Jobard, BrunoLefer, Wilfrid2015-02-162015-02-1620001467-8659https://doi.org/10.1111/1467-8659.00395In recent years the work on vector field visualization has been concentrated on LIC-based methods. In this paper we propose an alternative solution for the visualization of unsteady flow fields. Our approach is based on the computation of temporal series of correlated images. While other methods are based on pathlines and try to correlate successive images at the pixel level, our approach consists in correlating instantaneous visualizations of the vector field at the streamline level. For each frame a feed forward algorithm computes a set of evenly-spaced streamlines as a function of the streamlines generated for the previous frame. This is achieved by establishing a correspondence between streamlines at successive time steps. A cyclical texture is mapped onto every streamline and textures of corresponding streamlines at different time steps are correlated together so that, during the animation, they move along the streamlines, giving the illusion that the flow is moving in the direction defined by the streamline. Our method gives full control on the image density so that we are able to produce smooth animations of arbitrary density, covering the field of representations from sparse, that is classical streamline-based images, to dense, that is texture-like images.Unsteady Flow Visualization by Animating Evenly-Spaced Streamlines10.1111/1467-8659.0039531-39