Wu, FuliHu, ChaoranLi, WenxuanHao, PengyiChristie, MarcHan, Ping-HsuanLin, Shih-SyunPietroni, NicoSchneider, TeseoTsai, Hsin-RueyWang, Yu-ShuenZhang, Eugene2025-10-072025-10-072025978-3-03868-295-0https://doi.org/10.2312/pg.20251291https://diglib.eg.org/handle/10.2312/pg20251291Reconstructing high-quality meshes from binary voxel data is a fundamental task in computer graphics. However, existing methods struggle with low information density and strong discreteness, making it difficult to capture complex geometry and long-range boundary features, often leading to jagged surfaces and loss of sharp details.We propose an Attention-Guided Multiscale Neural Dual Contouring (AGNDC) method to address this challenge. AGNDC refines surface reconstruction through a multi-scale framework, using a hybrid feature extractor that combines global attention and dynamic snake convolution to enhance perception of long-range and high-curvature features. A dynamic feature fusion module aligns multi-scale predictions to improve local detail continuity, while a geometric postprocessing module further refines mesh boundaries and suppresses artifacts. Experiments on the ABC dataset demonstrate the superior performance of AGNDC in both visual and quantitative metrics. It achieves a Chamfer Distance (CD×105) of 9.013 and an F-score of 0.440, significantly reducing jaggedness and improving surface smoothness.Attribution 4.0 International LicenseCCS Concepts: Computing methodologies → Mesh generation; Neural networks; Volumetric modelsComputing methodologies → Mesh generationNeural networksVolumetric modelsAttention-Guided Multi-scale Neural Dual Contouring10.2312/pg.2025129112 pages