Mellado, NicolasGuennebaud, GaƫlBarla, PascalReuter, PatrickSchlick, ChristopheEitan Grinspun and Niloy Mitra2015-02-282015-02-2820121467-8659https://doi.org/10.1111/j.1467-8659.2012.03174.xWe present a novel approach to the multi-scale analysis of point-sampled manifolds of co-dimension 1. It is based on a variant of Moving Least Squares, whereby the evolution of a geometric descriptor at increasing scales is used to locate pertinent locations in scale-space, hence the name "Growing Least Squares". Compared to existing scale-space analysis methods, our approach is the first to provide a continuous solution in space and scale dimensions, without requiring any parametrization, connectivity or uniform sampling. An important implication is that we identify multiple pertinent scales for any point on a manifold, a property that had not yet been demonstrated in the literature. In practice, our approach exhibits an improved robustness to change of input, and is easily implemented in a parallel fashion on the GPU. We compare our method to state-of-the-art scale-space analysis techniques and illustrate its practical relevance in a few application scenarios.Growing Least Squares for the Analysis of Manifolds in Scale-Space10.1111/j.1467-8659.2012.03174.x