of the
triangles which are then spatially organized using an octree “scaf-
folding” and an associated 3D cache. The hierarchy is reportedly
built in a single pass and in a bottom-up fashion. The design rep-
resents an interesting approach to the problem, but to the authors’
knowledge, no publicly available data are available to compare its
performance or BVH quality to other existing HW builders.

Aside from BVH construction, other notable works include the

HART mobile ray tracing GPU [NKP∗15], which features a hard-
ware accelerated BVH refit unit, while relying on a CPU for the
initial construction of the BVH. Woop included a HW refitting unit
for B-KD trees in the DRPU architecture [Woo06]. The RayCore
architecture includes a KD-tree builder which includes both bin-
ning and sorting-based build units [NKK∗14]. Liu et al. [LDNL15]
proposed a LBVH-style HW builder for KD-trees. The RayTree IP
from SiliconArts offers a hardware KD-tree build solution [Sil20].
Finally, Deng et al. [DNL∗17] also provide further detail on some
of the works mentioned here.

5. Extensions

In this section, we introduce more general models such as
wide BVHs and spatial splits. We also present more specialized
techniques customized for handling dynamic geometry or non-
polygonal primitives. Last, we describe various data representa-
tions for BVHs which significantly reduce memory footprint.

5.1. Spatial Splits

BVHs often adapt poorly to scenes with overlapping primitives of
non-uniform sizes, which are difficult to separate by definition. On
the other hand, spatial subdivisions such as the KD-tree excel in
such scenarios as they subdivide space into disjoint cells while
splitting the scene primitives. The drawbacks of this include higher
memory consumption, slower construction, and more complicated
traversal. Similarly, we can relax the restriction that each scene
primitive is referenced only once in a given BVH, which brings
another degree of freedom to the construction. In other words, we
can make bounding boxes tighter at the cost of more references (see
Figure 6). The traversal and the structure itself remains the same.
A caveat is that this is not suitable for animated scenes since the
refitting destroys the spatial splits.

Figure 6: The difference between a traditional BVH (left) and a
BVH with spatial splits (right). Admitting spatial splits, we can
achieve tighter bounding boxes at the cost of more references.

Ernst and Greiner [EG07], Dammertz and Keller [DK08], and
Karras and Aila [KA13] proposed a method known as presplit-
ting. The idea is to cover large scene primitives by multiple smaller
bounding boxes prior to the actual construction. Then, the bounding
boxes are fed into an arbitrary construction algorithm. This process
can be easily parallelized as each scene primitive is processed in-
dividually. A drawback is that the ray tracing improvement is not
so significant as each primitive is processed independently not tak-
ing into account overlap with other primitives. Another drawback
is that pre-splitting requires more memory, as the up-front heuristic
used leads to more splitting than is actually required.
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Therefore, Stich et al. [SFD09] and Popov et al. [PGDS09] pro-
posed to allow spatial splits during top-down construction, simi-
larly to KD-tree construction [Hav00, HHS06]. Unlike in the case
of KD-trees, the cost function is piecewise quadratic since bound-
ing boxes adapt in all three axes. Therefore, the authors proposed a
modified version of the binning algorithm [Wal07]. During the con-
struction, both spatial splits and (standard) object splits are evalu-
ated, choosing the one minimizing the cost approximation. This
approach leads to higher ray tracing performance since it takes into
account the proximity of scene primitives.

Fuetterling et al. [FLPE16] proposed a parallel top-down con-
struction with spatial splits conceptually similar to the horizontal
and vertical parallelization proposed by Wald and Havran [WH06].
Similarly, Ganestam and Doggett [GD16] proposed an extension
of the Bonsai algorithm to support spatial splits. Hendrich et
al. [HMB17] proposed evaluating spatial splits using nodes from
a cut of the hierarchy, which has only a minor influence on the
build time. The number of references can be controlled by using
both object and spatial splits, which is not the case with KD-trees.
Thus, the memory footprint is still predictable even while allowing
spatial splits. This approach provides significant acceleration, but
even the parallel version is still relatively slow. in comparison with
presplitting.

In both cases, we can either actually split triangles into multiple
smaller triangles (using tessellation) [EG07, DK08, KA13], or just
cover them with multiple smaller bounding boxes and keep trian-
gles as they are [SFD09, HMB17].

5.2. Wide BVH

BVHs with higher branching factors are known as wide BVHs or
multi BVHs (MBVHs). Wide BVHs with branching factor k are
sometimes also denoted by BVHk (e.g., BVH4 or BVH8). Using
wide BVHs, we can utilize parallel computing resources such as
SIMD/SIMT units more efficiently by testing one ray against multi-
ple bounding volumes during the traversal [WBB08,EG08,LSS18].
Moreover, wide BVHs are also memory efficient as they contain
significantly fewer interior nodes than binary BVHs.

Unlike binary BVHs, wide BVHs have to deal with empty slots
since it is very unlikely that each interior node has the maximum
number of children, which typically happens around the leaf level
of the tree. This generalization brings another degree of freedom in
the construction. Memory efficiency highly depends on the number
of empty slots. For example, a full k-ary BVH contains only |Nl |−1

k−1
interior nodes, where |Nl | is the number of leaves, not considering
spatial splits (see Section 5.1).

There are two classes of algorithms for building wide BVHs.
The first class relies on an already existing binary BVH which is
converted to a wide BVH by discarding interior nodes. The second
class directly builds a wide BVH during construction.

In terms of the first class, Wald et al. [WBB08] proposed a col-
lapsing algorithm trying to minimize the cost function. First, sub-
trees are collapsed in the bottom levels into large leaves to try
to achieve an appropriate number of primitives (ideally a multi-
ple of the SIMD width). Then, the collapsing of interior nodes is

performed starting from the root and recursively processing chil-
dren. The authors use three operations to minimize the cost func-
tion: merging the child node into the parent node, merging two
leaf nodes, and merging two interior nodes. Concurrently, simi-
lar approaches based on collapsing were proposed by Ernst and
Greiner [EG08], and Dammertz et al. [DHK08].

Pinto [Pin10] proposed a dynamic programming approach to
convert a binary BVH in an optimal way. This approach was later
improved by Ylitie et al. [YKL17], optimizing both leaf nodes and
the interior structure at the same time. Nonetheless, as was pointed
out by Wald et al. [WBB08] and Aila et al. [AKL13], the cost func-
tion may not correlate perfectly with the actual time depending on
a particular traversal algorithm and the underlying hardware.

Gu et al. [GHB15] proposed ray specialized contraction, which
collapses a binary BVH into a wide BVH taking into account the
actual ray distribution. First, a binary BVH is built and rendering
is performed using 0.1-0.5% of the total ray budget as sample rays
to collect statistics. After recording how many rays visit each node
to estimate P(Nc|N), nodes with higher probabilities are collapsed
first. Note that the sample rays are also used to generate the final
image and are not wasted.

Although collapsing is typically easier to implement, having
both binary and wide BVHs may cause memory consumption is-
sues. If the given BVH build algorithm allows for the direct con-
struction of wide BVHs, the conversion step approach is unneces-
sary. Embree [WWB∗14], for example, builds wide BVHs directly
using a recursive binned SAH builder. The main difference to build-
ing a binary BVH is that it requires k−1 splits to fill a wide node.
For a partly filled wide BVH node, the child with the maximum sur-
face area is selected to be the next splitting candidate. This heuristic
of selecting the child with the maximum surface area first reduces
the surface area of all of the node’s children as quickly as possible.
If the BVH node is completely filled or no more splits are possible,
the build process continues with all valid children in a recursive
manner.

The problem of the wide BVH is that it may contain too many
empty slots. Fuetterling et al. [FLPE15] detached the k bound-
ing boxes from a wide BVH node and interleaved the bounding
boxes with the rest of the cluster information, including child point-
ers. By limiting the number of node clusters to two or four, they
achieved a 5% memory reduction and marginal speedup. Merging
two or more nodes with empty slots further improves memory effi-
ciency [Oga16]. However, each node needs a child bitmask to know
which nodes are its children, and more memory is needed for the
bitmask as the branching factor increases.

5.3. Dynamic Geometry

Recently, ray tracing has become attractive also for interactive and
real-time applications, which brings a whole family of new prob-
lems.

5.3.1. Animated Scenes

The main problem is dynamic geometry, which may change in each
frame, invalidating precomputed data structures such as a BVH.
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There are two main approaches for dealing with these changes. We
can either reconstruct the BVH from scratch or simply refit axis-
aligned bounding boxes in a bottom-up fashion (not possible for
KD-trees). Note that refitting is simple for axis-aligned bounding
boxes as we can compute a bounding box of a parent as a union of
child bounding boxes. The resulting bounding box is the same as
the bounding box computed from the geometry stored in the sub-
trees. This is not the case, for example, for bounding spheres. In
this case, the refitting generally leads to a gradual overestimation
of the bounding volumes towards the higher nodes in the hierarchy.
Reconstruction is robust to any change, but it might be too expen-
sive and wasteful to not take temporal coherence into account. On
the other hand, refitting is very fast, but the BVH may degenerate if
the changes are significant. We can also do something in between
such as partial updates.

Yoon et al. [YCM07] and Kopta et al. [KIS∗12] proposed to use
online tree rotations to reflect geometric changes. Ize et al. [IWP07]
and Wald et al. [WIP08] proposed to use an asynchronous recon-
struction concurrently with rendering to keep stable framerates.

Lauterbach et al. [LYTM06] proposed a heuristic to express the
degree to which the hierarchy has become degraded. A key obser-
vation is that degradation is proportional to the ratio of the parent’s
surface area and the sum of surface areas of child nodes. Assuming
that this ratio is good at the time of construction, and will worsen
during the animation, the degradation for the whole BVH is de-
fined as summed differences of the current ratios and the original
ratio divided by the number of interior nodes:

d =
1
|Ni|∑Ni

[
SAt(Ni)

∑Nc
SAt(Nc)

− SA0(Ni)

∑Nc
SA0(Nc)

]
, (12)

where |Ni| is the number of interior nodes. Division by the num-
ber of interior nodes makes the value d independent of a particu-
lar scene. Using this value, it can be determined whether the BVH
should be reconstructed or just updated. According to the authors,
the hierarchy should be reconstructed if d > 0.4.

Bittner and Meister [BM15] proposed an optimization method
for animated scenes. The idea is to optimize a single BVH for the
whole animation. The authors proposed a cost function expressing
the cost of the animation. The cost function is defined as a weighted
mean of costs of representatives frames:

ct(N) =
1

SAt(N)

[
cT ∑

Ni

SAt(Ni)+ cI ∑
Nl

SAt(Nl)|Nl |

]
, (13)

c̃(N) =
∑i wici(N)

∑i wi
, (14)

where SAt(N) is the surface area of node N in time t and wi is the
weight of animation frame i. This cost function can be plugged into
any optimization algorithm such as the insertion-based optimiza-
tion [BHH13]. The method provides good results for scenes with
complex animations. One limitation is that we need to know at least
a few representatives frames a priori to perform the optimization.
Another limitation is that a single BVH might not be sufficient to
cope with all geometric changes of more complex animations.

5.3.2. Motion Blur

Early approaches for handling motion blur in ray tracing restricted
the number of time steps to two, which allowed for using linear
interpolation of vertices and bounding volumes [CFLB06, HKL10,
HQL∗10]. Linear motion blur is not suitable for movie production
rendering because it does not provide an adequate approximation
for fast deforming or rotating objects. These cases require multi-
segment motion blur, where different objects are assigned a differ-
ent number of time steps. Gruenschlos et al. [GSNK11] used a sin-
gle BVH with spatial splits (see Section 5.1) for multi-segment mo-
tion blur, where each node stores the maximum number of bound-
ing volumes corresponding to the maximum number of time steps
required. Woop et al. [WAB17] proposed a spatial-temporal BVH
(STBVH) which efficiently supports multi-segment motion blur by
adaptively performing spatial and temporal splits during BVH top-
down construction, thereby lifting the restriction to always use the
maximum number of time steps per BVH node.

5.3.3. Two-level Hierarchy

Describing a dynamic scene as a simple two-level hierarchy is a
good fit for many rendering applications, in particular when most
dynamic animation comes from rigid body transformation. Wald
et al. [WBS03] proposed a two-level hierarchy where a separate
bottom-level BVH is first built for each object in the scene, and
then a single top-level BVH is built over all objects. Typically, the
leaves of the top-level BVH store references to the corresponding
bottom-level objects. If the geometry of a single object changes,
now only its BVH and the top-level BVH must be updated. This
has a significantly lower cost than rebuilding all BVHs or building a
single BVH over the entire set of geometry. If the object animation
is described as a rigid body transformation, instead of transform-
ing the geometry itself, we can transform the ray inversely when
entering the bottom-level BVH. This approach requires storing the
object transformation in the top-level leaves.

The efficiency of the two-level hierarchy heavily depends on the
quality of the top-level BVH. Largely overlapping objects (in world
space), which are common in real-world scenarios, can quickly
reduce the culling efficiency of the top-level BVH, as a ray in-
tersecting the overlapping region will need to sequentially inter-
sect all overlapping objects. For reducing the overlap, Benthin et
al. [BWWA17] proposed to apply partial re-braiding. After building
an individual BVH for each object, the approach opens and merges
bottom-level BVHs during top-level BVH build. The opening al-
lows for finding better splitting planes during top-level construc-
tion, thereby reducing overlap and increasing SAH quality. Exces-
sive opening of bottom-level BVHs is avoided by only applying
this step where it would provide the most gain in the terms of the
SAH quality. A general consequence of the re-braiding step is that
the top-level BVH will contain multiple entry points to the same
object.

DirectX Ray Tracing supports a two-level acceleration structure.
Lee et al. [WJLV19] extended the DirectX programming model
by introducing a programmable instance (PI) that can be refer-
enced by both the top-level and bottom-level BVHs. When a ray
intersects a PI, a traversal shader is invoked, and traversal is redi-
rected to a different acceleration structure. This arbitrary acceler-
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ation structure selection enables procedural multi-level instancing
and stochastic LOD selection that reduces memory bandwidth. Fur-
thermore, the traversal shader can simplify the implementation of
lazy build [LL20], which usually requires complex ray scheduling.
Multi-pass lazy build (MPLB) is an iterative algorithm consisting
of two parts: a pass to find the unconstructed visible bottom-level
BVHs by dispatching a batch of rays and another pass to construct
them. MPLB dramatically reduces construction costs, especially in
dynamic scenes. The number of iterations can be reduced by pre-
building bottom-level BVHs which have been determined by ras-
terization to be directly visible and also those which have been tra-
versed in the previous frame.

5.4. Non-Polygonal Objects

Hair and Fur AABBs do not tightly fit long, thin, curved, or
diagonal primitives. In addition, the overlap between AABBs of
neighboring primitives can be considerable, and thus rendering hair
and fur is expensive. Oriented bounding boxes (OBBs) can en-
close such objects more tightly in exchange for increased storage
and traversal cost. Woop et al. [WBW∗14] showed that using both
AABBs and OBBs reduces the number of traversal steps and inter-
section tests while avoiding a large increase in memory consump-
tion. To partition primitives during construction, five different split-
ting strategies are performed choosing one with the smallest SAH
cost: (1) object and (2) spatial splitting in world space, (3) object
and (4) spatial splitting in a coordinate frame aligned to the orien-
tation of hair segments, and (5) clustering hair segments of similar
orientation. Therefore, the construction is slow, making it challeng-
ing to handle motion blur and dynamic objects.

Using RTX-enabled hardware, Wald et al. [WMZ∗20] achieved
significant speedup by performing OBB tests at the primitive level
only, without a complicated construction method. By treating each
primitive as a single instance, the OBB tests can be efficiently
performed by hardware supported instance transforms. Thus, the
expensive context switch between the hardware BVH traversal
and intersection shader can be avoided. However, each primitive
requires more information, including an affine transform matrix,
which leads to higher memory consumption.

Traversal costs are not the only problem in rendering thin prim-
itives. Primitives thinner than a pixel can cause aliasing without
a high sampling rate. This issue can be avoided by increasing the
radius of spheres, cylinders, or curves based on the distance from
the viewpoint, and compensating for this by making them transpar-
ent [GIF∗18]. When using this technique, each node must also be
expanded to encompass the enlarged primitives. The increased cost
can be mitigated by stochastic transparency [ESSL10, LK11].

Metaballs Gourmel et al. [GPB∗09, GPP∗10] proposed a BVH
construction method suitable for metaballs. They build a BVH over
metaballs’ bounding spheres using spatial splitting. The radius of a
bounding sphere is equivalent to the maximum influence range of
the metaball inside, and each leaf node in the resulting tree contains
all the split metaballs needed to compute isosurfaces that overlap
with itself. The box that encompasses the bounding spheres does
not necessarily tightly fit the resulting isosurface. However, one can
make it tighter by precomputing the upper bound of the range that

each metaball can affect. It is also helpful to remove metaballs that
contribute only to the isosurface that does not intersect the node to
which they belong.

5.5. Compact Representation

A BVH node contains information such as child node pointers, the
number of leaves, and bounding box(es). The memory consump-
tion of a BVH becomes enormous as a scene size grows. This can
be addressed by increasing the branching factor, compressing ge-
ometric data such as bounding boxes and vertex coordinates with
reduced precision, removing pointers to child nodes and primitives
by using a complete tree, or representing mesh triangle connectivity
using triangle strips. These techniques are often used in conjunction
with each other.

Reduced Precision Bounding boxes account for a large frac-
tion of the data stored in nodes. With single-precision, a node ex-
tent (minimum and maximum) consumes 24 bytes. Mahovsky and
Wyvill [MW06] represented the coordinates of child nodes’ bound-
ing boxes relative to the parent using fewer bits to reduce memory
overhead. The quantized box must conservatively cover the origi-
nal bounding box not to undermine the results of intersection tests.
There is a performance penalty due to decoding the compressed
boxes and the extra ray and node intersection tests caused by the
slightly loosened bounds.

Hierarchical mesh quantization (HMQ) [SE10] stores a BVH
and the triangles of a scene in a single unified data structure. A
high compression rate is achieved by quantizing each vertex of the
triangle in a leaf node as a local offset of the leaf bounding box.
However, adjacent triangles stored in different leaf nodes can create
gaps. The paper addresses this issue by snapping the vertices and
leaf bounding boxes to a global grid. Globally snapped bounding
boxes do not need to be stored in memory because they can be
easily snapped on the fly when decoding the vertices.

Ylitie et al. [YKL17] showed that compressed wide BVHs re-
duce memory traffic and improve performance for incoherent rays
on GPUs. They quantized child node boundaries to a local grid and
stored each plane with 8 bits. The origin of the local grid, i.e., the
minimum of the AABB of a wide BVH node, is stored as three
floating-point values without compression. The scale of each axis
of the local grid can be represented by only the 8-bit exponent of
the floating-point value by restricting it to a power of two. Thus the
local grid itself consumes 15 bytes per node.

In wide BVHs, leaf nodes make up most nodes, but they are less
often intersected than the inner nodes. Based on this insight, Ben-
thin et al. [BWWA18] introduced dedicated compressed multi-leaf
nodes and achieved significant memory reduction while minimiz-
ing performance degradation by compressing only the leaf nodes.

Compression Random-accessible compressed BVH
(RACBVH) [KMKY10] decomposes a BVH into a set of
clusters to support random access on the compressed BVH. In the
RACBVH representation, bounding boxes are compressed using
hierarchical quantization and triangle indices using delta coding.
Inside each cluster, node connectivity is expressed by storing a
parent index instead of child indices. The parent index can be com-
pactly encoded using the position in the front maintained during

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

694



D. Meister, S. Ogaki, C. Benthin, M. J. Doyle, M. Guthe, and J. Bittner / A Survey on Bounding Volume Hierarchies for Ray Tracing

compression. Furthermore, clusters and meshes are compressed
using a dictionary-based compressor. Clusters that do not fit in the
pre-allocated memory pool are managed based on a least recently
used replacement policy. Since atomic operations are involved, this
method suffers from a lack of scalability.

Parent-Plane Sharing Two child nodes share at least six planes
with the parent node in a binary BVH, thus storing only six planes
instead of twelve reduces memory consumption [Kar07, FD09,
EW11]. A similar idea is used for other data structures. The bound-
ing interval hierarchy (BIH) [WK06] and spatial KD-tree (SKD-
tree) [HHS06] subdivide the parent bounding box into two over-
lapping or disjoint regions by two parallel bounding planes. The
restricted boxtree [Zac02] and single slab hierarchy [EWM08] use
a bounding plane for each node, and the B-KD tree [WMS06] and
DE-tree [ZU06] store two pairs of axis-aligned planes at each node.
The H-tree [HHS06] allows from one to six planes to be used per
node. Dual-split trees [LSMY19,LVY∗20] store two planes that are
not necessarily parallel at each node. Using fewer bounding planes
also avoids redundant intersection tests against shared planes. How-
ever, recovering the bounding box for each node requires maintain-
ing the tree state from the root to the current node, which may offset
the benefits. As the branching factor increases, fewer planes can be
shared.

Triangle Connectivity Strips are a compact way of representing
the connectivity of triangles. Ray-Strips [LYM07] use a two-level
data structure. A BVH is used for the top-level acceleration struc-
ture (TLAS), although an arbitrary data structure other than a BVH
(such as a KD-tree) can also be used. Each leaf of the TLAS stores a
strip and an object hierarchy (SKD-tree) built on the strip. Strips are
generated using an algorithm developed for rasterization [ESV96].
Later, Lauterbach et al. [LYTM08] improved Ray-Strips by adopt-
ing a SAH-aware strip-generating algorithm called Strip-RT, and
by including all vertex information in the strip to reduce non-local
memory accesses. Strip-RT can generate longer strips with higher
spatial coherence. HMQ [SE10] compresses vertex connectivity by
storing short indexed strips containing up to a predetermined num-
ber of triangles (14 in the paper) in the leaf node. In practice, all
possible vertex sequences of strips (e.g., two strips of length 4 fol-
lowed by two strips of length 3) are stored in a look-up table, and
each leaf node only has an index into this table.

Implicit Indexing In a complete k-ary tree, the child nodes of
the node i are [ki+ 1,ki+ k] and the parent node is given by b(i−
1)/kc, supposing that the index of the root is 0. Therefore, it is not
necessary to store pointers to the child nodes. Additionally, there
is no need to store the number of primitives if each leaf has the
same number of primitives. To create a complete tree, one must use
object median splitting. As a result, the quality of the resulting tree
is inferior to those which are SAH-optimized.

Cline et al. [CSE06] proposed a two-pass algorithm to construct
a complete k-ary tree (k is set as 4). First, the number of objects
enclosed in each node is computed in a bottom-up fashion in the
first pass. Next, the BVH is built by recursively partitioning the
objects using a median split variant to support arbitrary branch-
ing factors. The objects are partitioned (twice for k = 4) along the
bounding box’s longest axis so that the number of primitives after
partitioning matches the pre-calculated number assigned to each

node. When assuming that each leaf node has a single primitive,
kd n−1

k−1 e+ 1 nodes should be allocated so that every interior node
has k children.

Similarly, minimal BVH [BEM10] uses a complete binary tree.
This paper approximates each node’s bounding box by trimming
the parent’s bounding box by one or two parallel planes but does
not store the splitting planes’ actual location in the node. Instead
a global parameter ζ ∈ (0,1) is used as a reduction factor. During
construction, each node is subdivided along its longest axis. Each
child node’s bounding box can be reduced in volume relative to its
parent node by ζ, either by cutting off the lower side, the upper
side, or both sides. There is another case where no empty space
reduction is possible. Therefore, each node needs two bits to cover
all four of these situations. Because object median splitting is used,
cutting only one side of the bounding box can cause an empty space
deadlock (which can occur if there are primitives on the diagonal).
Cutting both sides of the box, however, can avoid this deadlock.

Bounding boxes can be determined by the vertices of the prim-
itives they contain. Thus, if we know which vertices span a node,
we can implicitly represent the whole tree structure only with ge-
ometry, i.e., only by reordering primitives (see Figure 7). The No-
Memory BVH [EBM12] is a representation in which each node im-
plicitly stores bounding triangles that span its bound, and thus re-
quires no memory because bounding boxes are no longer needed.
This approach is analogous to the classic photon map [Jen01]
where photons’ order represents a KD-tree, and one photon lies
on a splitting plane. Six bounding triangles are needed at most to
determine a bounding box. However, in practical implementation,
the parent’s bounding box is trimmed by two parallel planes at each
node similar to the B-KD tree. Therefore, each node uses only two
bounding triangles.
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Figure 7: No-Memory BVH represents a tree structure by the order
of primitives alone. In this 2D example, four consecutive primitives
determine the bounding box of each node.

It is worth mentioning that divide-and-conquer ray trac-
ing [Mor11,NIDN13,RN13,VBHH13,dLPP14] is also known to be
a non-memory consuming method. It naturally achieves lazy con-
struction because partitioning only occurs where rays hit, and cast-
ing a bundle of rays amortizes the construction cost. The resulting
acceleration structure is not explicitly saved in memory, but a large
amount of temporary memory is required to store data such as ray
properties and temporarily generated bounding boxes.
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Chitalu et al. [CDK20] used a perfect tree as an implicit tree.
They eliminated virtual nodes and the pointers to child nodes by
computing a mapping between a node’s position in memory and its
place in the implicit tree with simple bit manipulations (see Figure
8). The construction is done in a bottom-up manner and is very fast
because there is no need to track radix key ranges and precompute
the number of objects enclosed by each node. It is worth noting that
it supports arbitrary arities. The number of nodes is slightly more
than it should be because some interior nodes have a single child.

Indices in Memory

0

1 2

3 4 65

7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Indices in Implicit Tree

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0 1 2 3 4 5 7 8 9 10 11 12 15 16 17 18 19 20 21 22 23 24 25

Figure 8: An example of a binary ostensibly-implicit tree. The blue
nodes are non-existent virtual nodes, and the mapping between the
index in the implicit tree and the actual location in memory is per-
formed with simple bit manipulations.

Most of the methods discussed here do not take the SAH into
account, or incur the overhead of decoding compressed boxes
and slabs, which results in poor performance compared to SAH-
optimized BVHs. The existing methods alleviate this issue by using
coherent ray bundles to amortize the cost of decoding compressed
nodes or using a two-level BVH (standard BVH nodes near the root
and compressed nodes near the leaves) to balance performance and
memory consumption. For scenes that are too large to fit in main
memory, using a compact representation may lead to faster render-
ing than out-of-core techniques.

6. Traversal

The key benefit of spatial acceleration data structures for ray trac-
ing is that they reduce the number of ray/primitive intersection tests
at the cost of traversing the data structure. In this section, we de-
scribe basic principles of ray traversal as well as more advanced
algorithms tailored for modern parallel architectures.

6.1. Traversal Orders

There are three main types of traversal: 1) The most common is
first-hit traversal (closest hit test), which finds the nearest object
in the direction of a ray from its origin. A typical use case is to
estimate the radiance at a shading point by importance-sampling
BRDFs in path tracing. 2) Any-hit traversal (occlusion test) is used
to find any object in a specific direction from a ray origin (and
within a specified range). This is useful for ambient occlusion and
shadow computation. 3) Multi-hit traversal is used to find one or

more primitives that intersect with a ray. It can be used to find the
h closest intersections from a viewpoint or to find all intersections.
It allows coplanar transparent or non-refractive surfaces to be ren-
dered accurately and rapidly by avoiding the need to retrace a BVH
from the root every time a ray hits an object.

6.1.1. First-Hit Traversal

First-hit traversal is most widely used and is indispensable for com-
puting the radiance at a shading point. Therefore, most ray tracing
engines are optimized for this type of traversal. In binary BVHs,
this can be done efficiently by pushing the farther intersected node
onto a stack and visiting the closer one first. On the other hand,
in wide BVHs, each ray may intersect more than two nodes, and
they must be visited in a front-to-back order to be efficient. There
is a maximum of k! orderings for a branching factor k. Two com-
mon heuristics can be used for sorting. One is the sign heuristic
that determines the ordering only by the direction of a ray and
the split axes used during construction [DHK08, EG08, FLP∗17].
BVH4 by Dammertz et al. [DHK08] and dynamic ray stream
traversal [BAM14] only supports 8 of 4!, and ordered ray stream
traversal [FLPE15] supports all 4! orderings. WiVe [FLP∗17] can
handle more combinations and works for BVH8 and BVH16.
Another is the distance heuristic, which sorts nodes by ray dis-
tance [WBB08, Áfr13, VKJT16]. When traversing a wide BVH, in
most cases, the number of intersecting child nodes will be as few
as 0 to 3, regardless of k. Therefore, one can speed up execution by
adding a code path to sort a small number of nodes and performing
full sort only if there are 4 or more hits [Áfr13, WWB∗14].

6.1.2. Any-Hit Traversal

When computing soft shadows from area lights, calculating illumi-
nation from many lights, evaluating ambient occlusion, or connect-
ing path vertices in a bi-directional algorithm, occlusion rays ac-
count for a large portion of the total rays used for rendering. When
assuming non-transparent geometry, there is no need to visit inter-
secting nodes in the occlusion test in front-to-back order because
we can immediately terminate traversal when a ray and any ob-
ject intersect. Any-hit traversal can be accelerated using a different
metric than the one used for radiance rays, and optionally with a
dedicated BVH built with that metric.

Inspired by the SAH, Ize and Hansen [IH11] proposed the ray
termination surface area heuristic (RTSAH) incorporating a con-
tinuous visibility function into the cost function. The key obser-
vation is that the probability of hitting individual children is not
independent since we can terminate as soon as the first intersec-
tion is found. Thus, the idea is to compute the costs of individual
children and traverse the one with the lowest cost first. Necessary
probabilities in the cost function can be computed similarly to ra-
diosity form factors. The authors used RTSAH just to determine
the traversal order in each interior node. How to optimize the BVH
construction using the RTSAH is not clear.

Surface area traversal order [NM14] (NodeSATO) accelerates
tests simply by visiting the child node with the larger surface area
first. The rationale is that rays are more likely to be occluded by
a node with a larger surface area. The authors also proposed two
other traversal orders, PrimSATO and PrimNumTO. PrimSATO
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prioritizes a node with a higher average or maximum surface area
of each primitive in each node, and PrimNumSATO prioritizes a
node with a lower number of primitives. The optimal of the three
proposed methods depends on the scene. Although developed for
a binary BVH, their extension to a wide BVH is trivial. Similar to
RTSAH, SATO does not take into account the distribution of rays
in a scene. Thus, its performance can be degraded if shadow rays
do not intersect objects in large nodes.

Feltman et al. [FLF12] proposed the shadow ray distribution
heuristic (SRDH) combining the idea of RDH [BH09] with a cost
model that takes into account the traversal order of children in the
same manner as RTSAH. The cost model incorporates a traversal-
order kernel function, which expresses the probability of traversing
the left child first (SRDH is limited to binary BVHs). The authors
proposed a top-down construction algorithm similar to standard
SAH approximation while also considering the actual ray distribu-
tion. Splitting each node is not only optimized over different parti-
tioning options but also over multiple traversal-order kernel func-
tions, including constant, front-to-back, or back-to-front orders.

Since it is not desirable to have an extra BVH dedicated to oc-
clusion tests due to the initialization cost and memory overhead,
Ogaki and Derouet-Jourdan [ODJ16] proposed a method to speed
up shadow ray traversal of a wide BVH only by changing the order
of child nodes. In this method, sample rays are cast to estimate the
distribution of rays after constructing an SAH-optimized BVH, and
then the children of each node are reordered so that the traversal
cost is reduced. The performance of closest-hit traversal is com-
pletely unaffected if intersected child nodes are sorted in ray order.

Optimizing traversal order and reordering are conceptually the
same, and neither changes the topology of a BVH. A difference is
that the former chooses a node to visit next at runtime to minimize
some cost (e.g., the number of intersection tests), and the latter is
only done once after construction, and there is no overhead during
traversal. Since estimating the ray distribution has a non-zero over-
head, a large number of shadow rays must be cast to amortize the
cost. If the ray tracing kernel is highly optimized, the use of sample
rays may not be suitable for dynamic scenes.

6.1.3. Multi-Hit Traversal

Multi-hit traversal is a generalization of first-hit traversal, finding
all intersections or the nearest h intersections along a ray. It has
received significantly less attention than other traversal methods.
First-hit traversal does not work well with coplanar surfaces and
numerically close objects, which is particularly problematic when
handling interfaces between two transparent materials such as glass
and water. When reflected and refracted rays are traced with a neg-
ative ε-offset, the same intersections may be erroneously repeated.
For planar objects, we can avoid the self-intersection problem by
excluding the primitives from which the ray originated. However,
it is not a fundamental solution as this trick does not work for non-
planar primitives. If a ray is traced with a positive ε-offset, it may
miss primitives to be intersected. Multi-hit traversal addresses such
issues, enabling efficient and accurate rendering of transparent ob-
jects. There are two types of multi-hit traversal: those that find
a limited number of intersections and those that find all intersec-
tions. In the former case, using a pre-allocated buffer that can store

the required intersections is more efficient than the naïve imple-
mentation [GNK14] that adds all the intersections to a dynamic list
and processes them later. When all intersections are required, it is
generally not possible to predict the number of intersections, and
therefore, the size of the buffer that will be required. In this case, a
method that works without a dynamic list or a preallocated buffer is
preferred. The same applies to situations where many intersections
are required.

Gribble et al. [GNK14] proposed a buffered algorithm that can
terminate traversal as soon as the h closest intersections are found.
They assume that the acceleration data structure is built by spatial
subdivision so that there are no overlapping nodes, and nodes are
visited in a strict front-to-back order. Therefore, this method cannot
be used for BVHs built with object splitting.

Amstutz et al. [AGGW15] showed that multi-hit traversal could
be implemented using highly optimized ray tracing engines such
as Embree [WWB∗14] and OptiX [PBD∗10] by using their inter-
section callbacks. All intersections are stored in a sizeable hit-point
buffer, which is pre-allocated to avoid dynamic memory allocation
during traversal. They evaluated two methods to sort intersection
points. In the first approach, aiming to maximize cache locality, in-
tersections are added to a local buffer using insertion. When the
traversal is complete, the intersections are already sorted by dis-
tance. In the second approach, intersections found during traver-
sal are stored in a local buffer without regard to the distance from
the ray origin. Sorting is done after traversal is complete, and thus,
SIMD utilization is improved.

A more efficient approach is to avoid unnecessary node traver-
sal by successively narrowing the valid ray interval once a spec-
ified number of intersections are found. This technique is called
node culling multi-hit BVH traversal [Gri16] and can be imple-
mented using, for example, Embree [GWA16] and DirectX Ray
Tracing [Gri19]. When several intersections are required instead of
all intersections, the DXR any-hit shader implementation achieves
approximately twice the naïve multi-hit traversal performance.

Wald et al.’s iterative method [WAB18] efficiently finds multiple
intersections by tracking traversal state across successive queries.
In contrast to spatial partitioning structures such as the KD-tree,
BVHs do not guarantee that nodes will be traversed in front-to-
back order. However, this can be achieved by replacing a per-ray
traversal stack with a priority queue.

6.2. Numerical Issues

A robust ray-AABB intersection test [WBMS05, MCSM18] im-
proves the robustness of BVH traversal, but it still causes false-hits
and false-misses due to rounding errors. False-hits are classified as
hits even though a ray does not hit a bounding box, which results
in slight performance degradation. False-misses, on the other hand,
mark the ray as not hit even when it hits the bounding box, and can
cause a variety of problems, including holes in the object and light
leaking out of gaps in the object. They also cause artifacts with
non-photorealistic rendering, where object indices are used to draw
contours. These problems are not solved by increasing the number
of samples. Ize [Ize13] showed that false-misses could occur if the
distance between the entry and exit points (t f ar− tnear) is less than
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or equal to two ULPs (unit of least precision) by simple error anal-
ysis. He proposed an algorithm that only needs adding two ULPs
to each component of the inverse ray direction for computing t f ar
before traversal.

6.3. Stream Traversal

Most ray tracing implementations on CPU or GPU make explicit
or implicit use of the underlying vector units to accelerate BVH
traversal. They either use the entire vector unit width to trace a
single ray or trace a ray per (logical) element of the vector unit,
which corresponds to processing w rays per w-wide vector unit.

Tracing more rays, or what is typically called a ray stream,
can provide further performance benefits [GR08, Tsa09, BAM14,
FLPE15, Gas16], as it allows for amortizing the access of
node/primitive data and the cost of determining the traversal or-
der for k-wide BVHs and the related stack operations over many
rays. Moreover, if multiple rays follow the same control flow
path, the effective vector unit utilization is increased. If rays are
not following the same control path due to different traversal or-
ders, the ray stream is essentially split into sub streams [GR08,
BAM14, FLPE15], or rays not following the chosen traversal or-
der are marked as invalid during top-down BVH traversal [Tsa09].
In case the rays in the stream can be efficiently bounded by bound-
ing primitives such as planes or intervals, a bounding-primitive in-
tersection test per BVH node can cull all rays in the stream in a
single step [FLPE15]. A different approach proposed by Gaspar-
ian [Gas16] batches up rays at fixed points inside the BVH. All
rays associated with such a point are later processed together as
they likely exhibit a higher degree of coherence.

The efficiency of tracing ray streams largely depends on the
amount of available ray coherence during BVH traversal and prim-
itive intersection, as the amortization of memory access or com-
putational cost only works when multiple rays are involved. If the
rays are too incoherent so that only a single ray is active most of
the time, the overhead of handling ray streams during traversal can
offset the benefit.

6.4. GPU Traversal

Traversal on GPUs is especially challenging due to the non-locality
of the data access and control flow when using any acceleration
data structure. Furthermore, GPUs execute 32 threads in a parallel
SIMD block called a warp. To prevent cores from stalling when
a ray has been completely traversed, new rays are loaded from a
global work queue using so-called persistent threads. The control
flow divergence can be mitigated by breaking the traversal loop
into two independent loops, i.e., iterating over the hierarchy and it-
erating over primitives [AL09]. Each of the two parts of the loop
body can either be implemented as an if or while block. An if-if
traversal leads to alternate testing of nodes and primitives if any of
those threads need to process an inner or leaf node, respectively. In
the case of while-while traversal, the hierarchy is traversed until all
threads reach a leaf node and then they process these in parallel. As
this may lead to a single thread being active in a warp, the algorithm
switches to the other block if the number of waiting threads exceeds

a given threshold. In addition, the traversal of inner nodes is con-
tinued in the case of while-while traversal, until a second leaf node
is reached. This way, memory throughput is increased at the cost
of a few additionally traversed inner nodes. Algorithm 3 shows the
traversal algorithm including all proposed optimizations referred to
as persistent speculative while-while.

ray← fetch_ray()
node← root
lea f ←∅
while ray 6= ∅ do

while node does not contain primitives do
traverse to the next node
if node contains primitives and lea f = ∅ then

lea f ← node
traverse to the next node

if number of (lea f 6= ∅) per warp > threshold then
break

while lea f or node contain untested primitives do
perform a ray-primitive intersection test

if ray terminated then
ray← fetch_ray()
node← root

Algorithm 3: The persistent speculative while-while traversal
algorithm. Speculative traversal of inner nodes is marked in
blue and ray fetching for persistent threads in green.

As shown by Guthe [Gut14], the main performance limiter of
GPU traversal is latency – i.e. cores waiting for data to be loaded
or stored – and not memory bandwidth or peak operations per sec-
ond. Although GPUs are excellent at hiding memory latency, sev-
eral strategies originally developed for latency hiding on CPUs can
also be used to improve performance. One approach is to use in-
structions that are independent of the result from previous opera-
tions. This allows the scheduler to reorder instructions, and thus
utilize the cores more efficiently. Typical candidates are indepen-
dent loop iterations, which simply requires unrolling the loop. As
the efficiency increases with the number of iterations, increasing
the number of child nodes in the spatial hierarchy to four reduces
latency at the cost of more arithmetic instructions. When sorting
the intersected child nodes, a sorting network can be used instead
of a traditional sorting algorithm, since that has less dependent in-
structions.

While the optimal hierarchy width for traditional spatial hierar-
chies is four, wider trees can be even more efficient when using a
compressed representation [YKL17]. One of their key observations
is that sorting the child nodes is prohibitively expensive for wider
trees. Instead, they use an octant based pre-ordering of the child
nodes and traverse them based on the signs of the ray direction
vector. The traversal order is implicitly stored when constructing
the hierarchy. In addition, the topmost entries of the traversal stack
– including the result of the child intersection tests – are stored in
shared memory to reduce memory transfers.

While many approaches seek to improve the performance for
any type of rays, Lier et al. [LSS18] explicitly tackled the problem
of divergent thread execution and memory access for incoherent
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rays. They propose to distribute the intersection tests for the child
nodes or triangles to 2, 4, or 8 adjacent threads. This requires both
the inner and leaf nodes to have the corresponding number of trian-
gles. Thus, the increase in coherence is better for wider trees. While
using binary trees and two cooperating threads shows no improve-
ment over the baseline traversal algorithm [AL09], a tree width of
four can result in up to a threefold speedup for highly incoherent
rays. Although the divergence decreases with tree width, the opti-
mum is four due to an increase in the number of intersection tests
for wider trees.

Figure 9 shows the relative trace performance compared to pri-
mary rays using the original algorithm of Aila and Laine [AL09].
Despite improvements in GPU traversal of incoherent rays, they
still require approximately twice the time of tracing primary rays.
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Figure 9: Relative trace performance for different ray types. The
performance of primary rays using persistent speculative while-
while traversal is used as a reference.

6.5. Stackless Traversal

It might be difficult to maintain a full stack per ray on highly
parallel architectures such as GPUs because the amount of on-
chip memory per HW thread is small. This fact has motivated re-
searchers to study the possibility of using stackless traversal.

Smits [Smi98] proposed the first stackless traversal method us-
ing skip pointers, where traditional child links are replaced by hit
and miss links. During the traversal, based on the result of the inter-
section, an appropriate link is selected. Using these links is simple,
however, the traversal order of children is fixed. In practice, it is
desirable to visit children in front-to-back order. To address this is-
sue, Hachisuka [Hac15] extended this approach using six sets of
hit and miss links for six major directions (positive and negative
directions).

Laine [Lai10] adopted the restart trail technique from stackless
KD-tree traversal. The idea is to traverse from the root multiple
times, skipping subtrees visited in previous passes, and continuing
to not yet visited subtrees. To do that, parts of the hierarchy that
have already been processed are explicitly stored, using one bit per
hierarchy level, while exploiting the fact that the order in which
children are traversed is fixed for a given ray. The authors proposed

to use a short stack with only a few entries to accelerate traver-
sal even further. Thus, the nodes are popped from this stack until
the stack is empty. Only in this case, the restart trail is performed.
Vaidyanathan et al. [VWB19] generalized this approach to wide
BVHs indicating how many children have already been traversed
in each level.

Hapala et al. [HDW∗13] proposed a stackless traversal using
parent links with simple state logic indicating whether we came
from the child, sibling, or parent using only two bits. A caveat is
that the algorithm relies on efficiently determining the traversal or-
der of children, which restricts the algorithm to simple heuristics
such are those based on a sign of the ray direction. Barringer and
Akenine-Möller [BAM13] proposed two stackless traversal algo-
rithms for binary BVHs. The first algorithm is designed for implicit
trees (see Section 5.5), exploiting the implicit layout to efficiently
backtrack in the tree using two bits per hierarchy level. The second
algorithm uses parent links to backtrack in general (sparse) trees
storing the traversal state in one bit per hierarchy level. Unlike the
approach of Hapala et al. [HDW∗13], the traversal order of children
is not reevaluated multiple times since it is already encoded in the
traversal state, and thus it is possible to use more complex heuris-
tics to determine the traversal order of children. Áfra and Szirmay-
Kalos [ASK14] extended this approach to support wide BVHs. One
disadvantage is that some interior nodes might be visited twice (on
the way down and on the way up).

Binder and Keller [BK16] proposed an efficient stackless traver-
sal with backtracking in constant time targeting contemporary GPU
architectures. The idea is to keep a path to the current node encoded
in a bitset. Similarly to Laine [Lai10], the trail is explicitly stored,
i.e., which parts have already been visited. Based on the number of
leading zeros in the trail, one knows how many levels to go up. The
path to such a node can be determined using the encoded path and
the number of leading zeros. In order to backtrack in constant time,
the authors proposed to use perfect hashing translating the encoded
path to the node index.

6.6. Utilizing Ray Locality

Spatial data structures exploit the spatial locality of scene primi-
tives. However, we can also use the spatial locality of rays to accel-
erate the traversal further. Ray reordering is a typical example of
utilizing ray locality. Ray coherence is improved by grouping sim-
ilar rays in order to increase cache hit ratios and control flow. This
topic was recently surveyed by Meister et al. [MBGB20].

Hendrich et al. [HPMB19] proposed a ray classification scheme
mapping rays to interior nodes deeper in the tree, skipping nodes in
top levels. The idea is to uniformly subdivide ray space where each
cell contains a short list of interior nodes that intersect a shaft cor-
responding to this cell. The space is first subdivided into a regular
grid, and then each cell of this grid is further subdivided accord-
ing to the directional component. Using this subdivision, a ray can
be simply mapped into a particular cell and test only nodes associ-
ated with this cell. Similarly, Demoullin et al. [DGA19] proposed
to use ray hashing to skip the interior nodes. The hash value is di-
rectly extracted from the floating-point representation of origin and
direction. A caveat is that there is no guarantee that the found inter-
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section is the nearest one. In general, it pays off to use these meth-
ods only if the overhead is lower than the speedup, which might be
difficult if the classical ray traversal itself is already very fast.

It is also possible to efficiently traverse the BVH for a whole
group of coherent rays. Instead of tracing rays sequentially, a
bounding frustum containing the rays is traced through the BVH
in the same manner as an individual ray. As the speedup of this
approach heavily depends on the SIMD utilization, Benthin and
Wald [BW09] proposed to trace several frusta (corresponding to
the width of the SIMD unit) of coherent rays simultaneously and
even generate the rays inside each frustum on the fly. In the case
that the ray coherence is high enough, and therefore the extent of
the ray frustum is sufficiently small, the necessary fallback of test-
ing individual rays in case the frustum intersection tests fail, can be
completely omitted.

Garanzha and Loop [GL10] extended this idea to ray tracing on
GPUs. In the first step, rays are sorted using a multi-dimensional
hashing. As successive rays often have the same hash value, the
sorting time is reduced by first compacting the ray buffer based on
the hash value. From each set of rays with an identical hash value,
many ray packets are generated, such that the amount of rays per
packet is below a given threshold. After calculating a frustum for
each packet, a breadth-first traversal of the hierarchy per frustum
is performed. While an 8-wide BVH with the sign heuristic is used
for traversal, the approach is independent of the actual type of hi-
erarchy. All leaf nodes visited during traversal are stored for each
frustum. The final ray primitive intersections are then calculated in
a separate kernel, where each thread handles a single ray. Again,
the occupancy is maximized using the persistent threads approach.

6.7. Hardware Acceleration

Given that BVH traversal typically represents a substantial por-
tion of modern ray tracing workloads, significant attention has
been given to research efforts that aim to develop specialized hard-
ware for BVH traversal and the associated task of triangle inter-
section. This body of research is substantially larger than the lit-
erature that exists on BVH construction hardware (Section 4.8).
The research is varied and includes themes such as fixed-function
designs for core operations, low-precision arithmetic, scheduling
and data management to reduce memory bandwidth, and works
that explore the merits of differing fundamental processor organi-
zations (SIMD vs. MIMD). Many works in this area have focused
purely on the core operations of BVH traversal and triangle inter-
section alone, while others have explored incorporating such units
into more fully-featured architectures.

Fixed-Function Designs for BVH Traversal An early exam-
ple of hardware BVH traversal features in the work of Fender and
Rose [FR03], who prototyped their design on FPGAs. The design
is dedicated to traversal and intersection operations. A BVH with
three levels is used, and node boxes are specified as a set of arbi-
trary quadrilaterals. To traverse this format, the design re-purposes
the intersection testing unit via additional control logic.

A later example of dedicated BVH traversal hardware appearing
in the literature is the T&I engine [NPP∗11]. Originally designed
to process KD-trees, it was later improved and adapted for BVHs

in the SGRT GPU [LSL∗13]. The adapted unit consists of a ray
dispatch unit, traversal units (TRV), and intersection units (IST).
A major feature of this design is that each TRV possesses a ray
accumulation unit (RAU). If a node access in the TRV misses the
cache, rays are postponed in the RAU while the data is fetched.
While processing the miss, further rays can be processed which
may also be postponed as needed. Once a node fetch completes,
all rays requiring the data can be processed. Other innovations in-
clude a three-stage IST design, which minimizes arithmetic unit
complexity. The SGRT GPU featured an improved parallel design
for the T&I engine which effectively allows rays to “branch” effi-
ciently depending on whether the TRV requires a leaf node, internal
node, or stack access operation (a short stack is used). This design
was further extended to a parallel, Two-AABB intersection, which
processes sibling nodes in parallel for more efficient pipelined pro-
cessing [LLS∗14]. Viitanen et al. [VKJT16] proposed an MBVH
intersection architecture based on this unit. Lee et al. [LSH∗15]
proposed reorder buffer which represents an alternative to the RAU
for latency hiding. While the RAU requires significant storage, re-
order buffer instead allows rays to bypass stages of the traversal
pipeline on cache misses, and follow a feedback loop back to the
input buffer to re-attempt processing.

Davidovič et al. [DMS11] updated Woop’s ray traversal engine
(RTE) [Woo06] (originally devised for B-KD trees) for use with
BVHs. The RTE is composed of two major units: a traversal pro-
cessor, which traverses the acceleration structure, and a geometry
processor which performs triangle intersections. The design also
provides separate caches for node and geometry data, as well as an
on-chip traversal stack. A major feature of the updated architecture
is the adoption of the treelet scheduling technique of Aila and Kar-
ras [AK10]. Davidovič et al. test the integration of the design into a
general-purpose GPU, and test the effect of both tail-recursive and
continuation shaders on the performance of the RTE.

Over the last decade, the use of quantized BVHs and reduced-
precision arithmetic for BVH traversal has become an important
feature of the most efficient traversal implementations. This trend
is evident in the hardware literature. Keely [Kee14] observed that
traversal of quantized BVHs could occur in reduced-precision, al-
lowing for large reductions in circuit area for hardware implemen-
tations. Keely’s traversal scheme is based on the insight that by us-
ing quantized BVHs and by incrementally moving the ray’s origin
closer to the current node AABB on each traversal step, it is pos-
sible to ensure accurate results with fewer bits. Keely’s work also
introduces a compressed BVH node format, allowing for large re-
ductions in node bandwidth. Building on this work, Vaidyanathan
et al. [VAMS16] proposed an improved scheme for incremental,
reduced-precision traversal and demonstrated that the algorithm
guarantees watertightness while further reducing circuit area. The
new scheme allows for an important optimization which is not pos-
sible in Keely’s scheme, which is the reuse of intersection dis-
tances for shared parent/child bounding planes. Vaidyanathan et al.
also proposed a novel compressed node format, which takes ad-
vantage of parent/child plane sharing to reduce node size further.
This traversal algorithm was employed in the ray tracing archi-
tecture proposed by Liktor and Vaidyanathan [LV16]. Aside from
reduced-precision methods, other arithmetic schemes with poten-
tial relevance to hardware have been proposed for ray tracing, in-
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cluding works that leverage fixed-point arithmetic [FR03, HK07],
and a combination of floating and fixed-point [HLS∗15].

Fully-Featured BVH Traversal Architectures Aila and Kar-
ras [AK10] propose a SIMD architecture for ray tracing, which is
designed to reduce arithmetic and memory divergence for incoher-
ent ray distributions. The design consists of a set of processors,
which execute warps consisting of multiple threads, similar to con-
ventional GPUs. Each thread manages one ray. The authors note
that the design could accommodate fixed-function traversal units,
but choose to focus on the contribution of reducing memory traffic.
Each processor possesses an L1 cache, and all processors share an
L2 cache. A key contribution of this work is that of treelet schedul-
ing. The BVH is divided into treelets (small subtrees within the to-
tal BVH) which are set to the size of either the L1 or L2 cache. The
architecture maintains a set of ray queues, with queues assigned
to treelets at runtime. Rays begin tracing at the root treelet, and
as rays cross treelet boundaries, they are placed in the ray queues
to be processed later when their required treelet is present in the
cache. The architecture thus attempts to maximize the number of
rays which are processed each time a treelet is loaded on-chip, re-
ducing memory bandwidth. To reduce stack traffic, the architecture
maintains a stack-top cache on chip, while keeping the remainder
in DRAM. A second key innovation of this work is the inclusion
of work compaction logic which detects when the SIMD utilization
of a given warp has fallen below an efficient level, at which point
the unit terminates the warp and diverts the remaining active rays
to the launcher which is responsible for warp creation.

Keely [Kee14] proposed a scheme for incorporating the reduced-
precision traversal and node compression techniques of the same
work into a GPU-based ray tracing architecture which leverages
the existing GPU resources to a great extent. Modeled on an AMD
Hawaii GPU [AMD13], the scheme delegates ray traversal to a
reduced-precision traversal unit (TU), while ray-polygon intersec-
tion and shading are delegated to the SIMT units of the GPU.
The design borrows the aforementioned treelet scheduling tech-
nique [AK10], but manages all ray queues on-chip to reduce band-
width. Currently active rays are stored in the register files, and a
register transpose unit allows for switching between layouts pre-
ferred by the TU and the SIMT cores as needed. The flow is con-
trolled by both a pipeline scheduler, which controls the execution
of each of the thread types (traversal, intersection and shading), and
a treelet scheduler, which determines the loading of treelets into the
cache.

A common theme in the hardware traversal literature is the
use of MIMD processor organizations as opposed to traditional
SIMD/SIMT GPU approaches. This argument is motivated by the
observation that incoherent ray distributions cause SIMD diver-
gence in SIMD/SIMT designs, reducing compute throughput. An
early work based on the MIMD approach is the TRaX architec-
ture [SBK∗08,KSBP08,SKKB09,KSBD10,SKBD12]. The design
is fully programmable, and consists of a large number of thread
multiprocessors (TMs) which consist of a number of simple, multi-
threaded thread processors (TPs). At any given time, TPs process
a single thread, corresponding to one ray. Each TP possesses a reg-
ister file and a set of frequently-used arithmetic operations. Expen-
sive, lower-utilization arithmetic units are shared across TPs in a

TM. The TPs in each TM share an L1 cache, and a set of L2 caches
are shared between TMs. TRaX exhibits good performance rela-
tive to more dedicated hardware of the era, while being fully pro-
grammable. Vasiou et al. [VSM∗18] present an analysis of render
time and energy cost of TRaX.

Kopta et al. [KSS∗13, KSS∗15] proposed STRaTA. STRaTA is
a MIMD architecture based on TRaX, but incorporates two major
improvements. The first improvement is the integration of treelet
scheduling [AK10]. However, rather than storing rays in DRAM,
Kopta et al.’s architecture re-purposes a section of the L2 cache into
a dedicated, on-chip ray memory, eliminating off-chip ray band-
width. The second improvement is the introduction of dynamically-
configurable special-purpose pipelines, which allow SW to estab-
lish HW connections between on-chip arithmetic units in order to
implement core ray tracing operations more efficiently.

Shurko et al. [SGK∗17] introduced the concept of dual stream-
ing for hardware ray tracing. Dual streaming divides the scene into
scene segments (based on BVH treelets) and a ray stream, which is
split into multiple queues which are assigned to segments. When a
scene segment is read, all rays intersecting the segment exhaust all
valid traversal paths within the segment using a local stack. As the
rays encounter new segments (treelet boundaries), rays are dupli-
cated on the queues assigned to those segments. Thus, rays can only
flow from parent to child segments, and each segment is streamed
on-chip at most once per wavefront. A global set of hit records is
used to merge results from multiple segments. An architecture is
proposed for implementing dual streaming which includes the TM
and TP organization of TRaX and STRaTA but also includes new
features such as fixed-function pipelines for ray tracing operations,
support for BVH treelets, a new stream scheduler for managing
streams, and a hit record updater. Furthermore, the predictable,
streaming memory access patterns are argued to be more favor-
able for modern DRAM systems, and the design exceeds the per-
formance and energy efficiency of TraX and STRaTA.

The Mach-RT architecture [VSBY19, VSBY20] is a multi-chip
design which builds upon the dual streaming approach to minimize
ray traffic. The key insight of Mach-RT is that while it is desirable
to store ray traffic on-chip, the resulting storage requirements are
not feasible for a single chip. Mach-RT divides ray tracing across
multiple streaming processor chips (SPCs), each processing sepa-
rate regions of the image. The SPCs share an L3 cache. The de-
sign re-uses features of earlier works such as TM/TP organization,
fixed-function pipelines and a dual streaming approach. However,
the design includes new features such as an on-chip wide vector
buffer for storing rays, an on-chip frame buffer, and an updated
treelet scheduling mechanism designed to promote early ray termi-
nation. The design also removes the hit record updater of the dual
streaming approach, as SPCs can update hit records locally since
they process independent image regions. The design demonstrates
improved rendering time and energy usage when compared to the
STRaTA and dual streaming designs.

Liktor and Vaidyanathan [LV16] propose a MIMD ray tracing
architecture employing node compression and reduced-precision
traversal techniques. The fundamental building block of this design
are the traversal clusters, which are further composed of traver-
sal units, leaf units and a primitive unit. Traversal units are multi-
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threaded (one ray per thread) and are based on Vaidyanathan et
al.’s algorithm [VAMS16]. Furthermore, they operate on a novel
compressed node format and employ a short stack and restart trail
technique [HSHH07, Lai10]. The leaf units fetch and process leaf
nodes, but also special glue nodes, which reduce pointer sizes in
the compressed BVH nodes. The leaf unit forwards requests to the
primitive unit, which intersects primitives. Multiple traversal units
and a single leaf unit form a sub-cluster, sharing an L1 cache. The
sub-clusters share an L2 cache with the primitive unit, which shares
its own L1 cache across multiple intersection pipelines. The design
demonstrates that the use of compressed BVH nodes can greatly
increase bandwidth efficiency, and permit more aggressive sharing
of cache resources.

Lee et al. [LSL∗13] proposed the SGRT Mobile Ray Tracing
GPU architecture. SGRT is a heterogeneous mobile GPU which in-
corporates several key components to maximize performance and
energy efficiency. The design is comprised of multiple SGRT Cores.
Each SGRT core possesses a fixed-function T&I unit, and a Sam-
sung Reconfigurable Processor (SRP) which is used for ray gen-
eration and shading. The SRPs are further composed of a VLIW
processor and a coarse-grained reconfigurable array (CGRA), and
are programmable with C language shaders. Coupled to the SGRT
cores is a multi-core CPU, which is responsible for BVH build and
update operations. The SGRT design was prototyped on an FPGA.

Nah et al. [NKP∗15] introduce HART, a hybrid architecture for
ray tracing animated scenes. The design consists of a CPU subsys-
tem coupled with ray tracing hardware components. The CPU is re-
sponsible for building BVHs in an asynchronous fashion [IWP07]
before sending them to the ray tracing hardware. The ray tracing
hardware consists of two major units. The first unit is a T&I engine,
based on earlier work [NPP∗11], but optimized for BVHs rather
than KD-trees. The second hardware unit is the geometry and tree
update unit (GTU), which handles animation, computing primitive
AABBs, computing triAccel structures [Wal04], and also features
a hardware BVH refitting unit. The refitting unit updates the BVH
while a full hierarchy is being prepared on the CPU. Shading is
assumed to occur on conventional unified shader cores.

Other works of note include the SaarCOR [SWS02, SWW∗04]
and also the RayCore [NKK∗14] architectures, which both repre-
sent ray tracing GPUs built around KD-trees. Kim et al. present
a reconfigurable SIMT processor designed to address branch diver-
gence [KKK10,KKK12]. Woop et al. [WSS05] presented the RPU,
based on KD-trees, and the DRPU architecture [Woo06], based on
B-KD trees [WMS06]. Finally, Deng et al. [DNL∗17] also provide
details on some of the work in this section.

Commercial Ray Traversal Hardware In addition to academic
research, a small number of commercial ventures employing hard-
ware ray tracing have appeared, with some based on BVH acceler-
ation structures.

An early commercial venture was Advanced Rendering Technol-
ogy (ART), which released custom ASIC designs and associated
host systems for ray tracing [Gar18]. Two custom ASICs were re-
leased (the AR250 and AR350) and featured a custom CPU core, a
ray geometry engine, a programmable vector shading coprocessor
(based on RenderMan shaders), and an SDRAM interface. The ray
geometry engine could intersect both triangles and parallelograms,

and used the latter functionality for BVH traversal. The BVH itself
was built on the host system without any custom hardware. The
hardware was intended for high-end rendering applications, as ex-
emplified by ART’s RenderDrive host systems, which were based
on a DEC Alpha system with custom PCI-X cards hosting a mul-
titude of custom ASICs. Parallelism was achieved by distributing
sets of rays across the custom chips, with geometry and BVH data
being streamed to the chips on demand by the host system as traver-
sal results are generated.

Imagination Technologies acquired Caustic Graphics [Des10]
and released the PowerVR Wizard GPU [McC14, Bee20], which
is primarily targeted for mobile applications. The hardware com-
bines PowerVR’s unified shading clusters (USCs) with several new
units to support ray tracing. The ray data master is responsible for
assembling ray shading tasks for the USCs. The ray tracing unit
consists of an intersection processor array, for AABB and trian-
gle intersection, and a ray coherency engine, which sorts rays for
coherence. The scene hierarchy generator is capable of building
BVHs in hardware (see Section 4.8). Finally, the frame accumula-
tor cache supports frame buffer operations.

Modern ray tracing APIs such as Microsoft DXR [Mic20] and
Vulkan Ray Tracing Extensions [Khr20] are fast becoming adopted
in applications such as video games [DS19, SKAZ19]. NVIDIA
RTX technology [NVI18], represents one of the most recent com-
mercially available ray tracing hardware solutions, and was the first
hardware to support these new APIs. A key hardware feature of
RTX is the RTCore. RTCores are integrated into the Turing ar-
chitecture’s streaming multiprocessors (SM) and include hardware
support for BVH ray traversal and triangle intersection. In addi-
tion to RTX, other major HW vendors have announced hardware
support for ray tracing. Intel has announced that hardware ray trac-
ing will feature in their upcoming Xe GPUs [Lil20]. AMD has an-
nounced the RDNA2 GPU Architecture, which features a ray ac-
celerator (RA) [AMD20]. Also of note is that two next-generation
consoles, the PlayStation 5 and the XBox Series X|S, employ the
RDNA2 architecture, and have confirmed hardware ray tracing ca-
pability [Cer20, Tut20].

Other commercial work of note includes the RayCore GPU
products from SiliconArts, which appear to be based on KD-
trees [Sil20].

7. Rendering Frameworks

To our best knowledge, all modern production renderers use BVHs
as their acceleration structures. Their implementations vary, and the
differences arise from multiple factors, including whether they are
commercial or non-commercial. In the case of in-house renderers,
production workflows, pipelines, and each show’s needs influence
their design. The following descriptions are of the time when the
papers were published, and because each renderer is in rapid de-
velopment, there are likely deviations from the current implemen-
tation. However, the design decisions made by each development
team reveal the trends.

Motion Blur One of the reasons for the widespread adoption of
BVHs is that it is easier to implement motion blur when compared
to other acceleration structures. Production renderers typically need
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to support motion blur with multiple motion segments. It is rela-
tively easy to implement by linearly interpolating the primitives’
vertices and the node bounds that enclose them, depending on the
ray’s time. SPI Arnold [KCSG18] builds a BVH that specializes
in interpolating three frames: previous, present, and next. Object
partitioning (i.e., not using spatial splits) makes motion blur imple-
mentation simple. In addition, a BVH built with object partitioning
consumes less memory, works well for sufficiently tessellated ob-
jects, and requires performing an intersection test only once per
primitive during BVH traversal.

Instancing Instancing is an indispensable feature for render-
ing large scenes. By creating copies of an object with different
scales, positions, and shaders, users can generate, for example,
sandy soil and forests with less memory. There are also differences
in the implementations of instancing. Hyperion [BAC∗18] and SPI
Arnold [KCSG18] support single-level instancing while Autodesk
Arnold [GIF∗18] supports multi-level instancing, which allows
users to handle even larger scenes. Since overlapping instanced ob-
jects lead to performance degradation, Hyperion [BAC∗18] uses a
method similar to partial re-braiding [BWWA17] taking into ac-
count the solid angle from a camera while generating references
for the top-level hierarchy.

BVH Construction Autodesk Arnold [GIF∗18] and Render-
man [CFS∗18] support on-demand construction. A BVH is built
as a ray hits the object’s bounding box to avoid construction costs
for unused objects and to provide a quick response to users (i.e., to
reduce the time to first pixel). In Autodesk Arnold, building starts
when the first ray hits an object, and if other rays hit the same object
during construction, those threads also participate in the building
process. This parallelized construction is fast, scaling almost lin-
early with the number of processor cores. SPI Arnold [KCSG18]
constructs BVHs for different objects in parallel before rendering
starts. Manuka [FHL∗18] adopts a unique shade-before-hit archi-
tecture, where all objects in a scene are first tessellated and shaded,
and then a single BVH is built. The BVH built over a complete list
of micropolygons makes intersection tests more efficient and elim-
inates the need for caching on-demand tessellated micropolygons.

Ray Tracing APIs The aim for a standardized ray tracing API
dates back to the OpenRT API [DWBS03]. Due to lack of hard-
ware support, interactive or real-time ray tracing has been limited to
specialized hardware setups and specific applications. Later, Caus-
tic Graphics [Des10] introduced the OpenRL API that provided an
OpenGL-like interface to ray tracing hardware.

Instead of a stable API, the main hardware vendors released ef-
ficient ray tracing kernels such as Intel Embree [WWB∗14] and
NVIDIA OptiX [PBD∗10]. These kernels were adopted by a num-
ber of commercial renderers as they offer a variety of ray trac-
ing features, including dedicated hardware support. For instance,
V-Ray [Cha20b] and Corona Renderer [Cha20a] use Embree, and
V-Ray GPU and Autodesk Arnold [GIF∗18] make use of OptiX.

In 2018, Microsoft announced the DirectX Ray Tracing API
(DXR) [Mic20], which provides a standardized interface to ray
tracing enabled graphics hardware. A platform-independent inter-
face to ray tracing hardware is accessible through the Vulkan API
extensions [Khr20]. Although DXR and Vulkan do not explicitly
prescribe the use of a BVH for the acceleration data structure, the

design of the API reflects the best practices established for BVHs
by the research community, such as composing scenes with static
and dynamic content using two-level hierarchies, and recomputing
deformed objects by refitting. The actual data structure is opaque
(i.e., hidden behind the API) and it can only be controlled indi-
rectly by using appropriate build flags. NVIDIA was the first to
provide DXR support with NVIDIA RTX hardware, while using
BVHs for both the bottom and top-level data structures [NVI20].
NVIDIA provides an alternative ray tracing API through OptiX 7.
This API goes beyond the strict two-level top-bottom acceleration
data structure separation and provides generalized scene graph-
like multi-level configurations [NVI20]. It is expected that other
hardware vendors will release hardware with DXR / Vulkan sup-
port soon, most likely with BVHs being the core data structure for
their implementations as well. For example, the PlayStation 5 and
Xbox Series X next-gen game consoles are based on the new AMD
RDNA2 architecture with DXR and Vulkan ray tracing support.

The standardization of real-time ray tracing APIs and the broad
availability of ray tracing-enabled hardware has lead to the grad-
ual adoption of the ray tracing paradigm by the game develop-
ment community. Game engines now allow the possibility of us-
ing ray tracing mostly in the form of computing specific effects by
ray tracing and computing the rest of the frame by using rasteriza-
tion [HHM18, Ric20].

8. Other BVH Applications

This report focuses on ray tracing. However, BVHs can also be used
for various other applications, such as illumination computation,
direct volume rendering, and collision detection.

Illumination and Shadow Computation A cut formed on a
BVH can be regarded as a rough approximation of the shape of the
object, and it can be used to approximate occlusion calculations.
Lacewell et al. [LBBS08] accelerated shadow computation by stor-
ing the directional opacity of the aggregate geometry in each node.
Keul et al. [KKSM19] used a two-level BVH and stored visibil-
ity in a directional data structure at the bottom level to accelerate
indirect illumination.

BVHs are a well-suited data structure for handling a large num-
ber of light sources. Lightcuts algorithms [WFA∗05, WABG06,
WBKP08, WKB12] aim to approximate illumination under a cer-
tain error bound by forming cuts. On the other hand, hierar-
chical importance sampling is typically used to obtain unbiased
estimates [EK18, MC19, MPC19, Pan19, LXY19]. Estevez and
Kulla [EK18] introduced a cost metric called the surface area ori-
entation heuristic to cluster nearby and similarly oriented lights,
allowing for efficient many-light sampling. Their algorithm can
also be implemented on GPUs [MC19], and dynamic lighting can
be handled with a two-level BVH [MPC19]. Pantaleoni [Pan19]
took into account visibility by introducing fixed-size tree cuts.
BRDF-oriented light sampling by Liu et al. [LXY19] considers the
BRDF, light intensity, and the geometry term together. Stochastic
Lightcuts [Yuk19] solved the shortcomings of Lightcuts such as
sampling correlation by using stochastic sampling. Lin and Yuk-
sel [LY20] further accelerated Stochastic Lightcuts with a complete
binary tree. Ogaki [Oga20] built a BVH over negative space and
applied it to portal sampling.
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There are also examples of the use of BVHs in complex light
transport algorithms. Fabianowski and Dingliana [FD09] showed
that an LBVH constructed for photons is comparable in quality
to a BVH constructed with the voxel volume heuristic [WGS04].
They also proposed an automatic method to determine the number
of photons in leaf nodes. Otsu et al. [OHHD18] obtained an ap-
propriate mutation step size for Metropolis light transport with the
help of a BVH to prevent the decrease of the acceptance rate due to
occlusion. Tokuyoshi and Harada [TH19] used a BVH to perform
path connections efficiently in their stochastic light culling frame-
work.

Volume Rendering Using BVHs for direct volume rendering
is gradually gaining attraction because they allow for skipping
empty space (i.e., fully transparent regions in sparse volume data),
and can be seamlessly integrated into existing path tracing frame-
works. Knoll et al. [KTW∗11] processed regular grid volume data
into bricks (each brick contains, for example, 43 voxels) and then
constructed a BVH over non-empty bricks. By storing the mini-
mum and maximum values in each node, empty space and con-
stant subvolumes could be detected effectively during traversal.
Performance was further improved by using coherent ray tracing.
Similarly, Zellman et al. [ZHL19] built an LBVH over non-empty
bricks. They quickly identified empty bricks via parallel voting.
Instead of bricks, Ganter and Manzke [GM19] created clusters of
non-empty voxels using a 3D version of a summed-area table to re-
duce BVH leaves and then built a BVH over those clusters. Knoll et
al. [KWN∗14] rendered volumes defined by particle data with ra-
dial basis function (RBF) kernels. The cost of the RBF field eval-
uation was again amortized by coherent ray tracing. This method
can benefit from the construction algorithm developed for meta-
balls [GPB∗09, GPP∗10]. Morrical et al. [MUWP19] built a KD-
tree over unstructured meshes and shrunk each cell to fit the prim-
itives inside. They showed RTX-capable GPUs can accelerate the
traversal because the resulting data structure is equivalent to a BVH
built only with spatial splitting. Ströter et al. [SMSF20] proposed an
octree-based LBVH suitable for volumetric meshes that fill space
more densely than surface meshes. They used a set of Morton codes
within the quantized AABB of each primitive and constructed an 8-
ary BVH directly by advancing Morton codes by 3 bits.

Collision Detection Ytterlid and Shellshear [YS15] proposed
a suitable metric for distance queries. Binary ostensibly-implicit
trees [CDK20] are ideal for real-time collision detection because
of their fast construction time. There is a large amount of literature
on the use of BVHs in the context of collision detection. However,
it is outside the scope of this paper. We refer the interested read-
ers to the book by Ericson [Eri04] for collision detection-specific
algorithms.

There is a small amount of work which explores sharing
BVHs between both ray tracing and collision detection. Fowler
et al. [FDM14] propose a method by which a single BVH can
be efficiently shared between these two applications. The authors
note that the desired leaf sizes often differ between ray tracing
and collision detection, and introduce the concept of inner leaves.
Components of a simulation preferring larger leaf sizes can effec-
tively terminate traversal at larger, internal nodes, while others can
pass through the inner leaves and terminate at the regular leaves as

normal. This allows both components to make optimal use of the
shared BVH.

Embree [WWB∗14] also supports collision detection queries.
The existing BVHs of two scenes are used to accelerate broad-
phase collision detection (collision detection between objects). In
contrast, the implementation of the narrow phase (collision detec-
tion between geometric primitives) must be implemented by the
user through a programmable callback function.

Many other applications can benefit from BVHs, such as
sound propagation [LCM07, CLT∗08, Cer20] and N-body simula-
tion [Ols18]. Due to space constraints, we limit ourselves to these
examples.

9. Best Practices

In this report, we surveyed many interesting papers varying from
basic algorithms to more complex ones. It might sometimes be dif-
ficult in any given case to choose the right algorithm, especially for
those new in this field. Hence, in this section, we present a subset
of algorithms that are relatively easy to implement while providing
significant benefits in general use cases.

Construction For static geometry, we recommend starting with
top-down construction using sweeping with the SAH-based cost
function [GS87, MB90] as it is easy to implement and provides
BVHs of relatively good quality. To speed up this process, one can
use binning [WH06] instead of sweeping, which can be easily par-
allelized using multithreading and SIMD (see Section 4.1).

We also recommend considering the use of spatial splits [SFD09,
PGDS09] during the top-down construction as they provide a sig-
nificant performance gain, especially for scenes with long thin di-
agonal primitives, overlapping primitives, and primitives of non-
uniform size (see Section 5.1). In such scenes spatial splits can eas-
ily provide 25% or more ray tracing speedup. On the other hand, in
scenes with detailed, finely tessellated geometry, such as those used
in movie production, the performance gain of using spatial splits
can be marginal. Hence, most production renderers do not use spa-
tial splits, preferring reliability and simplicity over performance. In
any case, supporting spatial splits requires significant engineering
effort, particularly for efficiently handling dynamic geometry up-
dates or motion blur.

We can improve BVH quality by using optimization algo-
rithms such as tree rotations [Ken08] or insertion-based optimiza-
tion [BHH13], which are not difficult to implement (see Sec-
tion 4.5). Subtree collapsing is another easy way to improve BVH
quality by optimizing the sizes of leaves (see Section 4.6). One can
consider using wide BVHs [WBB08,EG08], which might be bene-
ficial, especially for incoherent rays. To construct a wide BVH, we
can use a direct top-down construction [WBB08,WWB∗14], or we
can easily convert a binary BVH to a wide one using one of the
collapsing algorithms [Pin10, YKL17] (see Section 5.2).

As we mentioned before, data layout may also have a significant
impact on performance. Some algorithms, such as top-down con-
struction, produce BVHs with relatively good data layout. How-
ever, some algorithms, such as LBVH [Kar12] or insertion-based
optimization [BHH13], produce BVHs with a far from optimal data
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layout. Using simple DFS (on CPU) or BFS (on GPU) may improve
the performance considerably in such cases (see Section 4.7).

Interactive Applications For interactive or real-time applica-
tions, a two-level hierarchy [WBS03] is easy to implement and
provides many benefits such as instancing or rigid body anima-
tions. It can also be used to separate static and dynamic objects
(see Section 5.3.3). For static objects, we can precompute high-
quality BVHs offline using a complex algorithm such as insertion-
based optimization [BHH13] as it will be reused many times.
However, we have to deal with dynamic changes very quickly
at runtime (see Section 4.5). Suppose the dynamic geometry is
known a priori (or at least some representative positions). In that
case, we recommend using T-SAH [BM15], which can be easily
integrated into the insertion-based optimization method to opti-
mize the BVH for the whole animation or the representative po-
sitions (see Section 5.3.1). If the changes are not known a priori
or are too significant, it pays off to reconstruct the BVH from
scratch using high-performance construction algorithms such as
LBVH [Kar12, Ape14] or PLOC [MB18a], that are easy to imple-
ment, or the slightly more complex TRBVH [KA13,DP15]. LBVH
is extremely fast, but it provides rather inferior BVHs as it is re-
stricted to spatial median splits, which can be partially improved
by incorporating the size of primitives into Morton codes [VBH17]
(see Section 4.4). PLOC provides high-quality BVHs, but it is
slower in comparison with LBVH (see Section 4.2). The choice
depends on how many rays are traced and the complexity of the in-
dividual objects. Fast construction algorithms are also desirable if
we want to insert new geometry into the scene at runtime since we
do not want to wait too long for a response.

Traversal Traversal can be easily parallelized via SIMD, by test-
ing multiple rays against one node/primitive. However, for inco-
herent rays, we recommend using wide BVHs with SIMD testing
of one ray against multiple boxes/primitives [WBB08, EG08] (see
Sections 5.2 and 6.1.1). On GPUs, implementing wide BVH traver-
sal might be somewhat complicated, and the performance gain is
not so significant. We thus recommend sticking with binary BVHs
using a per-thread stack [AL09] (see Section 6.4). For complex
scenes with finely tessellated geometry, we recommend the robust
traversal by Ize [Ize13] to avoid numerical issues (see Section 6.2).

CPU versus GPU The platform used is a matter of choice
which is heavily dependent on the target application. Both CPUs
and GPUs have their advantages and disadvantages. Contemporary
GPUs consist of thousands of cores providing enormous computa-
tional power. Thus, the GPU as a standard component of commod-
ity computers is more suitable for interactive and real-time appli-
cations, especially with hardware acceleration. Limiting factors are
smaller memory capacity and costly CPU-GPU transfers. Ideally,
data are transferred to the GPU only once, while other computa-
tions take place entirely on the GPU. Designing GPU algorithms is
also more challenging. On the other hand, the amount of the CPU
memory could be an order of magnitude larger than the amount
of the GPU memory, which is necessary if we have to deal with
large complex scenes such as those in production. Besides thread
parallelism, we can also relatively easily parallelize computations
through multiple computers (e.g., HPC clusters), which might be

useful, for example, for industrial visualizations where we are not
limited by commodity hardware.

Available Implementations Many algorithms have publicly
available implementations. Regarding CPU algorithms, we refer to
Embree [WWB∗14], which contains high-performance construc-
tion algorithms and traversal kernels. Nonetheless, it might not be
easy for someone new in the field to read the code. In that case, we
refer to PBRT [PJH16], which contains a simpler implementation
of BVH construction and traversal. Regarding GPU algorithms,
we refer to Aila’s framework [AL09], which contains a stack-
based traversal kernel using BVHs constructed by SBVH [SFD09].
This framework was later extended with other algorithms such as
PLOC [MB18a], TRBVH with agglomerative clustering [DP15],
and CPU-style traversal of wide BVHs [LSS18].

10. Open Problems

We have covered a multitude of studies so far, but there are still un-
resolved and unanswered questions. Research is driven by the ever-
increasing complexity of data handled in games, movies, and scien-
tific visualizations, and we expect to see the emergence of methods
for handling it more efficiently.

Constructing SAH-optimal BVHs is believed to be NP-hard. Al-
though the existing optimization algorithms produce high-quality
BVHs, we do not know how far we are from the optimum. Whether
we can do better than the existing techniques is an open question.
It would be interesting to show more theoretical properties such as
the NP-hardness of the problem, or propose an approximation al-
gorithm that bounds the distance from the optimum. Another prob-
lem is that there is a gap between the SAH cost and the actual
ray tracing performance. The EPO is a more accurate metric, but
it is not as easy to calculate during the construction phase. Another
problem with building BVHs is that it is very memory bandwidth-
intensive, which is the primary bottleneck for reducing run-time
costs. A research focus should be on algorithms that reduce mem-
ory bandwidth during construction. Top-down approaches are less
bandwidth-hungry than bottom-up approaches due to caches.

Wide BVHs are increasingly popular as they are suitable for par-
allel processing. Typically, we build wide BVHs directly in a top-
down manner using multiple splits to fill all slots in the node. An-
other option is to convert a binary BVH to a wide BVH in an opti-
mal way using collapsing algorithms [Pin10,YKL17]. The question
is whether we can get a better BVH by directly optimizing a wide
BVH instead of converting an optimized binary BVH to a wide one.
Nonetheless, it is often not obvious how to extend more complex
algorithms, such as insertion-based optimization [BHH13], to di-
rectly process wide BVHs. A naïve extension would result in mov-
ing nodes to empty slots in the upper levels and removing unnec-
essary nodes in bottom levels completely from the tree, which is
equivalent to the greedy collapse. The problem is that after the col-
lapse the optimization gets stuck in a local minimum that is almost
impossible to get out of. To prevent this, we could perform opti-
mization on a binary BVH while using a dynamic programming-
based approach to evaluate the cost function of the resulting BVH
after the collapse. In this case, the cost function is piece-wise con-
stant. A topological change in the binary BVH may result in no
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change in the cost function, for example, when we modify nodes
that will be discarded after the collapse. Furthermore, it is unclear
how to efficiently update the dynamic programming information
when the topological change is made.

Ray distribution based optimization methods [BH09, FLF12,
WSWG13, GHB15, ODJ16] suffer from memory overhead due to
the variables used to collect statistics such as the number of node
accesses, performance degradation caused by atomic operations,
and an additional preprocessing pass. Additionally, representing
statistics for a given BVH is generally not sufficient for construct-
ing new optimized ones. Successfully addressing these problems
would enable various scene-specific optimizations.

In most cases, a BVH is traversed from the root node. Dammertz
et al. [DHK08] stored references to the parent and traversed the
ray from intermediate nodes instead of from the root to speed
up shadow computation. Knowing the parent node’s position or
quickly identifying the lowest common ancestor of two leaves helps
to reduce traversal steps. It can be easily done with a complete tree.
However, usually in SAH-optimized BVHs, the parent pointer is
not stored due to memory and alignment constraints, and thus the
use of such techniques is limited. Wald et al.’s [WAB18] iterative
traversal reuses the previous state. Storing traversal states of a large
batch of rays can be problematic in terms of memory consumption.

The increase in data complexity is not only because of the in-
creasing amount of data, but also because the data takes various
forms. Unsurprisingly, most of the literature focuses on polygonal
objects (mostly triangles), and there is a limited amount of work
dealing with non-polygonal objects such as curves and isosurfaces.
In particular, hair and fur rendering are crucial for human and an-
imal characters, and in recent years, fabrics are rendered at the
yarn level to improve realism. Even with state of the art methods,
building a BVH for non-polygonal objects is time-consuming, and
computing tight bounding boxes is not always easy. Various primi-
tives, including points, curves, and triangles, are used, particularly
in production rendering. How to handle a mixture of different prim-
itives (with and without motion blur) is not well understood. There
are currently two possible options: One is to build a BVH for all
primitive types; and the other is to build a bottom-level accelera-
tion structure, one for each primitive type, and then build a top-
level acceleration structure over them. The previous work by Han
et al. [HWU∗19] has a small discussion on this topic. In addition,
the optimal data structure varies with changes in the production
pipeline. For instance, when formerly separate processes are inte-
grated (e.g., physics simulation and rendering), a single data struc-
ture serving multiple purposes is desired. Fowler et al. [FDM14]
introduced a shared BVH that can be used for both ray tracing and
collision detection. In recent versions of Embree [WWB∗14], the
same BVH can also be used for collision detection. As discussed
in Section 8, the number of applications that utilize BVHs con-
tinues to grow; therefore, a universal BVH should satisfy require-
ments arising from various perspectives, including memory effi-
ciency, data structure update overhead, and development and main-
tenance burden.

11. Conclusion

As of today, BVHs stand at the core of most ray tracing frame-
works. The current situation is a result of decades of research on
spatial data structures for ray tracing. In this relatively long time
span, there was no survey specifically targeting BVHs, despite a
great deal of research effort devoted to BVHs in the last 15 years.

This report surveyed core concepts behind BVHs for ray trac-
ing, including the SAH cost model and its extensions. We dis-
cussed the existing BVH construction algorithms ranging from the
widely used top-down methods to specialized optimization-based
techniques. We surveyed low level concepts such as efficient data
layout and hardware acceleration of BVH construction. The report
also covers various extensions of BVHs including spatial splits,
wide BVHs, dynamic scene support, non-polygonal objects, and
compact representations.

We surveyed existing BVH traversal algorithms by discussing
different traversal orders, numerical issues, stream traversal, GPU
and stackless traversal, exploiting ray locality, and hardware-
accelerated ray traversal. We provided a brief overview of the state
of the art rendering frameworks and APIs using BVHs. We listed
other applications besides ray tracing that exploit BVHs. Finally,
we concluded the survey by summarizing best practice recommen-
dations and listing open problems related to BVHs.
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