Reinert, BernhardKopf, JohannesRitschel, TobiasCuervo, EduardoChu, DavidSeidel, Hans-PeterEitan Grinspun and Bernd Bickel and Yoshinori Dobashi2016-10-112016-10-1120161467-8659https://doi.org/10.1111/cgf.13032https://diglib.eg.org:443/handle/10.1111/cgf13032VR headsets and hand-held devices are not powerful enough to render complex scenes in real-time. A server can take on the rendering task, but network latency prohibits a good user experience. We present a new image-based rendering (IBR) architecture for masking the latency. It runs in real-time even on very weak mobile devices, supports modern game engine graphics, and maintains high visual quality even for large view displacements. We propose a novel server-side dual-view representation that leverages an optimally-placed extra view and depth peeling to provide the client with coverage for filling disocclusion holes. This representation is directly rendered in a novel wide-angle projection with favorable directional parameterization. A new client-side IBR algorithm uses a pre-transmitted level-of-detail proxy with an encaging simplification and depth-carving to maintain highly complex geometric detail. We demonstrate our approach with typical VR / mobile gaming applications running on mobile hardware. Our technique compares favorably to competing approaches according to perceptual and numerical comparisons.Proxy-guided Image-based Rendering for Mobile Devices10.1111/cgf.13032353-362