Schmaltz, C.Gwosdek, P.Weickert, J.Holly Rushmeier and Oliver Deussen2015-02-282015-02-2820121467-8659https://doi.org/10.1111/j.1467-8659.2012.03072.xElectrostatic halftoning, a sampling algorithm based on electrostatic principles, is among the leading methods for stippling, dithering and sampling. However, this approach is only applicable for a single class of dots with a uniform size and colour. In our work, we complement these ideas by advanced features for real‐world applications. We propose a versatile framework for colour halftoning, hatching and multi‐class importance sampling with individual weights. Our novel approach is the first method that globally optimizes the distribution of different objects in varying sizes relative to multiple given density functions. The quality, versatility and adaptability of our approach is demonstrated in various experiments.Electrostatic halftoning, a sampling algorithm based on electrostatic principles, is among the leading methods for stippling, dithering and sampling. However, this approach is only applicable for a single class of dots with a uniform size and colour. In our work, we complement these ideas by advanced features for real‐world applications. We propose a versatile framework for colour halftoning, hatching and multi‐class importance sampling with individual weights. Our novel approach is the first method that globally optimizes the distribution of different objects in varying sizes relative to multiple given density functions. The quality, versatility and adaptability of our approach is demonstrated in various experiments.Multi‐Class Anisotropic Electrostatic Halftoning10.1111/j.1467-8659.2012.03072.x