Woodring, JonathanAhrens, J.Figg, J.Wendelberger, J.Habib, S.Heitmann, K.H. Hauser, H. Pfister, and J. J. van Wijk2014-02-212014-02-2120111467-8659https://doi.org/10.1111/j.1467-8659.2011.01964.xWe describe a simulation-time random sampling of a large-scale particle simulation, the RoadRunner Universe MC3 cosmological simulation, for interactive post-analysis and visualization. Simulation data generation rates will continue to be far greater than storage bandwidth rates by many orders of magnitude. This implies that only a very small fraction of data generated by a simulation can ever be stored and subsequently post-analyzed. The limiting factors in this situation are similar to the problem in many population surveys: there aren't enough human resources to query a large population. To cope with the lack of resources, statistical sampling techniques are used to create a representative data set of a large population. Following this analogy, we propose to store a simulationtime random sampling of the particle data for post-analysis, with level-of-detail organization, to cope with the bottlenecks. A sample is stored directly from the simulation in a level-of-detail format for post-visualization and analysis, which amortizes the cost of post-processing and reduces workflow time. Additionally by sampling during the simulation, we are able to analyze the entire particle population to record full population statistics and quantify sample error.I.3.8 [Computer Graphics]ApplicationsH.3.m [Information Storage and Retrieval]MiscellaneousIn-situ Sampling of a Large-Scale Particle Simulation for Interactive Visualization and Analysis