Craciun, DanielaLevieux, GuillaumeMontes, MatthieuIoannis Pratikakis and Florent Dupont and Maks Ovsjanikov2017-04-222017-04-222017978-3-03868-030-71997-0471https://doi.org/10.2312/3dor.20171051https://diglib.eg.org:443/handle/10.2312/3dor20171051Shape similarity computation is the main functionality for shape matching and shape retrieval systems. Existing shape similarity frameworks proceed by parameterizing shapes through the use of global and/or local representations computed in the 3D or 2D space. Up to now, global methods have demonstrated their rapidity, while local approaches offer slower, but more accurate solutions. This paper presents a shape similarity system driven by a global descriptor encoded as a Digital Elevation Model (DEM) associated to the input mesh. The DEM descriptor is obtained through the jointly use of a mesh flattening technique and a 2D panoramic projection. Experimental results on the public dataset TOSCA [BBK08] and a comparison with state-of-the-art methods illustrate the effectiveness of the proposed method in terms of accuracy and efficiency.Design Methodology [Pattern Recognition]I.5.1Pattern analysisShape Similarity System driven by Digital Elevation Models for Non-rigid Shape Retrieval10.2312/3dor.2017105151-54