Barrielle, V.Stoiber, N.Chen, Min and Benes, Bedrich2019-03-172019-03-1720191467-8659https://doi.org/10.1111/cgf.13450https://diglib.eg.org:443/handle/10.1111/cgf13450We present the first realtime method for generating facial animations enhanced by physical simulation from realtime performance capture data. Unlike purely data‐based techniques, our method is able to produce physical effects on the fly through the simulation of volumetric skin behaviour, lip contacts and sticky lips. It remains however practical as it does not require any physical/medical data which are complex to acquire and process, and instead relies only on the input of a blendshapes model. We achieve realtime performance on the CPU by introducing an efficient progressive Projective Dynamics solver to efficiently solve the physical integration steps even when confronted to constantly changing constraints. Also key to our realtime performance is a new Taylor approximation and memoization scheme for the computation of the Singular Value Decompositions required for the simulation of volumetric skin. We demonstrate the applicability of our method by animating blendshape characters from a simple webcam feed .We present the first realtime method for generating facial animations enhanced by physical simulation from realtime performance capture data. Unlike purely data‐based techniques, our method is able to produce physical effects on the fly through the simulation of volumetric skin behaviour, lip contacts and sticky lips. It remains however practical as it does not require any physical/medical data which are complex to acquire and process, and instead relies only on the input of a blendshapes model. We achieve realtime performance on the CPU by introducing an efficient progressive Projective Dynamics solver to efficiently solve the physical integration steps even when confronted to constantly changing constraints. Also key to our realtime performance is a new Taylor approximation and memoization scheme for the computation of the Singular Value Decompositions required for the simulation of volumetric skin. We demonstrate the applicability of our method by animating blendshape characters from a simple webcam feed.facial animationphysical simulationperformance captureComputing methodologies: AnimationPhysical simulationMotion captureRealtime Performance‐Driven Physical Simulation for Facial Animation10.1111/cgf.13450151-166