Attene, MarcoFalcidieno, BiancaRossignac, JarekSpagnuolo, MichelaLeif Kobbelt and Peter Schroeder and Hugues Hoppe2014-01-292014-01-2920033-905673-06-11727-8384https://doi.org/10.2312/SGP/SGP03/062-0713D scanners, iso-surface extraction procedures, and several recent geometric compression schemes sample surfaces of 3D shapes in a regular fashion, without any attempt to align the samples with the sharp edges and corners of the original shape. Consequently, the interpolating triangle meshes chamfer these sharp features and thus exhibit significant errors. The new Edge-Sharpener filter introduced here identifies the chamfer edges and subdivides them and their incident triangles by inserting new vertices and by forcing these vertices to lie on intersections of planes that locally approximate the smooth surfaces that meet at these sharp features. This post-processing significantly reduces the error produced by the initial sampling process. For example, we have observed that the L2 error introduced by the SwingWrapper9 remeshing-based compressor can be reduced down to a fifth by executing Edge-Sharpener after decompression, with no additional information.Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling - geometric algorithms;Edge-Sharpener: Recovering sharp features in triangulations of non-adaptively re-meshed surfaces