Snydre, JohnNowrouzezahrai, Derek2015-02-212015-02-2120081467-8659https://doi.org/10.1111/j.1467-8659.2008.01266.xWe present a new, real-time method for rendering soft shadows from large light sources or lighting environments on dynamic height fields. The method first computes a horizon map for a set of azimuthal directions. To reduce sampling, we compute a multi-resolution pyramid on the height field. Coarser pyramid levels are indexed as the distance from caster to receiver increases. For every receiver point and every azimuthal direction, a smooth function of blocking angle in terms of log distance is reconstructed from a height difference sample at each pyramid level. This function s maximum approximates the horizon angle. We then sum visibility at each receiver point over wedges determined by successive pairs of horizon angles. Each wedge represents a linear transition in blocking angle over its azimuthal extent. It is precomputed in the order-4 spherical harmonic (SH) basis, for a canonical azimuthal origin and fixed extent, resulting in a 2D table. The SH triple product of 16D vectors representing lighting, total visibility, and diffuse reflectance then yields the soft-shadowed result. Two types of light sources are considered; both are distant and low-frequency. Environmental lights require visibility sampling around the complete 360 azimuth, while key lights sample visibility within a partial swath. Restricting the swath concentrates samples where the light comes from (e.g. 3 azimuthal directions vs. 16-32 for a full swath) and obtains sharper shadows. Our GPU implementation handles height fields up to 1024 x 1024 in real-time. The computation is simple, local, and parallel, with performance independent of geometric content.Fast Soft Self-Shadowing on Dynamic Height Fields10.1111/j.1467-8659.2008.01266.x1275-1283