Son, HyeongseokLee, GunheeCho, SunghyunLee, SeungyongLee, Jehee and Theobalt, Christian and Wetzstein, Gordon2019-10-142019-10-1420191467-8659https://doi.org/10.1111/cgf.13836https://diglib.eg.org:443/handle/10.1111/cgf13836This paper proposes a deep learning-based image tone enhancement approach that can maximally enhance the tone of an image while preserving the naturalness. Our approach does not require carefully generated ground-truth images by human experts for training. Instead, we train a deep neural network to mimic the behavior of a previous classical filtering method that produces drastic but possibly unnatural-looking tone enhancement results. To preserve the naturalness, we adopt the generative adversarial network (GAN) framework as a regularizer for the naturalness. To suppress artifacts caused by the generative nature of the GAN framework, we also propose an imbalanced cycle-consistency loss. Experimental results show that our approach can effectively enhance the tone and contrast of an image while preserving the naturalness compared to previous state-of-the-art approaches.Computing methodologiesImage processingNaturalness-Preserving Image Tone Enhancement Using Generative Adversarial Networks10.1111/cgf.13836277-285